1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
262 setOperationAction(ISD::MLOAD
, VT
, Custom
);
263 setOperationAction(ISD::MSTORE
, VT
, Legal
);
264 setOperationAction(ISD::CTLZ
, VT
, Legal
);
265 setOperationAction(ISD::CTTZ
, VT
, Custom
);
266 setOperationAction(ISD::BITREVERSE
, VT
, Legal
);
267 setOperationAction(ISD::BSWAP
, VT
, Legal
);
268 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
269 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
271 // No native support for these.
272 setOperationAction(ISD::UDIV
, VT
, Expand
);
273 setOperationAction(ISD::SDIV
, VT
, Expand
);
274 setOperationAction(ISD::UREM
, VT
, Expand
);
275 setOperationAction(ISD::SREM
, VT
, Expand
);
276 setOperationAction(ISD::CTPOP
, VT
, Expand
);
279 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
280 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Legal
);
281 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Legal
);
282 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Legal
);
283 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Legal
);
286 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
287 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
288 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
289 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
292 // Pre and Post inc are supported on loads and stores
293 for (unsigned im
= (unsigned)ISD::PRE_INC
;
294 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
295 setIndexedLoadAction(im
, VT
, Legal
);
296 setIndexedStoreAction(im
, VT
, Legal
);
300 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
301 for (auto VT
: FloatTypes
) {
302 addRegisterClass(VT
, &ARM::MQPRRegClass
);
306 // These are legal or custom whether we have MVE.fp or not
307 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
308 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
309 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
310 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
311 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
312 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
313 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
314 setOperationAction(ISD::SETCC
, VT
, Custom
);
315 setOperationAction(ISD::MLOAD
, VT
, Custom
);
316 setOperationAction(ISD::MSTORE
, VT
, Legal
);
318 // Pre and Post inc are supported on loads and stores
319 for (unsigned im
= (unsigned)ISD::PRE_INC
;
320 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
321 setIndexedLoadAction(im
, VT
, Legal
);
322 setIndexedStoreAction(im
, VT
, Legal
);
326 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
327 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
328 setOperationAction(ISD::FROUND
, VT
, Legal
);
330 // No native support for these.
331 setOperationAction(ISD::FDIV
, VT
, Expand
);
332 setOperationAction(ISD::FREM
, VT
, Expand
);
333 setOperationAction(ISD::FSQRT
, VT
, Expand
);
334 setOperationAction(ISD::FSIN
, VT
, Expand
);
335 setOperationAction(ISD::FCOS
, VT
, Expand
);
336 setOperationAction(ISD::FPOW
, VT
, Expand
);
337 setOperationAction(ISD::FLOG
, VT
, Expand
);
338 setOperationAction(ISD::FLOG2
, VT
, Expand
);
339 setOperationAction(ISD::FLOG10
, VT
, Expand
);
340 setOperationAction(ISD::FEXP
, VT
, Expand
);
341 setOperationAction(ISD::FEXP2
, VT
, Expand
);
342 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
346 // We 'support' these types up to bitcast/load/store level, regardless of
347 // MVE integer-only / float support. Only doing FP data processing on the FP
348 // vector types is inhibited at integer-only level.
349 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
350 for (auto VT
: LongTypes
) {
351 addRegisterClass(VT
, &ARM::MQPRRegClass
);
353 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
354 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
355 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
357 // We can do bitwise operations on v2i64 vectors
358 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
359 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
360 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
362 // It is legal to extload from v4i8 to v4i16 or v4i32.
363 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
364 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
365 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
367 // Some truncating stores are legal too.
368 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
369 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
370 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
372 // Pre and Post inc on these are legal, given the correct extends
373 for (unsigned im
= (unsigned)ISD::PRE_INC
;
374 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
375 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
376 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
377 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
378 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
379 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
380 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
384 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
385 for (auto VT
: pTypes
) {
386 addRegisterClass(VT
, &ARM::VCCRRegClass
);
387 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
388 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
389 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
390 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
391 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
392 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
393 setOperationAction(ISD::SETCC
, VT
, Custom
);
394 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
395 setOperationAction(ISD::LOAD
, VT
, Custom
);
396 setOperationAction(ISD::STORE
, VT
, Custom
);
400 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
401 const ARMSubtarget
&STI
)
402 : TargetLowering(TM
), Subtarget(&STI
) {
403 RegInfo
= Subtarget
->getRegisterInfo();
404 Itins
= Subtarget
->getInstrItineraryData();
406 setBooleanContents(ZeroOrOneBooleanContent
);
407 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
409 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
410 !Subtarget
->isTargetWatchOS()) {
411 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
412 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
413 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
414 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
415 : CallingConv::ARM_AAPCS
);
418 if (Subtarget
->isTargetMachO()) {
419 // Uses VFP for Thumb libfuncs if available.
420 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
421 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
422 static const struct {
423 const RTLIB::Libcall Op
;
424 const char * const Name
;
425 const ISD::CondCode Cond
;
427 // Single-precision floating-point arithmetic.
428 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
429 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
430 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
431 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
433 // Double-precision floating-point arithmetic.
434 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
435 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
436 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
437 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
439 // Single-precision comparisons.
440 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
441 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
442 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
443 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
444 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
445 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
446 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
447 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
449 // Double-precision comparisons.
450 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
451 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
452 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
453 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
454 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
455 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
456 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
457 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
459 // Floating-point to integer conversions.
460 // i64 conversions are done via library routines even when generating VFP
461 // instructions, so use the same ones.
462 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
463 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
464 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
465 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
467 // Conversions between floating types.
468 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
469 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
471 // Integer to floating-point conversions.
472 // i64 conversions are done via library routines even when generating VFP
473 // instructions, so use the same ones.
474 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
475 // e.g., __floatunsidf vs. __floatunssidfvfp.
476 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
477 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
478 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
479 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
482 for (const auto &LC
: LibraryCalls
) {
483 setLibcallName(LC
.Op
, LC
.Name
);
484 if (LC
.Cond
!= ISD::SETCC_INVALID
)
485 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
490 // These libcalls are not available in 32-bit.
491 setLibcallName(RTLIB::SHL_I128
, nullptr);
492 setLibcallName(RTLIB::SRL_I128
, nullptr);
493 setLibcallName(RTLIB::SRA_I128
, nullptr);
496 if (Subtarget
->isAAPCS_ABI() &&
497 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
498 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
499 static const struct {
500 const RTLIB::Libcall Op
;
501 const char * const Name
;
502 const CallingConv::ID CC
;
503 const ISD::CondCode Cond
;
505 // Double-precision floating-point arithmetic helper functions
506 // RTABI chapter 4.1.2, Table 2
507 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
508 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
509 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 // Double-precision floating-point comparison helper functions
513 // RTABI chapter 4.1.2, Table 3
514 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
515 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
516 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
518 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
523 // Single-precision floating-point arithmetic helper functions
524 // RTABI chapter 4.1.2, Table 4
525 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
526 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
527 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 // Single-precision floating-point comparison helper functions
531 // RTABI chapter 4.1.2, Table 5
532 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
533 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
534 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
535 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
536 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
537 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
538 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
539 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
541 // Floating-point to integer conversions.
542 // RTABI chapter 4.1.2, Table 6
543 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
544 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
545 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
552 // Conversions between floating types.
553 // RTABI chapter 4.1.2, Table 7
554 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
555 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
556 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 // Integer to floating-point conversions.
559 // RTABI chapter 4.1.2, Table 8
560 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
561 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 // Long long helper functions
570 // RTABI chapter 4.2, Table 9
571 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
572 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
573 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
574 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
576 // Integer division functions
577 // RTABI chapter 4.3.1
578 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
579 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
580 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
581 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
582 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
583 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
584 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
585 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
588 for (const auto &LC
: LibraryCalls
) {
589 setLibcallName(LC
.Op
, LC
.Name
);
590 setLibcallCallingConv(LC
.Op
, LC
.CC
);
591 if (LC
.Cond
!= ISD::SETCC_INVALID
)
592 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
595 // EABI dependent RTLIB
596 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
597 TM
.Options
.EABIVersion
== EABI::EABI5
) {
598 static const struct {
599 const RTLIB::Libcall Op
;
600 const char *const Name
;
601 const CallingConv::ID CC
;
602 const ISD::CondCode Cond
;
603 } MemOpsLibraryCalls
[] = {
605 // RTABI chapter 4.3.4
606 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
607 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
608 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
611 for (const auto &LC
: MemOpsLibraryCalls
) {
612 setLibcallName(LC
.Op
, LC
.Name
);
613 setLibcallCallingConv(LC
.Op
, LC
.CC
);
614 if (LC
.Cond
!= ISD::SETCC_INVALID
)
615 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
620 if (Subtarget
->isTargetWindows()) {
621 static const struct {
622 const RTLIB::Libcall Op
;
623 const char * const Name
;
624 const CallingConv::ID CC
;
626 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
627 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
628 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
629 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
630 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
631 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
632 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
633 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
636 for (const auto &LC
: LibraryCalls
) {
637 setLibcallName(LC
.Op
, LC
.Name
);
638 setLibcallCallingConv(LC
.Op
, LC
.CC
);
642 // Use divmod compiler-rt calls for iOS 5.0 and later.
643 if (Subtarget
->isTargetMachO() &&
644 !(Subtarget
->isTargetIOS() &&
645 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
646 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
647 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
650 // The half <-> float conversion functions are always soft-float on
651 // non-watchos platforms, but are needed for some targets which use a
652 // hard-float calling convention by default.
653 if (!Subtarget
->isTargetWatchABI()) {
654 if (Subtarget
->isAAPCS_ABI()) {
655 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
656 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
657 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
659 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
660 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
661 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
665 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
666 // a __gnu_ prefix (which is the default).
667 if (Subtarget
->isTargetAEABI()) {
668 static const struct {
669 const RTLIB::Libcall Op
;
670 const char * const Name
;
671 const CallingConv::ID CC
;
673 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
674 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
675 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
678 for (const auto &LC
: LibraryCalls
) {
679 setLibcallName(LC
.Op
, LC
.Name
);
680 setLibcallCallingConv(LC
.Op
, LC
.CC
);
684 if (Subtarget
->isThumb1Only())
685 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
687 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
689 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
690 Subtarget
->hasFPRegs()) {
691 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
692 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
693 if (!Subtarget
->hasVFP2Base())
694 setAllExpand(MVT::f32
);
695 if (!Subtarget
->hasFP64())
696 setAllExpand(MVT::f64
);
699 if (Subtarget
->hasFullFP16()) {
700 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
701 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
702 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
703 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
705 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
706 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
709 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
710 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
711 setTruncStoreAction(VT
, InnerVT
, Expand
);
712 addAllExtLoads(VT
, InnerVT
, Expand
);
715 setOperationAction(ISD::MULHS
, VT
, Expand
);
716 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
717 setOperationAction(ISD::MULHU
, VT
, Expand
);
718 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
720 setOperationAction(ISD::BSWAP
, VT
, Expand
);
723 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
724 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
726 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
727 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
729 if (Subtarget
->hasMVEIntegerOps())
730 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
732 // Combine low-overhead loop intrinsics so that we can lower i1 types.
733 if (Subtarget
->hasLOB()) {
734 setTargetDAGCombine(ISD::BRCOND
);
735 setTargetDAGCombine(ISD::BR_CC
);
738 if (Subtarget
->hasNEON()) {
739 addDRTypeForNEON(MVT::v2f32
);
740 addDRTypeForNEON(MVT::v8i8
);
741 addDRTypeForNEON(MVT::v4i16
);
742 addDRTypeForNEON(MVT::v2i32
);
743 addDRTypeForNEON(MVT::v1i64
);
745 addQRTypeForNEON(MVT::v4f32
);
746 addQRTypeForNEON(MVT::v2f64
);
747 addQRTypeForNEON(MVT::v16i8
);
748 addQRTypeForNEON(MVT::v8i16
);
749 addQRTypeForNEON(MVT::v4i32
);
750 addQRTypeForNEON(MVT::v2i64
);
752 if (Subtarget
->hasFullFP16()) {
753 addQRTypeForNEON(MVT::v8f16
);
754 addDRTypeForNEON(MVT::v4f16
);
758 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
759 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
760 // none of Neon, MVE or VFP supports any arithmetic operations on it.
761 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
762 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
763 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
764 // FIXME: Code duplication: FDIV and FREM are expanded always, see
765 // ARMTargetLowering::addTypeForNEON method for details.
766 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
767 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
768 // FIXME: Create unittest.
769 // In another words, find a way when "copysign" appears in DAG with vector
771 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
772 // FIXME: Code duplication: SETCC has custom operation action, see
773 // ARMTargetLowering::addTypeForNEON method for details.
774 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
775 // FIXME: Create unittest for FNEG and for FABS.
776 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
777 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
778 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
779 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
780 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
781 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
782 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
783 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
784 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
785 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
786 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
787 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
788 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
789 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
790 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
791 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
792 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
793 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
796 if (Subtarget
->hasNEON()) {
797 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
798 // supported for v4f32.
799 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
800 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
801 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
802 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
803 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
804 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
805 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
806 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
807 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
808 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
809 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
810 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
811 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
812 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
814 // Mark v2f32 intrinsics.
815 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
816 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
817 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
818 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
819 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
820 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
821 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
822 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
823 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
824 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
825 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
826 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
827 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
828 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
830 // Neon does not support some operations on v1i64 and v2i64 types.
831 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
832 // Custom handling for some quad-vector types to detect VMULL.
833 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
834 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
835 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
836 // Custom handling for some vector types to avoid expensive expansions
837 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
839 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
840 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
841 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
842 // a destination type that is wider than the source, and nor does
843 // it have a FP_TO_[SU]INT instruction with a narrower destination than
845 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
846 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
847 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
848 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
849 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
850 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
851 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
852 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
854 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
855 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
857 // NEON does not have single instruction CTPOP for vectors with element
858 // types wider than 8-bits. However, custom lowering can leverage the
859 // v8i8/v16i8 vcnt instruction.
860 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
861 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
862 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
863 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
864 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
865 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
867 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
868 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
870 // NEON does not have single instruction CTTZ for vectors.
871 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
872 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
873 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
874 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
876 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
877 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
878 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
879 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
881 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
882 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
883 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
884 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
886 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
887 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
888 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
889 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
891 // NEON only has FMA instructions as of VFP4.
892 if (!Subtarget
->hasVFP4Base()) {
893 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
894 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
897 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
898 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
899 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
900 setTargetDAGCombine(ISD::SHL
);
901 setTargetDAGCombine(ISD::SRL
);
902 setTargetDAGCombine(ISD::SRA
);
903 setTargetDAGCombine(ISD::FP_TO_SINT
);
904 setTargetDAGCombine(ISD::FP_TO_UINT
);
905 setTargetDAGCombine(ISD::FDIV
);
906 setTargetDAGCombine(ISD::LOAD
);
908 // It is legal to extload from v4i8 to v4i16 or v4i32.
909 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
911 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
912 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
913 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
914 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
919 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
920 setTargetDAGCombine(ISD::BUILD_VECTOR
);
921 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
922 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
923 setTargetDAGCombine(ISD::STORE
);
924 setTargetDAGCombine(ISD::SIGN_EXTEND
);
925 setTargetDAGCombine(ISD::ZERO_EXTEND
);
926 setTargetDAGCombine(ISD::ANY_EXTEND
);
929 if (!Subtarget
->hasFP64()) {
930 // When targeting a floating-point unit with only single-precision
931 // operations, f64 is legal for the few double-precision instructions which
932 // are present However, no double-precision operations other than moves,
933 // loads and stores are provided by the hardware.
934 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
942 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
943 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
944 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
945 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
946 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
947 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
948 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
949 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
950 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
951 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
952 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
953 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
954 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
955 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
956 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
957 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
958 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
959 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
960 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
961 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
962 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
963 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
964 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
967 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
968 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
969 if (Subtarget
->hasFullFP16())
970 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
973 if (!Subtarget
->hasFP16())
974 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
976 if (!Subtarget
->hasFP64())
977 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
979 computeRegisterProperties(Subtarget
->getRegisterInfo());
981 // ARM does not have floating-point extending loads.
982 for (MVT VT
: MVT::fp_valuetypes()) {
983 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
984 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
987 // ... or truncating stores
988 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
989 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
990 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
992 // ARM does not have i1 sign extending load.
993 for (MVT VT
: MVT::integer_valuetypes())
994 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
996 // ARM supports all 4 flavors of integer indexed load / store.
997 if (!Subtarget
->isThumb1Only()) {
998 for (unsigned im
= (unsigned)ISD::PRE_INC
;
999 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
1000 setIndexedLoadAction(im
, MVT::i1
, Legal
);
1001 setIndexedLoadAction(im
, MVT::i8
, Legal
);
1002 setIndexedLoadAction(im
, MVT::i16
, Legal
);
1003 setIndexedLoadAction(im
, MVT::i32
, Legal
);
1004 setIndexedStoreAction(im
, MVT::i1
, Legal
);
1005 setIndexedStoreAction(im
, MVT::i8
, Legal
);
1006 setIndexedStoreAction(im
, MVT::i16
, Legal
);
1007 setIndexedStoreAction(im
, MVT::i32
, Legal
);
1010 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1011 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
1012 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
1015 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1016 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1017 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1018 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1021 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1023 // i64 operation support.
1024 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1025 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1026 if (Subtarget
->isThumb1Only()) {
1027 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1028 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1030 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1031 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1032 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1034 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1035 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1036 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1037 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1038 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1039 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1040 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1042 // MVE lowers 64 bit shifts to lsll and lsrl
1043 // assuming that ISD::SRL and SRA of i64 are already marked custom
1044 if (Subtarget
->hasMVEIntegerOps())
1045 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1047 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1048 if (Subtarget
->isThumb1Only()) {
1049 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1050 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1054 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1055 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1057 // ARM does not have ROTL.
1058 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1059 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
1060 setOperationAction(ISD::ROTL
, VT
, Expand
);
1061 setOperationAction(ISD::ROTR
, VT
, Expand
);
1063 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1064 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1065 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1066 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1067 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1070 // @llvm.readcyclecounter requires the Performance Monitors extension.
1071 // Default to the 0 expansion on unsupported platforms.
1072 // FIXME: Technically there are older ARM CPUs that have
1073 // implementation-specific ways of obtaining this information.
1074 if (Subtarget
->hasPerfMon())
1075 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1077 // Only ARMv6 has BSWAP.
1078 if (!Subtarget
->hasV6Ops())
1079 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1081 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1082 : Subtarget
->hasDivideInARMMode();
1084 // These are expanded into libcalls if the cpu doesn't have HW divider.
1085 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1086 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1089 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1090 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1091 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1093 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1094 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1097 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1098 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1100 // Register based DivRem for AEABI (RTABI 4.2)
1101 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1102 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1103 Subtarget
->isTargetWindows()) {
1104 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1105 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1106 HasStandaloneRem
= false;
1108 if (Subtarget
->isTargetWindows()) {
1110 const RTLIB::Libcall Op
;
1111 const char * const Name
;
1112 const CallingConv::ID CC
;
1113 } LibraryCalls
[] = {
1114 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1115 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1116 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1117 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1119 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1120 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1121 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1122 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1125 for (const auto &LC
: LibraryCalls
) {
1126 setLibcallName(LC
.Op
, LC
.Name
);
1127 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1131 const RTLIB::Libcall Op
;
1132 const char * const Name
;
1133 const CallingConv::ID CC
;
1134 } LibraryCalls
[] = {
1135 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1136 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1137 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1138 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1140 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1141 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1142 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1143 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1146 for (const auto &LC
: LibraryCalls
) {
1147 setLibcallName(LC
.Op
, LC
.Name
);
1148 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1152 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1153 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1154 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1155 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1157 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1158 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1161 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1162 for (auto &VT
: {MVT::f32
, MVT::f64
})
1163 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1165 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1166 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1167 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1168 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1170 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1171 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1173 // Use the default implementation.
1174 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1175 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1176 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1177 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1178 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1179 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1181 if (Subtarget
->isTargetWindows())
1182 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1184 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1186 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1187 // the default expansion.
1188 InsertFencesForAtomic
= false;
1189 if (Subtarget
->hasAnyDataBarrier() &&
1190 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1191 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1192 // to ldrex/strex loops already.
1193 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1194 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1195 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1197 // On v8, we have particularly efficient implementations of atomic fences
1198 // if they can be combined with nearby atomic loads and stores.
1199 if (!Subtarget
->hasAcquireRelease() ||
1200 getTargetMachine().getOptLevel() == 0) {
1201 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1202 InsertFencesForAtomic
= true;
1205 // If there's anything we can use as a barrier, go through custom lowering
1206 // for ATOMIC_FENCE.
1207 // If target has DMB in thumb, Fences can be inserted.
1208 if (Subtarget
->hasDataBarrier())
1209 InsertFencesForAtomic
= true;
1211 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1212 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1214 // Set them all for expansion, which will force libcalls.
1215 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1216 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1217 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1218 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1219 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1220 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1221 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1222 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1223 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1224 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1225 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1226 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1227 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1228 // Unordered/Monotonic case.
1229 if (!InsertFencesForAtomic
) {
1230 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1231 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1235 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1237 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1238 if (!Subtarget
->hasV6Ops()) {
1239 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1240 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1242 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1244 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1245 !Subtarget
->isThumb1Only()) {
1246 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1247 // iff target supports vfp2.
1248 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1249 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1252 // We want to custom lower some of our intrinsics.
1253 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1254 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1255 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1256 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1257 if (Subtarget
->useSjLjEH())
1258 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1260 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1261 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1262 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1263 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1264 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1265 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1266 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1267 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1268 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1269 if (Subtarget
->hasFullFP16()) {
1270 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1271 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1272 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1275 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1277 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1278 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1279 if (Subtarget
->hasFullFP16())
1280 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1281 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1282 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1283 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1285 // We don't support sin/cos/fmod/copysign/pow
1286 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1287 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1288 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1289 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1290 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1291 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1292 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1293 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1294 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1295 !Subtarget
->isThumb1Only()) {
1296 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1297 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1299 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1300 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1302 if (!Subtarget
->hasVFP4Base()) {
1303 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1304 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1307 // Various VFP goodness
1308 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1309 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1310 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1311 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1312 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1315 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1316 if (!Subtarget
->hasFP16()) {
1317 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1318 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1322 // Use __sincos_stret if available.
1323 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1324 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1325 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1326 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1329 // FP-ARMv8 implements a lot of rounding-like FP operations.
1330 if (Subtarget
->hasFPARMv8Base()) {
1331 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1332 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1333 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1334 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1335 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1336 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1337 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1338 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1339 if (Subtarget
->hasNEON()) {
1340 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1341 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1342 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1343 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1346 if (Subtarget
->hasFP64()) {
1347 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1348 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1349 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1350 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1351 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1352 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1353 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1354 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1358 // FP16 often need to be promoted to call lib functions
1359 if (Subtarget
->hasFullFP16()) {
1360 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1361 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1362 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1363 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1364 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1365 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1366 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1367 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1368 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1369 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1370 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1371 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1373 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1376 if (Subtarget
->hasNEON()) {
1377 // vmin and vmax aren't available in a scalar form, so we use
1378 // a NEON instruction with an undef lane instead.
1379 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1380 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1381 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1382 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1383 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1384 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1385 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1386 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1388 if (Subtarget
->hasFullFP16()) {
1389 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1390 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1391 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1392 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1394 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1395 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1396 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1397 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1401 // We have target-specific dag combine patterns for the following nodes:
1402 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1403 setTargetDAGCombine(ISD::ADD
);
1404 setTargetDAGCombine(ISD::SUB
);
1405 setTargetDAGCombine(ISD::MUL
);
1406 setTargetDAGCombine(ISD::AND
);
1407 setTargetDAGCombine(ISD::OR
);
1408 setTargetDAGCombine(ISD::XOR
);
1410 if (Subtarget
->hasV6Ops())
1411 setTargetDAGCombine(ISD::SRL
);
1412 if (Subtarget
->isThumb1Only())
1413 setTargetDAGCombine(ISD::SHL
);
1415 setStackPointerRegisterToSaveRestore(ARM::SP
);
1417 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1418 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1419 setSchedulingPreference(Sched::RegPressure
);
1421 setSchedulingPreference(Sched::Hybrid
);
1423 //// temporary - rewrite interface to use type
1424 MaxStoresPerMemset
= 8;
1425 MaxStoresPerMemsetOptSize
= 4;
1426 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1427 MaxStoresPerMemcpyOptSize
= 2;
1428 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1429 MaxStoresPerMemmoveOptSize
= 2;
1431 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1432 // are at least 4 bytes aligned.
1433 setMinStackArgumentAlignment(Align(4));
1435 // Prefer likely predicted branches to selects on out-of-order cores.
1436 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1438 setPrefLoopAlignment(Align(1ULL << Subtarget
->getPrefLoopLogAlignment()));
1440 setMinFunctionAlignment(Subtarget
->isThumb() ? Align(2) : Align(4));
1442 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1443 setTargetDAGCombine(ISD::ABS
);
1446 bool ARMTargetLowering::useSoftFloat() const {
1447 return Subtarget
->useSoftFloat();
1450 // FIXME: It might make sense to define the representative register class as the
1451 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1452 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1453 // SPR's representative would be DPR_VFP2. This should work well if register
1454 // pressure tracking were modified such that a register use would increment the
1455 // pressure of the register class's representative and all of it's super
1456 // classes' representatives transitively. We have not implemented this because
1457 // of the difficulty prior to coalescing of modeling operand register classes
1458 // due to the common occurrence of cross class copies and subregister insertions
1460 std::pair
<const TargetRegisterClass
*, uint8_t>
1461 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1463 const TargetRegisterClass
*RRC
= nullptr;
1465 switch (VT
.SimpleTy
) {
1467 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1468 // Use DPR as representative register class for all floating point
1469 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1470 // the cost is 1 for both f32 and f64.
1471 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1472 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1473 RRC
= &ARM::DPRRegClass
;
1474 // When NEON is used for SP, only half of the register file is available
1475 // because operations that define both SP and DP results will be constrained
1476 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1477 // coalescing by double-counting the SP regs. See the FIXME above.
1478 if (Subtarget
->useNEONForSinglePrecisionFP())
1481 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1482 case MVT::v4f32
: case MVT::v2f64
:
1483 RRC
= &ARM::DPRRegClass
;
1487 RRC
= &ARM::DPRRegClass
;
1491 RRC
= &ARM::DPRRegClass
;
1495 return std::make_pair(RRC
, Cost
);
1498 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1499 switch ((ARMISD::NodeType
)Opcode
) {
1500 case ARMISD::FIRST_NUMBER
: break;
1501 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1502 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1503 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1504 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1505 case ARMISD::CALL
: return "ARMISD::CALL";
1506 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1507 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1508 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1509 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1510 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1511 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1512 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1513 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1514 case ARMISD::CMP
: return "ARMISD::CMP";
1515 case ARMISD::CMN
: return "ARMISD::CMN";
1516 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1517 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1518 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1519 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1520 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1522 case ARMISD::CMOV
: return "ARMISD::CMOV";
1523 case ARMISD::SUBS
: return "ARMISD::SUBS";
1525 case ARMISD::SSAT
: return "ARMISD::SSAT";
1526 case ARMISD::USAT
: return "ARMISD::USAT";
1528 case ARMISD::ASRL
: return "ARMISD::ASRL";
1529 case ARMISD::LSRL
: return "ARMISD::LSRL";
1530 case ARMISD::LSLL
: return "ARMISD::LSLL";
1532 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1533 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1534 case ARMISD::RRX
: return "ARMISD::RRX";
1536 case ARMISD::ADDC
: return "ARMISD::ADDC";
1537 case ARMISD::ADDE
: return "ARMISD::ADDE";
1538 case ARMISD::SUBC
: return "ARMISD::SUBC";
1539 case ARMISD::SUBE
: return "ARMISD::SUBE";
1540 case ARMISD::LSLS
: return "ARMISD::LSLS";
1542 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1543 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1544 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1545 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1546 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1548 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1549 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1550 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1552 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1554 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1556 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1558 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1560 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1562 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1563 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1565 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1566 case ARMISD::VCMP
: return "ARMISD::VCMP";
1567 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1568 case ARMISD::VTST
: return "ARMISD::VTST";
1570 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1571 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1572 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1573 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1574 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1575 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1576 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1577 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1578 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1579 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1580 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1581 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1582 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1583 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1584 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1585 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1586 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1587 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1588 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1589 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1590 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1591 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1592 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1593 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1594 case ARMISD::VDUP
: return "ARMISD::VDUP";
1595 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1596 case ARMISD::VEXT
: return "ARMISD::VEXT";
1597 case ARMISD::VREV64
: return "ARMISD::VREV64";
1598 case ARMISD::VREV32
: return "ARMISD::VREV32";
1599 case ARMISD::VREV16
: return "ARMISD::VREV16";
1600 case ARMISD::VZIP
: return "ARMISD::VZIP";
1601 case ARMISD::VUZP
: return "ARMISD::VUZP";
1602 case ARMISD::VTRN
: return "ARMISD::VTRN";
1603 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1604 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1605 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1606 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1607 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1608 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1609 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1610 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1611 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1612 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1613 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1614 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1615 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1616 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1617 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1618 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1619 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1620 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1621 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1622 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1623 case ARMISD::BFI
: return "ARMISD::BFI";
1624 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1625 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1626 case ARMISD::VBSL
: return "ARMISD::VBSL";
1627 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1628 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1629 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1630 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1631 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1632 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1633 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1634 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1635 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1636 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1637 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1638 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1639 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1640 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1641 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1642 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1643 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1644 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1645 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1646 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1647 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1648 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1649 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1650 case ARMISD::WLS
: return "ARMISD::WLS";
1651 case ARMISD::LE
: return "ARMISD::LE";
1652 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1653 case ARMISD::CSINV
: return "ARMISD::CSINV";
1654 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1655 case ARMISD::CSINC
: return "ARMISD::CSINC";
1660 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1663 return getPointerTy(DL
);
1665 // MVE has a predicate register.
1666 if (Subtarget
->hasMVEIntegerOps() &&
1667 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1668 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1669 return VT
.changeVectorElementTypeToInteger();
1672 /// getRegClassFor - Return the register class that should be used for the
1673 /// specified value type.
1674 const TargetRegisterClass
*
1675 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1677 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1678 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1679 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1681 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1682 if (VT
== MVT::v4i64
)
1683 return &ARM::QQPRRegClass
;
1684 if (VT
== MVT::v8i64
)
1685 return &ARM::QQQQPRRegClass
;
1687 return TargetLowering::getRegClassFor(VT
);
1690 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1691 // source/dest is aligned and the copy size is large enough. We therefore want
1692 // to align such objects passed to memory intrinsics.
1693 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1694 unsigned &PrefAlign
) const {
1695 if (!isa
<MemIntrinsic
>(CI
))
1698 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1699 // cycle faster than 4-byte aligned LDM.
1700 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1704 // Create a fast isel object.
1706 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1707 const TargetLibraryInfo
*libInfo
) const {
1708 return ARM::createFastISel(funcInfo
, libInfo
);
1711 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1712 unsigned NumVals
= N
->getNumValues();
1714 return Sched::RegPressure
;
1716 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1717 EVT VT
= N
->getValueType(i
);
1718 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1720 if (VT
.isFloatingPoint() || VT
.isVector())
1724 if (!N
->isMachineOpcode())
1725 return Sched::RegPressure
;
1727 // Load are scheduled for latency even if there instruction itinerary
1728 // is not available.
1729 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1730 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1732 if (MCID
.getNumDefs() == 0)
1733 return Sched::RegPressure
;
1734 if (!Itins
->isEmpty() &&
1735 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1738 return Sched::RegPressure
;
1741 //===----------------------------------------------------------------------===//
1743 //===----------------------------------------------------------------------===//
1745 static bool isSRL16(const SDValue
&Op
) {
1746 if (Op
.getOpcode() != ISD::SRL
)
1748 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1749 return Const
->getZExtValue() == 16;
1753 static bool isSRA16(const SDValue
&Op
) {
1754 if (Op
.getOpcode() != ISD::SRA
)
1756 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1757 return Const
->getZExtValue() == 16;
1761 static bool isSHL16(const SDValue
&Op
) {
1762 if (Op
.getOpcode() != ISD::SHL
)
1764 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1765 return Const
->getZExtValue() == 16;
1769 // Check for a signed 16-bit value. We special case SRA because it makes it
1770 // more simple when also looking for SRAs that aren't sign extending a
1771 // smaller value. Without the check, we'd need to take extra care with
1772 // checking order for some operations.
1773 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1775 return isSHL16(Op
.getOperand(0));
1776 return DAG
.ComputeNumSignBits(Op
) == 17;
1779 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1780 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1782 default: llvm_unreachable("Unknown condition code!");
1783 case ISD::SETNE
: return ARMCC::NE
;
1784 case ISD::SETEQ
: return ARMCC::EQ
;
1785 case ISD::SETGT
: return ARMCC::GT
;
1786 case ISD::SETGE
: return ARMCC::GE
;
1787 case ISD::SETLT
: return ARMCC::LT
;
1788 case ISD::SETLE
: return ARMCC::LE
;
1789 case ISD::SETUGT
: return ARMCC::HI
;
1790 case ISD::SETUGE
: return ARMCC::HS
;
1791 case ISD::SETULT
: return ARMCC::LO
;
1792 case ISD::SETULE
: return ARMCC::LS
;
1796 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1797 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1798 ARMCC::CondCodes
&CondCode2
) {
1799 CondCode2
= ARMCC::AL
;
1801 default: llvm_unreachable("Unknown FP condition!");
1803 case ISD::SETOEQ
: CondCode
= ARMCC::EQ
; break;
1805 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1807 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1808 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1809 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1810 case ISD::SETONE
: CondCode
= ARMCC::MI
; CondCode2
= ARMCC::GT
; break;
1811 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1812 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1813 case ISD::SETUEQ
: CondCode
= ARMCC::EQ
; CondCode2
= ARMCC::VS
; break;
1814 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1815 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1817 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1819 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1821 case ISD::SETUNE
: CondCode
= ARMCC::NE
; break;
1825 //===----------------------------------------------------------------------===//
1826 // Calling Convention Implementation
1827 //===----------------------------------------------------------------------===//
1829 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1830 /// account presence of floating point hardware and calling convention
1831 /// limitations, such as support for variadic functions.
1833 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1834 bool isVarArg
) const {
1837 report_fatal_error("Unsupported calling convention");
1838 case CallingConv::ARM_AAPCS
:
1839 case CallingConv::ARM_APCS
:
1840 case CallingConv::GHC
:
1842 case CallingConv::PreserveMost
:
1843 return CallingConv::PreserveMost
;
1844 case CallingConv::ARM_AAPCS_VFP
:
1845 case CallingConv::Swift
:
1846 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1847 case CallingConv::C
:
1848 if (!Subtarget
->isAAPCS_ABI())
1849 return CallingConv::ARM_APCS
;
1850 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1851 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1853 return CallingConv::ARM_AAPCS_VFP
;
1855 return CallingConv::ARM_AAPCS
;
1856 case CallingConv::Fast
:
1857 case CallingConv::CXX_FAST_TLS
:
1858 if (!Subtarget
->isAAPCS_ABI()) {
1859 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1860 return CallingConv::Fast
;
1861 return CallingConv::ARM_APCS
;
1862 } else if (Subtarget
->hasVFP2Base() &&
1863 !Subtarget
->isThumb1Only() && !isVarArg
)
1864 return CallingConv::ARM_AAPCS_VFP
;
1866 return CallingConv::ARM_AAPCS
;
1870 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1871 bool isVarArg
) const {
1872 return CCAssignFnForNode(CC
, false, isVarArg
);
1875 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1876 bool isVarArg
) const {
1877 return CCAssignFnForNode(CC
, true, isVarArg
);
1880 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1881 /// CallingConvention.
1882 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1884 bool isVarArg
) const {
1885 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1887 report_fatal_error("Unsupported calling convention");
1888 case CallingConv::ARM_APCS
:
1889 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1890 case CallingConv::ARM_AAPCS
:
1891 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1892 case CallingConv::ARM_AAPCS_VFP
:
1893 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1894 case CallingConv::Fast
:
1895 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1896 case CallingConv::GHC
:
1897 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1898 case CallingConv::PreserveMost
:
1899 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1903 /// LowerCallResult - Lower the result values of a call into the
1904 /// appropriate copies out of appropriate physical registers.
1905 SDValue
ARMTargetLowering::LowerCallResult(
1906 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1907 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1908 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1909 SDValue ThisVal
) const {
1910 // Assign locations to each value returned by this call.
1911 SmallVector
<CCValAssign
, 16> RVLocs
;
1912 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1914 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1916 // Copy all of the result registers out of their specified physreg.
1917 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1918 CCValAssign VA
= RVLocs
[i
];
1920 // Pass 'this' value directly from the argument to return value, to avoid
1921 // reg unit interference
1922 if (i
== 0 && isThisReturn
) {
1923 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1924 "unexpected return calling convention register assignment");
1925 InVals
.push_back(ThisVal
);
1930 if (VA
.needsCustom()) {
1931 // Handle f64 or half of a v2f64.
1932 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1934 Chain
= Lo
.getValue(1);
1935 InFlag
= Lo
.getValue(2);
1936 VA
= RVLocs
[++i
]; // skip ahead to next loc
1937 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1939 Chain
= Hi
.getValue(1);
1940 InFlag
= Hi
.getValue(2);
1941 if (!Subtarget
->isLittle())
1943 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1945 if (VA
.getLocVT() == MVT::v2f64
) {
1946 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1947 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1948 DAG
.getConstant(0, dl
, MVT::i32
));
1950 VA
= RVLocs
[++i
]; // skip ahead to next loc
1951 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1952 Chain
= Lo
.getValue(1);
1953 InFlag
= Lo
.getValue(2);
1954 VA
= RVLocs
[++i
]; // skip ahead to next loc
1955 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1956 Chain
= Hi
.getValue(1);
1957 InFlag
= Hi
.getValue(2);
1958 if (!Subtarget
->isLittle())
1960 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1961 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1962 DAG
.getConstant(1, dl
, MVT::i32
));
1965 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1967 Chain
= Val
.getValue(1);
1968 InFlag
= Val
.getValue(2);
1971 switch (VA
.getLocInfo()) {
1972 default: llvm_unreachable("Unknown loc info!");
1973 case CCValAssign::Full
: break;
1974 case CCValAssign::BCvt
:
1975 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1979 InVals
.push_back(Val
);
1985 /// LowerMemOpCallTo - Store the argument to the stack.
1986 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1987 SDValue Arg
, const SDLoc
&dl
,
1989 const CCValAssign
&VA
,
1990 ISD::ArgFlagsTy Flags
) const {
1991 unsigned LocMemOffset
= VA
.getLocMemOffset();
1992 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1993 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1995 return DAG
.getStore(
1996 Chain
, dl
, Arg
, PtrOff
,
1997 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2000 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2001 SDValue Chain
, SDValue
&Arg
,
2002 RegsToPassVector
&RegsToPass
,
2003 CCValAssign
&VA
, CCValAssign
&NextVA
,
2005 SmallVectorImpl
<SDValue
> &MemOpChains
,
2006 ISD::ArgFlagsTy Flags
) const {
2007 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2008 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2009 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2010 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2012 if (NextVA
.isRegLoc())
2013 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2015 assert(NextVA
.isMemLoc());
2016 if (!StackPtr
.getNode())
2017 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2018 getPointerTy(DAG
.getDataLayout()));
2020 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2026 /// LowerCall - Lowering a call into a callseq_start <-
2027 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2030 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2031 SmallVectorImpl
<SDValue
> &InVals
) const {
2032 SelectionDAG
&DAG
= CLI
.DAG
;
2034 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2035 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2036 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2037 SDValue Chain
= CLI
.Chain
;
2038 SDValue Callee
= CLI
.Callee
;
2039 bool &isTailCall
= CLI
.IsTailCall
;
2040 CallingConv::ID CallConv
= CLI
.CallConv
;
2041 bool doesNotRet
= CLI
.DoesNotReturn
;
2042 bool isVarArg
= CLI
.IsVarArg
;
2044 MachineFunction
&MF
= DAG
.getMachineFunction();
2045 MachineFunction::CallSiteInfo CSInfo
;
2046 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2047 bool isThisReturn
= false;
2048 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2049 bool PreferIndirect
= false;
2051 // Disable tail calls if they're not supported.
2052 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2055 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2056 // If we're optimizing for minimum size and the function is called three or
2057 // more times in this block, we can improve codesize by calling indirectly
2058 // as BLXr has a 16-bit encoding.
2059 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2061 auto *BB
= CLI
.CS
.getParent();
2062 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2063 count_if(GV
->users(), [&BB
](const User
*U
) {
2064 return isa
<Instruction
>(U
) &&
2065 cast
<Instruction
>(U
)->getParent() == BB
;
2070 // Check if it's really possible to do a tail call.
2071 isTailCall
= IsEligibleForTailCallOptimization(
2072 Callee
, CallConv
, isVarArg
, isStructRet
,
2073 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2075 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2076 report_fatal_error("failed to perform tail call elimination on a call "
2077 "site marked musttail");
2078 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2079 // detected sibcalls.
2084 // Analyze operands of the call, assigning locations to each operand.
2085 SmallVector
<CCValAssign
, 16> ArgLocs
;
2086 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2088 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2090 // Get a count of how many bytes are to be pushed on the stack.
2091 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2094 // For tail calls, memory operands are available in our caller's stack.
2097 // Adjust the stack pointer for the new arguments...
2098 // These operations are automatically eliminated by the prolog/epilog pass
2099 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2103 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2105 RegsToPassVector RegsToPass
;
2106 SmallVector
<SDValue
, 8> MemOpChains
;
2108 // Walk the register/memloc assignments, inserting copies/loads. In the case
2109 // of tail call optimization, arguments are handled later.
2110 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2112 ++i
, ++realArgIdx
) {
2113 CCValAssign
&VA
= ArgLocs
[i
];
2114 SDValue Arg
= OutVals
[realArgIdx
];
2115 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2116 bool isByVal
= Flags
.isByVal();
2118 // Promote the value if needed.
2119 switch (VA
.getLocInfo()) {
2120 default: llvm_unreachable("Unknown loc info!");
2121 case CCValAssign::Full
: break;
2122 case CCValAssign::SExt
:
2123 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2125 case CCValAssign::ZExt
:
2126 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2128 case CCValAssign::AExt
:
2129 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2131 case CCValAssign::BCvt
:
2132 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2136 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2137 if (VA
.needsCustom()) {
2138 if (VA
.getLocVT() == MVT::v2f64
) {
2139 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2140 DAG
.getConstant(0, dl
, MVT::i32
));
2141 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2142 DAG
.getConstant(1, dl
, MVT::i32
));
2144 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2145 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2147 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2148 if (VA
.isRegLoc()) {
2149 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2150 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2152 assert(VA
.isMemLoc());
2154 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2155 dl
, DAG
, VA
, Flags
));
2158 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2159 StackPtr
, MemOpChains
, Flags
);
2161 } else if (VA
.isRegLoc()) {
2162 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2163 Outs
[0].VT
== MVT::i32
) {
2164 assert(VA
.getLocVT() == MVT::i32
&&
2165 "unexpected calling convention register assignment");
2166 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2167 "unexpected use of 'returned'");
2168 isThisReturn
= true;
2170 const TargetOptions
&Options
= DAG
.getTarget().Options
;
2171 if (Options
.EnableDebugEntryValues
)
2172 CSInfo
.emplace_back(VA
.getLocReg(), i
);
2173 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2174 } else if (isByVal
) {
2175 assert(VA
.isMemLoc());
2176 unsigned offset
= 0;
2178 // True if this byval aggregate will be split between registers
2180 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2181 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2183 if (CurByValIdx
< ByValArgsCount
) {
2185 unsigned RegBegin
, RegEnd
;
2186 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2189 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2191 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2192 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2193 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2194 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2195 MachinePointerInfo(),
2196 DAG
.InferPtrAlignment(AddArg
));
2197 MemOpChains
.push_back(Load
.getValue(1));
2198 RegsToPass
.push_back(std::make_pair(j
, Load
));
2201 // If parameter size outsides register area, "offset" value
2202 // helps us to calculate stack slot for remained part properly.
2203 offset
= RegEnd
- RegBegin
;
2205 CCInfo
.nextInRegsParam();
2208 if (Flags
.getByValSize() > 4*offset
) {
2209 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2210 unsigned LocMemOffset
= VA
.getLocMemOffset();
2211 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2212 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2213 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2214 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2215 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2217 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2220 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2221 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2222 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2225 } else if (!isTailCall
) {
2226 assert(VA
.isMemLoc());
2228 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2229 dl
, DAG
, VA
, Flags
));
2233 if (!MemOpChains
.empty())
2234 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2236 // Build a sequence of copy-to-reg nodes chained together with token chain
2237 // and flag operands which copy the outgoing args into the appropriate regs.
2239 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2240 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2241 RegsToPass
[i
].second
, InFlag
);
2242 InFlag
= Chain
.getValue(1);
2245 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2246 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2247 // node so that legalize doesn't hack it.
2248 bool isDirect
= false;
2250 const TargetMachine
&TM
= getTargetMachine();
2251 const Module
*Mod
= MF
.getFunction().getParent();
2252 const GlobalValue
*GV
= nullptr;
2253 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2254 GV
= G
->getGlobal();
2256 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2258 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2259 bool isLocalARMFunc
= false;
2260 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2261 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2263 if (Subtarget
->genLongCalls()) {
2264 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2265 "long-calls codegen is not position independent!");
2266 // Handle a global address or an external symbol. If it's not one of
2267 // those, the target's already in a register, so we don't need to do
2269 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2270 // Create a constant pool entry for the callee address
2271 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2272 ARMConstantPoolValue
*CPV
=
2273 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2275 // Get the address of the callee into a register
2276 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2277 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2278 Callee
= DAG
.getLoad(
2279 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2280 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2281 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2282 const char *Sym
= S
->getSymbol();
2284 // Create a constant pool entry for the callee address
2285 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2286 ARMConstantPoolValue
*CPV
=
2287 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2288 ARMPCLabelIndex
, 0);
2289 // Get the address of the callee into a register
2290 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2291 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2292 Callee
= DAG
.getLoad(
2293 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2294 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2296 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2297 if (!PreferIndirect
) {
2299 bool isDef
= GV
->isStrongDefinitionForLinker();
2301 // ARM call to a local ARM function is predicable.
2302 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2303 // tBX takes a register source operand.
2304 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2305 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2306 Callee
= DAG
.getNode(
2307 ARMISD::WrapperPIC
, dl
, PtrVt
,
2308 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2309 Callee
= DAG
.getLoad(
2310 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2311 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2312 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2313 MachineMemOperand::MOInvariant
);
2314 } else if (Subtarget
->isTargetCOFF()) {
2315 assert(Subtarget
->isTargetWindows() &&
2316 "Windows is the only supported COFF target");
2317 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2318 ? ARMII::MO_DLLIMPORT
2319 : ARMII::MO_NO_FLAG
;
2320 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2322 if (GV
->hasDLLImportStorageClass())
2324 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2325 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2326 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2328 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2331 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2333 // tBX takes a register source operand.
2334 const char *Sym
= S
->getSymbol();
2335 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2336 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2337 ARMConstantPoolValue
*CPV
=
2338 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2339 ARMPCLabelIndex
, 4);
2340 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2341 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2342 Callee
= DAG
.getLoad(
2343 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2344 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2345 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2346 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2348 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2352 // FIXME: handle tail calls differently.
2354 if (Subtarget
->isThumb()) {
2355 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2356 CallOpc
= ARMISD::CALL_NOLINK
;
2358 CallOpc
= ARMISD::CALL
;
2360 if (!isDirect
&& !Subtarget
->hasV5TOps())
2361 CallOpc
= ARMISD::CALL_NOLINK
;
2362 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2363 // Emit regular call when code size is the priority
2364 !Subtarget
->hasMinSize())
2365 // "mov lr, pc; b _foo" to avoid confusing the RSP
2366 CallOpc
= ARMISD::CALL_NOLINK
;
2368 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2371 std::vector
<SDValue
> Ops
;
2372 Ops
.push_back(Chain
);
2373 Ops
.push_back(Callee
);
2375 // Add argument registers to the end of the list so that they are known live
2377 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2378 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2379 RegsToPass
[i
].second
.getValueType()));
2381 // Add a register mask operand representing the call-preserved registers.
2383 const uint32_t *Mask
;
2384 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2386 // For 'this' returns, use the R0-preserving mask if applicable
2387 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2389 // Set isThisReturn to false if the calling convention is not one that
2390 // allows 'returned' to be modeled in this way, so LowerCallResult does
2391 // not try to pass 'this' straight through
2392 isThisReturn
= false;
2393 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2396 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2398 assert(Mask
&& "Missing call preserved mask for calling convention");
2399 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2402 if (InFlag
.getNode())
2403 Ops
.push_back(InFlag
);
2405 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2407 MF
.getFrameInfo().setHasTailCall();
2408 SDValue Ret
= DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2409 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
2413 // Returns a chain and a flag for retval copy to use.
2414 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2415 InFlag
= Chain
.getValue(1);
2416 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
2418 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2419 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2421 InFlag
= Chain
.getValue(1);
2423 // Handle result values, copying them out of physregs into vregs that we
2425 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2426 InVals
, isThisReturn
,
2427 isThisReturn
? OutVals
[0] : SDValue());
2430 /// HandleByVal - Every parameter *after* a byval parameter is passed
2431 /// on the stack. Remember the next parameter register to allocate,
2432 /// and then confiscate the rest of the parameter registers to insure
2434 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2435 unsigned Align
) const {
2436 // Byval (as with any stack) slots are always at least 4 byte aligned.
2437 Align
= std::max(Align
, 4U);
2439 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2443 unsigned AlignInRegs
= Align
/ 4;
2444 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2445 for (unsigned i
= 0; i
< Waste
; ++i
)
2446 Reg
= State
->AllocateReg(GPRArgRegs
);
2451 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2453 // Special case when NSAA != SP and parameter size greater than size of
2454 // all remained GPR regs. In that case we can't split parameter, we must
2455 // send it to stack. We also must set NCRN to R4, so waste all
2456 // remained registers.
2457 const unsigned NSAAOffset
= State
->getNextStackOffset();
2458 if (NSAAOffset
!= 0 && Size
> Excess
) {
2459 while (State
->AllocateReg(GPRArgRegs
))
2464 // First register for byval parameter is the first register that wasn't
2465 // allocated before this method call, so it would be "reg".
2466 // If parameter is small enough to be saved in range [reg, r4), then
2467 // the end (first after last) register would be reg + param-size-in-regs,
2468 // else parameter would be splitted between registers and stack,
2469 // end register would be r4 in this case.
2470 unsigned ByValRegBegin
= Reg
;
2471 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2472 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2473 // Note, first register is allocated in the beginning of function already,
2474 // allocate remained amount of registers we need.
2475 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2476 State
->AllocateReg(GPRArgRegs
);
2477 // A byval parameter that is split between registers and memory needs its
2478 // size truncated here.
2479 // In the case where the entire structure fits in registers, we set the
2480 // size in memory to zero.
2481 Size
= std::max
<int>(Size
- Excess
, 0);
2484 /// MatchingStackOffset - Return true if the given stack call argument is
2485 /// already available in the same position (relatively) of the caller's
2486 /// incoming argument stack.
2488 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2489 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2490 const TargetInstrInfo
*TII
) {
2491 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2492 int FI
= std::numeric_limits
<int>::max();
2493 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2494 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2495 if (!Register::isVirtualRegister(VR
))
2497 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2500 if (!Flags
.isByVal()) {
2501 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2506 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2507 if (Flags
.isByVal())
2508 // ByVal argument is passed in as a pointer but it's now being
2509 // dereferenced. e.g.
2510 // define @foo(%struct.X* %A) {
2511 // tail call @bar(%struct.X* byval %A)
2514 SDValue Ptr
= Ld
->getBasePtr();
2515 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2518 FI
= FINode
->getIndex();
2522 assert(FI
!= std::numeric_limits
<int>::max());
2523 if (!MFI
.isFixedObjectIndex(FI
))
2525 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2528 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2529 /// for tail call optimization. Targets which want to do tail call
2530 /// optimization should implement this function.
2531 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2532 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2533 bool isCalleeStructRet
, bool isCallerStructRet
,
2534 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2535 const SmallVectorImpl
<SDValue
> &OutVals
,
2536 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2537 const bool isIndirect
) const {
2538 MachineFunction
&MF
= DAG
.getMachineFunction();
2539 const Function
&CallerF
= MF
.getFunction();
2540 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2542 assert(Subtarget
->supportsTailCall());
2544 // Indirect tail calls cannot be optimized for Thumb1 if the args
2545 // to the call take up r0-r3. The reason is that there are no legal registers
2546 // left to hold the pointer to the function to be called.
2547 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2548 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2551 // Look for obvious safe cases to perform tail call optimization that do not
2552 // require ABI changes. This is what gcc calls sibcall.
2554 // Exception-handling functions need a special set of instructions to indicate
2555 // a return to the hardware. Tail-calling another function would probably
2557 if (CallerF
.hasFnAttribute("interrupt"))
2560 // Also avoid sibcall optimization if either caller or callee uses struct
2561 // return semantics.
2562 if (isCalleeStructRet
|| isCallerStructRet
)
2565 // Externally-defined functions with weak linkage should not be
2566 // tail-called on ARM when the OS does not support dynamic
2567 // pre-emption of symbols, as the AAELF spec requires normal calls
2568 // to undefined weak functions to be replaced with a NOP or jump to the
2569 // next instruction. The behaviour of branch instructions in this
2570 // situation (as used for tail calls) is implementation-defined, so we
2571 // cannot rely on the linker replacing the tail call with a return.
2572 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2573 const GlobalValue
*GV
= G
->getGlobal();
2574 const Triple
&TT
= getTargetMachine().getTargetTriple();
2575 if (GV
->hasExternalWeakLinkage() &&
2576 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2580 // Check that the call results are passed in the same way.
2581 LLVMContext
&C
= *DAG
.getContext();
2582 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2583 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2584 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2586 // The callee has to preserve all registers the caller needs to preserve.
2587 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2588 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2589 if (CalleeCC
!= CallerCC
) {
2590 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2591 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2595 // If Caller's vararg or byval argument has been split between registers and
2596 // stack, do not perform tail call, since part of the argument is in caller's
2598 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2599 if (AFI_Caller
->getArgRegsSaveSize())
2602 // If the callee takes no arguments then go on to check the results of the
2604 if (!Outs
.empty()) {
2605 // Check if stack adjustment is needed. For now, do not do this if any
2606 // argument is passed on the stack.
2607 SmallVector
<CCValAssign
, 16> ArgLocs
;
2608 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2609 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2610 if (CCInfo
.getNextStackOffset()) {
2611 // Check if the arguments are already laid out in the right way as
2612 // the caller's fixed stack objects.
2613 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2614 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2615 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2616 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2618 ++i
, ++realArgIdx
) {
2619 CCValAssign
&VA
= ArgLocs
[i
];
2620 EVT RegVT
= VA
.getLocVT();
2621 SDValue Arg
= OutVals
[realArgIdx
];
2622 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2623 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2625 if (VA
.needsCustom()) {
2626 // f64 and vector types are split into multiple registers or
2627 // register/stack-slot combinations. The types will not match
2628 // the registers; give up on memory f64 refs until we figure
2629 // out what to do about this.
2632 if (!ArgLocs
[++i
].isRegLoc())
2634 if (RegVT
== MVT::v2f64
) {
2635 if (!ArgLocs
[++i
].isRegLoc())
2637 if (!ArgLocs
[++i
].isRegLoc())
2640 } else if (!VA
.isRegLoc()) {
2641 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2648 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2649 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2657 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2658 MachineFunction
&MF
, bool isVarArg
,
2659 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2660 LLVMContext
&Context
) const {
2661 SmallVector
<CCValAssign
, 16> RVLocs
;
2662 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2663 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2666 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2667 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2668 const MachineFunction
&MF
= DAG
.getMachineFunction();
2669 const Function
&F
= MF
.getFunction();
2671 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2673 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2674 // version of the "preferred return address". These offsets affect the return
2675 // instruction if this is a return from PL1 without hypervisor extensions.
2676 // IRQ/FIQ: +4 "subs pc, lr, #4"
2677 // SWI: 0 "subs pc, lr, #0"
2678 // ABORT: +4 "subs pc, lr, #4"
2679 // UNDEF: +4/+2 "subs pc, lr, #0"
2680 // UNDEF varies depending on where the exception came from ARM or Thumb
2681 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2684 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2687 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2690 report_fatal_error("Unsupported interrupt attribute. If present, value "
2691 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2693 RetOps
.insert(RetOps
.begin() + 1,
2694 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2696 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2700 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2702 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2703 const SmallVectorImpl
<SDValue
> &OutVals
,
2704 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2705 // CCValAssign - represent the assignment of the return value to a location.
2706 SmallVector
<CCValAssign
, 16> RVLocs
;
2708 // CCState - Info about the registers and stack slots.
2709 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2712 // Analyze outgoing return values.
2713 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2716 SmallVector
<SDValue
, 4> RetOps
;
2717 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2718 bool isLittleEndian
= Subtarget
->isLittle();
2720 MachineFunction
&MF
= DAG
.getMachineFunction();
2721 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2722 AFI
->setReturnRegsCount(RVLocs
.size());
2724 // Copy the result values into the output registers.
2725 for (unsigned i
= 0, realRVLocIdx
= 0;
2727 ++i
, ++realRVLocIdx
) {
2728 CCValAssign
&VA
= RVLocs
[i
];
2729 assert(VA
.isRegLoc() && "Can only return in registers!");
2731 SDValue Arg
= OutVals
[realRVLocIdx
];
2732 bool ReturnF16
= false;
2734 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2735 // Half-precision return values can be returned like this:
2737 // t11 f16 = fadd ...
2738 // t12: i16 = bitcast t11
2739 // t13: i32 = zero_extend t12
2740 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2742 // to avoid code generation for bitcasts, we simply set Arg to the node
2743 // that produces the f16 value, t11 in this case.
2745 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2746 SDValue ZE
= Arg
.getOperand(0);
2747 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2748 SDValue BC
= ZE
.getOperand(0);
2749 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2750 Arg
= BC
.getOperand(0);
2757 switch (VA
.getLocInfo()) {
2758 default: llvm_unreachable("Unknown loc info!");
2759 case CCValAssign::Full
: break;
2760 case CCValAssign::BCvt
:
2762 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2766 if (VA
.needsCustom()) {
2767 if (VA
.getLocVT() == MVT::v2f64
) {
2768 // Extract the first half and return it in two registers.
2769 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2770 DAG
.getConstant(0, dl
, MVT::i32
));
2771 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2772 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2774 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2775 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2777 Flag
= Chain
.getValue(1);
2778 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2779 VA
= RVLocs
[++i
]; // skip ahead to next loc
2780 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2781 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2783 Flag
= Chain
.getValue(1);
2784 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2785 VA
= RVLocs
[++i
]; // skip ahead to next loc
2787 // Extract the 2nd half and fall through to handle it as an f64 value.
2788 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2789 DAG
.getConstant(1, dl
, MVT::i32
));
2791 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2793 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2794 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2795 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2796 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2798 Flag
= Chain
.getValue(1);
2799 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2800 VA
= RVLocs
[++i
]; // skip ahead to next loc
2801 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2802 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2805 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2807 // Guarantee that all emitted copies are
2808 // stuck together, avoiding something bad.
2809 Flag
= Chain
.getValue(1);
2810 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2811 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2813 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2814 const MCPhysReg
*I
=
2815 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2818 if (ARM::GPRRegClass
.contains(*I
))
2819 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2820 else if (ARM::DPRRegClass
.contains(*I
))
2821 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2823 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2827 // Update chain and glue.
2830 RetOps
.push_back(Flag
);
2832 // CPUs which aren't M-class use a special sequence to return from
2833 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2834 // though we use "subs pc, lr, #N").
2836 // M-class CPUs actually use a normal return sequence with a special
2837 // (hardware-provided) value in LR, so the normal code path works.
2838 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2839 !Subtarget
->isMClass()) {
2840 if (Subtarget
->isThumb1Only())
2841 report_fatal_error("interrupt attribute is not supported in Thumb1");
2842 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2845 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2848 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2849 if (N
->getNumValues() != 1)
2851 if (!N
->hasNUsesOfValue(1, 0))
2854 SDValue TCChain
= Chain
;
2855 SDNode
*Copy
= *N
->use_begin();
2856 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2857 // If the copy has a glue operand, we conservatively assume it isn't safe to
2858 // perform a tail call.
2859 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2861 TCChain
= Copy
->getOperand(0);
2862 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2863 SDNode
*VMov
= Copy
;
2864 // f64 returned in a pair of GPRs.
2865 SmallPtrSet
<SDNode
*, 2> Copies
;
2866 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2868 if (UI
->getOpcode() != ISD::CopyToReg
)
2872 if (Copies
.size() > 2)
2875 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2877 SDValue UseChain
= UI
->getOperand(0);
2878 if (Copies
.count(UseChain
.getNode()))
2882 // We are at the top of this chain.
2883 // If the copy has a glue operand, we conservatively assume it
2884 // isn't safe to perform a tail call.
2885 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2891 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2892 // f32 returned in a single GPR.
2893 if (!Copy
->hasOneUse())
2895 Copy
= *Copy
->use_begin();
2896 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2898 // If the copy has a glue operand, we conservatively assume it isn't safe to
2899 // perform a tail call.
2900 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2902 TCChain
= Copy
->getOperand(0);
2907 bool HasRet
= false;
2908 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2910 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2911 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2923 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2924 if (!Subtarget
->supportsTailCall())
2928 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2929 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2935 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2936 // and pass the lower and high parts through.
2937 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2939 SDValue WriteValue
= Op
->getOperand(2);
2941 // This function is only supposed to be called for i64 type argument.
2942 assert(WriteValue
.getValueType() == MVT::i64
2943 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2945 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2946 DAG
.getConstant(0, DL
, MVT::i32
));
2947 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2948 DAG
.getConstant(1, DL
, MVT::i32
));
2949 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2950 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2953 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2954 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2955 // one of the above mentioned nodes. It has to be wrapped because otherwise
2956 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2957 // be used to form addressing mode. These wrapped nodes will be selected
2959 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2960 SelectionDAG
&DAG
) const {
2961 EVT PtrVT
= Op
.getValueType();
2962 // FIXME there is no actual debug info here
2964 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2967 // When generating execute-only code Constant Pools must be promoted to the
2968 // global data section. It's a bit ugly that we can't share them across basic
2969 // blocks, but this way we guarantee that execute-only behaves correct with
2970 // position-independent addressing modes.
2971 if (Subtarget
->genExecuteOnly()) {
2972 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2973 auto T
= const_cast<Type
*>(CP
->getType());
2974 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2975 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2976 getFunction().getParent());
2977 auto GV
= new GlobalVariable(
2978 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2979 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2980 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2981 Twine(AFI
->createPICLabelUId())
2983 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2985 return LowerGlobalAddress(GA
, DAG
);
2988 if (CP
->isMachineConstantPoolEntry())
2989 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2990 CP
->getAlignment());
2992 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2993 CP
->getAlignment());
2994 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2997 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2998 return MachineJumpTableInfo::EK_Inline
;
3001 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
3002 SelectionDAG
&DAG
) const {
3003 MachineFunction
&MF
= DAG
.getMachineFunction();
3004 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3005 unsigned ARMPCLabelIndex
= 0;
3007 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3008 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3010 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3011 if (!IsPositionIndependent
) {
3012 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3014 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3015 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3016 ARMConstantPoolValue
*CPV
=
3017 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3018 ARMCP::CPBlockAddress
, PCAdj
);
3019 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3021 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3022 SDValue Result
= DAG
.getLoad(
3023 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3024 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3025 if (!IsPositionIndependent
)
3027 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3028 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3031 /// Convert a TLS address reference into the correct sequence of loads
3032 /// and calls to compute the variable's address for Darwin, and return an
3033 /// SDValue containing the final node.
3035 /// Darwin only has one TLS scheme which must be capable of dealing with the
3036 /// fully general situation, in the worst case. This means:
3037 /// + "extern __thread" declaration.
3038 /// + Defined in a possibly unknown dynamic library.
3040 /// The general system is that each __thread variable has a [3 x i32] descriptor
3041 /// which contains information used by the runtime to calculate the address. The
3042 /// only part of this the compiler needs to know about is the first word, which
3043 /// contains a function pointer that must be called with the address of the
3044 /// entire descriptor in "r0".
3046 /// Since this descriptor may be in a different unit, in general access must
3047 /// proceed along the usual ARM rules. A common sequence to produce is:
3049 /// movw rT1, :lower16:_var$non_lazy_ptr
3050 /// movt rT1, :upper16:_var$non_lazy_ptr
3054 /// [...address now in r0...]
3056 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3057 SelectionDAG
&DAG
) const {
3058 assert(Subtarget
->isTargetDarwin() &&
3059 "This function expects a Darwin target");
3062 // First step is to get the address of the actua global symbol. This is where
3063 // the TLS descriptor lives.
3064 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3066 // The first entry in the descriptor is a function pointer that we must call
3067 // to obtain the address of the variable.
3068 SDValue Chain
= DAG
.getEntryNode();
3069 SDValue FuncTLVGet
= DAG
.getLoad(
3070 MVT::i32
, DL
, Chain
, DescAddr
,
3071 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3072 /* Alignment = */ 4,
3073 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3074 MachineMemOperand::MOInvariant
);
3075 Chain
= FuncTLVGet
.getValue(1);
3077 MachineFunction
&F
= DAG
.getMachineFunction();
3078 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3079 MFI
.setAdjustsStack(true);
3081 // TLS calls preserve all registers except those that absolutely must be
3082 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3085 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3086 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3087 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3089 // Finally, we can make the call. This is just a degenerate version of a
3090 // normal AArch64 call node: r0 takes the address of the descriptor, and
3091 // returns the address of the variable in this thread.
3092 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3094 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3095 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3096 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3097 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3101 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3102 SelectionDAG
&DAG
) const {
3103 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3105 SDValue Chain
= DAG
.getEntryNode();
3106 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3109 // Load the current TEB (thread environment block)
3110 SDValue Ops
[] = {Chain
,
3111 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3112 DAG
.getTargetConstant(15, DL
, MVT::i32
),
3113 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3114 DAG
.getTargetConstant(13, DL
, MVT::i32
),
3115 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3116 DAG
.getTargetConstant(2, DL
, MVT::i32
)};
3117 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3118 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3120 SDValue TEB
= CurrentTEB
.getValue(0);
3121 Chain
= CurrentTEB
.getValue(1);
3123 // Load the ThreadLocalStoragePointer from the TEB
3124 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3126 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3127 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3129 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3130 // offset into the TLSArray.
3132 // Load the TLS index from the C runtime
3134 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3135 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3136 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3138 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3139 DAG
.getConstant(2, DL
, MVT::i32
));
3140 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3141 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3142 MachinePointerInfo());
3144 // Get the offset of the start of the .tls section (section base)
3145 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3146 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3147 SDValue Offset
= DAG
.getLoad(
3148 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3149 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3150 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3152 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3155 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3157 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3158 SelectionDAG
&DAG
) const {
3160 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3161 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3162 MachineFunction
&MF
= DAG
.getMachineFunction();
3163 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3164 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3165 ARMConstantPoolValue
*CPV
=
3166 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3167 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3168 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3169 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3170 Argument
= DAG
.getLoad(
3171 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3172 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3173 SDValue Chain
= Argument
.getValue(1);
3175 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3176 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3178 // call __tls_get_addr.
3181 Entry
.Node
= Argument
;
3182 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3183 Args
.push_back(Entry
);
3185 // FIXME: is there useful debug info available here?
3186 TargetLowering::CallLoweringInfo
CLI(DAG
);
3187 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3188 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3189 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3191 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3192 return CallResult
.first
;
3195 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3196 // "local exec" model.
3198 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3200 TLSModel::Model model
) const {
3201 const GlobalValue
*GV
= GA
->getGlobal();
3204 SDValue Chain
= DAG
.getEntryNode();
3205 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3206 // Get the Thread Pointer
3207 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3209 if (model
== TLSModel::InitialExec
) {
3210 MachineFunction
&MF
= DAG
.getMachineFunction();
3211 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3212 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3213 // Initial exec model.
3214 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3215 ARMConstantPoolValue
*CPV
=
3216 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3217 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3219 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3220 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3221 Offset
= DAG
.getLoad(
3222 PtrVT
, dl
, Chain
, Offset
,
3223 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3224 Chain
= Offset
.getValue(1);
3226 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3227 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3229 Offset
= DAG
.getLoad(
3230 PtrVT
, dl
, Chain
, Offset
,
3231 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3234 assert(model
== TLSModel::LocalExec
);
3235 ARMConstantPoolValue
*CPV
=
3236 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3237 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3238 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3239 Offset
= DAG
.getLoad(
3240 PtrVT
, dl
, Chain
, Offset
,
3241 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3244 // The address of the thread local variable is the add of the thread
3245 // pointer with the offset of the variable.
3246 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3250 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3251 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3252 if (DAG
.getTarget().useEmulatedTLS())
3253 return LowerToTLSEmulatedModel(GA
, DAG
);
3255 if (Subtarget
->isTargetDarwin())
3256 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3258 if (Subtarget
->isTargetWindows())
3259 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3261 // TODO: implement the "local dynamic" model
3262 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3263 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3266 case TLSModel::GeneralDynamic
:
3267 case TLSModel::LocalDynamic
:
3268 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3269 case TLSModel::InitialExec
:
3270 case TLSModel::LocalExec
:
3271 return LowerToTLSExecModels(GA
, DAG
, model
);
3273 llvm_unreachable("bogus TLS model");
3276 /// Return true if all users of V are within function F, looking through
3278 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3279 SmallVector
<const User
*,4> Worklist
;
3280 for (auto *U
: V
->users())
3281 Worklist
.push_back(U
);
3282 while (!Worklist
.empty()) {
3283 auto *U
= Worklist
.pop_back_val();
3284 if (isa
<ConstantExpr
>(U
)) {
3285 for (auto *UU
: U
->users())
3286 Worklist
.push_back(UU
);
3290 auto *I
= dyn_cast
<Instruction
>(U
);
3291 if (!I
|| I
->getParent()->getParent() != F
)
3297 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3298 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3299 EVT PtrVT
, const SDLoc
&dl
) {
3300 // If we're creating a pool entry for a constant global with unnamed address,
3301 // and the global is small enough, we can emit it inline into the constant pool
3302 // to save ourselves an indirection.
3304 // This is a win if the constant is only used in one function (so it doesn't
3305 // need to be duplicated) or duplicating the constant wouldn't increase code
3306 // size (implying the constant is no larger than 4 bytes).
3307 const Function
&F
= DAG
.getMachineFunction().getFunction();
3309 // We rely on this decision to inline being idemopotent and unrelated to the
3310 // use-site. We know that if we inline a variable at one use site, we'll
3311 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3312 // doesn't know about this optimization, so bail out if it's enabled else
3313 // we could decide to inline here (and thus never emit the GV) but require
3314 // the GV from fast-isel generated code.
3315 if (!EnableConstpoolPromotion
||
3316 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3319 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3320 if (!GVar
|| !GVar
->hasInitializer() ||
3321 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3322 !GVar
->hasLocalLinkage())
3325 // If we inline a value that contains relocations, we move the relocations
3326 // from .data to .text. This is not allowed in position-independent code.
3327 auto *Init
= GVar
->getInitializer();
3328 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3329 Init
->needsRelocation())
3332 // The constant islands pass can only really deal with alignment requests
3333 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3334 // any type wanting greater alignment requirements than 4 bytes. We also
3335 // can only promote constants that are multiples of 4 bytes in size or
3336 // are paddable to a multiple of 4. Currently we only try and pad constants
3337 // that are strings for simplicity.
3338 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3339 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3340 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3341 unsigned RequiredPadding
= 4 - (Size
% 4);
3342 bool PaddingPossible
=
3343 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3344 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3348 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3349 MachineFunction
&MF
= DAG
.getMachineFunction();
3350 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3352 // We can't bloat the constant pool too much, else the ConstantIslands pass
3353 // may fail to converge. If we haven't promoted this global yet (it may have
3354 // multiple uses), and promoting it would increase the constant pool size (Sz
3355 // > 4), ensure we have space to do so up to MaxTotal.
3356 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3357 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3358 ConstpoolPromotionMaxTotal
)
3361 // This is only valid if all users are in a single function; we can't clone
3362 // the constant in general. The LLVM IR unnamed_addr allows merging
3363 // constants, but not cloning them.
3365 // We could potentially allow cloning if we could prove all uses of the
3366 // constant in the current function don't care about the address, like
3367 // printf format strings. But that isn't implemented for now.
3368 if (!allUsersAreInFunction(GVar
, &F
))
3371 // We're going to inline this global. Pad it out if needed.
3372 if (RequiredPadding
!= 4) {
3373 StringRef S
= CDAInit
->getAsString();
3375 SmallVector
<uint8_t,16> V(S
.size());
3376 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3377 while (RequiredPadding
--)
3379 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3382 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3384 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3385 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3386 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3387 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3390 ++NumConstpoolPromoted
;
3391 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3394 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3395 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3396 if (!(GV
= GA
->getBaseObject()))
3398 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3399 return V
->isConstant();
3400 return isa
<Function
>(GV
);
3403 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3404 SelectionDAG
&DAG
) const {
3405 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3406 default: llvm_unreachable("unknown object format");
3408 return LowerGlobalAddressWindows(Op
, DAG
);
3410 return LowerGlobalAddressELF(Op
, DAG
);
3412 return LowerGlobalAddressDarwin(Op
, DAG
);
3416 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3417 SelectionDAG
&DAG
) const {
3418 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3420 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3421 const TargetMachine
&TM
= getTargetMachine();
3422 bool IsRO
= isReadOnly(GV
);
3424 // promoteToConstantPool only if not generating XO text section
3425 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3426 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3429 if (isPositionIndependent()) {
3430 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3431 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3432 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3433 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3436 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3437 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3439 } else if (Subtarget
->isROPI() && IsRO
) {
3441 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3442 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3444 } else if (Subtarget
->isRWPI() && !IsRO
) {
3447 if (Subtarget
->useMovt()) {
3449 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3450 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3451 } else { // use literal pool for address constant
3452 ARMConstantPoolValue
*CPV
=
3453 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3454 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3455 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3456 RelAddr
= DAG
.getLoad(
3457 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3458 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3460 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3461 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3465 // If we have T2 ops, we can materialize the address directly via movt/movw
3466 // pair. This is always cheaper.
3467 if (Subtarget
->useMovt()) {
3469 // FIXME: Once remat is capable of dealing with instructions with register
3470 // operands, expand this into two nodes.
3471 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3472 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3474 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3475 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3477 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3478 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3482 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3483 SelectionDAG
&DAG
) const {
3484 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3485 "ROPI/RWPI not currently supported for Darwin");
3486 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3488 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3490 if (Subtarget
->useMovt())
3493 // FIXME: Once remat is capable of dealing with instructions with register
3494 // operands, expand this into multiple nodes
3496 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3498 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3499 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3501 if (Subtarget
->isGVIndirectSymbol(GV
))
3502 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3503 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3507 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3508 SelectionDAG
&DAG
) const {
3509 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3510 assert(Subtarget
->useMovt() &&
3511 "Windows on ARM expects to use movw/movt");
3512 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3513 "ROPI/RWPI not currently supported for Windows");
3515 const TargetMachine
&TM
= getTargetMachine();
3516 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3517 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3518 if (GV
->hasDLLImportStorageClass())
3519 TargetFlags
= ARMII::MO_DLLIMPORT
;
3520 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3521 TargetFlags
= ARMII::MO_COFFSTUB
;
3522 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3528 // FIXME: Once remat is capable of dealing with instructions with register
3529 // operands, expand this into two nodes.
3530 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3531 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3533 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3534 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3535 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3540 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3542 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3543 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3544 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3545 Op
.getOperand(1), Val
);
3549 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3551 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3552 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3555 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3556 SelectionDAG
&DAG
) const {
3558 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3562 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3563 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3565 cast
<ConstantSDNode
>(
3566 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3570 return SDValue(); // Don't custom lower most intrinsics.
3571 case Intrinsic::arm_gnu_eabi_mcount
: {
3572 MachineFunction
&MF
= DAG
.getMachineFunction();
3573 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3575 SDValue Chain
= Op
.getOperand(0);
3576 // call "\01__gnu_mcount_nc"
3577 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3578 const uint32_t *Mask
=
3579 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3580 assert(Mask
&& "Missing call preserved mask for calling convention");
3581 // Mark LR an implicit live-in.
3582 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3583 SDValue ReturnAddress
=
3584 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3585 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3587 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3588 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3589 if (Subtarget
->isThumb())
3592 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3593 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3594 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3597 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3598 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3605 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3606 const ARMSubtarget
*Subtarget
) const {
3607 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3610 default: return SDValue(); // Don't custom lower most intrinsics.
3611 case Intrinsic::thread_pointer
: {
3612 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3613 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3615 case Intrinsic::eh_sjlj_lsda
: {
3616 MachineFunction
&MF
= DAG
.getMachineFunction();
3617 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3618 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3619 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3621 bool IsPositionIndependent
= isPositionIndependent();
3622 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3623 ARMConstantPoolValue
*CPV
=
3624 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3625 ARMCP::CPLSDA
, PCAdj
);
3626 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3627 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3628 SDValue Result
= DAG
.getLoad(
3629 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3630 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3632 if (IsPositionIndependent
) {
3633 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3634 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3638 case Intrinsic::arm_neon_vabs
:
3639 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3641 case Intrinsic::arm_neon_vmulls
:
3642 case Intrinsic::arm_neon_vmullu
: {
3643 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3644 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3645 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3646 Op
.getOperand(1), Op
.getOperand(2));
3648 case Intrinsic::arm_neon_vminnm
:
3649 case Intrinsic::arm_neon_vmaxnm
: {
3650 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3651 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3652 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3653 Op
.getOperand(1), Op
.getOperand(2));
3655 case Intrinsic::arm_neon_vminu
:
3656 case Intrinsic::arm_neon_vmaxu
: {
3657 if (Op
.getValueType().isFloatingPoint())
3659 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3660 ? ISD::UMIN
: ISD::UMAX
;
3661 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3662 Op
.getOperand(1), Op
.getOperand(2));
3664 case Intrinsic::arm_neon_vmins
:
3665 case Intrinsic::arm_neon_vmaxs
: {
3666 // v{min,max}s is overloaded between signed integers and floats.
3667 if (!Op
.getValueType().isFloatingPoint()) {
3668 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3669 ? ISD::SMIN
: ISD::SMAX
;
3670 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3671 Op
.getOperand(1), Op
.getOperand(2));
3673 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3674 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3675 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3676 Op
.getOperand(1), Op
.getOperand(2));
3678 case Intrinsic::arm_neon_vtbl1
:
3679 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3680 Op
.getOperand(1), Op
.getOperand(2));
3681 case Intrinsic::arm_neon_vtbl2
:
3682 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3683 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3687 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3688 const ARMSubtarget
*Subtarget
) {
3690 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3691 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3692 if (SSID
== SyncScope::SingleThread
)
3695 if (!Subtarget
->hasDataBarrier()) {
3696 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3697 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3699 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3700 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3701 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3702 DAG
.getConstant(0, dl
, MVT::i32
));
3705 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3706 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3707 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3708 if (Subtarget
->isMClass()) {
3709 // Only a full system barrier exists in the M-class architectures.
3710 Domain
= ARM_MB::SY
;
3711 } else if (Subtarget
->preferISHSTBarriers() &&
3712 Ord
== AtomicOrdering::Release
) {
3713 // Swift happens to implement ISHST barriers in a way that's compatible with
3714 // Release semantics but weaker than ISH so we'd be fools not to use
3715 // it. Beware: other processors probably don't!
3716 Domain
= ARM_MB::ISHST
;
3719 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3720 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3721 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3724 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3725 const ARMSubtarget
*Subtarget
) {
3726 // ARM pre v5TE and Thumb1 does not have preload instructions.
3727 if (!(Subtarget
->isThumb2() ||
3728 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3729 // Just preserve the chain.
3730 return Op
.getOperand(0);
3733 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3735 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3736 // ARMv7 with MP extension has PLDW.
3737 return Op
.getOperand(0);
3739 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3740 if (Subtarget
->isThumb()) {
3742 isRead
= ~isRead
& 1;
3743 isData
= ~isData
& 1;
3746 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3747 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3748 DAG
.getConstant(isData
, dl
, MVT::i32
));
3751 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3752 MachineFunction
&MF
= DAG
.getMachineFunction();
3753 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3755 // vastart just stores the address of the VarArgsFrameIndex slot into the
3756 // memory location argument.
3758 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3759 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3760 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3761 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3762 MachinePointerInfo(SV
));
3765 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3766 CCValAssign
&NextVA
,
3769 const SDLoc
&dl
) const {
3770 MachineFunction
&MF
= DAG
.getMachineFunction();
3771 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3773 const TargetRegisterClass
*RC
;
3774 if (AFI
->isThumb1OnlyFunction())
3775 RC
= &ARM::tGPRRegClass
;
3777 RC
= &ARM::GPRRegClass
;
3779 // Transform the arguments stored in physical registers into virtual ones.
3780 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3781 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3784 if (NextVA
.isMemLoc()) {
3785 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3786 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3788 // Create load node to retrieve arguments from the stack.
3789 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3790 ArgValue2
= DAG
.getLoad(
3791 MVT::i32
, dl
, Root
, FIN
,
3792 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3794 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3795 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3797 if (!Subtarget
->isLittle())
3798 std::swap (ArgValue
, ArgValue2
);
3799 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3802 // The remaining GPRs hold either the beginning of variable-argument
3803 // data, or the beginning of an aggregate passed by value (usually
3804 // byval). Either way, we allocate stack slots adjacent to the data
3805 // provided by our caller, and store the unallocated registers there.
3806 // If this is a variadic function, the va_list pointer will begin with
3807 // these values; otherwise, this reassembles a (byval) structure that
3808 // was split between registers and memory.
3809 // Return: The frame index registers were stored into.
3810 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3811 const SDLoc
&dl
, SDValue
&Chain
,
3812 const Value
*OrigArg
,
3813 unsigned InRegsParamRecordIdx
,
3814 int ArgOffset
, unsigned ArgSize
) const {
3815 // Currently, two use-cases possible:
3816 // Case #1. Non-var-args function, and we meet first byval parameter.
3817 // Setup first unallocated register as first byval register;
3818 // eat all remained registers
3819 // (these two actions are performed by HandleByVal method).
3820 // Then, here, we initialize stack frame with
3821 // "store-reg" instructions.
3822 // Case #2. Var-args function, that doesn't contain byval parameters.
3823 // The same: eat all remained unallocated registers,
3824 // initialize stack frame.
3826 MachineFunction
&MF
= DAG
.getMachineFunction();
3827 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3828 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3829 unsigned RBegin
, REnd
;
3830 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3831 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3833 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3834 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3839 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3841 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3842 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3843 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3845 SmallVector
<SDValue
, 4> MemOps
;
3846 const TargetRegisterClass
*RC
=
3847 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3849 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3850 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3851 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3852 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3853 MachinePointerInfo(OrigArg
, 4 * i
));
3854 MemOps
.push_back(Store
);
3855 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3858 if (!MemOps
.empty())
3859 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3863 // Setup stack frame, the va_list pointer will start from.
3864 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3865 const SDLoc
&dl
, SDValue
&Chain
,
3867 unsigned TotalArgRegsSaveSize
,
3868 bool ForceMutable
) const {
3869 MachineFunction
&MF
= DAG
.getMachineFunction();
3870 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3872 // Try to store any remaining integer argument regs
3873 // to their spots on the stack so that they may be loaded by dereferencing
3874 // the result of va_next.
3875 // If there is no regs to be stored, just point address after last
3876 // argument passed via stack.
3877 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3878 CCInfo
.getInRegsParamsCount(),
3879 CCInfo
.getNextStackOffset(),
3880 std::max(4U, TotalArgRegsSaveSize
));
3881 AFI
->setVarArgsFrameIndex(FrameIndex
);
3884 SDValue
ARMTargetLowering::LowerFormalArguments(
3885 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3886 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3887 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3888 MachineFunction
&MF
= DAG
.getMachineFunction();
3889 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3891 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3893 // Assign locations to all of the incoming arguments.
3894 SmallVector
<CCValAssign
, 16> ArgLocs
;
3895 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3897 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3899 SmallVector
<SDValue
, 16> ArgValues
;
3901 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3902 unsigned CurArgIdx
= 0;
3904 // Initially ArgRegsSaveSize is zero.
3905 // Then we increase this value each time we meet byval parameter.
3906 // We also increase this value in case of varargs function.
3907 AFI
->setArgRegsSaveSize(0);
3909 // Calculate the amount of stack space that we need to allocate to store
3910 // byval and variadic arguments that are passed in registers.
3911 // We need to know this before we allocate the first byval or variadic
3912 // argument, as they will be allocated a stack slot below the CFA (Canonical
3913 // Frame Address, the stack pointer at entry to the function).
3914 unsigned ArgRegBegin
= ARM::R4
;
3915 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3916 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3919 CCValAssign
&VA
= ArgLocs
[i
];
3920 unsigned Index
= VA
.getValNo();
3921 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3922 if (!Flags
.isByVal())
3925 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3926 unsigned RBegin
, REnd
;
3927 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3928 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3930 CCInfo
.nextInRegsParam();
3932 CCInfo
.rewindByValRegsInfo();
3934 int lastInsIndex
= -1;
3935 if (isVarArg
&& MFI
.hasVAStart()) {
3936 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3937 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3938 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3941 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3942 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3943 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3945 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3946 CCValAssign
&VA
= ArgLocs
[i
];
3947 if (Ins
[VA
.getValNo()].isOrigArg()) {
3948 std::advance(CurOrigArg
,
3949 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3950 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3952 // Arguments stored in registers.
3953 if (VA
.isRegLoc()) {
3954 EVT RegVT
= VA
.getLocVT();
3956 if (VA
.needsCustom()) {
3957 // f64 and vector types are split up into multiple registers or
3958 // combinations of registers and stack slots.
3959 if (VA
.getLocVT() == MVT::v2f64
) {
3960 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3962 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3964 if (VA
.isMemLoc()) {
3965 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3966 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3967 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3968 MachinePointerInfo::getFixedStack(
3969 DAG
.getMachineFunction(), FI
));
3971 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3974 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3975 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3976 ArgValue
, ArgValue1
,
3977 DAG
.getIntPtrConstant(0, dl
));
3978 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3979 ArgValue
, ArgValue2
,
3980 DAG
.getIntPtrConstant(1, dl
));
3982 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3984 const TargetRegisterClass
*RC
;
3987 if (RegVT
== MVT::f16
)
3988 RC
= &ARM::HPRRegClass
;
3989 else if (RegVT
== MVT::f32
)
3990 RC
= &ARM::SPRRegClass
;
3991 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3992 RC
= &ARM::DPRRegClass
;
3993 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3994 RC
= &ARM::QPRRegClass
;
3995 else if (RegVT
== MVT::i32
)
3996 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3997 : &ARM::GPRRegClass
;
3999 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4001 // Transform the arguments in physical registers into virtual ones.
4002 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4003 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
4005 // If this value is passed in r0 and has the returned attribute (e.g.
4006 // C++ 'structors), record this fact for later use.
4007 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4008 AFI
->setPreservesR0();
4012 // If this is an 8 or 16-bit value, it is really passed promoted
4013 // to 32 bits. Insert an assert[sz]ext to capture this, then
4014 // truncate to the right size.
4015 switch (VA
.getLocInfo()) {
4016 default: llvm_unreachable("Unknown loc info!");
4017 case CCValAssign::Full
: break;
4018 case CCValAssign::BCvt
:
4019 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4021 case CCValAssign::SExt
:
4022 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4023 DAG
.getValueType(VA
.getValVT()));
4024 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4026 case CCValAssign::ZExt
:
4027 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4028 DAG
.getValueType(VA
.getValVT()));
4029 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4033 InVals
.push_back(ArgValue
);
4034 } else { // VA.isRegLoc()
4036 assert(VA
.isMemLoc());
4037 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4039 int index
= VA
.getValNo();
4041 // Some Ins[] entries become multiple ArgLoc[] entries.
4042 // Process them only once.
4043 if (index
!= lastInsIndex
)
4045 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4046 // FIXME: For now, all byval parameter objects are marked mutable.
4047 // This can be changed with more analysis.
4048 // In case of tail call optimization mark all arguments mutable.
4049 // Since they could be overwritten by lowering of arguments in case of
4051 if (Flags
.isByVal()) {
4052 assert(Ins
[index
].isOrigArg() &&
4053 "Byval arguments cannot be implicit");
4054 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4056 int FrameIndex
= StoreByValRegs(
4057 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4058 VA
.getLocMemOffset(), Flags
.getByValSize());
4059 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4060 CCInfo
.nextInRegsParam();
4062 unsigned FIOffset
= VA
.getLocMemOffset();
4063 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4066 // Create load nodes to retrieve arguments from the stack.
4067 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4068 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4069 MachinePointerInfo::getFixedStack(
4070 DAG
.getMachineFunction(), FI
)));
4072 lastInsIndex
= index
;
4078 if (isVarArg
&& MFI
.hasVAStart())
4079 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4080 CCInfo
.getNextStackOffset(),
4081 TotalArgRegsSaveSize
);
4083 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4088 /// isFloatingPointZero - Return true if this is +0.0.
4089 static bool isFloatingPointZero(SDValue Op
) {
4090 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4091 return CFP
->getValueAPF().isPosZero();
4092 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4093 // Maybe this has already been legalized into the constant pool?
4094 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4095 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4096 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4097 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4098 return CFP
->getValueAPF().isPosZero();
4100 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4101 Op
->getValueType(0) == MVT::f64
) {
4102 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4103 // created by LowerConstantFP().
4104 SDValue BitcastOp
= Op
->getOperand(0);
4105 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4106 isNullConstant(BitcastOp
->getOperand(0)))
4112 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4113 /// the given operands.
4114 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4115 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4116 const SDLoc
&dl
) const {
4117 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4118 unsigned C
= RHSC
->getZExtValue();
4119 if (!isLegalICmpImmediate((int32_t)C
)) {
4120 // Constant does not fit, try adjusting it by one.
4125 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4126 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4127 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4132 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4133 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4134 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4139 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4140 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4141 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4146 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4147 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4148 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4153 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4154 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4155 // In ARM and Thumb-2, the compare instructions can shift their second
4157 CC
= ISD::getSetCCSwappedOperands(CC
);
4158 std::swap(LHS
, RHS
);
4161 // Thumb1 has very limited immediate modes, so turning an "and" into a
4162 // shift can save multiple instructions.
4164 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4165 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4166 // own. If it's the operand to an unsigned comparison with an immediate,
4167 // we can eliminate one of the shifts: we transform
4168 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4170 // We avoid transforming cases which aren't profitable due to encoding
4173 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4174 // would not; in that case, we're essentially trading one immediate load for
4176 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4177 // 3. C2 is zero; we have other code for this special case.
4179 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4180 // instruction, since the AND is always one instruction anyway, but we could
4181 // use narrow instructions in some cases.
4182 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4183 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4184 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4185 !isSignedIntSetCC(CC
)) {
4186 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4187 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4188 uint64_t RHSV
= RHSC
->getZExtValue();
4189 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4190 unsigned ShiftBits
= countLeadingZeros(Mask
);
4191 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4192 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4193 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4194 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4199 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4200 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4202 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4203 // some tweaks to the heuristics for the previous and->shift transform.
4204 // FIXME: Optimize cases where the LHS isn't a shift.
4205 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4206 isa
<ConstantSDNode
>(RHS
) &&
4207 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4208 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4209 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4211 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4212 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4213 DAG
.getVTList(MVT::i32
, MVT::i32
),
4215 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4216 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4217 Shift
.getValue(1), SDValue());
4218 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4219 return Chain
.getValue(1);
4222 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4224 // If the RHS is a constant zero then the V (overflow) flag will never be
4225 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4226 // simpler for other passes (like the peephole optimiser) to deal with.
4227 if (isNullConstant(RHS
)) {
4231 CondCode
= ARMCC::PL
;
4234 CondCode
= ARMCC::MI
;
4239 ARMISD::NodeType CompareType
;
4242 CompareType
= ARMISD::CMP
;
4247 CompareType
= ARMISD::CMPZ
;
4250 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4251 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4254 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4255 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4256 SelectionDAG
&DAG
, const SDLoc
&dl
) const {
4257 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4259 if (!isFloatingPointZero(RHS
))
4260 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
);
4262 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
);
4263 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4266 /// duplicateCmp - Glue values can have only one use, so this function
4267 /// duplicates a comparison node.
4269 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4270 unsigned Opc
= Cmp
.getOpcode();
4272 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4273 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4275 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4276 Cmp
= Cmp
.getOperand(0);
4277 Opc
= Cmp
.getOpcode();
4278 if (Opc
== ARMISD::CMPFP
)
4279 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4281 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4282 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0));
4284 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4287 // This function returns three things: the arithmetic computation itself
4288 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4289 // comparison and the condition code define the case in which the arithmetic
4290 // computation *does not* overflow.
4291 std::pair
<SDValue
, SDValue
>
4292 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4293 SDValue
&ARMcc
) const {
4294 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4296 SDValue Value
, OverflowCmp
;
4297 SDValue LHS
= Op
.getOperand(0);
4298 SDValue RHS
= Op
.getOperand(1);
4301 // FIXME: We are currently always generating CMPs because we don't support
4302 // generating CMN through the backend. This is not as good as the natural
4303 // CMP case because it causes a register dependency and cannot be folded
4306 switch (Op
.getOpcode()) {
4308 llvm_unreachable("Unknown overflow instruction!");
4310 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4311 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4312 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4315 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4316 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4317 // We do not use it in the USUBO case as Value may not be used.
4318 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4319 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4321 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4324 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4325 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4326 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4329 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4330 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4331 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4334 // We generate a UMUL_LOHI and then check if the high word is 0.
4335 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4336 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4337 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4339 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4340 DAG
.getConstant(0, dl
, MVT::i32
));
4341 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4344 // We generate a SMUL_LOHI and then check if all the bits of the high word
4345 // are the same as the sign bit of the low word.
4346 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4347 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4348 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4350 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4351 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4353 DAG
.getConstant(31, dl
, MVT::i32
)));
4354 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4358 return std::make_pair(Value
, OverflowCmp
);
4362 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4363 // Let legalize expand this if it isn't a legal type yet.
4364 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4367 SDValue Value
, OverflowCmp
;
4369 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4370 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4372 // We use 0 and 1 as false and true values.
4373 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4374 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4375 EVT VT
= Op
.getValueType();
4377 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4378 ARMcc
, CCR
, OverflowCmp
);
4380 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4381 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4384 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4385 SelectionDAG
&DAG
) {
4386 SDLoc
DL(BoolCarry
);
4387 EVT CarryVT
= BoolCarry
.getValueType();
4389 // This converts the boolean value carry into the carry flag by doing
4390 // ARMISD::SUBC Carry, 1
4391 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4392 DAG
.getVTList(CarryVT
, MVT::i32
),
4393 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4394 return Carry
.getValue(1);
4397 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4398 SelectionDAG
&DAG
) {
4401 // Now convert the carry flag into a boolean carry. We do this
4402 // using ARMISD:ADDE 0, 0, Carry
4403 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4404 DAG
.getConstant(0, DL
, MVT::i32
),
4405 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4408 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4409 SelectionDAG
&DAG
) const {
4410 // Let legalize expand this if it isn't a legal type yet.
4411 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4414 SDValue LHS
= Op
.getOperand(0);
4415 SDValue RHS
= Op
.getOperand(1);
4418 EVT VT
= Op
.getValueType();
4419 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4422 switch (Op
.getOpcode()) {
4424 llvm_unreachable("Unknown overflow instruction!");
4426 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4427 // Convert the carry flag into a boolean value.
4428 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4431 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4432 // Convert the carry flag into a boolean value.
4433 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4434 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4435 // value. So compute 1 - C.
4436 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4437 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4442 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4445 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4446 SDValue Cond
= Op
.getOperand(0);
4447 SDValue SelectTrue
= Op
.getOperand(1);
4448 SDValue SelectFalse
= Op
.getOperand(2);
4450 unsigned Opc
= Cond
.getOpcode();
4452 if (Cond
.getResNo() == 1 &&
4453 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4454 Opc
== ISD::USUBO
)) {
4455 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4458 SDValue Value
, OverflowCmp
;
4460 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4461 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4462 EVT VT
= Op
.getValueType();
4464 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4470 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4471 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4473 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4474 const ConstantSDNode
*CMOVTrue
=
4475 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4476 const ConstantSDNode
*CMOVFalse
=
4477 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4479 if (CMOVTrue
&& CMOVFalse
) {
4480 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4481 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4485 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4487 False
= SelectFalse
;
4488 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4493 if (True
.getNode() && False
.getNode()) {
4494 EVT VT
= Op
.getValueType();
4495 SDValue ARMcc
= Cond
.getOperand(2);
4496 SDValue CCR
= Cond
.getOperand(3);
4497 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4498 assert(True
.getValueType() == VT
);
4499 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4504 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4505 // undefined bits before doing a full-word comparison with zero.
4506 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4507 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4509 return DAG
.getSelectCC(dl
, Cond
,
4510 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4511 SelectTrue
, SelectFalse
, ISD::SETNE
);
4514 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4515 bool &swpCmpOps
, bool &swpVselOps
) {
4516 // Start by selecting the GE condition code for opcodes that return true for
4518 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4519 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4520 CondCode
= ARMCC::GE
;
4522 // and GT for opcodes that return false for 'equality'.
4523 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4524 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4525 CondCode
= ARMCC::GT
;
4527 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4528 // to swap the compare operands.
4529 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4530 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4533 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4534 // If we have an unordered opcode, we need to swap the operands to the VSEL
4535 // instruction (effectively negating the condition).
4537 // This also has the effect of swapping which one of 'less' or 'greater'
4538 // returns true, so we also swap the compare operands. It also switches
4539 // whether we return true for 'equality', so we compensate by picking the
4540 // opposite condition code to our original choice.
4541 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4542 CC
== ISD::SETUGT
) {
4543 swpCmpOps
= !swpCmpOps
;
4544 swpVselOps
= !swpVselOps
;
4545 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4548 // 'ordered' is 'anything but unordered', so use the VS condition code and
4549 // swap the VSEL operands.
4550 if (CC
== ISD::SETO
) {
4551 CondCode
= ARMCC::VS
;
4555 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4556 // code and swap the VSEL operands. Also do this if we don't care about the
4558 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4559 CondCode
= ARMCC::EQ
;
4564 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4565 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4566 SDValue Cmp
, SelectionDAG
&DAG
) const {
4567 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4568 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4569 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4570 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4571 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4573 SDValue TrueLow
= TrueVal
.getValue(0);
4574 SDValue TrueHigh
= TrueVal
.getValue(1);
4575 SDValue FalseLow
= FalseVal
.getValue(0);
4576 SDValue FalseHigh
= FalseVal
.getValue(1);
4578 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4580 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4581 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4583 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4585 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4590 static bool isGTorGE(ISD::CondCode CC
) {
4591 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4594 static bool isLTorLE(ISD::CondCode CC
) {
4595 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4598 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4599 // All of these conditions (and their <= and >= counterparts) will do:
4604 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4605 const SDValue TrueVal
, const SDValue FalseVal
,
4606 const ISD::CondCode CC
, const SDValue K
) {
4607 return (isGTorGE(CC
) &&
4608 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4610 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4613 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4614 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4615 const SDValue TrueVal
, const SDValue FalseVal
,
4616 const ISD::CondCode CC
, const SDValue K
) {
4617 return (isGTorGE(CC
) &&
4618 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4620 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4623 // Check if two chained conditionals could be converted into SSAT or USAT.
4625 // SSAT can replace a set of two conditional selectors that bound a number to an
4626 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4628 // x < -k ? -k : (x > k ? k : x)
4629 // x < -k ? -k : (x < k ? x : k)
4630 // x > -k ? (x > k ? k : x) : -k
4631 // x < k ? (x < -k ? -k : x) : k
4634 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4637 // It returns true if the conversion can be done, false otherwise.
4638 // Additionally, the variable is returned in parameter V, the constant in K and
4639 // usat is set to true if the conditional represents an unsigned saturation
4640 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4641 uint64_t &K
, bool &usat
) {
4642 SDValue LHS1
= Op
.getOperand(0);
4643 SDValue RHS1
= Op
.getOperand(1);
4644 SDValue TrueVal1
= Op
.getOperand(2);
4645 SDValue FalseVal1
= Op
.getOperand(3);
4646 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4648 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4649 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4652 SDValue LHS2
= Op2
.getOperand(0);
4653 SDValue RHS2
= Op2
.getOperand(1);
4654 SDValue TrueVal2
= Op2
.getOperand(2);
4655 SDValue FalseVal2
= Op2
.getOperand(3);
4656 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4658 // Find out which are the constants and which are the variables
4659 // in each conditional
4660 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4663 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4666 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4667 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4668 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4669 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4671 // We must detect cases where the original operations worked with 16- or
4672 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4673 // must work with sign-extended values but the select operations return
4674 // the original non-extended value.
4675 SDValue V2TmpReg
= V2Tmp
;
4676 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4677 V2TmpReg
= V2Tmp
->getOperand(0);
4679 // Check that the registers and the constants have the correct values
4680 // in both conditionals
4681 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4685 // Figure out which conditional is saturating the lower/upper bound.
4686 const SDValue
*LowerCheckOp
=
4687 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4689 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4692 const SDValue
*UpperCheckOp
=
4693 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4695 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4699 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4702 // Check that the constant in the lower-bound check is
4703 // the opposite of the constant in the upper-bound check
4704 // in 1's complement.
4705 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4706 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4707 int64_t PosVal
= std::max(Val1
, Val2
);
4708 int64_t NegVal
= std::min(Val1
, Val2
);
4710 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4711 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4712 isPowerOf2_64(PosVal
+ 1)) {
4714 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4717 else if (NegVal
== 0)
4723 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4731 // Check if a condition of the type x < k ? k : x can be converted into a
4732 // bit operation instead of conditional moves.
4733 // Currently this is allowed given:
4734 // - The conditions and values match up
4735 // - k is 0 or -1 (all ones)
4736 // This function will not check the last condition, thats up to the caller
4737 // It returns true if the transformation can be made, and in such case
4738 // returns x in V, and k in SatK.
4739 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4742 SDValue LHS
= Op
.getOperand(0);
4743 SDValue RHS
= Op
.getOperand(1);
4744 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4745 SDValue TrueVal
= Op
.getOperand(2);
4746 SDValue FalseVal
= Op
.getOperand(3);
4748 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4752 // No constant operation in comparison, early out
4756 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4757 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4758 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4760 // If the constant on left and right side, or variable on left and right,
4761 // does not match, early out
4762 if (*K
!= KTmp
|| V
!= VTmp
)
4765 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4773 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4775 return !Subtarget
->hasVFP2Base();
4777 return !Subtarget
->hasFP64();
4779 return !Subtarget
->hasFullFP16();
4783 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4784 EVT VT
= Op
.getValueType();
4787 // Try to convert two saturating conditional selects into a single SSAT
4789 uint64_t SatConstant
;
4791 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4792 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4794 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4795 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4797 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4798 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4801 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4802 // into more efficient bit operations, which is possible when k is 0 or -1
4803 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4804 // single instructions. On Thumb the shift and the bit operation will be two
4806 // Only allow this transformation on full-width (32-bit) operations
4807 SDValue LowerSatConstant
;
4808 if (VT
== MVT::i32
&&
4809 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4810 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4811 DAG
.getConstant(31, dl
, VT
));
4812 if (isNullConstant(LowerSatConstant
)) {
4813 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4814 DAG
.getAllOnesConstant(dl
, VT
));
4815 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4816 } else if (isAllOnesConstant(LowerSatConstant
))
4817 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4820 SDValue LHS
= Op
.getOperand(0);
4821 SDValue RHS
= Op
.getOperand(1);
4822 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4823 SDValue TrueVal
= Op
.getOperand(2);
4824 SDValue FalseVal
= Op
.getOperand(3);
4825 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4826 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4828 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4829 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4830 unsigned TVal
= CTVal
->getZExtValue();
4831 unsigned FVal
= CFVal
->getZExtValue();
4832 unsigned Opcode
= 0;
4834 if (TVal
== ~FVal
) {
4835 Opcode
= ARMISD::CSINV
;
4836 } else if (TVal
== ~FVal
+ 1) {
4837 Opcode
= ARMISD::CSNEG
;
4838 } else if (TVal
+ 1 == FVal
) {
4839 Opcode
= ARMISD::CSINC
;
4840 } else if (TVal
== FVal
+ 1) {
4841 Opcode
= ARMISD::CSINC
;
4842 std::swap(TrueVal
, FalseVal
);
4843 std::swap(TVal
, FVal
);
4844 CC
= ISD::getSetCCInverse(CC
, true);
4848 // If one of the constants is cheaper than another, materialise the
4849 // cheaper one and let the csel generate the other.
4850 if (Opcode
!= ARMISD::CSINC
&&
4851 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4852 std::swap(TrueVal
, FalseVal
);
4853 std::swap(TVal
, FVal
);
4854 CC
= ISD::getSetCCInverse(CC
, true);
4857 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4858 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4859 // -(-a) == a, but (a+1)+1 != a).
4860 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4861 std::swap(TrueVal
, FalseVal
);
4862 std::swap(TVal
, FVal
);
4863 CC
= ISD::getSetCCInverse(CC
, true);
4866 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4868 // Drops F's value because we can get it by inverting/negating TVal.
4872 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4873 EVT VT
= TrueVal
.getValueType();
4874 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4878 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4879 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4880 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4882 // If softenSetCCOperands only returned one value, we should compare it to
4884 if (!RHS
.getNode()) {
4885 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4890 if (LHS
.getValueType() == MVT::i32
) {
4891 // Try to generate VSEL on ARMv8.
4892 // The VSEL instruction can't use all the usual ARM condition
4893 // codes: it only has two bits to select the condition code, so it's
4894 // constrained to use only GE, GT, VS and EQ.
4896 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4897 // swap the operands of the previous compare instruction (effectively
4898 // inverting the compare condition, swapping 'less' and 'greater') and
4899 // sometimes need to swap the operands to the VSEL (which inverts the
4900 // condition in the sense of firing whenever the previous condition didn't)
4901 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4902 TrueVal
.getValueType() == MVT::f32
||
4903 TrueVal
.getValueType() == MVT::f64
)) {
4904 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4905 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4906 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4907 CC
= ISD::getSetCCInverse(CC
, true);
4908 std::swap(TrueVal
, FalseVal
);
4913 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4914 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4915 // Choose GE over PL, which vsel does now support
4916 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4917 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4918 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4921 ARMCC::CondCodes CondCode
, CondCode2
;
4922 FPCCToARMCC(CC
, CondCode
, CondCode2
);
4924 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4925 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4926 // must use VSEL (limited condition codes), due to not having conditional f16
4928 if (Subtarget
->hasFPARMv8Base() &&
4929 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4930 (TrueVal
.getValueType() == MVT::f16
||
4931 TrueVal
.getValueType() == MVT::f32
||
4932 TrueVal
.getValueType() == MVT::f64
)) {
4933 bool swpCmpOps
= false;
4934 bool swpVselOps
= false;
4935 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4937 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4938 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4940 std::swap(LHS
, RHS
);
4942 std::swap(TrueVal
, FalseVal
);
4946 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4947 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
4948 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4949 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4950 if (CondCode2
!= ARMCC::AL
) {
4951 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4952 // FIXME: Needs another CMP because flag can have but one use.
4953 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
4954 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4959 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4960 /// to morph to an integer compare sequence.
4961 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4962 const ARMSubtarget
*Subtarget
) {
4963 SDNode
*N
= Op
.getNode();
4964 if (!N
->hasOneUse())
4965 // Otherwise it requires moving the value from fp to integer registers.
4967 if (!N
->getNumValues())
4969 EVT VT
= Op
.getValueType();
4970 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4971 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4972 // vmrs are very slow, e.g. cortex-a8.
4975 if (isFloatingPointZero(Op
)) {
4979 return ISD::isNormalLoad(N
);
4982 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4983 if (isFloatingPointZero(Op
))
4984 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4986 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4987 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4988 Ld
->getPointerInfo(), Ld
->getAlignment(),
4989 Ld
->getMemOperand()->getFlags());
4991 llvm_unreachable("Unknown VFP cmp argument!");
4994 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4995 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4998 if (isFloatingPointZero(Op
)) {
4999 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
5000 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5004 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5005 SDValue Ptr
= Ld
->getBasePtr();
5007 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5008 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5010 EVT PtrType
= Ptr
.getValueType();
5011 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5012 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5013 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5014 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5015 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5016 Ld
->getMemOperand()->getFlags());
5020 llvm_unreachable("Unknown VFP cmp argument!");
5023 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5024 /// f32 and even f64 comparisons to integer ones.
5026 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5027 SDValue Chain
= Op
.getOperand(0);
5028 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5029 SDValue LHS
= Op
.getOperand(2);
5030 SDValue RHS
= Op
.getOperand(3);
5031 SDValue Dest
= Op
.getOperand(4);
5034 bool LHSSeenZero
= false;
5035 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5036 bool RHSSeenZero
= false;
5037 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5038 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5039 // If unsafe fp math optimization is enabled and there are no other uses of
5040 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5041 // to an integer comparison.
5042 if (CC
== ISD::SETOEQ
)
5044 else if (CC
== ISD::SETUNE
)
5047 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5049 if (LHS
.getValueType() == MVT::f32
) {
5050 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5051 bitcastf32Toi32(LHS
, DAG
), Mask
);
5052 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5053 bitcastf32Toi32(RHS
, DAG
), Mask
);
5054 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5055 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5056 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5057 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5062 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5063 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5064 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5065 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5066 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5067 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5068 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5069 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5070 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5076 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5077 SDValue Chain
= Op
.getOperand(0);
5078 SDValue Cond
= Op
.getOperand(1);
5079 SDValue Dest
= Op
.getOperand(2);
5082 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5084 unsigned Opc
= Cond
.getOpcode();
5085 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5086 !Subtarget
->isThumb1Only();
5087 if (Cond
.getResNo() == 1 &&
5088 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5089 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5090 // Only lower legal XALUO ops.
5091 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5094 // The actual operation with overflow check.
5095 SDValue Value
, OverflowCmp
;
5097 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5099 // Reverse the condition code.
5100 ARMCC::CondCodes CondCode
=
5101 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5102 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5103 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5104 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5106 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5113 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5114 SDValue Chain
= Op
.getOperand(0);
5115 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5116 SDValue LHS
= Op
.getOperand(2);
5117 SDValue RHS
= Op
.getOperand(3);
5118 SDValue Dest
= Op
.getOperand(4);
5121 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5122 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5123 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5125 // If softenSetCCOperands only returned one value, we should compare it to
5127 if (!RHS
.getNode()) {
5128 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5133 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5135 unsigned Opc
= LHS
.getOpcode();
5136 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5137 !Subtarget
->isThumb1Only();
5138 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5139 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5140 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5141 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5142 // Only lower legal XALUO ops.
5143 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5146 // The actual operation with overflow check.
5147 SDValue Value
, OverflowCmp
;
5149 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5151 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5152 // Reverse the condition code.
5153 ARMCC::CondCodes CondCode
=
5154 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5155 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5156 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5158 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5160 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5164 if (LHS
.getValueType() == MVT::i32
) {
5166 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5167 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5168 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5169 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5172 if (getTargetMachine().Options
.UnsafeFPMath
&&
5173 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5174 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5175 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5179 ARMCC::CondCodes CondCode
, CondCode2
;
5180 FPCCToARMCC(CC
, CondCode
, CondCode2
);
5182 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5183 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
5184 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5185 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5186 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5187 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5188 if (CondCode2
!= ARMCC::AL
) {
5189 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5190 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5191 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5196 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5197 SDValue Chain
= Op
.getOperand(0);
5198 SDValue Table
= Op
.getOperand(1);
5199 SDValue Index
= Op
.getOperand(2);
5202 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5203 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5204 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5205 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5206 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5207 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5208 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5209 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5210 // which does another jump to the destination. This also makes it easier
5211 // to translate it to TBB / TBH later (Thumb2 only).
5212 // FIXME: This might not work if the function is extremely large.
5213 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5214 Addr
, Op
.getOperand(2), JTI
);
5216 if (isPositionIndependent() || Subtarget
->isROPI()) {
5218 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5219 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5220 Chain
= Addr
.getValue(1);
5221 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5222 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5225 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5226 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5227 Chain
= Addr
.getValue(1);
5228 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5232 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5233 EVT VT
= Op
.getValueType();
5236 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5237 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5239 return DAG
.UnrollVectorOp(Op
.getNode());
5242 const bool HasFullFP16
=
5243 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5246 const EVT OpTy
= Op
.getOperand(0).getValueType();
5247 if (OpTy
== MVT::v4f32
)
5249 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5251 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5254 llvm_unreachable("Invalid type for custom lowering!");
5256 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5257 return DAG
.UnrollVectorOp(Op
.getNode());
5259 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5260 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5263 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5264 EVT VT
= Op
.getValueType();
5266 return LowerVectorFP_TO_INT(Op
, DAG
);
5267 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5269 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5270 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5273 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5275 MakeLibCallOptions CallOptions
;
5276 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5277 CallOptions
, SDLoc(Op
)).first
;
5283 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5284 EVT VT
= Op
.getValueType();
5287 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5288 if (VT
.getVectorElementType() == MVT::f32
)
5290 return DAG
.UnrollVectorOp(Op
.getNode());
5293 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5294 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5295 "Invalid type for custom lowering!");
5297 const bool HasFullFP16
=
5298 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5301 if (VT
== MVT::v4f32
)
5302 DestVecType
= MVT::v4i32
;
5303 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5304 DestVecType
= MVT::v4i16
;
5305 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5306 DestVecType
= MVT::v8i16
;
5308 return DAG
.UnrollVectorOp(Op
.getNode());
5312 switch (Op
.getOpcode()) {
5313 default: llvm_unreachable("Invalid opcode!");
5314 case ISD::SINT_TO_FP
:
5315 CastOpc
= ISD::SIGN_EXTEND
;
5316 Opc
= ISD::SINT_TO_FP
;
5318 case ISD::UINT_TO_FP
:
5319 CastOpc
= ISD::ZERO_EXTEND
;
5320 Opc
= ISD::UINT_TO_FP
;
5324 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5325 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5328 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5329 EVT VT
= Op
.getValueType();
5331 return LowerVectorINT_TO_FP(Op
, DAG
);
5332 if (isUnsupportedFloatingType(VT
)) {
5334 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5335 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5338 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5340 MakeLibCallOptions CallOptions
;
5341 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5342 CallOptions
, SDLoc(Op
)).first
;
5348 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5349 // Implement fcopysign with a fabs and a conditional fneg.
5350 SDValue Tmp0
= Op
.getOperand(0);
5351 SDValue Tmp1
= Op
.getOperand(1);
5353 EVT VT
= Op
.getValueType();
5354 EVT SrcVT
= Tmp1
.getValueType();
5355 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5356 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5357 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5360 // Use VBSL to copy the sign bit.
5361 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5362 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5363 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5364 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5366 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5367 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5368 DAG
.getConstant(32, dl
, MVT::i32
));
5369 else /*if (VT == MVT::f32)*/
5370 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5371 if (SrcVT
== MVT::f32
) {
5372 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5374 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5375 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5376 DAG
.getConstant(32, dl
, MVT::i32
));
5377 } else if (VT
== MVT::f32
)
5378 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5379 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5380 DAG
.getConstant(32, dl
, MVT::i32
));
5381 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5382 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5384 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5386 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5387 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5388 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5390 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5391 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5392 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5393 if (VT
== MVT::f32
) {
5394 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5395 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5396 DAG
.getConstant(0, dl
, MVT::i32
));
5398 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5404 // Bitcast operand 1 to i32.
5405 if (SrcVT
== MVT::f64
)
5406 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5408 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5410 // Or in the signbit with integer operations.
5411 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5412 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5413 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5414 if (VT
== MVT::f32
) {
5415 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5416 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5417 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5418 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5421 // f64: Or the high part with signbit and then combine two parts.
5422 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5424 SDValue Lo
= Tmp0
.getValue(0);
5425 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5426 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5427 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5430 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5431 MachineFunction
&MF
= DAG
.getMachineFunction();
5432 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5433 MFI
.setReturnAddressIsTaken(true);
5435 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5438 EVT VT
= Op
.getValueType();
5440 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5442 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5443 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5444 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5445 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5446 MachinePointerInfo());
5449 // Return LR, which contains the return address. Mark it an implicit live-in.
5450 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5451 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5454 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5455 const ARMBaseRegisterInfo
&ARI
=
5456 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5457 MachineFunction
&MF
= DAG
.getMachineFunction();
5458 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5459 MFI
.setFrameAddressIsTaken(true);
5461 EVT VT
= Op
.getValueType();
5462 SDLoc
dl(Op
); // FIXME probably not meaningful
5463 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5464 Register FrameReg
= ARI
.getFrameRegister(MF
);
5465 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5467 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5468 MachinePointerInfo());
5472 // FIXME? Maybe this could be a TableGen attribute on some registers and
5473 // this table could be generated automatically from RegInfo.
5474 Register
ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5475 const MachineFunction
&MF
) const {
5476 Register Reg
= StringSwitch
<unsigned>(RegName
)
5477 .Case("sp", ARM::SP
)
5481 report_fatal_error(Twine("Invalid register name \""
5482 + StringRef(RegName
) + "\"."));
5485 // Result is 64 bit value so split into two 32 bit values and return as a
5487 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5488 SelectionDAG
&DAG
) {
5491 // This function is only supposed to be called for i64 type destination.
5492 assert(N
->getValueType(0) == MVT::i64
5493 && "ExpandREAD_REGISTER called for non-i64 type result.");
5495 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5496 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5500 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5502 Results
.push_back(Read
.getOperand(0));
5505 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5506 /// When \p DstVT, the destination type of \p BC, is on the vector
5507 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5508 /// it might be possible to combine them, such that everything stays on the
5509 /// vector register bank.
5510 /// \p return The node that would replace \p BT, if the combine
5512 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5513 SelectionDAG
&DAG
) {
5514 SDValue Op
= BC
->getOperand(0);
5515 EVT DstVT
= BC
->getValueType(0);
5517 // The only vector instruction that can produce a scalar (remember,
5518 // since the bitcast was about to be turned into VMOVDRR, the source
5519 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5520 // Moreover, we can do this combine only if there is one use.
5521 // Finally, if the destination type is not a vector, there is not
5522 // much point on forcing everything on the vector bank.
5523 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5527 // If the index is not constant, we will introduce an additional
5528 // multiply that will stick.
5529 // Give up in that case.
5530 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5533 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5535 // Compute the new index.
5536 const APInt
&APIntIndex
= Index
->getAPIntValue();
5537 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5538 NewIndex
*= APIntIndex
;
5539 // Check if the new constant index fits into i32.
5540 if (NewIndex
.getBitWidth() > 32)
5543 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5544 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5546 SDValue ExtractSrc
= Op
.getOperand(0);
5547 EVT VecVT
= EVT::getVectorVT(
5548 *DAG
.getContext(), DstVT
.getScalarType(),
5549 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5550 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5551 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5552 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5555 /// ExpandBITCAST - If the target supports VFP, this function is called to
5556 /// expand a bit convert where either the source or destination type is i64 to
5557 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5558 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5559 /// vectors), since the legalizer won't know what to do with that.
5560 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5561 const ARMSubtarget
*Subtarget
) {
5562 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5564 SDValue Op
= N
->getOperand(0);
5566 // This function is only supposed to be called for i64 types, either as the
5567 // source or destination of the bit convert.
5568 EVT SrcVT
= Op
.getValueType();
5569 EVT DstVT
= N
->getValueType(0);
5570 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5572 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5573 // FullFP16: half values are passed in S-registers, and we don't
5574 // need any of the bitcast and moves:
5576 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5577 // t5: i32 = bitcast t2
5578 // t18: f16 = ARMISD::VMOVhr t5
5579 if (Op
.getOpcode() != ISD::CopyFromReg
||
5580 Op
.getValueType() != MVT::f32
)
5583 auto Move
= N
->use_begin();
5584 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5587 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5588 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5589 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5593 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5596 // SoftFP: read half-precision arguments:
5599 // t7: i16 = truncate t2 <~~~~ Op
5600 // t8: f16 = bitcast t7 <~~~~ N
5602 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5603 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5604 MVT::f16
, Op
.getOperand(0));
5609 // Half-precision return values
5610 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5614 // t11: f16 = fadd t8, t10
5615 // t12: i16 = bitcast t11 <~~~ SDNode N
5616 // t13: i32 = zero_extend t12
5617 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5618 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5620 // transform this into:
5622 // t20: i32 = ARMISD::VMOVrh t11
5623 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5625 auto ZeroExtend
= N
->use_begin();
5626 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5627 ZeroExtend
->getValueType(0) != MVT::i32
)
5630 auto Copy
= ZeroExtend
->use_begin();
5631 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5632 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5633 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5634 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5640 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5643 // Turn i64->f64 into VMOVDRR.
5644 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5645 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5646 // if we can combine the bitcast with its source.
5647 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5650 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5651 DAG
.getConstant(0, dl
, MVT::i32
));
5652 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5653 DAG
.getConstant(1, dl
, MVT::i32
));
5654 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5655 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5658 // Turn f64->i64 into VMOVRRD.
5659 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5661 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5662 SrcVT
.getVectorNumElements() > 1)
5663 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5664 DAG
.getVTList(MVT::i32
, MVT::i32
),
5665 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5667 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5668 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5669 // Merge the pieces into a single i64 value.
5670 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5676 /// getZeroVector - Returns a vector of specified type with all zero elements.
5677 /// Zero vectors are used to represent vector negation and in those cases
5678 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5679 /// not support i64 elements, so sometimes the zero vectors will need to be
5680 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5682 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5683 assert(VT
.isVector() && "Expected a vector type");
5684 // The canonical modified immediate encoding of a zero vector is....0!
5685 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5686 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5687 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5688 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5691 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5692 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5693 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5694 SelectionDAG
&DAG
) const {
5695 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5696 EVT VT
= Op
.getValueType();
5697 unsigned VTBits
= VT
.getSizeInBits();
5699 SDValue ShOpLo
= Op
.getOperand(0);
5700 SDValue ShOpHi
= Op
.getOperand(1);
5701 SDValue ShAmt
= Op
.getOperand(2);
5703 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5704 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5706 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5708 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5709 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5710 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5711 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5712 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5713 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5714 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5715 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5716 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5717 ISD::SETGE
, ARMcc
, DAG
, dl
);
5718 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5721 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5722 SDValue HiBigShift
= Opc
== ISD::SRA
5723 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5724 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5725 : DAG
.getConstant(0, dl
, VT
);
5726 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5727 ISD::SETGE
, ARMcc
, DAG
, dl
);
5728 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5731 SDValue Ops
[2] = { Lo
, Hi
};
5732 return DAG
.getMergeValues(Ops
, dl
);
5735 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5736 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5737 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5738 SelectionDAG
&DAG
) const {
5739 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5740 EVT VT
= Op
.getValueType();
5741 unsigned VTBits
= VT
.getSizeInBits();
5743 SDValue ShOpLo
= Op
.getOperand(0);
5744 SDValue ShOpHi
= Op
.getOperand(1);
5745 SDValue ShAmt
= Op
.getOperand(2);
5747 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5749 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5750 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5751 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5752 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5753 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5754 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5756 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5757 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5758 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5759 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5760 ISD::SETGE
, ARMcc
, DAG
, dl
);
5761 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5764 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5765 ISD::SETGE
, ARMcc
, DAG
, dl
);
5766 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5767 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5768 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5770 SDValue Ops
[2] = { Lo
, Hi
};
5771 return DAG
.getMergeValues(Ops
, dl
);
5774 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5775 SelectionDAG
&DAG
) const {
5776 // The rounding mode is in bits 23:22 of the FPSCR.
5777 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5778 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5779 // so that the shift + and get folded into a bitfield extract.
5781 SDValue Ops
[] = { DAG
.getEntryNode(),
5782 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5784 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5785 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5786 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5787 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5788 DAG
.getConstant(22, dl
, MVT::i32
));
5789 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5790 DAG
.getConstant(3, dl
, MVT::i32
));
5793 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5794 const ARMSubtarget
*ST
) {
5796 EVT VT
= N
->getValueType(0);
5797 if (VT
.isVector() && ST
->hasNEON()) {
5799 // Compute the least significant set bit: LSB = X & -X
5800 SDValue X
= N
->getOperand(0);
5801 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5802 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5804 EVT ElemTy
= VT
.getVectorElementType();
5806 if (ElemTy
== MVT::i8
) {
5807 // Compute with: cttz(x) = ctpop(lsb - 1)
5808 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5809 DAG
.getTargetConstant(1, dl
, ElemTy
));
5810 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5811 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5814 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5815 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5816 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5817 unsigned NumBits
= ElemTy
.getSizeInBits();
5818 SDValue WidthMinus1
=
5819 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5820 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5821 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5822 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5825 // Compute with: cttz(x) = ctpop(lsb - 1)
5829 if (ElemTy
== MVT::i64
) {
5830 // Load constant 0xffff'ffff'ffff'ffff to register.
5831 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5832 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5833 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5835 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5836 DAG
.getTargetConstant(1, dl
, ElemTy
));
5837 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5839 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5842 if (!ST
->hasV6T2Ops())
5845 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5846 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5849 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5850 const ARMSubtarget
*ST
) {
5851 EVT VT
= N
->getValueType(0);
5854 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5855 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5856 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5857 "Unexpected type for custom ctpop lowering");
5859 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5860 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5861 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5862 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5864 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5865 unsigned EltSize
= 8;
5866 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5867 while (EltSize
!= VT
.getScalarSizeInBits()) {
5868 SmallVector
<SDValue
, 8> Ops
;
5869 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5870 TLI
.getPointerTy(DAG
.getDataLayout())));
5875 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5876 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5882 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5883 /// operand of a vector shift operation, where all the elements of the
5884 /// build_vector must have the same constant integer value.
5885 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5886 // Ignore bit_converts.
5887 while (Op
.getOpcode() == ISD::BITCAST
)
5888 Op
= Op
.getOperand(0);
5889 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5890 APInt SplatBits
, SplatUndef
;
5891 unsigned SplatBitSize
;
5894 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5896 SplatBitSize
> ElementBits
)
5898 Cnt
= SplatBits
.getSExtValue();
5902 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5903 /// operand of a vector shift left operation. That value must be in the range:
5904 /// 0 <= Value < ElementBits for a left shift; or
5905 /// 0 <= Value <= ElementBits for a long left shift.
5906 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5907 assert(VT
.isVector() && "vector shift count is not a vector type");
5908 int64_t ElementBits
= VT
.getScalarSizeInBits();
5909 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5911 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5914 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5915 /// operand of a vector shift right operation. For a shift opcode, the value
5916 /// is positive, but for an intrinsic the value count must be negative. The
5917 /// absolute value must be in the range:
5918 /// 1 <= |Value| <= ElementBits for a right shift; or
5919 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5920 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5922 assert(VT
.isVector() && "vector shift count is not a vector type");
5923 int64_t ElementBits
= VT
.getScalarSizeInBits();
5924 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5927 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5928 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5935 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5936 const ARMSubtarget
*ST
) {
5937 EVT VT
= N
->getValueType(0);
5944 // We essentially have two forms here. Shift by an immediate and shift by a
5945 // vector register (there are also shift by a gpr, but that is just handled
5946 // with a tablegen pattern). We cannot easily match shift by an immediate in
5947 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5948 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5949 // signed or unsigned, and a negative shift indicates a shift right).
5950 if (N
->getOpcode() == ISD::SHL
) {
5951 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5952 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5953 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5954 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5958 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5959 "unexpected vector shift opcode");
5961 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5962 unsigned VShiftOpc
=
5963 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5964 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5965 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5968 // Other right shifts we don't have operations for (we use a shift left by a
5969 // negative number).
5970 EVT ShiftVT
= N
->getOperand(1).getValueType();
5971 SDValue NegatedCount
= DAG
.getNode(
5972 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5973 unsigned VShiftOpc
=
5974 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5975 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5978 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5979 const ARMSubtarget
*ST
) {
5980 EVT VT
= N
->getValueType(0);
5983 // We can get here for a node like i32 = ISD::SHL i32, i64
5987 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5988 N
->getOpcode() == ISD::SHL
) &&
5989 "Unknown shift to lower!");
5991 unsigned ShOpc
= N
->getOpcode();
5992 if (ST
->hasMVEIntegerOps()) {
5993 SDValue ShAmt
= N
->getOperand(1);
5994 unsigned ShPartsOpc
= ARMISD::LSLL
;
5995 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5997 // If the shift amount is greater than 32 or has a greater bitwidth than 64
5998 // then do the default optimisation
5999 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6000 (Con
&& (Con
->getZExtValue() == 0 || Con
->getZExtValue() >= 32)))
6003 // Extract the lower 32 bits of the shift amount if it's not an i32
6004 if (ShAmt
->getValueType(0) != MVT::i32
)
6005 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6007 if (ShOpc
== ISD::SRL
) {
6009 // There is no t2LSRLr instruction so negate and perform an lsll if the
6010 // shift amount is in a register, emulating a right shift.
6011 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6012 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6014 // Else generate an lsrl on the immediate shift amount
6015 ShPartsOpc
= ARMISD::LSRL
;
6016 } else if (ShOpc
== ISD::SRA
)
6017 ShPartsOpc
= ARMISD::ASRL
;
6019 // Lower 32 bits of the destination/source
6020 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6021 DAG
.getConstant(0, dl
, MVT::i32
));
6022 // Upper 32 bits of the destination/source
6023 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6024 DAG
.getConstant(1, dl
, MVT::i32
));
6026 // Generate the shift operation as computed above
6027 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6029 // The upper 32 bits come from the second return value of lsll
6030 Hi
= SDValue(Lo
.getNode(), 1);
6031 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6034 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6035 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6038 // If we are in thumb mode, we don't have RRX.
6039 if (ST
->isThumb1Only())
6042 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6043 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6044 DAG
.getConstant(0, dl
, MVT::i32
));
6045 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6046 DAG
.getConstant(1, dl
, MVT::i32
));
6048 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6049 // captures the result into a carry flag.
6050 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6051 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6053 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6054 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6056 // Merge the pieces into a single i64 value.
6057 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6060 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6061 const ARMSubtarget
*ST
) {
6062 bool Invert
= false;
6064 unsigned Opc
= ARMCC::AL
;
6066 SDValue Op0
= Op
.getOperand(0);
6067 SDValue Op1
= Op
.getOperand(1);
6068 SDValue CC
= Op
.getOperand(2);
6069 EVT VT
= Op
.getValueType();
6070 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6075 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6077 assert(ST
->hasMVEIntegerOps() &&
6078 "No hardware support for integer vector comparison!");
6080 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6083 // Make sure we expand floating point setcc to scalar if we do not have
6084 // mve.fp, so that we can handle them from there.
6085 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6091 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6092 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6093 // Special-case integer 64-bit equality comparisons. They aren't legal,
6094 // but they can be lowered with a few vector instructions.
6095 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6096 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6097 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6098 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6099 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6100 DAG
.getCondCode(ISD::SETEQ
));
6101 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6102 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6103 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6104 if (SetCCOpcode
== ISD::SETNE
)
6105 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6106 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6110 if (CmpVT
.getVectorElementType() == MVT::i64
)
6111 // 64-bit comparisons are not legal in general.
6114 if (Op1
.getValueType().isFloatingPoint()) {
6115 switch (SetCCOpcode
) {
6116 default: llvm_unreachable("Illegal FP comparison");
6119 if (ST
->hasMVEFloatOps()) {
6120 Opc
= ARMCC::NE
; break;
6122 Invert
= true; LLVM_FALLTHROUGH
;
6125 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6127 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6129 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6131 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6133 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6134 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6135 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6136 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6137 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6138 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6140 // Expand this to (OLT | OGT).
6141 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6142 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6143 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6144 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6145 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6147 Result
= DAG
.getNOT(dl
, Result
, VT
);
6150 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6152 // Expand this to (OLT | OGE).
6153 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6154 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6155 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6156 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6157 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6159 Result
= DAG
.getNOT(dl
, Result
, VT
);
6164 // Integer comparisons.
6165 switch (SetCCOpcode
) {
6166 default: llvm_unreachable("Illegal integer comparison");
6168 if (ST
->hasMVEIntegerOps()) {
6169 Opc
= ARMCC::NE
; break;
6171 Invert
= true; LLVM_FALLTHROUGH
;
6173 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6174 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6175 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6176 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6177 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6178 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6179 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6180 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6181 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6184 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6185 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6187 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6189 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6192 // Ignore bitconvert.
6193 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6194 AndOp
= AndOp
.getOperand(0);
6196 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6197 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6198 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6199 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6201 Result
= DAG
.getNOT(dl
, Result
, VT
);
6208 std::swap(Op0
, Op1
);
6210 // If one of the operands is a constant vector zero, attempt to fold the
6211 // comparison to a specialized compare-against-zero form.
6213 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6215 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6216 if (Opc
== ARMCC::GE
)
6218 else if (Opc
== ARMCC::GT
)
6224 if (SingleOp
.getNode()) {
6225 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6226 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6228 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6229 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6232 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6235 Result
= DAG
.getNOT(dl
, Result
, VT
);
6240 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6241 SDValue LHS
= Op
.getOperand(0);
6242 SDValue RHS
= Op
.getOperand(1);
6243 SDValue Carry
= Op
.getOperand(2);
6244 SDValue Cond
= Op
.getOperand(3);
6247 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6249 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6250 // have to invert the carry first.
6251 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6252 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6253 // This converts the boolean value carry into the carry flag.
6254 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6256 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6257 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6259 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6260 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6261 SDValue ARMcc
= DAG
.getConstant(
6262 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6263 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6264 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6265 Cmp
.getValue(1), SDValue());
6266 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6267 CCR
, Chain
.getValue(1));
6270 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6271 /// valid vector constant for a NEON or MVE instruction with a "modified
6272 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6273 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6274 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6275 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6276 VMOVModImmType type
) {
6277 unsigned OpCmode
, Imm
;
6279 // SplatBitSize is set to the smallest size that splats the vector, so a
6280 // zero vector will always have SplatBitSize == 8. However, NEON modified
6281 // immediate instructions others than VMOV do not support the 8-bit encoding
6282 // of a zero vector, and the default encoding of zero is supposed to be the
6287 switch (SplatBitSize
) {
6289 if (type
!= VMOVModImm
)
6291 // Any 1-byte value is OK. Op=0, Cmode=1110.
6292 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6295 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6299 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6300 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6301 if ((SplatBits
& ~0xff) == 0) {
6302 // Value = 0x00nn: Op=x, Cmode=100x.
6307 if ((SplatBits
& ~0xff00) == 0) {
6308 // Value = 0xnn00: Op=x, Cmode=101x.
6310 Imm
= SplatBits
>> 8;
6316 // NEON's 32-bit VMOV supports splat values where:
6317 // * only one byte is nonzero, or
6318 // * the least significant byte is 0xff and the second byte is nonzero, or
6319 // * the least significant 2 bytes are 0xff and the third is nonzero.
6320 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6321 if ((SplatBits
& ~0xff) == 0) {
6322 // Value = 0x000000nn: Op=x, Cmode=000x.
6327 if ((SplatBits
& ~0xff00) == 0) {
6328 // Value = 0x0000nn00: Op=x, Cmode=001x.
6330 Imm
= SplatBits
>> 8;
6333 if ((SplatBits
& ~0xff0000) == 0) {
6334 // Value = 0x00nn0000: Op=x, Cmode=010x.
6336 Imm
= SplatBits
>> 16;
6339 if ((SplatBits
& ~0xff000000) == 0) {
6340 // Value = 0xnn000000: Op=x, Cmode=011x.
6342 Imm
= SplatBits
>> 24;
6346 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6347 if (type
== OtherModImm
) return SDValue();
6349 if ((SplatBits
& ~0xffff) == 0 &&
6350 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6351 // Value = 0x0000nnff: Op=x, Cmode=1100.
6353 Imm
= SplatBits
>> 8;
6357 // cmode == 0b1101 is not supported for MVE VMVN
6358 if (type
== MVEVMVNModImm
)
6361 if ((SplatBits
& ~0xffffff) == 0 &&
6362 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6363 // Value = 0x00nnffff: Op=x, Cmode=1101.
6365 Imm
= SplatBits
>> 16;
6369 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6370 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6371 // VMOV.I32. A (very) minor optimization would be to replicate the value
6372 // and fall through here to test for a valid 64-bit splat. But, then the
6373 // caller would also need to check and handle the change in size.
6377 if (type
!= VMOVModImm
)
6379 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6380 uint64_t BitMask
= 0xff;
6382 unsigned ImmMask
= 1;
6384 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6385 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6388 } else if ((SplatBits
& BitMask
) != 0) {
6395 if (DAG
.getDataLayout().isBigEndian())
6396 // swap higher and lower 32 bit word
6397 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6399 // Op=1, Cmode=1110.
6401 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6406 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6409 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6410 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6413 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6414 const ARMSubtarget
*ST
) const {
6415 EVT VT
= Op
.getValueType();
6416 bool IsDouble
= (VT
== MVT::f64
);
6417 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6418 const APFloat
&FPVal
= CFP
->getValueAPF();
6420 // Prevent floating-point constants from using literal loads
6421 // when execute-only is enabled.
6422 if (ST
->genExecuteOnly()) {
6423 // If we can represent the constant as an immediate, don't lower it
6424 if (isFPImmLegal(FPVal
, VT
))
6426 // Otherwise, construct as integer, and move to float register
6427 APInt INTVal
= FPVal
.bitcastToAPInt();
6429 switch (VT
.getSimpleVT().SimpleTy
) {
6431 llvm_unreachable("Unknown floating point type!");
6434 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6435 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6436 if (!ST
->isLittle())
6438 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6441 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6442 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6446 if (!ST
->hasVFP3Base())
6449 // Use the default (constant pool) lowering for double constants when we have
6451 if (IsDouble
&& !Subtarget
->hasFP64())
6454 // Try splatting with a VMOV.f32...
6455 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6458 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6459 // We have code in place to select a valid ConstantFP already, no need to
6464 // It's a float and we are trying to use NEON operations where
6465 // possible. Lower it to a splat followed by an extract.
6467 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6468 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6470 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6471 DAG
.getConstant(0, DL
, MVT::i32
));
6474 // The rest of our options are NEON only, make sure that's allowed before
6476 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6480 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6482 // It wouldn't really be worth bothering for doubles except for one very
6483 // important value, which does happen to match: 0.0. So make sure we don't do
6485 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6488 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6489 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6490 VMovVT
, false, VMOVModImm
);
6491 if (NewVal
!= SDValue()) {
6493 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6496 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6498 // It's a float: cast and extract a vector element.
6499 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6501 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6502 DAG
.getConstant(0, DL
, MVT::i32
));
6505 // Finally, try a VMVN.i32
6506 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6508 if (NewVal
!= SDValue()) {
6510 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6513 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6515 // It's a float: cast and extract a vector element.
6516 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6518 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6519 DAG
.getConstant(0, DL
, MVT::i32
));
6525 // check if an VEXT instruction can handle the shuffle mask when the
6526 // vector sources of the shuffle are the same.
6527 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6528 unsigned NumElts
= VT
.getVectorNumElements();
6530 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6536 // If this is a VEXT shuffle, the immediate value is the index of the first
6537 // element. The other shuffle indices must be the successive elements after
6539 unsigned ExpectedElt
= Imm
;
6540 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6541 // Increment the expected index. If it wraps around, just follow it
6542 // back to index zero and keep going.
6544 if (ExpectedElt
== NumElts
)
6547 if (M
[i
] < 0) continue; // ignore UNDEF indices
6548 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6555 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6556 bool &ReverseVEXT
, unsigned &Imm
) {
6557 unsigned NumElts
= VT
.getVectorNumElements();
6558 ReverseVEXT
= false;
6560 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6566 // If this is a VEXT shuffle, the immediate value is the index of the first
6567 // element. The other shuffle indices must be the successive elements after
6569 unsigned ExpectedElt
= Imm
;
6570 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6571 // Increment the expected index. If it wraps around, it may still be
6572 // a VEXT but the source vectors must be swapped.
6574 if (ExpectedElt
== NumElts
* 2) {
6579 if (M
[i
] < 0) continue; // ignore UNDEF indices
6580 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6584 // Adjust the index value if the source operands will be swapped.
6591 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6592 /// instruction with the specified blocksize. (The order of the elements
6593 /// within each block of the vector is reversed.)
6594 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6595 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6596 "Only possible block sizes for VREV are: 16, 32, 64");
6598 unsigned EltSz
= VT
.getScalarSizeInBits();
6602 unsigned NumElts
= VT
.getVectorNumElements();
6603 unsigned BlockElts
= M
[0] + 1;
6604 // If the first shuffle index is UNDEF, be optimistic.
6606 BlockElts
= BlockSize
/ EltSz
;
6608 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6611 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6612 if (M
[i
] < 0) continue; // ignore UNDEF indices
6613 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6620 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6621 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6622 // range, then 0 is placed into the resulting vector. So pretty much any mask
6623 // of 8 elements can work here.
6624 return VT
== MVT::v8i8
&& M
.size() == 8;
6627 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6629 if (Mask
.size() == Elements
* 2)
6630 return Index
/ Elements
;
6631 return Mask
[Index
] == 0 ? 0 : 1;
6634 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6635 // checking that pairs of elements in the shuffle mask represent the same index
6636 // in each vector, incrementing the expected index by 2 at each step.
6637 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6638 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6640 // WhichResult gives the offset for each element in the mask based on which
6641 // of the two results it belongs to.
6643 // The transpose can be represented either as:
6644 // result1 = shufflevector v1, v2, result1_shuffle_mask
6645 // result2 = shufflevector v1, v2, result2_shuffle_mask
6646 // where v1/v2 and the shuffle masks have the same number of elements
6647 // (here WhichResult (see below) indicates which result is being checked)
6650 // results = shufflevector v1, v2, shuffle_mask
6651 // where both results are returned in one vector and the shuffle mask has twice
6652 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6653 // want to check the low half and high half of the shuffle mask as if it were
6655 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6656 unsigned EltSz
= VT
.getScalarSizeInBits();
6660 unsigned NumElts
= VT
.getVectorNumElements();
6661 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6664 // If the mask is twice as long as the input vector then we need to check the
6665 // upper and lower parts of the mask with a matching value for WhichResult
6666 // FIXME: A mask with only even values will be rejected in case the first
6667 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6668 // M[0] is used to determine WhichResult
6669 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6670 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6671 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6672 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6673 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6678 if (M
.size() == NumElts
*2)
6684 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6685 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6686 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6687 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6688 unsigned EltSz
= VT
.getScalarSizeInBits();
6692 unsigned NumElts
= VT
.getVectorNumElements();
6693 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6696 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6697 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6698 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6699 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6700 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6705 if (M
.size() == NumElts
*2)
6711 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6712 // that the mask elements are either all even and in steps of size 2 or all odd
6713 // and in steps of size 2.
6714 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6715 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6717 // Requires similar checks to that of isVTRNMask with
6718 // respect the how results are returned.
6719 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6720 unsigned EltSz
= VT
.getScalarSizeInBits();
6724 unsigned NumElts
= VT
.getVectorNumElements();
6725 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6728 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6729 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6730 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6731 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6736 if (M
.size() == NumElts
*2)
6739 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6740 if (VT
.is64BitVector() && EltSz
== 32)
6746 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6747 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6748 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6749 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6750 unsigned EltSz
= VT
.getScalarSizeInBits();
6754 unsigned NumElts
= VT
.getVectorNumElements();
6755 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6758 unsigned Half
= NumElts
/ 2;
6759 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6760 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6761 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6762 unsigned Idx
= WhichResult
;
6763 for (unsigned k
= 0; k
< Half
; ++k
) {
6764 int MIdx
= M
[i
+ j
+ k
];
6765 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6772 if (M
.size() == NumElts
*2)
6775 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6776 if (VT
.is64BitVector() && EltSz
== 32)
6782 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6783 // that pairs of elements of the shufflemask represent the same index in each
6784 // vector incrementing sequentially through the vectors.
6785 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6786 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6788 // Requires similar checks to that of isVTRNMask with respect the how results
6790 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6791 unsigned EltSz
= VT
.getScalarSizeInBits();
6795 unsigned NumElts
= VT
.getVectorNumElements();
6796 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6799 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6800 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6801 unsigned Idx
= WhichResult
* NumElts
/ 2;
6802 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6803 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6804 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6810 if (M
.size() == NumElts
*2)
6813 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6814 if (VT
.is64BitVector() && EltSz
== 32)
6820 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6821 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6822 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6823 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6824 unsigned EltSz
= VT
.getScalarSizeInBits();
6828 unsigned NumElts
= VT
.getVectorNumElements();
6829 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6832 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6833 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6834 unsigned Idx
= WhichResult
* NumElts
/ 2;
6835 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6836 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6837 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6843 if (M
.size() == NumElts
*2)
6846 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6847 if (VT
.is64BitVector() && EltSz
== 32)
6853 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6854 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6855 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6856 unsigned &WhichResult
,
6859 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6860 return ARMISD::VTRN
;
6861 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6862 return ARMISD::VUZP
;
6863 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6864 return ARMISD::VZIP
;
6867 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6868 return ARMISD::VTRN
;
6869 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6870 return ARMISD::VUZP
;
6871 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6872 return ARMISD::VZIP
;
6877 /// \return true if this is a reverse operation on an vector.
6878 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6879 unsigned NumElts
= VT
.getVectorNumElements();
6880 // Make sure the mask has the right size.
6881 if (NumElts
!= M
.size())
6884 // Look for <15, ..., 3, -1, 1, 0>.
6885 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6886 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6892 // If N is an integer constant that can be moved into a register in one
6893 // instruction, return an SDValue of such a constant (will become a MOV
6894 // instruction). Otherwise return null.
6895 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6896 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6898 if (!isa
<ConstantSDNode
>(N
))
6900 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6902 if (ST
->isThumb1Only()) {
6903 if (Val
<= 255 || ~Val
<= 255)
6904 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6906 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6907 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6912 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6913 const ARMSubtarget
*ST
) {
6915 EVT VT
= Op
.getValueType();
6917 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6919 unsigned NumElts
= VT
.getVectorNumElements();
6921 unsigned BitsPerBool
;
6925 } else if (NumElts
== 8) {
6928 } else if (NumElts
== 16) {
6934 // If this is a single value copied into all lanes (a splat), we can just sign
6935 // extend that single value
6936 SDValue FirstOp
= Op
.getOperand(0);
6937 if (!isa
<ConstantSDNode
>(FirstOp
) &&
6938 std::all_of(std::next(Op
->op_begin()), Op
->op_end(),
6939 [&FirstOp
](SDUse
&U
) {
6940 return U
.get().isUndef() || U
.get() == FirstOp
;
6942 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
, FirstOp
,
6943 DAG
.getValueType(MVT::i1
));
6944 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), Ext
);
6947 // First create base with bits set where known
6948 unsigned Bits32
= 0;
6949 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6950 SDValue V
= Op
.getOperand(i
);
6951 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6953 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6955 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6958 // Add in unknown nodes
6959 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6960 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6961 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6962 SDValue V
= Op
.getOperand(i
);
6963 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6965 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6966 DAG
.getConstant(i
, dl
, MVT::i32
));
6972 // If this is a case we can't handle, return null and let the default
6973 // expansion code take care of it.
6974 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6975 const ARMSubtarget
*ST
) const {
6976 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6978 EVT VT
= Op
.getValueType();
6980 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6981 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6983 APInt SplatBits
, SplatUndef
;
6984 unsigned SplatBitSize
;
6986 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6987 if (SplatUndef
.isAllOnesValue())
6988 return DAG
.getUNDEF(VT
);
6990 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6991 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6992 // Check if an immediate VMOV works.
6994 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6995 SplatUndef
.getZExtValue(), SplatBitSize
,
6996 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6999 if (Val
.getNode()) {
7000 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
7001 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7004 // Try an immediate VMVN.
7005 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
7006 Val
= isVMOVModifiedImm(
7007 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
7008 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7009 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
7010 if (Val
.getNode()) {
7011 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7012 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7015 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7016 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7017 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7019 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7020 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7026 // Scan through the operands to see if only one value is used.
7028 // As an optimisation, even if more than one value is used it may be more
7029 // profitable to splat with one value then change some lanes.
7031 // Heuristically we decide to do this if the vector has a "dominant" value,
7032 // defined as splatted to more than half of the lanes.
7033 unsigned NumElts
= VT
.getVectorNumElements();
7034 bool isOnlyLowElement
= true;
7035 bool usesOnlyOneValue
= true;
7036 bool hasDominantValue
= false;
7037 bool isConstant
= true;
7039 // Map of the number of times a particular SDValue appears in the
7041 DenseMap
<SDValue
, unsigned> ValueCounts
;
7043 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7044 SDValue V
= Op
.getOperand(i
);
7048 isOnlyLowElement
= false;
7049 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7052 ValueCounts
.insert(std::make_pair(V
, 0));
7053 unsigned &Count
= ValueCounts
[V
];
7055 // Is this value dominant? (takes up more than half of the lanes)
7056 if (++Count
> (NumElts
/ 2)) {
7057 hasDominantValue
= true;
7061 if (ValueCounts
.size() != 1)
7062 usesOnlyOneValue
= false;
7063 if (!Value
.getNode() && !ValueCounts
.empty())
7064 Value
= ValueCounts
.begin()->first
;
7066 if (ValueCounts
.empty())
7067 return DAG
.getUNDEF(VT
);
7069 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7070 // Keep going if we are hitting this case.
7071 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7072 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7074 unsigned EltSize
= VT
.getScalarSizeInBits();
7076 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7077 // i32 and try again.
7078 if (hasDominantValue
&& EltSize
<= 32) {
7082 // If we are VDUPing a value that comes directly from a vector, that will
7083 // cause an unnecessary move to and from a GPR, where instead we could
7084 // just use VDUPLANE. We can only do this if the lane being extracted
7085 // is at a constant index, as the VDUP from lane instructions only have
7086 // constant-index forms.
7087 ConstantSDNode
*constIndex
;
7088 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7089 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7090 // We need to create a new undef vector to use for the VDUPLANE if the
7091 // size of the vector from which we get the value is different than the
7092 // size of the vector that we need to create. We will insert the element
7093 // such that the register coalescer will remove unnecessary copies.
7094 if (VT
!= Value
->getOperand(0).getValueType()) {
7095 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7096 VT
.getVectorNumElements();
7097 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7098 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7099 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7100 DAG
.getConstant(index
, dl
, MVT::i32
));
7102 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7103 Value
->getOperand(0), Value
->getOperand(1));
7105 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7107 if (!usesOnlyOneValue
) {
7108 // The dominant value was splatted as 'N', but we now have to insert
7109 // all differing elements.
7110 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7111 if (Op
.getOperand(I
) == Value
)
7113 SmallVector
<SDValue
, 3> Ops
;
7115 Ops
.push_back(Op
.getOperand(I
));
7116 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7117 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7122 if (VT
.getVectorElementType().isFloatingPoint()) {
7123 SmallVector
<SDValue
, 8> Ops
;
7124 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7125 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7126 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7127 for (unsigned i
= 0; i
< NumElts
; ++i
)
7128 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7130 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7131 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7132 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7134 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7136 if (usesOnlyOneValue
) {
7137 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7138 if (isConstant
&& Val
.getNode())
7139 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7143 // If all elements are constants and the case above didn't get hit, fall back
7144 // to the default expansion, which will generate a load from the constant
7149 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7151 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7152 if (shuffle
!= SDValue())
7156 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7157 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7158 // into two 64-bit vectors; we might discover a better way to lower it.
7159 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7160 EVT ExtVT
= VT
.getVectorElementType();
7161 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7163 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7164 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7165 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7166 SDValue Upper
= DAG
.getBuildVector(
7167 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7168 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7169 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7171 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7174 // Vectors with 32- or 64-bit elements can be built by directly assigning
7175 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7176 // will be legalized.
7177 if (EltSize
>= 32) {
7178 // Do the expansion with floating-point types, since that is what the VFP
7179 // registers are defined to use, and since i64 is not legal.
7180 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7181 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7182 SmallVector
<SDValue
, 8> Ops
;
7183 for (unsigned i
= 0; i
< NumElts
; ++i
)
7184 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7185 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7186 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7189 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7190 // know the default expansion would otherwise fall back on something even
7191 // worse. For a vector with one or two non-undef values, that's
7192 // scalar_to_vector for the elements followed by a shuffle (provided the
7193 // shuffle is valid for the target) and materialization element by element
7194 // on the stack followed by a load for everything else.
7195 if (!isConstant
&& !usesOnlyOneValue
) {
7196 SDValue Vec
= DAG
.getUNDEF(VT
);
7197 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7198 SDValue V
= Op
.getOperand(i
);
7201 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7202 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7210 // Gather data to see if the operation can be modelled as a
7211 // shuffle in combination with VEXTs.
7212 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7213 SelectionDAG
&DAG
) const {
7214 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7216 EVT VT
= Op
.getValueType();
7217 unsigned NumElts
= VT
.getVectorNumElements();
7219 struct ShuffleSourceInfo
{
7221 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7222 unsigned MaxElt
= 0;
7224 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7225 // be compatible with the shuffle we intend to construct. As a result
7226 // ShuffleVec will be some sliding window into the original Vec.
7229 // Code should guarantee that element i in Vec starts at element "WindowBase
7230 // + i * WindowScale in ShuffleVec".
7232 int WindowScale
= 1;
7234 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7236 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7239 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7241 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7242 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7243 SDValue V
= Op
.getOperand(i
);
7246 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7247 // A shuffle can only come from building a vector from various
7248 // elements of other vectors.
7250 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7251 // Furthermore, shuffles require a constant mask, whereas extractelts
7252 // accept variable indices.
7256 // Add this element source to the list if it's not already there.
7257 SDValue SourceVec
= V
.getOperand(0);
7258 auto Source
= llvm::find(Sources
, SourceVec
);
7259 if (Source
== Sources
.end())
7260 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7262 // Update the minimum and maximum lane number seen.
7263 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7264 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7265 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7268 // Currently only do something sane when at most two source vectors
7270 if (Sources
.size() > 2)
7273 // Find out the smallest element size among result and two sources, and use
7274 // it as element size to build the shuffle_vector.
7275 EVT SmallestEltTy
= VT
.getVectorElementType();
7276 for (auto &Source
: Sources
) {
7277 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7278 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7279 SmallestEltTy
= SrcEltTy
;
7281 unsigned ResMultiplier
=
7282 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7283 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7284 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7286 // If the source vector is too wide or too narrow, we may nevertheless be able
7287 // to construct a compatible shuffle either by concatenating it with UNDEF or
7288 // extracting a suitable range of elements.
7289 for (auto &Src
: Sources
) {
7290 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7292 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7295 // This stage of the search produces a source with the same element type as
7296 // the original, but with a total width matching the BUILD_VECTOR output.
7297 EVT EltVT
= SrcVT
.getVectorElementType();
7298 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7299 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7301 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7302 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7304 // We can pad out the smaller vector for free, so if it's part of a
7307 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7308 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7312 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7315 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7316 // Span too large for a VEXT to cope
7320 if (Src
.MinElt
>= NumSrcElts
) {
7321 // The extraction can just take the second half
7323 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7324 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7325 Src
.WindowBase
= -NumSrcElts
;
7326 } else if (Src
.MaxElt
< NumSrcElts
) {
7327 // The extraction can just take the first half
7329 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7330 DAG
.getConstant(0, dl
, MVT::i32
));
7332 // An actual VEXT is needed
7334 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7335 DAG
.getConstant(0, dl
, MVT::i32
));
7337 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7338 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7340 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7342 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7343 Src
.WindowBase
= -Src
.MinElt
;
7347 // Another possible incompatibility occurs from the vector element types. We
7348 // can fix this by bitcasting the source vectors to the same type we intend
7350 for (auto &Src
: Sources
) {
7351 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7352 if (SrcEltTy
== SmallestEltTy
)
7354 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7355 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7356 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7357 Src
.WindowBase
*= Src
.WindowScale
;
7360 // Final sanity check before we try to actually produce a shuffle.
7361 LLVM_DEBUG(for (auto Src
7363 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7365 // The stars all align, our next step is to produce the mask for the shuffle.
7366 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7367 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7368 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7369 SDValue Entry
= Op
.getOperand(i
);
7370 if (Entry
.isUndef())
7373 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7374 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7376 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7377 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7379 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7380 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7381 VT
.getScalarSizeInBits());
7382 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7384 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7385 // starting at the appropriate offset.
7386 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7388 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7389 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7390 for (int j
= 0; j
< LanesDefined
; ++j
)
7391 LaneMask
[j
] = ExtractBase
+ j
;
7395 // We can't handle more than two sources. This should have already
7396 // been checked before this point.
7397 assert(Sources
.size() <= 2 && "Too many sources!");
7399 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7400 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7401 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7403 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7404 ShuffleOps
[1], Mask
, DAG
);
7407 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7410 enum ShuffleOpCodes
{
7411 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7420 OP_VUZPL
, // VUZP, left result
7421 OP_VUZPR
, // VUZP, right result
7422 OP_VZIPL
, // VZIP, left result
7423 OP_VZIPR
, // VZIP, right result
7424 OP_VTRNL
, // VTRN, left result
7425 OP_VTRNR
// VTRN, right result
7428 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7429 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7442 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7443 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7444 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7445 /// are assumed to be legal.
7446 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7447 if (VT
.getVectorNumElements() == 4 &&
7448 (VT
.is128BitVector() || VT
.is64BitVector())) {
7449 unsigned PFIndexes
[4];
7450 for (unsigned i
= 0; i
!= 4; ++i
) {
7454 PFIndexes
[i
] = M
[i
];
7457 // Compute the index in the perfect shuffle table.
7458 unsigned PFTableIndex
=
7459 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7460 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7461 unsigned Cost
= (PFEntry
>> 30);
7463 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7467 bool ReverseVEXT
, isV_UNDEF
;
7468 unsigned Imm
, WhichResult
;
7470 unsigned EltSize
= VT
.getScalarSizeInBits();
7471 if (EltSize
>= 32 ||
7472 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7473 ShuffleVectorInst::isIdentityMask(M
) ||
7474 isVREVMask(M
, VT
, 64) ||
7475 isVREVMask(M
, VT
, 32) ||
7476 isVREVMask(M
, VT
, 16))
7478 else if (Subtarget
->hasNEON() &&
7479 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7480 isVTBLMask(M
, VT
) ||
7481 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7483 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7484 isReverseMask(M
, VT
))
7490 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7491 /// the specified operations to build the shuffle.
7492 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7493 SDValue RHS
, SelectionDAG
&DAG
,
7495 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7496 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7497 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7499 if (OpNum
== OP_COPY
) {
7500 if (LHSID
== (1*9+2)*9+3) return LHS
;
7501 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7505 SDValue OpLHS
, OpRHS
;
7506 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7507 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7508 EVT VT
= OpLHS
.getValueType();
7511 default: llvm_unreachable("Unknown shuffle opcode!");
7513 // VREV divides the vector in half and swaps within the half.
7514 if (VT
.getVectorElementType() == MVT::i32
||
7515 VT
.getVectorElementType() == MVT::f32
)
7516 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7517 // vrev <4 x i16> -> VREV32
7518 if (VT
.getVectorElementType() == MVT::i16
)
7519 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7520 // vrev <4 x i8> -> VREV16
7521 assert(VT
.getVectorElementType() == MVT::i8
);
7522 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7527 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7528 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7532 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7534 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7537 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7538 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7541 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7542 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7545 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7546 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7550 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7551 ArrayRef
<int> ShuffleMask
,
7552 SelectionDAG
&DAG
) {
7553 // Check to see if we can use the VTBL instruction.
7554 SDValue V1
= Op
.getOperand(0);
7555 SDValue V2
= Op
.getOperand(1);
7558 SmallVector
<SDValue
, 8> VTBLMask
;
7559 for (ArrayRef
<int>::iterator
7560 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7561 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7563 if (V2
.getNode()->isUndef())
7564 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7565 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7567 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7568 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7571 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7572 SelectionDAG
&DAG
) {
7574 SDValue OpLHS
= Op
.getOperand(0);
7575 EVT VT
= OpLHS
.getValueType();
7577 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7578 "Expect an v8i16/v16i8 type");
7579 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7580 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7581 // extract the first 8 bytes into the top double word and the last 8 bytes
7582 // into the bottom double word. The v8i16 case is similar.
7583 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7584 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7585 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7588 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7589 switch (VT
.getSimpleVT().SimpleTy
) {
7597 llvm_unreachable("Unexpected vector predicate type");
7601 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7602 SelectionDAG
&DAG
) {
7603 // Converting from boolean predicates to integers involves creating a vector
7604 // of all ones or all zeroes and selecting the lanes based upon the real
7607 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7608 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7611 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7612 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7614 // Get full vector type from predicate type
7615 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7618 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7619 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7620 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7621 // since we know in hardware the sizes are really the same.
7622 if (VT
!= MVT::v16i1
)
7623 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7627 // Select either all ones or zeroes depending upon the real predicate bits.
7628 SDValue PredAsVector
=
7629 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7631 // Recast our new predicate-as-integer v16i8 vector into something
7632 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7633 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7636 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7637 const ARMSubtarget
*ST
) {
7638 EVT VT
= Op
.getValueType();
7639 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7640 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7642 assert(ST
->hasMVEIntegerOps() &&
7643 "No support for vector shuffle of boolean predicates");
7645 SDValue V1
= Op
.getOperand(0);
7647 if (isReverseMask(ShuffleMask
, VT
)) {
7648 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7649 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7650 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7651 DAG
.getConstant(16, dl
, MVT::i32
));
7652 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7655 // Until we can come up with optimised cases for every single vector
7656 // shuffle in existence we have chosen the least painful strategy. This is
7657 // to essentially promote the boolean predicate to a 8-bit integer, where
7658 // each predicate represents a byte. Then we fall back on a normal integer
7659 // vector shuffle and convert the result back into a predicate vector. In
7660 // many cases the generated code might be even better than scalar code
7661 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7662 // fields in a register into 8 other arbitrary 2-bit fields!
7663 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7664 EVT NewVT
= PredAsVector
.getValueType();
7667 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7668 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7670 // Now return the result of comparing the shuffled vector with zero,
7671 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7672 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7673 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7676 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7677 const ARMSubtarget
*ST
) {
7678 SDValue V1
= Op
.getOperand(0);
7679 SDValue V2
= Op
.getOperand(1);
7681 EVT VT
= Op
.getValueType();
7682 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7683 unsigned EltSize
= VT
.getScalarSizeInBits();
7685 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7686 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7688 // Convert shuffles that are directly supported on NEON to target-specific
7689 // DAG nodes, instead of keeping them as shuffles and matching them again
7690 // during code selection. This is more efficient and avoids the possibility
7691 // of inconsistencies between legalization and selection.
7692 // FIXME: floating-point vectors should be canonicalized to integer vectors
7693 // of the same time so that they get CSEd properly.
7694 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7696 if (EltSize
<= 32) {
7697 if (SVN
->isSplat()) {
7698 int Lane
= SVN
->getSplatIndex();
7699 // If this is undef splat, generate it via "just" vdup, if possible.
7700 if (Lane
== -1) Lane
= 0;
7702 // Test if V1 is a SCALAR_TO_VECTOR.
7703 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7704 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7706 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7707 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7709 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7710 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7711 bool IsScalarToVector
= true;
7712 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7713 if (!V1
.getOperand(i
).isUndef()) {
7714 IsScalarToVector
= false;
7717 if (IsScalarToVector
)
7718 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7720 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7721 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7724 bool ReverseVEXT
= false;
7726 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7729 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7730 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7733 if (isVREVMask(ShuffleMask
, VT
, 64))
7734 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7735 if (isVREVMask(ShuffleMask
, VT
, 32))
7736 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7737 if (isVREVMask(ShuffleMask
, VT
, 16))
7738 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7740 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7741 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7742 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7745 // Check for Neon shuffles that modify both input vectors in place.
7746 // If both results are used, i.e., if there are two shuffles with the same
7747 // source operands and with masks corresponding to both results of one of
7748 // these operations, DAG memoization will ensure that a single node is
7749 // used for both shuffles.
7750 unsigned WhichResult
= 0;
7751 bool isV_UNDEF
= false;
7752 if (ST
->hasNEON()) {
7753 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7754 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7757 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7758 .getValue(WhichResult
);
7762 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7763 // shuffles that produce a result larger than their operands with:
7764 // shuffle(concat(v1, undef), concat(v2, undef))
7766 // shuffle(concat(v1, v2), undef)
7767 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7769 // This is useful in the general case, but there are special cases where
7770 // native shuffles produce larger results: the two-result ops.
7772 // Look through the concat when lowering them:
7773 // shuffle(concat(v1, v2), undef)
7775 // concat(VZIP(v1, v2):0, :1)
7777 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7778 SDValue SubV1
= V1
->getOperand(0);
7779 SDValue SubV2
= V1
->getOperand(1);
7780 EVT SubVT
= SubV1
.getValueType();
7782 // We expect these to have been canonicalized to -1.
7783 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7784 return i
< (int)VT
.getVectorNumElements();
7785 }) && "Unexpected shuffle index into UNDEF operand!");
7787 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7788 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7791 assert((WhichResult
== 0) &&
7792 "In-place shuffle of concat can only have one result!");
7793 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7795 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7801 // If the shuffle is not directly supported and it has 4 elements, use
7802 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7803 unsigned NumElts
= VT
.getVectorNumElements();
7805 unsigned PFIndexes
[4];
7806 for (unsigned i
= 0; i
!= 4; ++i
) {
7807 if (ShuffleMask
[i
] < 0)
7810 PFIndexes
[i
] = ShuffleMask
[i
];
7813 // Compute the index in the perfect shuffle table.
7814 unsigned PFTableIndex
=
7815 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7816 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7817 unsigned Cost
= (PFEntry
>> 30);
7821 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7822 else if (isLegalMVEShuffleOp(PFEntry
)) {
7823 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7824 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7825 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7826 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7827 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7828 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7833 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7834 if (EltSize
>= 32) {
7835 // Do the expansion with floating-point types, since that is what the VFP
7836 // registers are defined to use, and since i64 is not legal.
7837 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7838 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7839 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7840 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7841 SmallVector
<SDValue
, 8> Ops
;
7842 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7843 if (ShuffleMask
[i
] < 0)
7844 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7846 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7847 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7848 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7851 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7852 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7855 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7856 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7858 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7859 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7865 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7866 const ARMSubtarget
*ST
) {
7867 EVT VecVT
= Op
.getOperand(0).getValueType();
7870 assert(ST
->hasMVEIntegerOps() &&
7871 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7874 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7875 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7876 unsigned LaneWidth
=
7877 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7878 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7879 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7880 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7881 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7882 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7883 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7886 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7887 SelectionDAG
&DAG
) const {
7888 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7889 SDValue Lane
= Op
.getOperand(2);
7890 if (!isa
<ConstantSDNode
>(Lane
))
7893 SDValue Elt
= Op
.getOperand(1);
7894 EVT EltVT
= Elt
.getValueType();
7896 if (Subtarget
->hasMVEIntegerOps() &&
7897 Op
.getValueType().getScalarSizeInBits() == 1)
7898 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7900 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7901 TargetLowering::TypePromoteFloat
) {
7902 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7903 // but the type system will try to do that if we don't intervene.
7904 // Reinterpret any such vector-element insertion as one with the
7905 // corresponding integer types.
7909 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7910 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7911 TargetLowering::TypePromoteFloat
);
7913 SDValue VecIn
= Op
.getOperand(0);
7914 EVT VecVT
= VecIn
.getValueType();
7915 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7916 VecVT
.getVectorNumElements());
7918 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7919 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7920 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7921 IVecIn
, IElt
, Lane
);
7922 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7928 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7929 const ARMSubtarget
*ST
) {
7930 EVT VecVT
= Op
.getOperand(0).getValueType();
7933 assert(ST
->hasMVEIntegerOps() &&
7934 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7937 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7938 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7939 unsigned LaneWidth
=
7940 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7941 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7942 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7946 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7947 const ARMSubtarget
*ST
) {
7948 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7949 SDValue Lane
= Op
.getOperand(1);
7950 if (!isa
<ConstantSDNode
>(Lane
))
7953 SDValue Vec
= Op
.getOperand(0);
7954 EVT VT
= Vec
.getValueType();
7956 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7957 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7959 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7961 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7967 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7968 const ARMSubtarget
*ST
) {
7969 SDValue V1
= Op
.getOperand(0);
7970 SDValue V2
= Op
.getOperand(1);
7972 EVT VT
= Op
.getValueType();
7973 EVT Op1VT
= V1
.getValueType();
7974 EVT Op2VT
= V2
.getValueType();
7975 unsigned NumElts
= VT
.getVectorNumElements();
7977 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7978 assert(VT
.getScalarSizeInBits() == 1 &&
7979 "Unexpected custom CONCAT_VECTORS lowering");
7980 assert(ST
->hasMVEIntegerOps() &&
7981 "CONCAT_VECTORS lowering only supported for MVE");
7983 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7984 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7986 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7987 // promoted to v8i16, etc.
7989 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7991 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7992 // to be the right size for the destination. For example, if Op1 is v4i1 then
7993 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7994 // which when promoted is v8i16. That means each i32 element from Op1 needs
7995 // truncating to i16 and inserting in the result.
7996 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7997 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7998 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7999 EVT NewVT
= NewV
.getValueType();
8000 EVT ConcatVT
= ConVec
.getValueType();
8001 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
8002 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
8003 DAG
.getIntPtrConstant(i
, dl
));
8004 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
8005 DAG
.getConstant(j
, dl
, MVT::i32
));
8010 ConVec
= ExractInto(NewV1
, ConVec
, j
);
8011 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8013 // Now return the result of comparing the subvector with zero,
8014 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8015 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8016 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8019 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8020 const ARMSubtarget
*ST
) {
8021 EVT VT
= Op
->getValueType(0);
8022 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8023 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8025 // The only time a CONCAT_VECTORS operation can have legal types is when
8026 // two 64-bit vectors are concatenated to a 128-bit vector.
8027 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8028 "unexpected CONCAT_VECTORS");
8030 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8031 SDValue Op0
= Op
.getOperand(0);
8032 SDValue Op1
= Op
.getOperand(1);
8034 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8035 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8036 DAG
.getIntPtrConstant(0, dl
));
8038 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8039 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8040 DAG
.getIntPtrConstant(1, dl
));
8041 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8044 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8045 const ARMSubtarget
*ST
) {
8046 SDValue V1
= Op
.getOperand(0);
8047 SDValue V2
= Op
.getOperand(1);
8049 EVT VT
= Op
.getValueType();
8050 EVT Op1VT
= V1
.getValueType();
8051 unsigned NumElts
= VT
.getVectorNumElements();
8052 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8054 assert(VT
.getScalarSizeInBits() == 1 &&
8055 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8056 assert(ST
->hasMVEIntegerOps() &&
8057 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8059 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8061 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8062 // promoted to v8i16, etc.
8064 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8066 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8067 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8068 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8069 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8070 DAG
.getIntPtrConstant(i
, dl
));
8071 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8072 DAG
.getConstant(j
, dl
, MVT::i32
));
8075 // Now return the result of comparing the subvector with zero,
8076 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8077 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8078 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8081 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8082 /// element has been zero/sign-extended, depending on the isSigned parameter,
8083 /// from an integer type half its size.
8084 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8086 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8087 EVT VT
= N
->getValueType(0);
8088 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8089 SDNode
*BVN
= N
->getOperand(0).getNode();
8090 if (BVN
->getValueType(0) != MVT::v4i32
||
8091 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8093 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8094 unsigned HiElt
= 1 - LoElt
;
8095 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8096 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8097 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8098 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8099 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8102 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8103 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8106 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8112 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8115 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8116 SDNode
*Elt
= N
->getOperand(i
).getNode();
8117 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8118 unsigned EltSize
= VT
.getScalarSizeInBits();
8119 unsigned HalfSize
= EltSize
/ 2;
8121 if (!isIntN(HalfSize
, C
->getSExtValue()))
8124 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8135 /// isSignExtended - Check if a node is a vector value that is sign-extended
8136 /// or a constant BUILD_VECTOR with sign-extended elements.
8137 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8138 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8140 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8145 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8146 /// or a constant BUILD_VECTOR with zero-extended elements.
8147 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8148 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8150 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8155 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8156 if (OrigVT
.getSizeInBits() >= 64)
8159 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8161 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8162 switch (OrigSimpleTy
) {
8163 default: llvm_unreachable("Unexpected Vector Type");
8172 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8173 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8174 /// We insert the required extension here to get the vector to fill a D register.
8175 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8178 unsigned ExtOpcode
) {
8179 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8180 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8181 // 64-bits we need to insert a new extension so that it will be 64-bits.
8182 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8183 if (OrigTy
.getSizeInBits() >= 64)
8186 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8187 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8189 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8192 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8193 /// does not do any sign/zero extension. If the original vector is less
8194 /// than 64 bits, an appropriate extension will be added after the load to
8195 /// reach a total size of 64 bits. We have to add the extension separately
8196 /// because ARM does not have a sign/zero extending load for vectors.
8197 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8198 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8200 // The load already has the right type.
8201 if (ExtendedTy
== LD
->getMemoryVT())
8202 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8203 LD
->getBasePtr(), LD
->getPointerInfo(),
8204 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8206 // We need to create a zextload/sextload. We cannot just create a load
8207 // followed by a zext/zext node because LowerMUL is also run during normal
8208 // operation legalization where we can't create illegal types.
8209 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8210 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8211 LD
->getMemoryVT(), LD
->getAlignment(),
8212 LD
->getMemOperand()->getFlags());
8215 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8216 /// extending load, or BUILD_VECTOR with extended elements, return the
8217 /// unextended value. The unextended vector should be 64 bits so that it can
8218 /// be used as an operand to a VMULL instruction. If the original vector size
8219 /// before extension is less than 64 bits we add a an extension to resize
8220 /// the vector to 64 bits.
8221 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8222 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8223 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8224 N
->getOperand(0)->getValueType(0),
8228 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8229 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8230 "Expected extending load");
8232 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8233 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8234 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8236 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8237 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8242 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8243 // have been legalized as a BITCAST from v4i32.
8244 if (N
->getOpcode() == ISD::BITCAST
) {
8245 SDNode
*BVN
= N
->getOperand(0).getNode();
8246 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8247 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8248 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8249 return DAG
.getBuildVector(
8250 MVT::v2i32
, SDLoc(N
),
8251 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8253 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8254 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8255 EVT VT
= N
->getValueType(0);
8256 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8257 unsigned NumElts
= VT
.getVectorNumElements();
8258 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8259 SmallVector
<SDValue
, 8> Ops
;
8261 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8262 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8263 const APInt
&CInt
= C
->getAPIntValue();
8264 // Element types smaller than 32 bits are not legal, so use i32 elements.
8265 // The values are implicitly truncated so sext vs. zext doesn't matter.
8266 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8268 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8271 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8272 unsigned Opcode
= N
->getOpcode();
8273 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8274 SDNode
*N0
= N
->getOperand(0).getNode();
8275 SDNode
*N1
= N
->getOperand(1).getNode();
8276 return N0
->hasOneUse() && N1
->hasOneUse() &&
8277 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8282 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8283 unsigned Opcode
= N
->getOpcode();
8284 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8285 SDNode
*N0
= N
->getOperand(0).getNode();
8286 SDNode
*N1
= N
->getOperand(1).getNode();
8287 return N0
->hasOneUse() && N1
->hasOneUse() &&
8288 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8293 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8294 // Multiplications are only custom-lowered for 128-bit vectors so that
8295 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8296 EVT VT
= Op
.getValueType();
8297 assert(VT
.is128BitVector() && VT
.isInteger() &&
8298 "unexpected type for custom-lowering ISD::MUL");
8299 SDNode
*N0
= Op
.getOperand(0).getNode();
8300 SDNode
*N1
= Op
.getOperand(1).getNode();
8301 unsigned NewOpc
= 0;
8303 bool isN0SExt
= isSignExtended(N0
, DAG
);
8304 bool isN1SExt
= isSignExtended(N1
, DAG
);
8305 if (isN0SExt
&& isN1SExt
)
8306 NewOpc
= ARMISD::VMULLs
;
8308 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8309 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8310 if (isN0ZExt
&& isN1ZExt
)
8311 NewOpc
= ARMISD::VMULLu
;
8312 else if (isN1SExt
|| isN1ZExt
) {
8313 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8314 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8315 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8316 NewOpc
= ARMISD::VMULLs
;
8318 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8319 NewOpc
= ARMISD::VMULLu
;
8321 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8323 NewOpc
= ARMISD::VMULLu
;
8329 if (VT
== MVT::v2i64
)
8330 // Fall through to expand this. It is not legal.
8333 // Other vector multiplications are legal.
8338 // Legalize to a VMULL instruction.
8341 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8343 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8344 assert(Op0
.getValueType().is64BitVector() &&
8345 Op1
.getValueType().is64BitVector() &&
8346 "unexpected types for extended operands to VMULL");
8347 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8350 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8351 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8358 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8359 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8360 EVT Op1VT
= Op1
.getValueType();
8361 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8362 DAG
.getNode(NewOpc
, DL
, VT
,
8363 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8364 DAG
.getNode(NewOpc
, DL
, VT
,
8365 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8368 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8369 SelectionDAG
&DAG
) {
8370 // TODO: Should this propagate fast-math-flags?
8373 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8374 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8375 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8376 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8377 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8378 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8379 // Get reciprocal estimate.
8380 // float4 recip = vrecpeq_f32(yf);
8381 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8382 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8384 // Because char has a smaller range than uchar, we can actually get away
8385 // without any newton steps. This requires that we use a weird bias
8386 // of 0xb000, however (again, this has been exhaustively tested).
8387 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8388 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8389 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8390 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8391 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8392 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8393 // Convert back to short.
8394 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8395 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8399 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8400 SelectionDAG
&DAG
) {
8401 // TODO: Should this propagate fast-math-flags?
8404 // Convert to float.
8405 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8406 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8407 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8408 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8409 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8410 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8412 // Use reciprocal estimate and one refinement step.
8413 // float4 recip = vrecpeq_f32(yf);
8414 // recip *= vrecpsq_f32(yf, recip);
8415 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8416 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8418 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8419 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8421 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8422 // Because short has a smaller range than ushort, we can actually get away
8423 // with only a single newton step. This requires that we use a weird bias
8424 // of 89, however (again, this has been exhaustively tested).
8425 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8426 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8427 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8428 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8429 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8430 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8431 // Convert back to integer and return.
8432 // return vmovn_s32(vcvt_s32_f32(result));
8433 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8434 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8438 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8439 const ARMSubtarget
*ST
) {
8440 EVT VT
= Op
.getValueType();
8441 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8442 "unexpected type for custom-lowering ISD::SDIV");
8445 SDValue N0
= Op
.getOperand(0);
8446 SDValue N1
= Op
.getOperand(1);
8449 if (VT
== MVT::v8i8
) {
8450 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8451 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8453 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8454 DAG
.getIntPtrConstant(4, dl
));
8455 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8456 DAG
.getIntPtrConstant(4, dl
));
8457 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8458 DAG
.getIntPtrConstant(0, dl
));
8459 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8460 DAG
.getIntPtrConstant(0, dl
));
8462 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8463 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8465 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8466 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8468 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8471 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8474 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8475 const ARMSubtarget
*ST
) {
8476 // TODO: Should this propagate fast-math-flags?
8477 EVT VT
= Op
.getValueType();
8478 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8479 "unexpected type for custom-lowering ISD::UDIV");
8482 SDValue N0
= Op
.getOperand(0);
8483 SDValue N1
= Op
.getOperand(1);
8486 if (VT
== MVT::v8i8
) {
8487 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8488 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8490 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8491 DAG
.getIntPtrConstant(4, dl
));
8492 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8493 DAG
.getIntPtrConstant(4, dl
));
8494 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8495 DAG
.getIntPtrConstant(0, dl
));
8496 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8497 DAG
.getIntPtrConstant(0, dl
));
8499 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8500 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8502 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8503 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8505 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8506 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8512 // v4i16 sdiv ... Convert to float.
8513 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8514 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8515 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8516 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8517 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8518 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8520 // Use reciprocal estimate and two refinement steps.
8521 // float4 recip = vrecpeq_f32(yf);
8522 // recip *= vrecpsq_f32(yf, recip);
8523 // recip *= vrecpsq_f32(yf, recip);
8524 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8525 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8527 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8528 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8530 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8531 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8532 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8534 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8535 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8536 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8537 // and that it will never cause us to return an answer too large).
8538 // float4 result = as_float4(as_int4(xf*recip) + 2);
8539 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8540 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8541 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8542 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8543 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8544 // Convert back to integer and return.
8545 // return vmovn_u32(vcvt_s32_f32(result));
8546 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8547 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8551 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8552 SDNode
*N
= Op
.getNode();
8553 EVT VT
= N
->getValueType(0);
8554 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8556 SDValue Carry
= Op
.getOperand(2);
8561 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8562 // This converts the boolean value carry into the carry flag.
8563 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8565 // Do the addition proper using the carry flag we wanted.
8566 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8567 Op
.getOperand(1), Carry
);
8569 // Now convert the carry flag into a boolean value.
8570 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8572 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8573 // have to invert the carry first.
8574 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8575 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8576 // This converts the boolean value carry into the carry flag.
8577 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8579 // Do the subtraction proper using the carry flag we wanted.
8580 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8581 Op
.getOperand(1), Carry
);
8583 // Now convert the carry flag into a boolean value.
8584 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8585 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8586 // by ISD::SUBCARRY, so compute 1 - C.
8587 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8588 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8591 // Return both values.
8592 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8595 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8596 assert(Subtarget
->isTargetDarwin());
8598 // For iOS, we want to call an alternative entry point: __sincos_stret,
8599 // return values are passed via sret.
8601 SDValue Arg
= Op
.getOperand(0);
8602 EVT ArgVT
= Arg
.getValueType();
8603 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8604 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8606 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8607 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8609 // Pair of floats / doubles used to pass the result.
8610 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8611 auto &DL
= DAG
.getDataLayout();
8614 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8616 if (ShouldUseSRet
) {
8617 // Create stack object for sret.
8618 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8619 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8620 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8621 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8625 Entry
.Ty
= RetTy
->getPointerTo();
8626 Entry
.IsSExt
= false;
8627 Entry
.IsZExt
= false;
8628 Entry
.IsSRet
= true;
8629 Args
.push_back(Entry
);
8630 RetTy
= Type::getVoidTy(*DAG
.getContext());
8636 Entry
.IsSExt
= false;
8637 Entry
.IsZExt
= false;
8638 Args
.push_back(Entry
);
8641 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8642 const char *LibcallName
= getLibcallName(LC
);
8643 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8644 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8646 TargetLowering::CallLoweringInfo
CLI(DAG
);
8648 .setChain(DAG
.getEntryNode())
8649 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8650 .setDiscardResult(ShouldUseSRet
);
8651 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8654 return CallResult
.first
;
8657 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8659 // Address of cos field.
8660 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8661 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8663 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8665 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8666 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8667 LoadSin
.getValue(0), LoadCos
.getValue(0));
8670 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8672 SDValue
&Chain
) const {
8673 EVT VT
= Op
.getValueType();
8674 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8675 "unexpected type for custom lowering DIV");
8678 const auto &DL
= DAG
.getDataLayout();
8679 const auto &TLI
= DAG
.getTargetLoweringInfo();
8681 const char *Name
= nullptr;
8683 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8685 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8687 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8689 ARMTargetLowering::ArgListTy Args
;
8691 for (auto AI
: {1, 0}) {
8693 Arg
.Node
= Op
.getOperand(AI
);
8694 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8695 Args
.push_back(Arg
);
8698 CallLoweringInfo
CLI(DAG
);
8701 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8702 ES
, std::move(Args
));
8704 return LowerCallTo(CLI
).first
;
8707 // This is a code size optimisation: return the original SDIV node to
8708 // DAGCombiner when we don't want to expand SDIV into a sequence of
8709 // instructions, and an empty node otherwise which will cause the
8710 // SDIV to be expanded in DAGCombine.
8712 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8714 SmallVectorImpl
<SDNode
*> &Created
) const {
8715 // TODO: Support SREM
8716 if (N
->getOpcode() != ISD::SDIV
)
8719 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8720 const bool MinSize
= ST
.hasMinSize();
8721 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8722 : ST
.hasDivideInARMMode();
8724 // Don't touch vector types; rewriting this may lead to scalarizing
8726 if (N
->getOperand(0).getValueType().isVector())
8729 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8730 // hwdiv support for this to be really profitable.
8731 if (!(MinSize
&& HasDivide
))
8734 // ARM mode is a bit simpler than Thumb: we can handle large power
8735 // of 2 immediates with 1 mov instruction; no further checks required,
8736 // just return the sdiv node.
8738 return SDValue(N
, 0);
8740 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8741 // and thus lose the code size benefits of a MOVS that requires only 2.
8742 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8743 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8744 if (Divisor
.sgt(128))
8747 return SDValue(N
, 0);
8750 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8751 bool Signed
) const {
8752 assert(Op
.getValueType() == MVT::i32
&&
8753 "unexpected type for custom lowering DIV");
8756 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8757 DAG
.getEntryNode(), Op
.getOperand(1));
8759 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8762 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8764 SDValue Op
= N
->getOperand(1);
8765 if (N
->getValueType(0) == MVT::i32
)
8766 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8767 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8768 DAG
.getConstant(0, DL
, MVT::i32
));
8769 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8770 DAG
.getConstant(1, DL
, MVT::i32
));
8771 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8772 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8775 void ARMTargetLowering::ExpandDIV_Windows(
8776 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8777 SmallVectorImpl
<SDValue
> &Results
) const {
8778 const auto &DL
= DAG
.getDataLayout();
8779 const auto &TLI
= DAG
.getTargetLoweringInfo();
8781 assert(Op
.getValueType() == MVT::i64
&&
8782 "unexpected type for custom lowering DIV");
8785 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8787 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8789 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8790 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8791 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8792 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8794 Results
.push_back(Lower
);
8795 Results
.push_back(Upper
);
8798 static SDValue
LowerPredicateLoad(SDValue Op
, SelectionDAG
&DAG
) {
8799 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8800 EVT MemVT
= LD
->getMemoryVT();
8801 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8802 "Expected a predicate type!");
8803 assert(MemVT
== Op
.getValueType());
8804 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
8805 "Expected a non-extending load");
8806 assert(LD
->isUnindexed() && "Expected a unindexed load");
8808 // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
8809 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
8810 // need to make sure that 8/4 bits are actually loaded into the correct
8811 // place, which means loading the value and then shuffling the values into
8812 // the bottom bits of the predicate.
8813 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
8817 SDValue Load
= DAG
.getExtLoad(
8818 ISD::EXTLOAD
, dl
, MVT::i32
, LD
->getChain(), LD
->getBasePtr(),
8819 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8820 LD
->getMemOperand());
8821 SDValue Pred
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Load
);
8822 if (MemVT
!= MVT::v16i1
)
8823 Pred
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MemVT
, Pred
,
8824 DAG
.getConstant(0, dl
, MVT::i32
));
8825 return DAG
.getMergeValues({Pred
, Load
.getValue(1)}, dl
);
8828 static SDValue
LowerPredicateStore(SDValue Op
, SelectionDAG
&DAG
) {
8829 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
8830 EVT MemVT
= ST
->getMemoryVT();
8831 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8832 "Expected a predicate type!");
8833 assert(MemVT
== ST
->getValue().getValueType());
8834 assert(!ST
->isTruncatingStore() && "Expected a non-extending store");
8835 assert(ST
->isUnindexed() && "Expected a unindexed store");
8837 // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
8838 // unset and a scalar store.
8840 SDValue Build
= ST
->getValue();
8841 if (MemVT
!= MVT::v16i1
) {
8842 SmallVector
<SDValue
, 16> Ops
;
8843 for (unsigned I
= 0; I
< MemVT
.getVectorNumElements(); I
++)
8844 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, Build
,
8845 DAG
.getConstant(I
, dl
, MVT::i32
)));
8846 for (unsigned I
= MemVT
.getVectorNumElements(); I
< 16; I
++)
8847 Ops
.push_back(DAG
.getUNDEF(MVT::i32
));
8848 Build
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i1
, Ops
);
8850 SDValue GRP
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Build
);
8851 return DAG
.getTruncStore(
8852 ST
->getChain(), dl
, GRP
, ST
->getBasePtr(),
8853 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8854 ST
->getMemOperand());
8857 static SDValue
LowerMLOAD(SDValue Op
, SelectionDAG
&DAG
) {
8858 MaskedLoadSDNode
*N
= cast
<MaskedLoadSDNode
>(Op
.getNode());
8859 MVT VT
= Op
.getSimpleValueType();
8860 SDValue Mask
= N
->getMask();
8861 SDValue PassThru
= N
->getPassThru();
8864 if (ISD::isBuildVectorAllZeros(PassThru
.getNode()) ||
8865 (PassThru
->getOpcode() == ARMISD::VMOVIMM
&&
8866 isNullConstant(PassThru
->getOperand(0))))
8869 // MVE Masked loads use zero as the passthru value. Here we convert undef to
8870 // zero too, and other values are lowered to a select.
8871 SDValue ZeroVec
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
8872 DAG
.getTargetConstant(0, dl
, MVT::i32
));
8873 SDValue NewLoad
= DAG
.getMaskedLoad(
8874 VT
, dl
, N
->getChain(), N
->getBasePtr(), Mask
, ZeroVec
, N
->getMemoryVT(),
8875 N
->getMemOperand(), N
->getExtensionType(), N
->isExpandingLoad());
8876 SDValue Combo
= NewLoad
;
8877 if (!PassThru
.isUndef())
8878 Combo
= DAG
.getNode(ISD::VSELECT
, dl
, VT
, Mask
, NewLoad
, PassThru
);
8879 return DAG
.getMergeValues({Combo
, NewLoad
.getValue(1)}, dl
);
8882 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8883 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8884 // Acquire/Release load/store is not legal for targets without a dmb or
8885 // equivalent available.
8888 // Monotonic load/store is legal for all targets.
8892 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8893 SmallVectorImpl
<SDValue
> &Results
,
8895 const ARMSubtarget
*Subtarget
) {
8897 // Under Power Management extensions, the cycle-count is:
8898 // mrc p15, #0, <Rt>, c9, c13, #0
8899 SDValue Ops
[] = { N
->getOperand(0), // Chain
8900 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8901 DAG
.getTargetConstant(15, DL
, MVT::i32
),
8902 DAG
.getTargetConstant(0, DL
, MVT::i32
),
8903 DAG
.getTargetConstant(9, DL
, MVT::i32
),
8904 DAG
.getTargetConstant(13, DL
, MVT::i32
),
8905 DAG
.getTargetConstant(0, DL
, MVT::i32
)
8908 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8909 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8910 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8911 DAG
.getConstant(0, DL
, MVT::i32
)));
8912 Results
.push_back(Cycles32
.getValue(1));
8915 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8916 SDLoc
dl(V
.getNode());
8917 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8918 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8919 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8921 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8923 std::swap (VLo
, VHi
);
8925 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8926 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8927 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8928 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8930 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8933 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8934 SmallVectorImpl
<SDValue
> & Results
,
8935 SelectionDAG
&DAG
) {
8936 assert(N
->getValueType(0) == MVT::i64
&&
8937 "AtomicCmpSwap on types less than 64 should be legal");
8938 SDValue Ops
[] = {N
->getOperand(1),
8939 createGPRPairNode(DAG
, N
->getOperand(2)),
8940 createGPRPairNode(DAG
, N
->getOperand(3)),
8942 SDNode
*CmpSwap
= DAG
.getMachineNode(
8943 ARM::CMP_SWAP_64
, SDLoc(N
),
8944 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8946 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8947 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8949 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8952 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8953 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8955 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8956 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8957 Results
.push_back(SDValue(CmpSwap
, 2));
8960 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8961 SelectionDAG
&DAG
) {
8962 const auto &TLI
= DAG
.getTargetLoweringInfo();
8964 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8965 "Custom lowering is MSVCRT specific!");
8968 SDValue Val
= Op
.getOperand(0);
8969 MVT Ty
= Val
->getSimpleValueType(0);
8970 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8971 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8972 TLI
.getPointerTy(DAG
.getDataLayout()));
8974 TargetLowering::ArgListTy Args
;
8975 TargetLowering::ArgListEntry Entry
;
8978 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8979 Entry
.IsZExt
= true;
8980 Args
.push_back(Entry
);
8982 Entry
.Node
= Exponent
;
8983 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8984 Entry
.IsZExt
= true;
8985 Args
.push_back(Entry
);
8987 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8989 // In the in-chain to the call is the entry node If we are emitting a
8990 // tailcall, the chain will be mutated if the node has a non-entry input
8992 SDValue InChain
= DAG
.getEntryNode();
8993 SDValue TCChain
= InChain
;
8995 const Function
&F
= DAG
.getMachineFunction().getFunction();
8996 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8997 F
.getReturnType() == LCRTy
;
9001 TargetLowering::CallLoweringInfo
CLI(DAG
);
9004 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
9006 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
9008 // Return the chain (the DAG root) if it is a tail call
9009 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
9012 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9013 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
9014 switch (Op
.getOpcode()) {
9015 default: llvm_unreachable("Don't know how to custom lower this!");
9016 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
9017 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
9018 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
9019 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
9020 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
9021 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
9022 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
9023 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
9024 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
9025 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
9026 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
9027 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
9028 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
9029 case ISD::SINT_TO_FP
:
9030 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
9031 case ISD::FP_TO_SINT
:
9032 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
9033 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
9034 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
9035 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
9036 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
9037 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
9038 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
9039 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
9040 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
9042 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
9045 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
9046 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
9047 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
9048 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
9049 case ISD::SRL_PARTS
:
9050 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
9052 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
9053 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
9054 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
9055 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
9056 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
9057 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
9058 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
9059 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
9060 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
9061 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
9062 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
9063 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
9064 case ISD::MUL
: return LowerMUL(Op
, DAG
);
9066 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9067 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
9068 return LowerSDIV(Op
, DAG
, Subtarget
);
9070 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9071 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
9072 return LowerUDIV(Op
, DAG
, Subtarget
);
9074 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
9077 return LowerSignedALUO(Op
, DAG
);
9080 return LowerUnsignedALUO(Op
, DAG
);
9082 return LowerPredicateLoad(Op
, DAG
);
9084 return LowerPredicateStore(Op
, DAG
);
9086 return LowerMLOAD(Op
, DAG
);
9087 case ISD::ATOMIC_LOAD
:
9088 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
9089 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
9091 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
9092 case ISD::DYNAMIC_STACKALLOC
:
9093 if (Subtarget
->isTargetWindows())
9094 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
9095 llvm_unreachable("Don't know how to custom lower this!");
9096 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
9097 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
9098 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
9099 case ARMISD::WIN__DBZCHK
: return SDValue();
9103 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9104 SelectionDAG
&DAG
) {
9105 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9107 if (IntNo
== Intrinsic::arm_smlald
)
9108 Opc
= ARMISD::SMLALD
;
9109 else if (IntNo
== Intrinsic::arm_smlaldx
)
9110 Opc
= ARMISD::SMLALDX
;
9111 else if (IntNo
== Intrinsic::arm_smlsld
)
9112 Opc
= ARMISD::SMLSLD
;
9113 else if (IntNo
== Intrinsic::arm_smlsldx
)
9114 Opc
= ARMISD::SMLSLDX
;
9119 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9121 DAG
.getConstant(0, dl
, MVT::i32
));
9122 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9124 DAG
.getConstant(1, dl
, MVT::i32
));
9126 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9127 DAG
.getVTList(MVT::i32
, MVT::i32
),
9128 N
->getOperand(1), N
->getOperand(2),
9130 Results
.push_back(LongMul
.getValue(0));
9131 Results
.push_back(LongMul
.getValue(1));
9134 /// ReplaceNodeResults - Replace the results of node with an illegal result
9135 /// type with new values built out of custom code.
9136 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9137 SmallVectorImpl
<SDValue
> &Results
,
9138 SelectionDAG
&DAG
) const {
9140 switch (N
->getOpcode()) {
9142 llvm_unreachable("Don't know how to custom expand this!");
9143 case ISD::READ_REGISTER
:
9144 ExpandREAD_REGISTER(N
, Results
, DAG
);
9147 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9152 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9156 Res
= LowerREM(N
, DAG
);
9160 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9161 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9162 Results
.push_back(Res
.getValue(0));
9163 Results
.push_back(Res
.getValue(1));
9165 case ISD::READCYCLECOUNTER
:
9166 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9170 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9171 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9173 case ISD::ATOMIC_CMP_SWAP
:
9174 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9176 case ISD::INTRINSIC_WO_CHAIN
:
9177 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9179 lowerABS(N
, Results
, DAG
);
9184 Results
.push_back(Res
);
9187 //===----------------------------------------------------------------------===//
9188 // ARM Scheduler Hooks
9189 //===----------------------------------------------------------------------===//
9191 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9192 /// registers the function context.
9193 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9194 MachineBasicBlock
*MBB
,
9195 MachineBasicBlock
*DispatchBB
,
9197 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9198 "ROPI/RWPI not currently supported with SjLj");
9199 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9200 DebugLoc dl
= MI
.getDebugLoc();
9201 MachineFunction
*MF
= MBB
->getParent();
9202 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9203 MachineConstantPool
*MCP
= MF
->getConstantPool();
9204 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9205 const Function
&F
= MF
->getFunction();
9207 bool isThumb
= Subtarget
->isThumb();
9208 bool isThumb2
= Subtarget
->isThumb2();
9210 unsigned PCLabelId
= AFI
->createPICLabelUId();
9211 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9212 ARMConstantPoolValue
*CPV
=
9213 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9214 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9216 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9217 : &ARM::GPRRegClass
;
9219 // Grab constant pool and fixed stack memory operands.
9220 MachineMemOperand
*CPMMO
=
9221 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9222 MachineMemOperand::MOLoad
, 4, 4);
9224 MachineMemOperand
*FIMMOSt
=
9225 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9226 MachineMemOperand::MOStore
, 4, 4);
9228 // Load the address of the dispatch MBB into the jump buffer.
9230 // Incoming value: jbuf
9231 // ldr.n r5, LCPI1_1
9234 // str r5, [$jbuf, #+4] ; &jbuf[1]
9235 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9236 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9237 .addConstantPoolIndex(CPI
)
9238 .addMemOperand(CPMMO
)
9239 .add(predOps(ARMCC::AL
));
9240 // Set the low bit because of thumb mode.
9241 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9242 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9243 .addReg(NewVReg1
, RegState::Kill
)
9245 .add(predOps(ARMCC::AL
))
9247 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9248 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9249 .addReg(NewVReg2
, RegState::Kill
)
9251 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9252 .addReg(NewVReg3
, RegState::Kill
)
9254 .addImm(36) // &jbuf[1] :: pc
9255 .addMemOperand(FIMMOSt
)
9256 .add(predOps(ARMCC::AL
));
9257 } else if (isThumb
) {
9258 // Incoming value: jbuf
9259 // ldr.n r1, LCPI1_4
9263 // add r2, $jbuf, #+4 ; &jbuf[1]
9265 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9266 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9267 .addConstantPoolIndex(CPI
)
9268 .addMemOperand(CPMMO
)
9269 .add(predOps(ARMCC::AL
));
9270 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9271 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9272 .addReg(NewVReg1
, RegState::Kill
)
9274 // Set the low bit because of thumb mode.
9275 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9276 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9277 .addReg(ARM::CPSR
, RegState::Define
)
9279 .add(predOps(ARMCC::AL
));
9280 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9281 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9282 .addReg(ARM::CPSR
, RegState::Define
)
9283 .addReg(NewVReg2
, RegState::Kill
)
9284 .addReg(NewVReg3
, RegState::Kill
)
9285 .add(predOps(ARMCC::AL
));
9286 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9287 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9289 .addImm(36); // &jbuf[1] :: pc
9290 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9291 .addReg(NewVReg4
, RegState::Kill
)
9292 .addReg(NewVReg5
, RegState::Kill
)
9294 .addMemOperand(FIMMOSt
)
9295 .add(predOps(ARMCC::AL
));
9297 // Incoming value: jbuf
9300 // str r1, [$jbuf, #+4] ; &jbuf[1]
9301 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9302 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9303 .addConstantPoolIndex(CPI
)
9305 .addMemOperand(CPMMO
)
9306 .add(predOps(ARMCC::AL
));
9307 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9308 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9309 .addReg(NewVReg1
, RegState::Kill
)
9311 .add(predOps(ARMCC::AL
));
9312 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9313 .addReg(NewVReg2
, RegState::Kill
)
9315 .addImm(36) // &jbuf[1] :: pc
9316 .addMemOperand(FIMMOSt
)
9317 .add(predOps(ARMCC::AL
));
9321 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9322 MachineBasicBlock
*MBB
) const {
9323 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9324 DebugLoc dl
= MI
.getDebugLoc();
9325 MachineFunction
*MF
= MBB
->getParent();
9326 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9327 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9328 int FI
= MFI
.getFunctionContextIndex();
9330 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9331 : &ARM::GPRnopcRegClass
;
9333 // Get a mapping of the call site numbers to all of the landing pads they're
9335 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9336 unsigned MaxCSNum
= 0;
9337 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9339 if (!BB
->isEHPad()) continue;
9341 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9343 for (MachineBasicBlock::iterator
9344 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9345 if (!II
->isEHLabel()) continue;
9347 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9348 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9350 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9351 for (SmallVectorImpl
<unsigned>::iterator
9352 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9353 CSI
!= CSE
; ++CSI
) {
9354 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9355 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9361 // Get an ordered list of the machine basic blocks for the jump table.
9362 std::vector
<MachineBasicBlock
*> LPadList
;
9363 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9364 LPadList
.reserve(CallSiteNumToLPad
.size());
9365 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9366 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9367 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9368 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9369 LPadList
.push_back(*II
);
9370 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9374 assert(!LPadList
.empty() &&
9375 "No landing pad destinations for the dispatch jump table!");
9377 // Create the jump table and associated information.
9378 MachineJumpTableInfo
*JTI
=
9379 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9380 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9382 // Create the MBBs for the dispatch code.
9384 // Shove the dispatch's address into the return slot in the function context.
9385 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9386 DispatchBB
->setIsEHPad();
9388 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9389 unsigned trap_opcode
;
9390 if (Subtarget
->isThumb())
9391 trap_opcode
= ARM::tTRAP
;
9393 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9395 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9396 DispatchBB
->addSuccessor(TrapBB
);
9398 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9399 DispatchBB
->addSuccessor(DispContBB
);
9402 MF
->insert(MF
->end(), DispatchBB
);
9403 MF
->insert(MF
->end(), DispContBB
);
9404 MF
->insert(MF
->end(), TrapBB
);
9406 // Insert code into the entry block that creates and registers the function
9408 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9410 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9411 MachinePointerInfo::getFixedStack(*MF
, FI
),
9412 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9414 MachineInstrBuilder MIB
;
9415 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9417 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9418 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9420 // Add a register mask with no preserved registers. This results in all
9421 // registers being marked as clobbered. This can't work if the dispatch block
9422 // is in a Thumb1 function and is linked with ARM code which uses the FP
9423 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9424 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9426 bool IsPositionIndependent
= isPositionIndependent();
9427 unsigned NumLPads
= LPadList
.size();
9428 if (Subtarget
->isThumb2()) {
9429 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9430 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9433 .addMemOperand(FIMMOLd
)
9434 .add(predOps(ARMCC::AL
));
9436 if (NumLPads
< 256) {
9437 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9439 .addImm(LPadList
.size())
9440 .add(predOps(ARMCC::AL
));
9442 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9443 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9444 .addImm(NumLPads
& 0xFFFF)
9445 .add(predOps(ARMCC::AL
));
9447 unsigned VReg2
= VReg1
;
9448 if ((NumLPads
& 0xFFFF0000) != 0) {
9449 VReg2
= MRI
->createVirtualRegister(TRC
);
9450 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9452 .addImm(NumLPads
>> 16)
9453 .add(predOps(ARMCC::AL
));
9456 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9459 .add(predOps(ARMCC::AL
));
9462 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9467 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9468 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9469 .addJumpTableIndex(MJTI
)
9470 .add(predOps(ARMCC::AL
));
9472 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9473 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9474 .addReg(NewVReg3
, RegState::Kill
)
9476 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9477 .add(predOps(ARMCC::AL
))
9480 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9481 .addReg(NewVReg4
, RegState::Kill
)
9483 .addJumpTableIndex(MJTI
);
9484 } else if (Subtarget
->isThumb()) {
9485 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9486 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9489 .addMemOperand(FIMMOLd
)
9490 .add(predOps(ARMCC::AL
));
9492 if (NumLPads
< 256) {
9493 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9496 .add(predOps(ARMCC::AL
));
9498 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9499 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9500 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9502 // MachineConstantPool wants an explicit alignment.
9503 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9505 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9506 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9508 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9509 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9510 .addReg(VReg1
, RegState::Define
)
9511 .addConstantPoolIndex(Idx
)
9512 .add(predOps(ARMCC::AL
));
9513 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9516 .add(predOps(ARMCC::AL
));
9519 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9524 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9525 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9526 .addReg(ARM::CPSR
, RegState::Define
)
9529 .add(predOps(ARMCC::AL
));
9531 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9532 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9533 .addJumpTableIndex(MJTI
)
9534 .add(predOps(ARMCC::AL
));
9536 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9537 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9538 .addReg(ARM::CPSR
, RegState::Define
)
9539 .addReg(NewVReg2
, RegState::Kill
)
9541 .add(predOps(ARMCC::AL
));
9543 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9544 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9546 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9547 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9548 .addReg(NewVReg4
, RegState::Kill
)
9550 .addMemOperand(JTMMOLd
)
9551 .add(predOps(ARMCC::AL
));
9553 unsigned NewVReg6
= NewVReg5
;
9554 if (IsPositionIndependent
) {
9555 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9556 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9557 .addReg(ARM::CPSR
, RegState::Define
)
9558 .addReg(NewVReg5
, RegState::Kill
)
9560 .add(predOps(ARMCC::AL
));
9563 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9564 .addReg(NewVReg6
, RegState::Kill
)
9565 .addJumpTableIndex(MJTI
);
9567 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9568 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9571 .addMemOperand(FIMMOLd
)
9572 .add(predOps(ARMCC::AL
));
9574 if (NumLPads
< 256) {
9575 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9578 .add(predOps(ARMCC::AL
));
9579 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9580 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9581 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9582 .addImm(NumLPads
& 0xFFFF)
9583 .add(predOps(ARMCC::AL
));
9585 unsigned VReg2
= VReg1
;
9586 if ((NumLPads
& 0xFFFF0000) != 0) {
9587 VReg2
= MRI
->createVirtualRegister(TRC
);
9588 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9590 .addImm(NumLPads
>> 16)
9591 .add(predOps(ARMCC::AL
));
9594 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9597 .add(predOps(ARMCC::AL
));
9599 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9600 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9601 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9603 // MachineConstantPool wants an explicit alignment.
9604 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9606 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9607 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9609 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9610 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9611 .addReg(VReg1
, RegState::Define
)
9612 .addConstantPoolIndex(Idx
)
9614 .add(predOps(ARMCC::AL
));
9615 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9617 .addReg(VReg1
, RegState::Kill
)
9618 .add(predOps(ARMCC::AL
));
9621 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9626 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9627 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9629 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9630 .add(predOps(ARMCC::AL
))
9632 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9633 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9634 .addJumpTableIndex(MJTI
)
9635 .add(predOps(ARMCC::AL
));
9637 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9638 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9639 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9640 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9641 .addReg(NewVReg3
, RegState::Kill
)
9644 .addMemOperand(JTMMOLd
)
9645 .add(predOps(ARMCC::AL
));
9647 if (IsPositionIndependent
) {
9648 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9649 .addReg(NewVReg5
, RegState::Kill
)
9651 .addJumpTableIndex(MJTI
);
9653 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9654 .addReg(NewVReg5
, RegState::Kill
)
9655 .addJumpTableIndex(MJTI
);
9659 // Add the jump table entries as successors to the MBB.
9660 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9661 for (std::vector
<MachineBasicBlock
*>::iterator
9662 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9663 MachineBasicBlock
*CurMBB
= *I
;
9664 if (SeenMBBs
.insert(CurMBB
).second
)
9665 DispContBB
->addSuccessor(CurMBB
);
9668 // N.B. the order the invoke BBs are processed in doesn't matter here.
9669 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9670 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9671 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9673 // Remove the landing pad successor from the invoke block and replace it
9674 // with the new dispatch block.
9675 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9677 while (!Successors
.empty()) {
9678 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9679 if (SMBB
->isEHPad()) {
9680 BB
->removeSuccessor(SMBB
);
9681 MBBLPads
.push_back(SMBB
);
9685 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9686 BB
->normalizeSuccProbs();
9688 // Find the invoke call and mark all of the callee-saved registers as
9689 // 'implicit defined' so that they're spilled. This prevents code from
9690 // moving instructions to before the EH block, where they will never be
9692 for (MachineBasicBlock::reverse_iterator
9693 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9694 if (!II
->isCall()) continue;
9696 DenseMap
<unsigned, bool> DefRegs
;
9697 for (MachineInstr::mop_iterator
9698 OI
= II
->operands_begin(), OE
= II
->operands_end();
9700 if (!OI
->isReg()) continue;
9701 DefRegs
[OI
->getReg()] = true;
9704 MachineInstrBuilder
MIB(*MF
, &*II
);
9706 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9707 unsigned Reg
= SavedRegs
[i
];
9708 if (Subtarget
->isThumb2() &&
9709 !ARM::tGPRRegClass
.contains(Reg
) &&
9710 !ARM::hGPRRegClass
.contains(Reg
))
9712 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9714 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9717 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9724 // Mark all former landing pads as non-landing pads. The dispatch is the only
9726 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9727 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9728 (*I
)->setIsEHPad(false);
9730 // The instruction is gone now.
9731 MI
.eraseFromParent();
9735 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9736 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9737 E
= MBB
->succ_end(); I
!= E
; ++I
)
9740 llvm_unreachable("Expecting a BB with two successors!");
9743 /// Return the load opcode for a given load size. If load size >= 8,
9744 /// neon opcode will be returned.
9745 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9747 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9748 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9750 return LdSize
== 4 ? ARM::tLDRi
9751 : LdSize
== 2 ? ARM::tLDRHi
9752 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9754 return LdSize
== 4 ? ARM::t2LDR_POST
9755 : LdSize
== 2 ? ARM::t2LDRH_POST
9756 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9757 return LdSize
== 4 ? ARM::LDR_POST_IMM
9758 : LdSize
== 2 ? ARM::LDRH_POST
9759 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9762 /// Return the store opcode for a given store size. If store size >= 8,
9763 /// neon opcode will be returned.
9764 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9766 return StSize
== 16 ? ARM::VST1q32wb_fixed
9767 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9769 return StSize
== 4 ? ARM::tSTRi
9770 : StSize
== 2 ? ARM::tSTRHi
9771 : StSize
== 1 ? ARM::tSTRBi
: 0;
9773 return StSize
== 4 ? ARM::t2STR_POST
9774 : StSize
== 2 ? ARM::t2STRH_POST
9775 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9776 return StSize
== 4 ? ARM::STR_POST_IMM
9777 : StSize
== 2 ? ARM::STRH_POST
9778 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9781 /// Emit a post-increment load operation with given size. The instructions
9782 /// will be added to BB at Pos.
9783 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9784 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9785 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9786 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9787 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9788 assert(LdOpc
!= 0 && "Should have a load opcode");
9790 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9791 .addReg(AddrOut
, RegState::Define
)
9794 .add(predOps(ARMCC::AL
));
9795 } else if (IsThumb1
) {
9796 // load + update AddrIn
9797 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9800 .add(predOps(ARMCC::AL
));
9801 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9802 .add(t1CondCodeOp())
9805 .add(predOps(ARMCC::AL
));
9806 } else if (IsThumb2
) {
9807 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9808 .addReg(AddrOut
, RegState::Define
)
9811 .add(predOps(ARMCC::AL
));
9813 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9814 .addReg(AddrOut
, RegState::Define
)
9818 .add(predOps(ARMCC::AL
));
9822 /// Emit a post-increment store operation with given size. The instructions
9823 /// will be added to BB at Pos.
9824 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9825 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9826 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9827 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9828 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9829 assert(StOpc
!= 0 && "Should have a store opcode");
9831 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9835 .add(predOps(ARMCC::AL
));
9836 } else if (IsThumb1
) {
9837 // store + update AddrIn
9838 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9842 .add(predOps(ARMCC::AL
));
9843 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9844 .add(t1CondCodeOp())
9847 .add(predOps(ARMCC::AL
));
9848 } else if (IsThumb2
) {
9849 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9853 .add(predOps(ARMCC::AL
));
9855 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9860 .add(predOps(ARMCC::AL
));
9865 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9866 MachineBasicBlock
*BB
) const {
9867 // This pseudo instruction has 3 operands: dst, src, size
9868 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9869 // Otherwise, we will generate unrolled scalar copies.
9870 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9871 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9872 MachineFunction::iterator It
= ++BB
->getIterator();
9874 Register dest
= MI
.getOperand(0).getReg();
9875 Register src
= MI
.getOperand(1).getReg();
9876 unsigned SizeVal
= MI
.getOperand(2).getImm();
9877 unsigned Align
= MI
.getOperand(3).getImm();
9878 DebugLoc dl
= MI
.getDebugLoc();
9880 MachineFunction
*MF
= BB
->getParent();
9881 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9882 unsigned UnitSize
= 0;
9883 const TargetRegisterClass
*TRC
= nullptr;
9884 const TargetRegisterClass
*VecTRC
= nullptr;
9886 bool IsThumb1
= Subtarget
->isThumb1Only();
9887 bool IsThumb2
= Subtarget
->isThumb2();
9888 bool IsThumb
= Subtarget
->isThumb();
9892 } else if (Align
& 2) {
9895 // Check whether we can use NEON instructions.
9896 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9897 Subtarget
->hasNEON()) {
9898 if ((Align
% 16 == 0) && SizeVal
>= 16)
9900 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9903 // Can't use NEON instructions.
9908 // Select the correct opcode and register class for unit size load/store
9909 bool IsNeon
= UnitSize
>= 8;
9910 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9912 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9913 : UnitSize
== 8 ? &ARM::DPRRegClass
9916 unsigned BytesLeft
= SizeVal
% UnitSize
;
9917 unsigned LoopSize
= SizeVal
- BytesLeft
;
9919 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9920 // Use LDR and STR to copy.
9921 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9922 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9923 unsigned srcIn
= src
;
9924 unsigned destIn
= dest
;
9925 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9926 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9927 Register destOut
= MRI
.createVirtualRegister(TRC
);
9928 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9929 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9930 IsThumb1
, IsThumb2
);
9931 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9932 IsThumb1
, IsThumb2
);
9937 // Handle the leftover bytes with LDRB and STRB.
9938 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9939 // [destOut] = STRB_POST(scratch, destIn, 1)
9940 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9941 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9942 Register destOut
= MRI
.createVirtualRegister(TRC
);
9943 Register scratch
= MRI
.createVirtualRegister(TRC
);
9944 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9945 IsThumb1
, IsThumb2
);
9946 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9947 IsThumb1
, IsThumb2
);
9951 MI
.eraseFromParent(); // The instruction is gone now.
9955 // Expand the pseudo op to a loop.
9958 // movw varEnd, # --> with thumb2
9960 // ldrcp varEnd, idx --> without thumb2
9961 // fallthrough --> loopMBB
9963 // PHI varPhi, varEnd, varLoop
9964 // PHI srcPhi, src, srcLoop
9965 // PHI destPhi, dst, destLoop
9966 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9967 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9968 // subs varLoop, varPhi, #UnitSize
9970 // fallthrough --> exitMBB
9972 // epilogue to handle left-over bytes
9973 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9974 // [destOut] = STRB_POST(scratch, destLoop, 1)
9975 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9976 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9977 MF
->insert(It
, loopMBB
);
9978 MF
->insert(It
, exitMBB
);
9980 // Transfer the remainder of BB and its successor edges to exitMBB.
9981 exitMBB
->splice(exitMBB
->begin(), BB
,
9982 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9983 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9985 // Load an immediate to varEnd.
9986 Register varEnd
= MRI
.createVirtualRegister(TRC
);
9987 if (Subtarget
->useMovt()) {
9988 unsigned Vtmp
= varEnd
;
9989 if ((LoopSize
& 0xFFFF0000) != 0)
9990 Vtmp
= MRI
.createVirtualRegister(TRC
);
9991 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9992 .addImm(LoopSize
& 0xFFFF)
9993 .add(predOps(ARMCC::AL
));
9995 if ((LoopSize
& 0xFFFF0000) != 0)
9996 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9998 .addImm(LoopSize
>> 16)
9999 .add(predOps(ARMCC::AL
));
10001 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
10002 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
10003 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
10005 // MachineConstantPool wants an explicit alignment.
10006 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
10008 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
10009 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
10010 MachineMemOperand
*CPMMO
=
10011 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
10012 MachineMemOperand::MOLoad
, 4, 4);
10015 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
10016 .addReg(varEnd
, RegState::Define
)
10017 .addConstantPoolIndex(Idx
)
10018 .add(predOps(ARMCC::AL
))
10019 .addMemOperand(CPMMO
);
10021 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
10022 .addReg(varEnd
, RegState::Define
)
10023 .addConstantPoolIndex(Idx
)
10025 .add(predOps(ARMCC::AL
))
10026 .addMemOperand(CPMMO
);
10028 BB
->addSuccessor(loopMBB
);
10030 // Generate the loop body:
10031 // varPhi = PHI(varLoop, varEnd)
10032 // srcPhi = PHI(srcLoop, src)
10033 // destPhi = PHI(destLoop, dst)
10034 MachineBasicBlock
*entryBB
= BB
;
10036 Register varLoop
= MRI
.createVirtualRegister(TRC
);
10037 Register varPhi
= MRI
.createVirtualRegister(TRC
);
10038 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
10039 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
10040 Register destLoop
= MRI
.createVirtualRegister(TRC
);
10041 Register destPhi
= MRI
.createVirtualRegister(TRC
);
10043 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
10044 .addReg(varLoop
).addMBB(loopMBB
)
10045 .addReg(varEnd
).addMBB(entryBB
);
10046 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
10047 .addReg(srcLoop
).addMBB(loopMBB
)
10048 .addReg(src
).addMBB(entryBB
);
10049 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
10050 .addReg(destLoop
).addMBB(loopMBB
)
10051 .addReg(dest
).addMBB(entryBB
);
10053 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10054 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10055 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10056 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
10057 IsThumb1
, IsThumb2
);
10058 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
10059 IsThumb1
, IsThumb2
);
10061 // Decrement loop variable by UnitSize.
10063 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
10064 .add(t1CondCodeOp())
10067 .add(predOps(ARMCC::AL
));
10069 MachineInstrBuilder MIB
=
10070 BuildMI(*BB
, BB
->end(), dl
,
10071 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
10074 .add(predOps(ARMCC::AL
))
10075 .add(condCodeOp());
10076 MIB
->getOperand(5).setReg(ARM::CPSR
);
10077 MIB
->getOperand(5).setIsDef(true);
10079 BuildMI(*BB
, BB
->end(), dl
,
10080 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10081 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
10083 // loopMBB can loop back to loopMBB or fall through to exitMBB.
10084 BB
->addSuccessor(loopMBB
);
10085 BB
->addSuccessor(exitMBB
);
10087 // Add epilogue to handle BytesLeft.
10089 auto StartOfExit
= exitMBB
->begin();
10091 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10092 // [destOut] = STRB_POST(scratch, destLoop, 1)
10093 unsigned srcIn
= srcLoop
;
10094 unsigned destIn
= destLoop
;
10095 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10096 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10097 Register destOut
= MRI
.createVirtualRegister(TRC
);
10098 Register scratch
= MRI
.createVirtualRegister(TRC
);
10099 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10100 IsThumb1
, IsThumb2
);
10101 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10102 IsThumb1
, IsThumb2
);
10107 MI
.eraseFromParent(); // The instruction is gone now.
10111 MachineBasicBlock
*
10112 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10113 MachineBasicBlock
*MBB
) const {
10114 const TargetMachine
&TM
= getTargetMachine();
10115 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10116 DebugLoc DL
= MI
.getDebugLoc();
10118 assert(Subtarget
->isTargetWindows() &&
10119 "__chkstk is only supported on Windows");
10120 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10122 // __chkstk takes the number of words to allocate on the stack in R4, and
10123 // returns the stack adjustment in number of bytes in R4. This will not
10124 // clober any other registers (other than the obvious lr).
10126 // Although, technically, IP should be considered a register which may be
10127 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10128 // thumb-2 environment, so there is no interworking required. As a result, we
10129 // do not expect a veneer to be emitted by the linker, clobbering IP.
10131 // Each module receives its own copy of __chkstk, so no import thunk is
10132 // required, again, ensuring that IP is not clobbered.
10134 // Finally, although some linkers may theoretically provide a trampoline for
10135 // out of range calls (which is quite common due to a 32M range limitation of
10136 // branches for Thumb), we can generate the long-call version via
10137 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10140 switch (TM
.getCodeModel()) {
10141 case CodeModel::Tiny
:
10142 llvm_unreachable("Tiny code model not available on ARM.");
10143 case CodeModel::Small
:
10144 case CodeModel::Medium
:
10145 case CodeModel::Kernel
:
10146 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10147 .add(predOps(ARMCC::AL
))
10148 .addExternalSymbol("__chkstk")
10149 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10150 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10152 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10154 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10156 case CodeModel::Large
: {
10157 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10158 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10160 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10161 .addExternalSymbol("__chkstk");
10162 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10163 .add(predOps(ARMCC::AL
))
10164 .addReg(Reg
, RegState::Kill
)
10165 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10166 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10168 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10170 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10175 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10176 .addReg(ARM::SP
, RegState::Kill
)
10177 .addReg(ARM::R4
, RegState::Kill
)
10178 .setMIFlags(MachineInstr::FrameSetup
)
10179 .add(predOps(ARMCC::AL
))
10180 .add(condCodeOp());
10182 MI
.eraseFromParent();
10186 MachineBasicBlock
*
10187 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10188 MachineBasicBlock
*MBB
) const {
10189 DebugLoc DL
= MI
.getDebugLoc();
10190 MachineFunction
*MF
= MBB
->getParent();
10191 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10193 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10194 MF
->insert(++MBB
->getIterator(), ContBB
);
10195 ContBB
->splice(ContBB
->begin(), MBB
,
10196 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10197 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10198 MBB
->addSuccessor(ContBB
);
10200 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10201 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10202 MF
->push_back(TrapBB
);
10203 MBB
->addSuccessor(TrapBB
);
10205 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10206 .addReg(MI
.getOperand(0).getReg())
10208 .add(predOps(ARMCC::AL
));
10209 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10212 .addReg(ARM::CPSR
);
10214 MI
.eraseFromParent();
10218 // The CPSR operand of SelectItr might be missing a kill marker
10219 // because there were multiple uses of CPSR, and ISel didn't know
10220 // which to mark. Figure out whether SelectItr should have had a
10221 // kill marker, and set it if it should. Returns the correct kill
10223 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10224 MachineBasicBlock
* BB
,
10225 const TargetRegisterInfo
* TRI
) {
10226 // Scan forward through BB for a use/def of CPSR.
10227 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10228 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10229 const MachineInstr
& mi
= *miI
;
10230 if (mi
.readsRegister(ARM::CPSR
))
10232 if (mi
.definesRegister(ARM::CPSR
))
10233 break; // Should have kill-flag - update below.
10236 // If we hit the end of the block, check whether CPSR is live into a
10238 if (miI
== BB
->end()) {
10239 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10240 sEnd
= BB
->succ_end();
10241 sItr
!= sEnd
; ++sItr
) {
10242 MachineBasicBlock
* succ
= *sItr
;
10243 if (succ
->isLiveIn(ARM::CPSR
))
10248 // We found a def, or hit the end of the basic block and CPSR wasn't live
10249 // out. SelectMI should have a kill flag on CPSR.
10250 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10254 MachineBasicBlock
*
10255 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10256 MachineBasicBlock
*BB
) const {
10257 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10258 DebugLoc dl
= MI
.getDebugLoc();
10259 bool isThumb2
= Subtarget
->isThumb2();
10260 switch (MI
.getOpcode()) {
10263 llvm_unreachable("Unexpected instr type to insert");
10266 // Thumb1 post-indexed loads are really just single-register LDMs.
10267 case ARM::tLDR_postidx
: {
10268 MachineOperand
Def(MI
.getOperand(1));
10269 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10271 .add(MI
.getOperand(2)) // Rn
10272 .add(MI
.getOperand(3)) // PredImm
10273 .add(MI
.getOperand(4)) // PredReg
10274 .add(MI
.getOperand(0)) // Rt
10276 MI
.eraseFromParent();
10280 // The Thumb2 pre-indexed stores have the same MI operands, they just
10281 // define them differently in the .td files from the isel patterns, so
10282 // they need pseudos.
10283 case ARM::t2STR_preidx
:
10284 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10286 case ARM::t2STRB_preidx
:
10287 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10289 case ARM::t2STRH_preidx
:
10290 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10293 case ARM::STRi_preidx
:
10294 case ARM::STRBi_preidx
: {
10295 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10296 : ARM::STRB_PRE_IMM
;
10297 // Decode the offset.
10298 unsigned Offset
= MI
.getOperand(4).getImm();
10299 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10300 Offset
= ARM_AM::getAM2Offset(Offset
);
10304 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10305 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10306 .add(MI
.getOperand(0)) // Rn_wb
10307 .add(MI
.getOperand(1)) // Rt
10308 .add(MI
.getOperand(2)) // Rn
10309 .addImm(Offset
) // offset (skip GPR==zero_reg)
10310 .add(MI
.getOperand(5)) // pred
10311 .add(MI
.getOperand(6))
10312 .addMemOperand(MMO
);
10313 MI
.eraseFromParent();
10316 case ARM::STRr_preidx
:
10317 case ARM::STRBr_preidx
:
10318 case ARM::STRH_preidx
: {
10320 switch (MI
.getOpcode()) {
10321 default: llvm_unreachable("unexpected opcode!");
10322 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10323 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10324 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10326 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10327 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10328 MIB
.add(MI
.getOperand(i
));
10329 MI
.eraseFromParent();
10333 case ARM::tMOVCCr_pseudo
: {
10334 // To "insert" a SELECT_CC instruction, we actually have to insert the
10335 // diamond control-flow pattern. The incoming instruction knows the
10336 // destination vreg to set, the condition code register to branch on, the
10337 // true/false values to select between, and a branch opcode to use.
10338 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10339 MachineFunction::iterator It
= ++BB
->getIterator();
10344 // cmpTY ccX, r1, r2
10346 // fallthrough --> copy0MBB
10347 MachineBasicBlock
*thisMBB
= BB
;
10348 MachineFunction
*F
= BB
->getParent();
10349 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10350 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10351 F
->insert(It
, copy0MBB
);
10352 F
->insert(It
, sinkMBB
);
10354 // Check whether CPSR is live past the tMOVCCr_pseudo.
10355 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10356 if (!MI
.killsRegister(ARM::CPSR
) &&
10357 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10358 copy0MBB
->addLiveIn(ARM::CPSR
);
10359 sinkMBB
->addLiveIn(ARM::CPSR
);
10362 // Transfer the remainder of BB and its successor edges to sinkMBB.
10363 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10364 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10365 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10367 BB
->addSuccessor(copy0MBB
);
10368 BB
->addSuccessor(sinkMBB
);
10370 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10372 .addImm(MI
.getOperand(3).getImm())
10373 .addReg(MI
.getOperand(4).getReg());
10376 // %FalseValue = ...
10377 // # fallthrough to sinkMBB
10380 // Update machine-CFG edges
10381 BB
->addSuccessor(sinkMBB
);
10384 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10387 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10388 .addReg(MI
.getOperand(1).getReg())
10390 .addReg(MI
.getOperand(2).getReg())
10393 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10398 case ARM::BCCZi64
: {
10399 // If there is an unconditional branch to the other successor, remove it.
10400 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10402 // Compare both parts that make up the double comparison separately for
10404 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10406 Register LHS1
= MI
.getOperand(1).getReg();
10407 Register LHS2
= MI
.getOperand(2).getReg();
10409 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10412 .add(predOps(ARMCC::AL
));
10413 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10414 .addReg(LHS2
).addImm(0)
10415 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10417 Register RHS1
= MI
.getOperand(3).getReg();
10418 Register RHS2
= MI
.getOperand(4).getReg();
10419 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10422 .add(predOps(ARMCC::AL
));
10423 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10424 .addReg(LHS2
).addReg(RHS2
)
10425 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10428 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10429 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10430 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10431 std::swap(destMBB
, exitMBB
);
10433 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10434 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10436 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10438 .add(predOps(ARMCC::AL
));
10440 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10442 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10446 case ARM::Int_eh_sjlj_setjmp
:
10447 case ARM::Int_eh_sjlj_setjmp_nofp
:
10448 case ARM::tInt_eh_sjlj_setjmp
:
10449 case ARM::t2Int_eh_sjlj_setjmp
:
10450 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10453 case ARM::Int_eh_sjlj_setup_dispatch
:
10454 EmitSjLjDispatchBlock(MI
, BB
);
10459 // To insert an ABS instruction, we have to insert the
10460 // diamond control-flow pattern. The incoming instruction knows the
10461 // source vreg to test against 0, the destination vreg to set,
10462 // the condition code register to branch on, the
10463 // true/false values to select between, and a branch opcode to use.
10468 // BCC (branch to SinkBB if V0 >= 0)
10469 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10470 // SinkBB: V1 = PHI(V2, V3)
10471 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10472 MachineFunction::iterator BBI
= ++BB
->getIterator();
10473 MachineFunction
*Fn
= BB
->getParent();
10474 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10475 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10476 Fn
->insert(BBI
, RSBBB
);
10477 Fn
->insert(BBI
, SinkBB
);
10479 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10480 Register ABSDstReg
= MI
.getOperand(0).getReg();
10481 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10482 bool isThumb2
= Subtarget
->isThumb2();
10483 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10484 // In Thumb mode S must not be specified if source register is the SP or
10485 // PC and if destination register is the SP, so restrict register class
10486 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10487 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10489 // Transfer the remainder of BB and its successor edges to sinkMBB.
10490 SinkBB
->splice(SinkBB
->begin(), BB
,
10491 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10492 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10494 BB
->addSuccessor(RSBBB
);
10495 BB
->addSuccessor(SinkBB
);
10497 // fall through to SinkMBB
10498 RSBBB
->addSuccessor(SinkBB
);
10500 // insert a cmp at the end of BB
10501 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10504 .add(predOps(ARMCC::AL
));
10506 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10508 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10509 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10511 // insert rsbri in RSBBB
10512 // Note: BCC and rsbri will be converted into predicated rsbmi
10513 // by if-conversion pass
10514 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10515 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10516 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10518 .add(predOps(ARMCC::AL
))
10519 .add(condCodeOp());
10521 // insert PHI in SinkBB,
10522 // reuse ABSDstReg to not change uses of ABS instruction
10523 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10524 TII
->get(ARM::PHI
), ABSDstReg
)
10525 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10526 .addReg(ABSSrcReg
).addMBB(BB
);
10528 // remove ABS instruction
10529 MI
.eraseFromParent();
10531 // return last added BB
10534 case ARM::COPY_STRUCT_BYVAL_I32
:
10536 return EmitStructByval(MI
, BB
);
10537 case ARM::WIN__CHKSTK
:
10538 return EmitLowered__chkstk(MI
, BB
);
10539 case ARM::WIN__DBZCHK
:
10540 return EmitLowered__dbzchk(MI
, BB
);
10544 /// Attaches vregs to MEMCPY that it will use as scratch registers
10545 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10546 /// instead of as a custom inserter because we need the use list from the SDNode.
10547 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10548 MachineInstr
&MI
, const SDNode
*Node
) {
10549 bool isThumb1
= Subtarget
->isThumb1Only();
10551 DebugLoc DL
= MI
.getDebugLoc();
10552 MachineFunction
*MF
= MI
.getParent()->getParent();
10553 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10554 MachineInstrBuilder
MIB(*MF
, MI
);
10556 // If the new dst/src is unused mark it as dead.
10557 if (!Node
->hasAnyUseOfValue(0)) {
10558 MI
.getOperand(0).setIsDead(true);
10560 if (!Node
->hasAnyUseOfValue(1)) {
10561 MI
.getOperand(1).setIsDead(true);
10564 // The MEMCPY both defines and kills the scratch registers.
10565 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10566 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10567 : &ARM::GPRRegClass
);
10568 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10572 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10573 SDNode
*Node
) const {
10574 if (MI
.getOpcode() == ARM::MEMCPY
) {
10575 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10579 const MCInstrDesc
*MCID
= &MI
.getDesc();
10580 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10581 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10582 // operand is still set to noreg. If needed, set the optional operand's
10583 // register to CPSR, and remove the redundant implicit def.
10585 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10587 // Rename pseudo opcodes.
10588 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10591 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10592 MCID
= &TII
->get(NewOpc
);
10594 assert(MCID
->getNumOperands() ==
10595 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10596 && "converted opcode should be the same except for cc_out"
10597 " (and, on Thumb1, pred)");
10601 // Add the optional cc_out operand
10602 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10604 // On Thumb1, move all input operands to the end, then add the predicate
10605 if (Subtarget
->isThumb1Only()) {
10606 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10607 MI
.addOperand(MI
.getOperand(1));
10608 MI
.RemoveOperand(1);
10611 // Restore the ties
10612 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10613 const MachineOperand
& op
= MI
.getOperand(i
);
10614 if (op
.isReg() && op
.isUse()) {
10615 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10617 MI
.tieOperands(DefIdx
, i
);
10621 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10622 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10625 ccOutIdx
= MCID
->getNumOperands() - 1;
10627 ccOutIdx
= MCID
->getNumOperands() - 1;
10629 // Any ARM instruction that sets the 's' bit should specify an optional
10630 // "cc_out" operand in the last operand position.
10631 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10632 assert(!NewOpc
&& "Optional cc_out operand required");
10635 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10636 // since we already have an optional CPSR def.
10637 bool definesCPSR
= false;
10638 bool deadCPSR
= false;
10639 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10641 const MachineOperand
&MO
= MI
.getOperand(i
);
10642 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10643 definesCPSR
= true;
10646 MI
.RemoveOperand(i
);
10650 if (!definesCPSR
) {
10651 assert(!NewOpc
&& "Optional cc_out operand required");
10654 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10656 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10657 "expect uninitialized optional cc_out operand");
10658 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10659 if (!Subtarget
->isThumb1Only())
10663 // If this instruction was defined with an optional CPSR def and its dag node
10664 // had a live implicit CPSR def, then activate the optional CPSR def.
10665 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10666 MO
.setReg(ARM::CPSR
);
10670 //===----------------------------------------------------------------------===//
10671 // ARM Optimization Hooks
10672 //===----------------------------------------------------------------------===//
10674 // Helper function that checks if N is a null or all ones constant.
10675 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10676 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10679 // Return true if N is conditionally 0 or all ones.
10680 // Detects these expressions where cc is an i1 value:
10682 // (select cc 0, y) [AllOnes=0]
10683 // (select cc y, 0) [AllOnes=0]
10684 // (zext cc) [AllOnes=0]
10685 // (sext cc) [AllOnes=0/1]
10686 // (select cc -1, y) [AllOnes=1]
10687 // (select cc y, -1) [AllOnes=1]
10689 // Invert is set when N is the null/all ones constant when CC is false.
10690 // OtherOp is set to the alternative value of N.
10691 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10692 SDValue
&CC
, bool &Invert
,
10694 SelectionDAG
&DAG
) {
10695 switch (N
->getOpcode()) {
10696 default: return false;
10697 case ISD::SELECT
: {
10698 CC
= N
->getOperand(0);
10699 SDValue N1
= N
->getOperand(1);
10700 SDValue N2
= N
->getOperand(2);
10701 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10706 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10713 case ISD::ZERO_EXTEND
:
10714 // (zext cc) can never be the all ones value.
10718 case ISD::SIGN_EXTEND
: {
10720 EVT VT
= N
->getValueType(0);
10721 CC
= N
->getOperand(0);
10722 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10726 // When looking for an AllOnes constant, N is an sext, and the 'other'
10728 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10729 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10730 // When looking for a 0 constant, N can be zext or sext.
10731 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10733 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10740 // Combine a constant select operand into its use:
10742 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10743 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10744 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10745 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10746 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10748 // The transform is rejected if the select doesn't have a constant operand that
10749 // is null, or all ones when AllOnes is set.
10751 // Also recognize sext/zext from i1:
10753 // (add (zext cc), x) -> (select cc (add x, 1), x)
10754 // (add (sext cc), x) -> (select cc (add x, -1), x)
10756 // These transformations eventually create predicated instructions.
10758 // @param N The node to transform.
10759 // @param Slct The N operand that is a select.
10760 // @param OtherOp The other N operand (x above).
10761 // @param DCI Context.
10762 // @param AllOnes Require the select constant to be all ones instead of null.
10763 // @returns The new node, or SDValue() on failure.
10765 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10766 TargetLowering::DAGCombinerInfo
&DCI
,
10767 bool AllOnes
= false) {
10768 SelectionDAG
&DAG
= DCI
.DAG
;
10769 EVT VT
= N
->getValueType(0);
10770 SDValue NonConstantVal
;
10772 bool SwapSelectOps
;
10773 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10774 NonConstantVal
, DAG
))
10777 // Slct is now know to be the desired identity constant when CC is true.
10778 SDValue TrueVal
= OtherOp
;
10779 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10780 OtherOp
, NonConstantVal
);
10781 // Unless SwapSelectOps says CC should be false.
10783 std::swap(TrueVal
, FalseVal
);
10785 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10786 CCOp
, TrueVal
, FalseVal
);
10789 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10791 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10792 TargetLowering::DAGCombinerInfo
&DCI
) {
10793 SDValue N0
= N
->getOperand(0);
10794 SDValue N1
= N
->getOperand(1);
10795 if (N0
.getNode()->hasOneUse())
10796 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10798 if (N1
.getNode()->hasOneUse())
10799 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10804 static bool IsVUZPShuffleNode(SDNode
*N
) {
10805 // VUZP shuffle node.
10806 if (N
->getOpcode() == ARMISD::VUZP
)
10809 // "VUZP" on i32 is an alias for VTRN.
10810 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10816 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10817 TargetLowering::DAGCombinerInfo
&DCI
,
10818 const ARMSubtarget
*Subtarget
) {
10819 // Look for ADD(VUZP.0, VUZP.1).
10820 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10824 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10825 if (!N
->getValueType(0).is64BitVector())
10829 SelectionDAG
&DAG
= DCI
.DAG
;
10830 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10832 SDNode
*Unzip
= N0
.getNode();
10833 EVT VT
= N
->getValueType(0);
10835 SmallVector
<SDValue
, 8> Ops
;
10836 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10837 TLI
.getPointerTy(DAG
.getDataLayout())));
10838 Ops
.push_back(Unzip
->getOperand(0));
10839 Ops
.push_back(Unzip
->getOperand(1));
10841 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10844 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10845 TargetLowering::DAGCombinerInfo
&DCI
,
10846 const ARMSubtarget
*Subtarget
) {
10847 // Check for two extended operands.
10848 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10849 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10850 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10851 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10854 SDValue N00
= N0
.getOperand(0);
10855 SDValue N10
= N1
.getOperand(0);
10857 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10858 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10862 // We only recognize Q register paddl here; this can't be reached until
10863 // after type legalization.
10864 if (!N00
.getValueType().is64BitVector() ||
10865 !N0
.getValueType().is128BitVector())
10868 // Generate vpaddl.
10869 SelectionDAG
&DAG
= DCI
.DAG
;
10870 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10872 EVT VT
= N
->getValueType(0);
10874 SmallVector
<SDValue
, 8> Ops
;
10875 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10877 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10878 Opcode
= Intrinsic::arm_neon_vpaddls
;
10880 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10881 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10882 TLI
.getPointerTy(DAG
.getDataLayout())));
10883 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10884 unsigned NumElts
= VT
.getVectorNumElements();
10885 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10886 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10887 N00
.getOperand(0), N00
.getOperand(1));
10888 Ops
.push_back(Concat
);
10890 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10893 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10894 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10895 // much easier to match.
10897 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10898 TargetLowering::DAGCombinerInfo
&DCI
,
10899 const ARMSubtarget
*Subtarget
) {
10900 // Only perform optimization if after legalize, and if NEON is available. We
10901 // also expected both operands to be BUILD_VECTORs.
10902 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10903 || N0
.getOpcode() != ISD::BUILD_VECTOR
10904 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10907 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10908 EVT VT
= N
->getValueType(0);
10909 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10912 // Check that the vector operands are of the right form.
10913 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10914 // operands, where N is the size of the formed vector.
10915 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10916 // index such that we have a pair wise add pattern.
10918 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10919 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10921 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10922 SDNode
*V
= Vec
.getNode();
10923 unsigned nextIndex
= 0;
10925 // For each operands to the ADD which are BUILD_VECTORs,
10926 // check to see if each of their operands are an EXTRACT_VECTOR with
10927 // the same vector and appropriate index.
10928 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10929 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10930 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10932 SDValue ExtVec0
= N0
->getOperand(i
);
10933 SDValue ExtVec1
= N1
->getOperand(i
);
10935 // First operand is the vector, verify its the same.
10936 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10937 V
!= ExtVec1
->getOperand(0).getNode())
10940 // Second is the constant, verify its correct.
10941 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10942 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10944 // For the constant, we want to see all the even or all the odd.
10945 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10946 || C1
->getZExtValue() != nextIndex
+1)
10949 // Increment index.
10955 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10956 // we're using the entire input vector, otherwise there's a size/legality
10957 // mismatch somewhere.
10958 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10959 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10962 // Create VPADDL node.
10963 SelectionDAG
&DAG
= DCI
.DAG
;
10964 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10968 // Build operand list.
10969 SmallVector
<SDValue
, 8> Ops
;
10970 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10971 TLI
.getPointerTy(DAG
.getDataLayout())));
10973 // Input is the vector.
10974 Ops
.push_back(Vec
);
10976 // Get widened type and narrowed type.
10978 unsigned numElem
= VT
.getVectorNumElements();
10980 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10981 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10982 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10983 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10984 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10986 llvm_unreachable("Invalid vector element type for padd optimization.");
10989 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10990 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10991 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10994 static SDValue
findMUL_LOHI(SDValue V
) {
10995 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10996 V
->getOpcode() == ISD::SMUL_LOHI
)
11001 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
11002 TargetLowering::DAGCombinerInfo
&DCI
,
11003 const ARMSubtarget
*Subtarget
) {
11004 if (Subtarget
->isThumb()) {
11005 if (!Subtarget
->hasDSP())
11007 } else if (!Subtarget
->hasV5TEOps())
11010 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11011 // accumulates the product into a 64-bit value. The 16-bit values will
11012 // be sign extended somehow or SRA'd into 32-bit values
11013 // (addc (adde (mul 16bit, 16bit), lo), hi)
11014 SDValue Mul
= AddcNode
->getOperand(0);
11015 SDValue Lo
= AddcNode
->getOperand(1);
11016 if (Mul
.getOpcode() != ISD::MUL
) {
11017 Lo
= AddcNode
->getOperand(0);
11018 Mul
= AddcNode
->getOperand(1);
11019 if (Mul
.getOpcode() != ISD::MUL
)
11023 SDValue SRA
= AddeNode
->getOperand(0);
11024 SDValue Hi
= AddeNode
->getOperand(1);
11025 if (SRA
.getOpcode() != ISD::SRA
) {
11026 SRA
= AddeNode
->getOperand(1);
11027 Hi
= AddeNode
->getOperand(0);
11028 if (SRA
.getOpcode() != ISD::SRA
)
11031 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
11032 if (Const
->getZExtValue() != 31)
11037 if (SRA
.getOperand(0) != Mul
)
11040 SelectionDAG
&DAG
= DCI
.DAG
;
11041 SDLoc
dl(AddcNode
);
11042 unsigned Opcode
= 0;
11046 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
11047 Opcode
= ARMISD::SMLALBB
;
11048 Op0
= Mul
.getOperand(0);
11049 Op1
= Mul
.getOperand(1);
11050 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
11051 Opcode
= ARMISD::SMLALBT
;
11052 Op0
= Mul
.getOperand(0);
11053 Op1
= Mul
.getOperand(1).getOperand(0);
11054 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
11055 Opcode
= ARMISD::SMLALTB
;
11056 Op0
= Mul
.getOperand(0).getOperand(0);
11057 Op1
= Mul
.getOperand(1);
11058 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
11059 Opcode
= ARMISD::SMLALTT
;
11060 Op0
= Mul
->getOperand(0).getOperand(0);
11061 Op1
= Mul
->getOperand(1).getOperand(0);
11067 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
11069 // Replace the ADDs' nodes uses by the MLA node's values.
11070 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
11071 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
11073 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
11074 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
11076 // Return original node to notify the driver to stop replacing.
11077 SDValue
resNode(AddcNode
, 0);
11081 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
11082 TargetLowering::DAGCombinerInfo
&DCI
,
11083 const ARMSubtarget
*Subtarget
) {
11084 // Look for multiply add opportunities.
11085 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11086 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11087 // a glue link from the first add to the second add.
11088 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11089 // a S/UMLAL instruction.
11092 // V \ [no multiline comment]
11098 // In the special case where only the higher part of a signed result is used
11099 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11100 // a constant with the exact value of 0x80000000, we recognize we are dealing
11101 // with a "rounded multiply and add" (or subtract) and transform it into
11102 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11104 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11105 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11106 "Expect an ADDE or SUBE");
11108 assert(AddeSubeNode
->getNumOperands() == 3 &&
11109 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11110 "ADDE node has the wrong inputs");
11112 // Check that we are chained to the right ADDC or SUBC node.
11113 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11114 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11115 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11116 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11117 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11120 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11121 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11123 // Check if the two operands are from the same mul_lohi node.
11124 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11127 assert(AddcSubcNode
->getNumValues() == 2 &&
11128 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11129 "Expect ADDC with two result values. First: i32");
11131 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11132 // maybe a SMLAL which multiplies two 16-bit values.
11133 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11134 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11135 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11136 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11137 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11138 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11140 // Check for the triangle shape.
11141 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11142 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11144 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11145 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11148 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11149 bool IsLeftOperandMUL
= false;
11150 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11151 if (MULOp
== SDValue())
11152 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11154 IsLeftOperandMUL
= true;
11155 if (MULOp
== SDValue())
11158 // Figure out the right opcode.
11159 unsigned Opc
= MULOp
->getOpcode();
11160 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11162 // Figure out the high and low input values to the MLAL node.
11163 SDValue
*HiAddSub
= nullptr;
11164 SDValue
*LoMul
= nullptr;
11165 SDValue
*LowAddSub
= nullptr;
11167 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11168 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11171 if (IsLeftOperandMUL
)
11172 HiAddSub
= &AddeSubeOp1
;
11174 HiAddSub
= &AddeSubeOp0
;
11176 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11177 // whose low result is fed to the ADDC/SUBC we are checking.
11179 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11180 LoMul
= &AddcSubcOp0
;
11181 LowAddSub
= &AddcSubcOp1
;
11183 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11184 LoMul
= &AddcSubcOp1
;
11185 LowAddSub
= &AddcSubcOp0
;
11191 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11192 // the replacement below will create a cycle.
11193 if (AddcSubcNode
== HiAddSub
->getNode() ||
11194 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11197 // Create the merged node.
11198 SelectionDAG
&DAG
= DCI
.DAG
;
11200 // Start building operand list.
11201 SmallVector
<SDValue
, 8> Ops
;
11202 Ops
.push_back(LoMul
->getOperand(0));
11203 Ops
.push_back(LoMul
->getOperand(1));
11205 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11206 // the case, we must be doing signed multiplication and only use the higher
11207 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11208 // addition or subtraction with the value of 0x800000.
11209 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11210 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11211 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11212 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11214 Ops
.push_back(*HiAddSub
);
11215 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11216 FinalOpc
= ARMISD::SMMLSR
;
11218 FinalOpc
= ARMISD::SMMLAR
;
11220 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11221 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11223 return SDValue(AddeSubeNode
, 0);
11224 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11225 // SMMLS is generated during instruction selection and the rest of this
11226 // function can not handle the case where AddcSubcNode is a SUBC.
11229 // Finish building the operand list for {U/S}MLAL
11230 Ops
.push_back(*LowAddSub
);
11231 Ops
.push_back(*HiAddSub
);
11233 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11234 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11236 // Replace the ADDs' nodes uses by the MLA node's values.
11237 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11238 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11240 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11241 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11243 // Return original node to notify the driver to stop replacing.
11244 return SDValue(AddeSubeNode
, 0);
11247 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11248 TargetLowering::DAGCombinerInfo
&DCI
,
11249 const ARMSubtarget
*Subtarget
) {
11250 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11251 // While trying to combine for the other MLAL nodes, first search for the
11252 // chance to use UMAAL. Check if Addc uses a node which has already
11253 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11254 // as the addend, and it's handled in PerformUMLALCombine.
11256 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11257 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11259 // Check that we have a glued ADDC node.
11260 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11261 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11264 // Find the converted UMAAL or quit if it doesn't exist.
11265 SDNode
*UmlalNode
= nullptr;
11267 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11268 UmlalNode
= AddcNode
->getOperand(0).getNode();
11269 AddHi
= AddcNode
->getOperand(1);
11270 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11271 UmlalNode
= AddcNode
->getOperand(1).getNode();
11272 AddHi
= AddcNode
->getOperand(0);
11274 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11277 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11278 // the ADDC as well as Zero.
11279 if (!isNullConstant(UmlalNode
->getOperand(3)))
11282 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11283 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11284 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11285 isNullConstant(AddeNode
->getOperand(1)))) {
11286 SelectionDAG
&DAG
= DCI
.DAG
;
11287 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11288 UmlalNode
->getOperand(2), AddHi
};
11289 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11290 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11292 // Replace the ADDs' nodes uses by the UMAAL node's values.
11293 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11294 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11296 // Return original node to notify the driver to stop replacing.
11297 return SDValue(AddeNode
, 0);
11302 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11303 const ARMSubtarget
*Subtarget
) {
11304 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11307 // Check that we have a pair of ADDC and ADDE as operands.
11308 // Both addends of the ADDE must be zero.
11309 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11310 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11311 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11312 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11313 isNullConstant(AddeNode
->getOperand(0)) &&
11314 isNullConstant(AddeNode
->getOperand(1)) &&
11315 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11316 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11317 DAG
.getVTList(MVT::i32
, MVT::i32
),
11318 {N
->getOperand(0), N
->getOperand(1),
11319 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11324 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11325 TargetLowering::DAGCombinerInfo
&DCI
,
11326 const ARMSubtarget
*Subtarget
) {
11327 SelectionDAG
&DAG(DCI
.DAG
);
11329 if (N
->getOpcode() == ARMISD::SUBC
) {
11330 // (SUBC (ADDE 0, 0, C), 1) -> C
11331 SDValue LHS
= N
->getOperand(0);
11332 SDValue RHS
= N
->getOperand(1);
11333 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11334 isNullConstant(LHS
->getOperand(0)) &&
11335 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11336 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11340 if (Subtarget
->isThumb1Only()) {
11341 SDValue RHS
= N
->getOperand(1);
11342 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11343 int32_t imm
= C
->getSExtValue();
11344 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11346 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11347 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11349 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11357 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11358 TargetLowering::DAGCombinerInfo
&DCI
,
11359 const ARMSubtarget
*Subtarget
) {
11360 if (Subtarget
->isThumb1Only()) {
11361 SelectionDAG
&DAG
= DCI
.DAG
;
11362 SDValue RHS
= N
->getOperand(1);
11363 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11364 int64_t imm
= C
->getSExtValue();
11368 // The with-carry-in form matches bitwise not instead of the negation.
11369 // Effectively, the inverse interpretation of the carry flag already
11370 // accounts for part of the negation.
11371 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11373 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11375 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11376 N
->getOperand(0), RHS
, N
->getOperand(2));
11379 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11380 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11385 static SDValue
PerformABSCombine(SDNode
*N
,
11386 TargetLowering::DAGCombinerInfo
&DCI
,
11387 const ARMSubtarget
*Subtarget
) {
11389 SelectionDAG
&DAG
= DCI
.DAG
;
11390 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11392 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11395 if (!TLI
.expandABS(N
, res
, DAG
))
11401 /// PerformADDECombine - Target-specific dag combine transform from
11402 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11403 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11404 static SDValue
PerformADDECombine(SDNode
*N
,
11405 TargetLowering::DAGCombinerInfo
&DCI
,
11406 const ARMSubtarget
*Subtarget
) {
11407 // Only ARM and Thumb2 support UMLAL/SMLAL.
11408 if (Subtarget
->isThumb1Only())
11409 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11411 // Only perform the checks after legalize when the pattern is available.
11412 if (DCI
.isBeforeLegalize()) return SDValue();
11414 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11417 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11418 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11419 /// called with the default operands, and if that fails, with commuted
11421 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11422 TargetLowering::DAGCombinerInfo
&DCI
,
11423 const ARMSubtarget
*Subtarget
){
11424 // Attempt to create vpadd for this add.
11425 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11428 // Attempt to create vpaddl for this add.
11429 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11431 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11435 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11436 if (N0
.getNode()->hasOneUse())
11437 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11443 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11444 CombineLevel Level
) const {
11445 if (Level
== BeforeLegalizeTypes
)
11448 if (N
->getOpcode() != ISD::SHL
)
11451 if (Subtarget
->isThumb1Only()) {
11452 // Avoid making expensive immediates by commuting shifts. (This logic
11453 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11455 if (N
->getOpcode() != ISD::SHL
)
11457 SDValue N1
= N
->getOperand(0);
11458 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11459 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11461 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11462 if (Const
->getAPIntValue().ult(256))
11464 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11465 Const
->getAPIntValue().sgt(-256))
11471 // Turn off commute-with-shift transform after legalization, so it doesn't
11472 // conflict with PerformSHLSimplify. (We could try to detect when
11473 // PerformSHLSimplify would trigger more precisely, but it isn't
11474 // really necessary.)
11478 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11479 const SDNode
*N
, CombineLevel Level
) const {
11480 if (!Subtarget
->isThumb1Only())
11483 if (Level
== BeforeLegalizeTypes
)
11489 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11490 if (!Subtarget
->hasNEON()) {
11491 if (Subtarget
->isThumb1Only())
11492 return VT
.getScalarSizeInBits() <= 32;
11495 return VT
.isScalarInteger();
11498 static SDValue
PerformSHLSimplify(SDNode
*N
,
11499 TargetLowering::DAGCombinerInfo
&DCI
,
11500 const ARMSubtarget
*ST
) {
11501 // Allow the generic combiner to identify potential bswaps.
11502 if (DCI
.isBeforeLegalize())
11505 // DAG combiner will fold:
11506 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11507 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11508 // Other code patterns that can be also be modified have the following form:
11509 // b + ((a << 1) | 510)
11510 // b + ((a << 1) & 510)
11511 // b + ((a << 1) ^ 510)
11512 // b + ((a << 1) + 510)
11514 // Many instructions can perform the shift for free, but it requires both
11515 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11516 // instruction will needed. So, unfold back to the original pattern if:
11517 // - if c1 and c2 are small enough that they don't require mov imms.
11518 // - the user(s) of the node can perform an shl
11520 // No shifted operands for 16-bit instructions.
11521 if (ST
->isThumb() && ST
->isThumb1Only())
11524 // Check that all the users could perform the shl themselves.
11525 for (auto U
: N
->uses()) {
11526 switch(U
->getOpcode()) {
11536 // Check that the user isn't already using a constant because there
11537 // aren't any instructions that support an immediate operand and a
11538 // shifted operand.
11539 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11540 isa
<ConstantSDNode
>(U
->getOperand(1)))
11543 // Check that it's not already using a shift.
11544 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11545 U
->getOperand(1).getOpcode() == ISD::SHL
)
11551 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11552 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11555 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11558 SDValue SHL
= N
->getOperand(0);
11560 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11561 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11562 if (!C1ShlC2
|| !C2
)
11565 APInt C2Int
= C2
->getAPIntValue();
11566 APInt C1Int
= C1ShlC2
->getAPIntValue();
11568 // Check that performing a lshr will not lose any information.
11569 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11570 C2Int
.getBitWidth() - C2
->getZExtValue());
11571 if ((C1Int
& Mask
) != C1Int
)
11574 // Shift the first constant.
11575 C1Int
.lshrInPlace(C2Int
);
11577 // The immediates are encoded as an 8-bit value that can be rotated.
11578 auto LargeImm
= [](const APInt
&Imm
) {
11579 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11580 return Imm
.getBitWidth() - Zeros
> 8;
11583 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11586 SelectionDAG
&DAG
= DCI
.DAG
;
11588 SDValue X
= SHL
.getOperand(0);
11589 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11590 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11591 // Shift left to compensate for the lshr of C1Int.
11592 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11594 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11595 SHL
.dump(); N
->dump());
11596 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11601 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11603 static SDValue
PerformADDCombine(SDNode
*N
,
11604 TargetLowering::DAGCombinerInfo
&DCI
,
11605 const ARMSubtarget
*Subtarget
) {
11606 SDValue N0
= N
->getOperand(0);
11607 SDValue N1
= N
->getOperand(1);
11609 // Only works one way, because it needs an immediate operand.
11610 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11613 // First try with the default operand order.
11614 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11617 // If that didn't work, try again with the operands commuted.
11618 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11621 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11623 static SDValue
PerformSUBCombine(SDNode
*N
,
11624 TargetLowering::DAGCombinerInfo
&DCI
) {
11625 SDValue N0
= N
->getOperand(0);
11626 SDValue N1
= N
->getOperand(1);
11628 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11629 if (N1
.getNode()->hasOneUse())
11630 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11636 /// PerformVMULCombine
11637 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11638 /// special multiplier accumulator forwarding.
11639 /// vmul d3, d0, d2
11640 /// vmla d3, d1, d2
11642 /// vadd d3, d0, d1
11643 /// vmul d3, d3, d2
11644 // However, for (A + B) * (A + B),
11651 static SDValue
PerformVMULCombine(SDNode
*N
,
11652 TargetLowering::DAGCombinerInfo
&DCI
,
11653 const ARMSubtarget
*Subtarget
) {
11654 if (!Subtarget
->hasVMLxForwarding())
11657 SelectionDAG
&DAG
= DCI
.DAG
;
11658 SDValue N0
= N
->getOperand(0);
11659 SDValue N1
= N
->getOperand(1);
11660 unsigned Opcode
= N0
.getOpcode();
11661 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11662 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11663 Opcode
= N1
.getOpcode();
11664 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11665 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11673 EVT VT
= N
->getValueType(0);
11675 SDValue N00
= N0
->getOperand(0);
11676 SDValue N01
= N0
->getOperand(1);
11677 return DAG
.getNode(Opcode
, DL
, VT
,
11678 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11679 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11682 static SDValue
PerformMULCombine(SDNode
*N
,
11683 TargetLowering::DAGCombinerInfo
&DCI
,
11684 const ARMSubtarget
*Subtarget
) {
11685 SelectionDAG
&DAG
= DCI
.DAG
;
11687 if (Subtarget
->isThumb1Only())
11690 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11693 EVT VT
= N
->getValueType(0);
11694 if (VT
.is64BitVector() || VT
.is128BitVector())
11695 return PerformVMULCombine(N
, DCI
, Subtarget
);
11696 if (VT
!= MVT::i32
)
11699 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11703 int64_t MulAmt
= C
->getSExtValue();
11704 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11706 ShiftAmt
= ShiftAmt
& (32 - 1);
11707 SDValue V
= N
->getOperand(0);
11711 MulAmt
>>= ShiftAmt
;
11714 if (isPowerOf2_32(MulAmt
- 1)) {
11715 // (mul x, 2^N + 1) => (add (shl x, N), x)
11716 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11718 DAG
.getNode(ISD::SHL
, DL
, VT
,
11720 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11722 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11723 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11724 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11725 DAG
.getNode(ISD::SHL
, DL
, VT
,
11727 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11733 uint64_t MulAmtAbs
= -MulAmt
;
11734 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11735 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11736 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11738 DAG
.getNode(ISD::SHL
, DL
, VT
,
11740 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11742 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11743 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11744 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11746 DAG
.getNode(ISD::SHL
, DL
, VT
,
11748 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11750 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11751 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11757 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11758 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11760 // Do not add new nodes to DAG combiner worklist.
11761 DCI
.CombineTo(N
, Res
, false);
11765 static SDValue
CombineANDShift(SDNode
*N
,
11766 TargetLowering::DAGCombinerInfo
&DCI
,
11767 const ARMSubtarget
*Subtarget
) {
11768 // Allow DAGCombine to pattern-match before we touch the canonical form.
11769 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11772 if (N
->getValueType(0) != MVT::i32
)
11775 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11779 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11780 // Don't transform uxtb/uxth.
11781 if (C1
== 255 || C1
== 65535)
11784 SDNode
*N0
= N
->getOperand(0).getNode();
11785 if (!N0
->hasOneUse())
11788 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11791 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11793 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11797 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11798 if (!C2
|| C2
>= 32)
11801 // Clear irrelevant bits in the mask.
11807 SelectionDAG
&DAG
= DCI
.DAG
;
11810 // We have a pattern of the form "(and (shl x, c2) c1)" or
11811 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11812 // transform to a pair of shifts, to save materializing c1.
11814 // First pattern: right shift, then mask off leading bits.
11815 // FIXME: Use demanded bits?
11816 if (!LeftShift
&& isMask_32(C1
)) {
11817 uint32_t C3
= countLeadingZeros(C1
);
11819 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11820 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11821 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11822 DAG
.getConstant(C3
, DL
, MVT::i32
));
11826 // First pattern, reversed: left shift, then mask off trailing bits.
11827 if (LeftShift
&& isMask_32(~C1
)) {
11828 uint32_t C3
= countTrailingZeros(C1
);
11830 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11831 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11832 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11833 DAG
.getConstant(C3
, DL
, MVT::i32
));
11837 // Second pattern: left shift, then mask off leading bits.
11838 // FIXME: Use demanded bits?
11839 if (LeftShift
&& isShiftedMask_32(C1
)) {
11840 uint32_t Trailing
= countTrailingZeros(C1
);
11841 uint32_t C3
= countLeadingZeros(C1
);
11842 if (Trailing
== C2
&& C2
+ C3
< 32) {
11843 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11844 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11845 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11846 DAG
.getConstant(C3
, DL
, MVT::i32
));
11850 // Second pattern, reversed: right shift, then mask off trailing bits.
11851 // FIXME: Handle other patterns of known/demanded bits.
11852 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11853 uint32_t Leading
= countLeadingZeros(C1
);
11854 uint32_t C3
= countTrailingZeros(C1
);
11855 if (Leading
== C2
&& C2
+ C3
< 32) {
11856 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11857 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11858 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11859 DAG
.getConstant(C3
, DL
, MVT::i32
));
11863 // FIXME: Transform "(and (shl x, c2) c1)" ->
11864 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11869 static SDValue
PerformANDCombine(SDNode
*N
,
11870 TargetLowering::DAGCombinerInfo
&DCI
,
11871 const ARMSubtarget
*Subtarget
) {
11872 // Attempt to use immediate-form VBIC
11873 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11875 EVT VT
= N
->getValueType(0);
11876 SelectionDAG
&DAG
= DCI
.DAG
;
11878 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11881 APInt SplatBits
, SplatUndef
;
11882 unsigned SplatBitSize
;
11884 if (BVN
&& Subtarget
->hasNEON() &&
11885 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11886 if (SplatBitSize
<= 64) {
11888 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11889 SplatUndef
.getZExtValue(), SplatBitSize
,
11890 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11892 if (Val
.getNode()) {
11894 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11895 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11896 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11901 if (!Subtarget
->isThumb1Only()) {
11902 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11903 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11906 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11910 if (Subtarget
->isThumb1Only())
11911 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11917 // Try combining OR nodes to SMULWB, SMULWT.
11918 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11919 TargetLowering::DAGCombinerInfo
&DCI
,
11920 const ARMSubtarget
*Subtarget
) {
11921 if (!Subtarget
->hasV6Ops() ||
11922 (Subtarget
->isThumb() &&
11923 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11926 SDValue SRL
= OR
->getOperand(0);
11927 SDValue SHL
= OR
->getOperand(1);
11929 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11930 SRL
= OR
->getOperand(1);
11931 SHL
= OR
->getOperand(0);
11933 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11936 // The first operands to the shifts need to be the two results from the
11937 // same smul_lohi node.
11938 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11939 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11942 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11943 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11944 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11948 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11949 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11950 // For SMUWB the 16-bit value will signed extended somehow.
11951 // For SMULWT only the SRA is required.
11952 // Check both sides of SMUL_LOHI
11953 SDValue OpS16
= SMULLOHI
->getOperand(0);
11954 SDValue OpS32
= SMULLOHI
->getOperand(1);
11956 SelectionDAG
&DAG
= DCI
.DAG
;
11957 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11959 OpS32
= SMULLOHI
->getOperand(0);
11963 unsigned Opcode
= 0;
11964 if (isS16(OpS16
, DAG
))
11965 Opcode
= ARMISD::SMULWB
;
11966 else if (isSRA16(OpS16
)) {
11967 Opcode
= ARMISD::SMULWT
;
11968 OpS16
= OpS16
->getOperand(0);
11973 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11974 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11975 return SDValue(OR
, 0);
11978 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11979 TargetLowering::DAGCombinerInfo
&DCI
,
11980 const ARMSubtarget
*Subtarget
) {
11981 // BFI is only available on V6T2+
11982 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11985 EVT VT
= N
->getValueType(0);
11986 SDValue N0
= N
->getOperand(0);
11987 SDValue N1
= N
->getOperand(1);
11988 SelectionDAG
&DAG
= DCI
.DAG
;
11990 // 1) or (and A, mask), val => ARMbfi A, val, mask
11991 // iff (val & mask) == val
11993 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11994 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11995 // && mask == ~mask2
11996 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11997 // && ~mask == mask2
11998 // (i.e., copy a bitfield value into another bitfield of the same width)
12000 if (VT
!= MVT::i32
)
12003 SDValue N00
= N0
.getOperand(0);
12005 // The value and the mask need to be constants so we can verify this is
12006 // actually a bitfield set. If the mask is 0xffff, we can do better
12007 // via a movt instruction, so don't use BFI in that case.
12008 SDValue MaskOp
= N0
.getOperand(1);
12009 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
12012 unsigned Mask
= MaskC
->getZExtValue();
12013 if (Mask
== 0xffff)
12016 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
12017 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
12019 unsigned Val
= N1C
->getZExtValue();
12020 if ((Val
& ~Mask
) != Val
)
12023 if (ARM::isBitFieldInvertedMask(Mask
)) {
12024 Val
>>= countTrailingZeros(~Mask
);
12026 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
12027 DAG
.getConstant(Val
, DL
, MVT::i32
),
12028 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12030 DCI
.CombineTo(N
, Res
, false);
12031 // Return value from the original node to inform the combiner than N is
12033 return SDValue(N
, 0);
12035 } else if (N1
.getOpcode() == ISD::AND
) {
12036 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12037 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12040 unsigned Mask2
= N11C
->getZExtValue();
12042 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12044 if (ARM::isBitFieldInvertedMask(Mask
) &&
12045 (Mask
== ~Mask2
)) {
12046 // The pack halfword instruction works better for masks that fit it,
12047 // so use that when it's available.
12048 if (Subtarget
->hasDSP() &&
12049 (Mask
== 0xffff || Mask
== 0xffff0000))
12052 unsigned amt
= countTrailingZeros(Mask2
);
12053 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
12054 DAG
.getConstant(amt
, DL
, MVT::i32
));
12055 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
12056 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12057 DCI
.CombineTo(N
, Res
, false);
12058 // Return value from the original node to inform the combiner than N is
12060 return SDValue(N
, 0);
12061 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
12062 (~Mask
== Mask2
)) {
12063 // The pack halfword instruction works better for masks that fit it,
12064 // so use that when it's available.
12065 if (Subtarget
->hasDSP() &&
12066 (Mask2
== 0xffff || Mask2
== 0xffff0000))
12069 unsigned lsb
= countTrailingZeros(Mask
);
12070 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
12071 DAG
.getConstant(lsb
, DL
, MVT::i32
));
12072 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
12073 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
12074 DCI
.CombineTo(N
, Res
, false);
12075 // Return value from the original node to inform the combiner than N is
12077 return SDValue(N
, 0);
12081 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
12082 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
12083 ARM::isBitFieldInvertedMask(~Mask
)) {
12084 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12085 // where lsb(mask) == #shamt and masked bits of B are known zero.
12086 SDValue ShAmt
= N00
.getOperand(1);
12087 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
12088 unsigned LSB
= countTrailingZeros(Mask
);
12092 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
12093 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
12095 DCI
.CombineTo(N
, Res
, false);
12096 // Return value from the original node to inform the combiner than N is
12098 return SDValue(N
, 0);
12104 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12121 static SDValue
PerformORCombine_i1(SDNode
*N
,
12122 TargetLowering::DAGCombinerInfo
&DCI
,
12123 const ARMSubtarget
*Subtarget
) {
12124 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12125 // together with predicates
12126 EVT VT
= N
->getValueType(0);
12127 SDValue N0
= N
->getOperand(0);
12128 SDValue N1
= N
->getOperand(1);
12130 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12131 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12132 if (N0
->getOpcode() == ARMISD::VCMP
)
12133 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12135 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12136 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12138 if (N1
->getOpcode() == ARMISD::VCMP
)
12139 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12141 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12142 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12145 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12148 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12149 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12151 if (!isValidMVECond(Opposite0
,
12152 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12153 !isValidMVECond(Opposite1
,
12154 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12157 SmallVector
<SDValue
, 4> Ops0
;
12158 Ops0
.push_back(N0
->getOperand(0));
12159 if (N0
->getOpcode() == ARMISD::VCMP
)
12160 Ops0
.push_back(N0
->getOperand(1));
12161 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12162 SmallVector
<SDValue
, 4> Ops1
;
12163 Ops1
.push_back(N1
->getOperand(0));
12164 if (N1
->getOpcode() == ARMISD::VCMP
)
12165 Ops1
.push_back(N1
->getOperand(1));
12166 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12168 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12169 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12170 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12171 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12172 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12175 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12176 static SDValue
PerformORCombine(SDNode
*N
,
12177 TargetLowering::DAGCombinerInfo
&DCI
,
12178 const ARMSubtarget
*Subtarget
) {
12179 // Attempt to use immediate-form VORR
12180 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12182 EVT VT
= N
->getValueType(0);
12183 SelectionDAG
&DAG
= DCI
.DAG
;
12185 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12188 APInt SplatBits
, SplatUndef
;
12189 unsigned SplatBitSize
;
12191 if (BVN
&& Subtarget
->hasNEON() &&
12192 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12193 if (SplatBitSize
<= 64) {
12195 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12196 SplatUndef
.getZExtValue(), SplatBitSize
,
12197 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12199 if (Val
.getNode()) {
12201 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12202 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12203 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12208 if (!Subtarget
->isThumb1Only()) {
12209 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12210 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12212 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12216 SDValue N0
= N
->getOperand(0);
12217 SDValue N1
= N
->getOperand(1);
12219 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12220 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12221 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12223 // The code below optimizes (or (and X, Y), Z).
12224 // The AND operand needs to have a single user to make these optimizations
12226 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12230 unsigned SplatBitSize
;
12233 APInt SplatBits0
, SplatBits1
;
12234 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12235 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12236 // Ensure that the second operand of both ands are constants
12237 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12238 HasAnyUndefs
) && !HasAnyUndefs
) {
12239 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12240 HasAnyUndefs
) && !HasAnyUndefs
) {
12241 // Ensure that the bit width of the constants are the same and that
12242 // the splat arguments are logical inverses as per the pattern we
12243 // are trying to simplify.
12244 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12245 SplatBits0
== ~SplatBits1
) {
12246 // Canonicalize the vector type to make instruction selection
12248 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12249 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12252 N1
->getOperand(0));
12253 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12259 if (Subtarget
->hasMVEIntegerOps() &&
12260 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12261 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12263 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12265 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12266 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12270 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12276 static SDValue
PerformXORCombine(SDNode
*N
,
12277 TargetLowering::DAGCombinerInfo
&DCI
,
12278 const ARMSubtarget
*Subtarget
) {
12279 EVT VT
= N
->getValueType(0);
12280 SelectionDAG
&DAG
= DCI
.DAG
;
12282 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12285 if (!Subtarget
->isThumb1Only()) {
12286 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12287 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12290 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12297 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12298 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12299 // their position in "to" (Rd).
12300 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12301 assert(N
->getOpcode() == ARMISD::BFI
);
12303 SDValue From
= N
->getOperand(1);
12304 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12305 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12307 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12308 // #C in the base of the SHR.
12309 if (From
->getOpcode() == ISD::SRL
&&
12310 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12311 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12312 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12313 FromMask
<<= Shift
.getLimitedValue(31);
12314 From
= From
->getOperand(0);
12320 // If A and B contain one contiguous set of bits, does A | B == A . B?
12322 // Neither A nor B must be zero.
12323 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12324 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12325 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12326 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12329 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12330 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12332 APInt ToMask
, FromMask
;
12333 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12334 SDValue To
= N
->getOperand(0);
12336 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12337 // aren't compatible, but not if they set the same bit in their destination as
12338 // we do (or that of any BFI we're going to combine with).
12340 APInt CombinedToMask
= ToMask
;
12341 while (V
.getOpcode() == ARMISD::BFI
) {
12342 APInt NewToMask
, NewFromMask
;
12343 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12344 if (NewFrom
!= From
) {
12345 // This BFI has a different base. Keep going.
12346 CombinedToMask
|= NewToMask
;
12347 V
= V
.getOperand(0);
12351 // Do the written bits conflict with any we've seen so far?
12352 if ((NewToMask
& CombinedToMask
).getBoolValue())
12353 // Conflicting bits - bail out because going further is unsafe.
12356 // Are the new bits contiguous when combined with the old bits?
12357 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12358 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12360 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12361 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12364 // We've seen a write to some bits, so track it.
12365 CombinedToMask
|= NewToMask
;
12367 V
= V
.getOperand(0);
12373 static SDValue
PerformBFICombine(SDNode
*N
,
12374 TargetLowering::DAGCombinerInfo
&DCI
) {
12375 SDValue N1
= N
->getOperand(1);
12376 if (N1
.getOpcode() == ISD::AND
) {
12377 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12378 // the bits being cleared by the AND are not demanded by the BFI.
12379 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12382 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12383 unsigned LSB
= countTrailingZeros(~InvMask
);
12384 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12386 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12387 "undefined behavior");
12388 unsigned Mask
= (1u << Width
) - 1;
12389 unsigned Mask2
= N11C
->getZExtValue();
12390 if ((Mask
& (~Mask2
)) == 0)
12391 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12392 N
->getOperand(0), N1
.getOperand(0),
12394 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12395 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12396 // Keep track of any consecutive bits set that all come from the same base
12397 // value. We can combine these together into a single BFI.
12398 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12399 if (CombineBFI
== SDValue())
12402 // We've found a BFI.
12403 APInt ToMask1
, FromMask1
;
12404 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12406 APInt ToMask2
, FromMask2
;
12407 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12408 assert(From1
== From2
);
12411 // First, unlink CombineBFI.
12412 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12413 // Then create a new BFI, combining the two together.
12414 APInt NewFromMask
= FromMask1
| FromMask2
;
12415 APInt NewToMask
= ToMask1
| ToMask2
;
12417 EVT VT
= N
->getValueType(0);
12420 if (NewFromMask
[0] == 0)
12421 From1
= DCI
.DAG
.getNode(
12422 ISD::SRL
, dl
, VT
, From1
,
12423 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12424 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12425 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12430 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12431 /// ARMISD::VMOVRRD.
12432 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12433 TargetLowering::DAGCombinerInfo
&DCI
,
12434 const ARMSubtarget
*Subtarget
) {
12435 // vmovrrd(vmovdrr x, y) -> x,y
12436 SDValue InDouble
= N
->getOperand(0);
12437 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12438 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12440 // vmovrrd(load f64) -> (load i32), (load i32)
12441 SDNode
*InNode
= InDouble
.getNode();
12442 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12443 InNode
->getValueType(0) == MVT::f64
&&
12444 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12445 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12446 // TODO: Should this be done for non-FrameIndex operands?
12447 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12449 SelectionDAG
&DAG
= DCI
.DAG
;
12451 SDValue BasePtr
= LD
->getBasePtr();
12453 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12454 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12456 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12457 DAG
.getConstant(4, DL
, MVT::i32
));
12459 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12460 LD
->getPointerInfo().getWithOffset(4),
12461 std::min(4U, LD
->getAlignment()),
12462 LD
->getMemOperand()->getFlags());
12464 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12465 if (DCI
.DAG
.getDataLayout().isBigEndian())
12466 std::swap (NewLD1
, NewLD2
);
12467 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12474 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12475 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12476 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12477 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12478 SDValue Op0
= N
->getOperand(0);
12479 SDValue Op1
= N
->getOperand(1);
12480 if (Op0
.getOpcode() == ISD::BITCAST
)
12481 Op0
= Op0
.getOperand(0);
12482 if (Op1
.getOpcode() == ISD::BITCAST
)
12483 Op1
= Op1
.getOperand(0);
12484 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12485 Op0
.getNode() == Op1
.getNode() &&
12486 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12487 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12488 N
->getValueType(0), Op0
.getOperand(0));
12492 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12493 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12494 /// i64 vector to have f64 elements, since the value can then be loaded
12495 /// directly into a VFP register.
12496 static bool hasNormalLoadOperand(SDNode
*N
) {
12497 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12498 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12499 SDNode
*Elt
= N
->getOperand(i
).getNode();
12500 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12506 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12507 /// ISD::BUILD_VECTOR.
12508 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12509 TargetLowering::DAGCombinerInfo
&DCI
,
12510 const ARMSubtarget
*Subtarget
) {
12511 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12512 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12513 // into a pair of GPRs, which is fine when the value is used as a scalar,
12514 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12515 SelectionDAG
&DAG
= DCI
.DAG
;
12516 if (N
->getNumOperands() == 2)
12517 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12520 // Load i64 elements as f64 values so that type legalization does not split
12521 // them up into i32 values.
12522 EVT VT
= N
->getValueType(0);
12523 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12526 SmallVector
<SDValue
, 8> Ops
;
12527 unsigned NumElts
= VT
.getVectorNumElements();
12528 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12529 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12531 // Make the DAGCombiner fold the bitcast.
12532 DCI
.AddToWorklist(V
.getNode());
12534 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12535 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12536 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12539 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12541 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12542 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12543 // At that time, we may have inserted bitcasts from integer to float.
12544 // If these bitcasts have survived DAGCombine, change the lowering of this
12545 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12546 // force to use floating point types.
12548 // Make sure we can change the type of the vector.
12549 // This is possible iff:
12550 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12551 // 1.1. Vector is used only once.
12552 // 1.2. Use is a bit convert to an integer type.
12553 // 2. The size of its operands are 32-bits (64-bits are not legal).
12554 EVT VT
= N
->getValueType(0);
12555 EVT EltVT
= VT
.getVectorElementType();
12557 // Check 1.1. and 2.
12558 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12561 // By construction, the input type must be float.
12562 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12565 SDNode
*Use
= *N
->use_begin();
12566 if (Use
->getOpcode() != ISD::BITCAST
||
12567 Use
->getValueType(0).isFloatingPoint())
12570 // Check profitability.
12571 // Model is, if more than half of the relevant operands are bitcast from
12572 // i32, turn the build_vector into a sequence of insert_vector_elt.
12573 // Relevant operands are everything that is not statically
12574 // (i.e., at compile time) bitcasted.
12575 unsigned NumOfBitCastedElts
= 0;
12576 unsigned NumElts
= VT
.getVectorNumElements();
12577 unsigned NumOfRelevantElts
= NumElts
;
12578 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12579 SDValue Elt
= N
->getOperand(Idx
);
12580 if (Elt
->getOpcode() == ISD::BITCAST
) {
12581 // Assume only bit cast to i32 will go away.
12582 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12583 ++NumOfBitCastedElts
;
12584 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12585 // Constants are statically casted, thus do not count them as
12586 // relevant operands.
12587 --NumOfRelevantElts
;
12590 // Check if more than half of the elements require a non-free bitcast.
12591 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12594 SelectionDAG
&DAG
= DCI
.DAG
;
12595 // Create the new vector type.
12596 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12597 // Check if the type is legal.
12598 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12599 if (!TLI
.isTypeLegal(VecVT
))
12603 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12604 // => BITCAST INSERT_VECTOR_ELT
12605 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12606 // (BITCAST EN), N.
12607 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12609 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12610 SDValue V
= N
->getOperand(Idx
);
12613 if (V
.getOpcode() == ISD::BITCAST
&&
12614 V
->getOperand(0).getValueType() == MVT::i32
)
12615 // Fold obvious case.
12616 V
= V
.getOperand(0);
12618 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12619 // Make the DAGCombiner fold the bitcasts.
12620 DCI
.AddToWorklist(V
.getNode());
12622 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12623 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12625 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12626 // Make the DAGCombiner fold the bitcasts.
12627 DCI
.AddToWorklist(Vec
.getNode());
12632 PerformPREDICATE_CASTCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12633 EVT VT
= N
->getValueType(0);
12634 SDValue Op
= N
->getOperand(0);
12637 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
12638 if (Op
->getOpcode() == ARMISD::PREDICATE_CAST
) {
12639 // If the valuetypes are the same, we can remove the cast entirely.
12640 if (Op
->getOperand(0).getValueType() == VT
)
12641 return Op
->getOperand(0);
12642 return DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
,
12643 Op
->getOperand(0).getValueType(), Op
->getOperand(0));
12649 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12650 /// ISD::INSERT_VECTOR_ELT.
12651 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12652 TargetLowering::DAGCombinerInfo
&DCI
) {
12653 // Bitcast an i64 load inserted into a vector to f64.
12654 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12655 EVT VT
= N
->getValueType(0);
12656 SDNode
*Elt
= N
->getOperand(1).getNode();
12657 if (VT
.getVectorElementType() != MVT::i64
||
12658 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12661 SelectionDAG
&DAG
= DCI
.DAG
;
12663 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12664 VT
.getVectorNumElements());
12665 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12666 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12667 // Make the DAGCombiner fold the bitcasts.
12668 DCI
.AddToWorklist(Vec
.getNode());
12669 DCI
.AddToWorklist(V
.getNode());
12670 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12671 Vec
, V
, N
->getOperand(2));
12672 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12675 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12676 /// ISD::VECTOR_SHUFFLE.
12677 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12678 // The LLVM shufflevector instruction does not require the shuffle mask
12679 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12680 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12681 // operands do not match the mask length, they are extended by concatenating
12682 // them with undef vectors. That is probably the right thing for other
12683 // targets, but for NEON it is better to concatenate two double-register
12684 // size vector operands into a single quad-register size vector. Do that
12685 // transformation here:
12686 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12687 // shuffle(concat(v1, v2), undef)
12688 SDValue Op0
= N
->getOperand(0);
12689 SDValue Op1
= N
->getOperand(1);
12690 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12691 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12692 Op0
.getNumOperands() != 2 ||
12693 Op1
.getNumOperands() != 2)
12695 SDValue Concat0Op1
= Op0
.getOperand(1);
12696 SDValue Concat1Op1
= Op1
.getOperand(1);
12697 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12699 // Skip the transformation if any of the types are illegal.
12700 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12701 EVT VT
= N
->getValueType(0);
12702 if (!TLI
.isTypeLegal(VT
) ||
12703 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12704 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12707 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12708 Op0
.getOperand(0), Op1
.getOperand(0));
12709 // Translate the shuffle mask.
12710 SmallVector
<int, 16> NewMask
;
12711 unsigned NumElts
= VT
.getVectorNumElements();
12712 unsigned HalfElts
= NumElts
/2;
12713 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12714 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12715 int MaskElt
= SVN
->getMaskElt(n
);
12717 if (MaskElt
< (int)HalfElts
)
12719 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12720 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12721 NewMask
.push_back(NewElt
);
12723 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12724 DAG
.getUNDEF(VT
), NewMask
);
12727 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12728 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12729 /// base address updates.
12730 /// For generic load/stores, the memory type is assumed to be a vector.
12731 /// The caller is assumed to have checked legality.
12732 static SDValue
CombineBaseUpdate(SDNode
*N
,
12733 TargetLowering::DAGCombinerInfo
&DCI
) {
12734 SelectionDAG
&DAG
= DCI
.DAG
;
12735 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12736 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12737 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12738 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12739 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12740 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12743 // Search for a use of the address operand that is an increment.
12744 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12745 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12746 SDNode
*User
= *UI
;
12747 if (User
->getOpcode() != ISD::ADD
||
12748 UI
.getUse().getResNo() != Addr
.getResNo())
12751 // Check that the add is independent of the load/store. Otherwise, folding
12752 // it would create a cycle. We can avoid searching through Addr as it's a
12753 // predecessor to both.
12754 SmallPtrSet
<const SDNode
*, 32> Visited
;
12755 SmallVector
<const SDNode
*, 16> Worklist
;
12756 Visited
.insert(Addr
.getNode());
12757 Worklist
.push_back(N
);
12758 Worklist
.push_back(User
);
12759 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12760 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12763 // Find the new opcode for the updating load/store.
12764 bool isLoadOp
= true;
12765 bool isLaneOp
= false;
12766 unsigned NewOpc
= 0;
12767 unsigned NumVecs
= 0;
12769 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12771 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12772 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12773 NumVecs
= 1; break;
12774 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12775 NumVecs
= 2; break;
12776 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12777 NumVecs
= 3; break;
12778 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12779 NumVecs
= 4; break;
12780 case Intrinsic::arm_neon_vld2dup
:
12781 case Intrinsic::arm_neon_vld3dup
:
12782 case Intrinsic::arm_neon_vld4dup
:
12783 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12784 // combining base updates for such intrinsics.
12786 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12787 NumVecs
= 2; isLaneOp
= true; break;
12788 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12789 NumVecs
= 3; isLaneOp
= true; break;
12790 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12791 NumVecs
= 4; isLaneOp
= true; break;
12792 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12793 NumVecs
= 1; isLoadOp
= false; break;
12794 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12795 NumVecs
= 2; isLoadOp
= false; break;
12796 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12797 NumVecs
= 3; isLoadOp
= false; break;
12798 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12799 NumVecs
= 4; isLoadOp
= false; break;
12800 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12801 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12802 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12803 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12804 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12805 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12809 switch (N
->getOpcode()) {
12810 default: llvm_unreachable("unexpected opcode for Neon base update");
12811 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12812 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12813 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12814 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12815 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12816 NumVecs
= 1; isLaneOp
= false; break;
12817 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12818 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12822 // Find the size of memory referenced by the load/store.
12825 VecTy
= N
->getValueType(0);
12826 } else if (isIntrinsic
) {
12827 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12829 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12830 VecTy
= N
->getOperand(1).getValueType();
12833 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12835 NumBytes
/= VecTy
.getVectorNumElements();
12837 // If the increment is a constant, it must match the memory ref size.
12838 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12839 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12840 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12841 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12842 // separate instructions that make it harder to use a non-constant update.
12846 // OK, we found an ADD we can fold into the base update.
12847 // Now, create a _UPD node, taking care of not breaking alignment.
12849 EVT AlignedVecTy
= VecTy
;
12850 unsigned Alignment
= MemN
->getAlignment();
12852 // If this is a less-than-standard-aligned load/store, change the type to
12853 // match the standard alignment.
12854 // The alignment is overlooked when selecting _UPD variants; and it's
12855 // easier to introduce bitcasts here than fix that.
12856 // There are 3 ways to get to this base-update combine:
12857 // - intrinsics: they are assumed to be properly aligned (to the standard
12858 // alignment of the memory type), so we don't need to do anything.
12859 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12860 // intrinsics, so, likewise, there's nothing to do.
12861 // - generic load/store instructions: the alignment is specified as an
12862 // explicit operand, rather than implicitly as the standard alignment
12863 // of the memory type (like the intrisics). We need to change the
12864 // memory type to match the explicit alignment. That way, we don't
12865 // generate non-standard-aligned ARMISD::VLDx nodes.
12866 if (isa
<LSBaseSDNode
>(N
)) {
12867 if (Alignment
== 0)
12869 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12870 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12871 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12872 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12873 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12874 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12876 // Don't set an explicit alignment on regular load/stores that we want
12877 // to transform to VLD/VST 1_UPD nodes.
12878 // This matches the behavior of regular load/stores, which only get an
12879 // explicit alignment if the MMO alignment is larger than the standard
12880 // alignment of the memory type.
12881 // Intrinsics, however, always get an explicit alignment, set to the
12882 // alignment of the MMO.
12886 // Create the new updating load/store node.
12887 // First, create an SDVTList for the new updating node's results.
12889 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12891 for (n
= 0; n
< NumResultVecs
; ++n
)
12892 Tys
[n
] = AlignedVecTy
;
12893 Tys
[n
++] = MVT::i32
;
12894 Tys
[n
] = MVT::Other
;
12895 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12897 // Then, gather the new node's operands.
12898 SmallVector
<SDValue
, 8> Ops
;
12899 Ops
.push_back(N
->getOperand(0)); // incoming chain
12900 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12901 Ops
.push_back(Inc
);
12903 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12904 // Try to match the intrinsic's signature
12905 Ops
.push_back(StN
->getValue());
12907 // Loads (and of course intrinsics) match the intrinsics' signature,
12908 // so just add all but the alignment operand.
12909 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12910 Ops
.push_back(N
->getOperand(i
));
12913 // For all node types, the alignment operand is always the last one.
12914 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12916 // If this is a non-standard-aligned STORE, the penultimate operand is the
12917 // stored value. Bitcast it to the aligned type.
12918 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12919 SDValue
&StVal
= Ops
[Ops
.size()-2];
12920 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12923 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12924 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12925 MemN
->getMemOperand());
12927 // Update the uses.
12928 SmallVector
<SDValue
, 5> NewResults
;
12929 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12930 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12932 // If this is an non-standard-aligned LOAD, the first result is the loaded
12933 // value. Bitcast it to the expected result type.
12934 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12935 SDValue
&LdVal
= NewResults
[0];
12936 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12939 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12940 DCI
.CombineTo(N
, NewResults
);
12941 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12948 static SDValue
PerformVLDCombine(SDNode
*N
,
12949 TargetLowering::DAGCombinerInfo
&DCI
) {
12950 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12953 return CombineBaseUpdate(N
, DCI
);
12956 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12957 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12958 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12960 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12961 SelectionDAG
&DAG
= DCI
.DAG
;
12962 EVT VT
= N
->getValueType(0);
12963 // vldN-dup instructions only support 64-bit vectors for N > 1.
12964 if (!VT
.is64BitVector())
12967 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12968 SDNode
*VLD
= N
->getOperand(0).getNode();
12969 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12971 unsigned NumVecs
= 0;
12972 unsigned NewOpc
= 0;
12973 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12974 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12976 NewOpc
= ARMISD::VLD2DUP
;
12977 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12979 NewOpc
= ARMISD::VLD3DUP
;
12980 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12982 NewOpc
= ARMISD::VLD4DUP
;
12987 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12988 // numbers match the load.
12989 unsigned VLDLaneNo
=
12990 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12991 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12993 // Ignore uses of the chain result.
12994 if (UI
.getUse().getResNo() == NumVecs
)
12996 SDNode
*User
= *UI
;
12997 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12998 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
13002 // Create the vldN-dup node.
13005 for (n
= 0; n
< NumVecs
; ++n
)
13007 Tys
[n
] = MVT::Other
;
13008 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
13009 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
13010 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
13011 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
13012 Ops
, VLDMemInt
->getMemoryVT(),
13013 VLDMemInt
->getMemOperand());
13015 // Update the uses.
13016 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13018 unsigned ResNo
= UI
.getUse().getResNo();
13019 // Ignore uses of the chain result.
13020 if (ResNo
== NumVecs
)
13022 SDNode
*User
= *UI
;
13023 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
13026 // Now the vldN-lane intrinsic is dead except for its chain result.
13027 // Update uses of the chain.
13028 std::vector
<SDValue
> VLDDupResults
;
13029 for (unsigned n
= 0; n
< NumVecs
; ++n
)
13030 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
13031 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
13032 DCI
.CombineTo(VLD
, VLDDupResults
);
13037 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
13038 /// ARMISD::VDUPLANE.
13039 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
13040 TargetLowering::DAGCombinerInfo
&DCI
) {
13041 SDValue Op
= N
->getOperand(0);
13043 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
13044 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
13045 if (CombineVLDDUP(N
, DCI
))
13046 return SDValue(N
, 0);
13048 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
13049 // redundant. Ignore bit_converts for now; element sizes are checked below.
13050 while (Op
.getOpcode() == ISD::BITCAST
)
13051 Op
= Op
.getOperand(0);
13052 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
13055 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13056 unsigned EltSize
= Op
.getScalarValueSizeInBits();
13057 // The canonical VMOV for a zero vector uses a 32-bit element size.
13058 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
13060 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
13062 EVT VT
= N
->getValueType(0);
13063 if (EltSize
> VT
.getScalarSizeInBits())
13066 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
13069 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
13070 static SDValue
PerformVDUPCombine(SDNode
*N
,
13071 TargetLowering::DAGCombinerInfo
&DCI
,
13072 const ARMSubtarget
*Subtarget
) {
13073 SelectionDAG
&DAG
= DCI
.DAG
;
13074 SDValue Op
= N
->getOperand(0);
13076 if (!Subtarget
->hasNEON())
13079 // Match VDUP(LOAD) -> VLD1DUP.
13080 // We match this pattern here rather than waiting for isel because the
13081 // transform is only legal for unindexed loads.
13082 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
13083 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
13084 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
13085 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
13086 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
13087 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
13088 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
13089 Ops
, LD
->getMemoryVT(),
13090 LD
->getMemOperand());
13091 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
13098 static SDValue
PerformLOADCombine(SDNode
*N
,
13099 TargetLowering::DAGCombinerInfo
&DCI
) {
13100 EVT VT
= N
->getValueType(0);
13102 // If this is a legal vector load, try to combine it into a VLD1_UPD.
13103 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
13104 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13105 return CombineBaseUpdate(N
, DCI
);
13110 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
13111 // pack all of the elements in one place. Next, store to memory in fewer
13113 static SDValue
PerformTruncatingStoreCombine(StoreSDNode
*St
,
13114 SelectionDAG
&DAG
) {
13115 SDValue StVal
= St
->getValue();
13116 EVT VT
= StVal
.getValueType();
13117 if (!St
->isTruncatingStore() || !VT
.isVector())
13119 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13120 EVT StVT
= St
->getMemoryVT();
13121 unsigned NumElems
= VT
.getVectorNumElements();
13122 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13123 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13124 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13126 // From, To sizes and ElemCount must be pow of two
13127 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
))
13130 // We are going to use the original vector elt for storing.
13131 // Accumulated smaller vector elements must be a multiple of the store size.
13132 if (0 != (NumElems
* FromEltSz
) % ToEltSz
)
13135 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13136 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13138 // Create a type on which we perform the shuffle.
13139 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13140 NumElems
* SizeRatio
);
13141 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13144 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13145 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13146 for (unsigned i
= 0; i
< NumElems
; ++i
)
13147 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian() ? (i
+ 1) * SizeRatio
- 1
13150 // Can't shuffle using an illegal type.
13151 if (!TLI
.isTypeLegal(WideVecVT
))
13154 SDValue Shuff
= DAG
.getVectorShuffle(
13155 WideVecVT
, DL
, WideVec
, DAG
.getUNDEF(WideVec
.getValueType()), ShuffleVec
);
13156 // At this point all of the data is stored at the bottom of the
13157 // register. We now need to save it to mem.
13159 // Find the largest store unit
13160 MVT StoreType
= MVT::i8
;
13161 for (MVT Tp
: MVT::integer_valuetypes()) {
13162 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13165 // Didn't find a legal store type.
13166 if (!TLI
.isTypeLegal(StoreType
))
13169 // Bitcast the original vector into a vector of store-size units
13171 EVT::getVectorVT(*DAG
.getContext(), StoreType
,
13172 VT
.getSizeInBits() / EVT(StoreType
).getSizeInBits());
13173 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13174 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13175 SmallVector
<SDValue
, 8> Chains
;
13176 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13177 TLI
.getPointerTy(DAG
.getDataLayout()));
13178 SDValue BasePtr
= St
->getBasePtr();
13180 // Perform one or more big stores into memory.
13181 unsigned E
= (ToEltSz
* NumElems
) / StoreType
.getSizeInBits();
13182 for (unsigned I
= 0; I
< E
; I
++) {
13183 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, StoreType
,
13184 ShuffWide
, DAG
.getIntPtrConstant(I
, DL
));
13186 DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
, St
->getPointerInfo(),
13187 St
->getAlignment(), St
->getMemOperand()->getFlags());
13189 DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
, Increment
);
13190 Chains
.push_back(Ch
);
13192 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13195 // Try taking a single vector store from an truncate (which would otherwise turn
13196 // into an expensive buildvector) and splitting it into a series of narrowing
13198 static SDValue
PerformSplittingToNarrowingStores(StoreSDNode
*St
,
13199 SelectionDAG
&DAG
) {
13200 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
13202 SDValue Trunc
= St
->getValue();
13203 if (Trunc
->getOpcode() != ISD::TRUNCATE
)
13205 EVT FromVT
= Trunc
->getOperand(0).getValueType();
13206 EVT ToVT
= Trunc
.getValueType();
13207 if (!ToVT
.isVector())
13209 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13210 EVT ToEltVT
= ToVT
.getVectorElementType();
13211 EVT FromEltVT
= FromVT
.getVectorElementType();
13213 unsigned NumElements
= 0;
13214 if (FromEltVT
== MVT::i32
&& (ToEltVT
== MVT::i16
|| ToEltVT
== MVT::i8
))
13216 if (FromEltVT
== MVT::i16
&& ToEltVT
== MVT::i8
)
13218 if (NumElements
== 0 || FromVT
.getVectorNumElements() == NumElements
||
13219 FromVT
.getVectorNumElements() % NumElements
!= 0)
13223 // Details about the old store
13224 SDValue Ch
= St
->getChain();
13225 SDValue BasePtr
= St
->getBasePtr();
13226 unsigned Alignment
= St
->getOriginalAlignment();
13227 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
13228 AAMDNodes AAInfo
= St
->getAAInfo();
13230 EVT NewFromVT
= EVT::getVectorVT(*DAG
.getContext(), FromEltVT
, NumElements
);
13231 EVT NewToVT
= EVT::getVectorVT(*DAG
.getContext(), ToEltVT
, NumElements
);
13233 SmallVector
<SDValue
, 4> Stores
;
13234 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
13235 unsigned NewOffset
= i
* NumElements
* ToEltVT
.getSizeInBits() / 8;
13236 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13239 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewFromVT
, Trunc
.getOperand(0),
13240 DAG
.getConstant(i
* NumElements
, DL
, MVT::i32
));
13241 SDValue Store
= DAG
.getTruncStore(
13242 Ch
, DL
, Extract
, NewPtr
, St
->getPointerInfo().getWithOffset(NewOffset
),
13243 NewToVT
, Alignment
, MMOFlags
, AAInfo
);
13244 Stores
.push_back(Store
);
13246 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Stores
);
13249 /// PerformSTORECombine - Target-specific dag combine xforms for
13251 static SDValue
PerformSTORECombine(SDNode
*N
,
13252 TargetLowering::DAGCombinerInfo
&DCI
,
13253 const ARMSubtarget
*Subtarget
) {
13254 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
13255 if (St
->isVolatile())
13257 SDValue StVal
= St
->getValue();
13258 EVT VT
= StVal
.getValueType();
13260 if (Subtarget
->hasNEON())
13261 if (SDValue Store
= PerformTruncatingStoreCombine(St
, DCI
.DAG
))
13264 if (Subtarget
->hasMVEIntegerOps())
13265 if (SDValue NewToken
= PerformSplittingToNarrowingStores(St
, DCI
.DAG
))
13268 if (!ISD::isNormalStore(St
))
13271 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13272 // ARM stores of arguments in the same cache line.
13273 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13274 StVal
.getNode()->hasOneUse()) {
13275 SelectionDAG
&DAG
= DCI
.DAG
;
13276 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13278 SDValue BasePtr
= St
->getBasePtr();
13279 SDValue NewST1
= DAG
.getStore(
13280 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13281 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13282 St
->getMemOperand()->getFlags());
13284 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13285 DAG
.getConstant(4, DL
, MVT::i32
));
13286 return DAG
.getStore(NewST1
.getValue(0), DL
,
13287 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13288 OffsetPtr
, St
->getPointerInfo(),
13289 std::min(4U, St
->getAlignment() / 2),
13290 St
->getMemOperand()->getFlags());
13293 if (StVal
.getValueType() == MVT::i64
&&
13294 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13296 // Bitcast an i64 store extracted from a vector to f64.
13297 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13298 SelectionDAG
&DAG
= DCI
.DAG
;
13300 SDValue IntVec
= StVal
.getOperand(0);
13301 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13302 IntVec
.getValueType().getVectorNumElements());
13303 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13304 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13305 Vec
, StVal
.getOperand(1));
13307 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13308 // Make the DAGCombiner fold the bitcasts.
13309 DCI
.AddToWorklist(Vec
.getNode());
13310 DCI
.AddToWorklist(ExtElt
.getNode());
13311 DCI
.AddToWorklist(V
.getNode());
13312 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13313 St
->getPointerInfo(), St
->getAlignment(),
13314 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13317 // If this is a legal vector store, try to combine it into a VST1_UPD.
13318 if (Subtarget
->hasNEON() && ISD::isNormalStore(N
) && VT
.isVector() &&
13319 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13320 return CombineBaseUpdate(N
, DCI
);
13325 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13326 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13327 /// when the VMUL has a constant operand that is a power of 2.
13329 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13330 /// vmul.f32 d16, d17, d16
13331 /// vcvt.s32.f32 d16, d16
13333 /// vcvt.s32.f32 d16, d16, #3
13334 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13335 const ARMSubtarget
*Subtarget
) {
13336 if (!Subtarget
->hasNEON())
13339 SDValue Op
= N
->getOperand(0);
13340 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13341 Op
.getOpcode() != ISD::FMUL
)
13344 SDValue ConstVec
= Op
->getOperand(1);
13345 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13348 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13349 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13350 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13351 uint32_t IntBits
= IntTy
.getSizeInBits();
13352 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13353 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13354 // These instructions only exist converting from f32 to i32. We can handle
13355 // smaller integers by generating an extra truncate, but larger ones would
13356 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13357 // these intructions only support v2i32/v4i32 types.
13361 BitVector UndefElements
;
13362 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13363 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13364 if (C
== -1 || C
== 0 || C
> 32)
13368 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13369 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13370 Intrinsic::arm_neon_vcvtfp2fxu
;
13371 SDValue FixConv
= DAG
.getNode(
13372 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13373 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13374 DAG
.getConstant(C
, dl
, MVT::i32
));
13376 if (IntBits
< FloatBits
)
13377 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13382 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13383 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13384 /// when the VDIV has a constant operand that is a power of 2.
13386 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13387 /// vcvt.f32.s32 d16, d16
13388 /// vdiv.f32 d16, d17, d16
13390 /// vcvt.f32.s32 d16, d16, #3
13391 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13392 const ARMSubtarget
*Subtarget
) {
13393 if (!Subtarget
->hasNEON())
13396 SDValue Op
= N
->getOperand(0);
13397 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13398 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13399 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13402 SDValue ConstVec
= N
->getOperand(1);
13403 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13406 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13407 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13408 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13409 uint32_t IntBits
= IntTy
.getSizeInBits();
13410 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13411 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13412 // These instructions only exist converting from i32 to f32. We can handle
13413 // smaller integers by generating an extra extend, but larger ones would
13414 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13415 // these intructions only support v2i32/v4i32 types.
13419 BitVector UndefElements
;
13420 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13421 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13422 if (C
== -1 || C
== 0 || C
> 32)
13426 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13427 SDValue ConvInput
= Op
.getOperand(0);
13428 if (IntBits
< FloatBits
)
13429 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13430 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13433 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13434 Intrinsic::arm_neon_vcvtfxu2fp
;
13435 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13437 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13438 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13441 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13442 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13443 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13446 // Don't do anything for most intrinsics.
13449 // Vector shifts: check for immediate versions and lower them.
13450 // Note: This is done during DAG combining instead of DAG legalizing because
13451 // the build_vectors for 64-bit vector element shift counts are generally
13452 // not legal, and it is hard to see their values after they get legalized to
13453 // loads from a constant pool.
13454 case Intrinsic::arm_neon_vshifts
:
13455 case Intrinsic::arm_neon_vshiftu
:
13456 case Intrinsic::arm_neon_vrshifts
:
13457 case Intrinsic::arm_neon_vrshiftu
:
13458 case Intrinsic::arm_neon_vrshiftn
:
13459 case Intrinsic::arm_neon_vqshifts
:
13460 case Intrinsic::arm_neon_vqshiftu
:
13461 case Intrinsic::arm_neon_vqshiftsu
:
13462 case Intrinsic::arm_neon_vqshiftns
:
13463 case Intrinsic::arm_neon_vqshiftnu
:
13464 case Intrinsic::arm_neon_vqshiftnsu
:
13465 case Intrinsic::arm_neon_vqrshiftns
:
13466 case Intrinsic::arm_neon_vqrshiftnu
:
13467 case Intrinsic::arm_neon_vqrshiftnsu
: {
13468 EVT VT
= N
->getOperand(1).getValueType();
13470 unsigned VShiftOpc
= 0;
13473 case Intrinsic::arm_neon_vshifts
:
13474 case Intrinsic::arm_neon_vshiftu
:
13475 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13476 VShiftOpc
= ARMISD::VSHLIMM
;
13479 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13480 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13481 : ARMISD::VSHRuIMM
);
13486 case Intrinsic::arm_neon_vrshifts
:
13487 case Intrinsic::arm_neon_vrshiftu
:
13488 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13492 case Intrinsic::arm_neon_vqshifts
:
13493 case Intrinsic::arm_neon_vqshiftu
:
13494 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13498 case Intrinsic::arm_neon_vqshiftsu
:
13499 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13501 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13503 case Intrinsic::arm_neon_vrshiftn
:
13504 case Intrinsic::arm_neon_vqshiftns
:
13505 case Intrinsic::arm_neon_vqshiftnu
:
13506 case Intrinsic::arm_neon_vqshiftnsu
:
13507 case Intrinsic::arm_neon_vqrshiftns
:
13508 case Intrinsic::arm_neon_vqrshiftnu
:
13509 case Intrinsic::arm_neon_vqrshiftnsu
:
13510 // Narrowing shifts require an immediate right shift.
13511 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13513 llvm_unreachable("invalid shift count for narrowing vector shift "
13517 llvm_unreachable("unhandled vector shift");
13521 case Intrinsic::arm_neon_vshifts
:
13522 case Intrinsic::arm_neon_vshiftu
:
13523 // Opcode already set above.
13525 case Intrinsic::arm_neon_vrshifts
:
13526 VShiftOpc
= ARMISD::VRSHRsIMM
;
13528 case Intrinsic::arm_neon_vrshiftu
:
13529 VShiftOpc
= ARMISD::VRSHRuIMM
;
13531 case Intrinsic::arm_neon_vrshiftn
:
13532 VShiftOpc
= ARMISD::VRSHRNIMM
;
13534 case Intrinsic::arm_neon_vqshifts
:
13535 VShiftOpc
= ARMISD::VQSHLsIMM
;
13537 case Intrinsic::arm_neon_vqshiftu
:
13538 VShiftOpc
= ARMISD::VQSHLuIMM
;
13540 case Intrinsic::arm_neon_vqshiftsu
:
13541 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13543 case Intrinsic::arm_neon_vqshiftns
:
13544 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13546 case Intrinsic::arm_neon_vqshiftnu
:
13547 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13549 case Intrinsic::arm_neon_vqshiftnsu
:
13550 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13552 case Intrinsic::arm_neon_vqrshiftns
:
13553 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13555 case Intrinsic::arm_neon_vqrshiftnu
:
13556 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13558 case Intrinsic::arm_neon_vqrshiftnsu
:
13559 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13564 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13565 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13568 case Intrinsic::arm_neon_vshiftins
: {
13569 EVT VT
= N
->getOperand(1).getValueType();
13571 unsigned VShiftOpc
= 0;
13573 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13574 VShiftOpc
= ARMISD::VSLIIMM
;
13575 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13576 VShiftOpc
= ARMISD::VSRIIMM
;
13578 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13582 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13583 N
->getOperand(1), N
->getOperand(2),
13584 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13587 case Intrinsic::arm_neon_vqrshifts
:
13588 case Intrinsic::arm_neon_vqrshiftu
:
13589 // No immediate versions of these to check for.
13596 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13597 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13598 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13599 /// vector element shift counts are generally not legal, and it is hard to see
13600 /// their values after they get legalized to loads from a constant pool.
13601 static SDValue
PerformShiftCombine(SDNode
*N
,
13602 TargetLowering::DAGCombinerInfo
&DCI
,
13603 const ARMSubtarget
*ST
) {
13604 SelectionDAG
&DAG
= DCI
.DAG
;
13605 EVT VT
= N
->getValueType(0);
13606 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13607 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13608 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13609 SDValue N1
= N
->getOperand(1);
13610 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13611 SDValue N0
= N
->getOperand(0);
13612 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13613 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13614 APInt::getHighBitsSet(32, 16)))
13615 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13619 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13620 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13621 N
->getOperand(0)->hasOneUse()) {
13622 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13624 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13625 // usually show up because instcombine prefers to canonicalize it to
13626 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13627 // out of GEP lowering in some cases.
13628 SDValue N0
= N
->getOperand(0);
13629 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13632 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13633 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13636 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13637 // Don't transform uxtb/uxth.
13638 if (AndMask
== 255 || AndMask
== 65535)
13640 if (isMask_32(AndMask
)) {
13641 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13642 if (MaskedBits
> ShiftAmt
) {
13644 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13645 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13646 return DAG
.getNode(
13647 ISD::SRL
, DL
, MVT::i32
, SHL
,
13648 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13653 // Nothing to be done for scalar shifts.
13654 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13655 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13657 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13662 switch (N
->getOpcode()) {
13663 default: llvm_unreachable("unexpected shift opcode");
13666 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13668 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13669 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13675 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13676 unsigned VShiftOpc
=
13677 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13679 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13680 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13686 // Look for a sign/zero extend of a larger than legal load. This can be split
13687 // into two extending loads, which are simpler to deal with than an arbitrary
13689 static SDValue
PerformSplittingToWideningLoad(SDNode
*N
, SelectionDAG
&DAG
) {
13690 SDValue N0
= N
->getOperand(0);
13691 if (N0
.getOpcode() != ISD::LOAD
)
13693 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
.getNode());
13694 if (!LD
->isSimple() || !N0
.hasOneUse() || LD
->isIndexed() ||
13695 LD
->getExtensionType() != ISD::NON_EXTLOAD
)
13697 EVT FromVT
= LD
->getValueType(0);
13698 EVT ToVT
= N
->getValueType(0);
13699 if (!ToVT
.isVector())
13701 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13702 EVT ToEltVT
= ToVT
.getVectorElementType();
13703 EVT FromEltVT
= FromVT
.getVectorElementType();
13705 unsigned NumElements
= 0;
13706 if (ToEltVT
== MVT::i32
&& (FromEltVT
== MVT::i16
|| FromEltVT
== MVT::i8
))
13708 if (ToEltVT
== MVT::i16
&& FromEltVT
== MVT::i8
)
13710 if (NumElements
== 0 ||
13711 FromVT
.getVectorNumElements() == NumElements
||
13712 FromVT
.getVectorNumElements() % NumElements
!= 0 ||
13713 !isPowerOf2_32(NumElements
))
13717 // Details about the old load
13718 SDValue Ch
= LD
->getChain();
13719 SDValue BasePtr
= LD
->getBasePtr();
13720 unsigned Alignment
= LD
->getOriginalAlignment();
13721 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
13722 AAMDNodes AAInfo
= LD
->getAAInfo();
13724 ISD::LoadExtType NewExtType
=
13725 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
13726 SDValue Offset
= DAG
.getUNDEF(BasePtr
.getValueType());
13727 EVT NewFromVT
= FromVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13728 EVT NewToVT
= ToVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13729 unsigned NewOffset
= NewFromVT
.getSizeInBits() / 8;
13730 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13732 // Split the load in half, each side of which is extended separately. This
13733 // is good enough, as legalisation will take it from there. They are either
13734 // already legal or they will be split further into something that is
13737 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, BasePtr
, Offset
,
13738 LD
->getPointerInfo(), NewFromVT
, Alignment
, MMOFlags
, AAInfo
);
13740 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, NewPtr
, Offset
,
13741 LD
->getPointerInfo().getWithOffset(NewOffset
), NewFromVT
,
13742 Alignment
, MMOFlags
, AAInfo
);
13744 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
13745 SDValue(NewLoad1
.getNode(), 1),
13746 SDValue(NewLoad2
.getNode(), 1));
13747 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewChain
);
13748 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ToVT
, NewLoad1
, NewLoad2
);
13751 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13752 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13753 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13754 const ARMSubtarget
*ST
) {
13755 SDValue N0
= N
->getOperand(0);
13757 // Check for sign- and zero-extensions of vector extract operations of 8-
13758 // and 16-bit vector elements. NEON supports these directly. They are
13759 // handled during DAG combining because type legalization will promote them
13760 // to 32-bit types and it is messy to recognize the operations after that.
13761 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13762 SDValue Vec
= N0
.getOperand(0);
13763 SDValue Lane
= N0
.getOperand(1);
13764 EVT VT
= N
->getValueType(0);
13765 EVT EltVT
= N0
.getValueType();
13766 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13768 if (VT
== MVT::i32
&&
13769 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13770 TLI
.isTypeLegal(Vec
.getValueType()) &&
13771 isa
<ConstantSDNode
>(Lane
)) {
13774 switch (N
->getOpcode()) {
13775 default: llvm_unreachable("unexpected opcode");
13776 case ISD::SIGN_EXTEND
:
13777 Opc
= ARMISD::VGETLANEs
;
13779 case ISD::ZERO_EXTEND
:
13780 case ISD::ANY_EXTEND
:
13781 Opc
= ARMISD::VGETLANEu
;
13784 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13788 if (ST
->hasMVEIntegerOps())
13789 if (SDValue NewLoad
= PerformSplittingToWideningLoad(N
, DAG
))
13795 static const APInt
*isPowerOf2Constant(SDValue V
) {
13796 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13799 const APInt
*CV
= &C
->getAPIntValue();
13800 return CV
->isPowerOf2() ? CV
: nullptr;
13803 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13804 // If we have a CMOV, OR and AND combination such as:
13809 // * CN is a single bit;
13810 // * All bits covered by CM are known zero in y
13812 // Then we can convert this into a sequence of BFI instructions. This will
13813 // always be a win if CM is a single bit, will always be no worse than the
13814 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13815 // three bits (due to the extra IT instruction).
13817 SDValue Op0
= CMOV
->getOperand(0);
13818 SDValue Op1
= CMOV
->getOperand(1);
13819 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13820 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13821 SDValue CmpZ
= CMOV
->getOperand(4);
13823 // The compare must be against zero.
13824 if (!isNullConstant(CmpZ
->getOperand(1)))
13827 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13828 SDValue And
= CmpZ
->getOperand(0);
13829 if (And
->getOpcode() != ISD::AND
)
13831 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13834 SDValue X
= And
->getOperand(0);
13836 if (CC
== ARMCC::EQ
) {
13837 // We're performing an "equal to zero" compare. Swap the operands so we
13838 // canonicalize on a "not equal to zero" compare.
13839 std::swap(Op0
, Op1
);
13841 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13844 if (Op1
->getOpcode() != ISD::OR
)
13847 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13850 SDValue Y
= Op1
->getOperand(0);
13855 // Now, is it profitable to continue?
13856 APInt OrCI
= OrC
->getAPIntValue();
13857 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13858 if (OrCI
.countPopulation() > Heuristic
)
13861 // Lastly, can we determine that the bits defined by OrCI
13863 KnownBits Known
= DAG
.computeKnownBits(Y
);
13864 if ((OrCI
& Known
.Zero
) != OrCI
)
13867 // OK, we can do the combine.
13870 EVT VT
= X
.getValueType();
13871 unsigned BitInX
= AndC
->logBase2();
13874 // We must shift X first.
13875 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13876 DAG
.getConstant(BitInX
, dl
, VT
));
13879 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13880 BitInY
< NumActiveBits
; ++BitInY
) {
13881 if (OrCI
[BitInY
] == 0)
13883 APInt
Mask(VT
.getSizeInBits(), 0);
13884 Mask
.setBit(BitInY
);
13885 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13886 // Confusingly, the operand is an *inverted* mask.
13887 DAG
.getConstant(~Mask
, dl
, VT
));
13893 // Given N, the value controlling the conditional branch, search for the loop
13894 // intrinsic, returning it, along with how the value is used. We need to handle
13895 // patterns such as the following:
13896 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13897 // (brcond (setcc (loop.decrement), 0, eq), exit)
13898 // (brcond (setcc (loop.decrement), 0, ne), header)
13899 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13901 switch (N
->getOpcode()) {
13905 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13907 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13910 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13913 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13916 if (Const
->isNullValue())
13918 else if (Const
->isOne())
13922 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13923 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13925 case ISD::INTRINSIC_W_CHAIN
: {
13926 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13927 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13928 IntOp
!= Intrinsic::loop_decrement_reg
)
13936 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13937 TargetLowering::DAGCombinerInfo
&DCI
,
13938 const ARMSubtarget
*ST
) {
13940 // The hwloop intrinsics that we're interested are used for control-flow,
13941 // either for entering or exiting the loop:
13942 // - test.set.loop.iterations will test whether its operand is zero. If it
13943 // is zero, the proceeding branch should not enter the loop.
13944 // - loop.decrement.reg also tests whether its operand is zero. If it is
13945 // zero, the proceeding branch should not branch back to the beginning of
13947 // So here, we need to check that how the brcond is using the result of each
13948 // of the intrinsics to ensure that we're branching to the right place at the
13954 bool Negate
= false;
13955 SDValue Chain
= N
->getOperand(0);
13958 if (N
->getOpcode() == ISD::BRCOND
) {
13960 Cond
= N
->getOperand(1);
13961 Dest
= N
->getOperand(2);
13963 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13964 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13965 Cond
= N
->getOperand(2);
13966 Dest
= N
->getOperand(4);
13967 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13968 if (!Const
->isOne() && !Const
->isNullValue())
13970 Imm
= Const
->getZExtValue();
13975 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13980 CC
= ISD::getSetCCInverse(CC
, true);
13982 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13983 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13984 (CC
== ISD::SETNE
&& Imm
== 1) ||
13985 (CC
== ISD::SETLT
&& Imm
== 1) ||
13986 (CC
== ISD::SETULT
&& Imm
== 1);
13989 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13990 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13991 (CC
== ISD::SETNE
&& Imm
== 0) ||
13992 (CC
== ISD::SETGT
&& Imm
== 0) ||
13993 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13994 (CC
== ISD::SETGE
&& Imm
== 1) ||
13995 (CC
== ISD::SETUGE
&& Imm
== 1);
13998 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13999 "unsupported condition");
14002 SelectionDAG
&DAG
= DCI
.DAG
;
14003 SDValue Elements
= Int
.getOperand(2);
14004 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
14005 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
14006 && "expected single br user");
14007 SDNode
*Br
= *N
->use_begin();
14008 SDValue OtherTarget
= Br
->getOperand(1);
14010 // Update the unconditional branch to branch to the given Dest.
14011 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
14012 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
14013 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
14014 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
14017 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
14019 // We expect this 'instruction' to branch when the counter is zero.
14020 if (IsTrueIfZero(CC
, Imm
)) {
14021 SDValue Ops
[] = { Chain
, Elements
, Dest
};
14022 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14024 // The logic is the reverse of what we need for WLS, so find the other
14025 // basic block target: the target of the proceeding br.
14026 UpdateUncondBr(Br
, Dest
, DAG
);
14028 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
14029 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14031 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
14034 SDValue Size
= DAG
.getTargetConstant(
14035 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
14036 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
14037 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
14038 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
14039 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
14041 // We expect this instruction to branch when the count is not zero.
14042 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
14044 // Update the unconditional branch to target the loop preheader if we've
14045 // found the condition has been reversed.
14046 if (Target
== OtherTarget
)
14047 UpdateUncondBr(Br
, Dest
, DAG
);
14049 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
14050 SDValue(LoopDec
.getNode(), 1), Chain
);
14052 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
14053 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
14058 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
14060 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14061 SDValue Cmp
= N
->getOperand(4);
14062 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14063 // Only looking at NE cases.
14066 EVT VT
= N
->getValueType(0);
14068 SDValue LHS
= Cmp
.getOperand(0);
14069 SDValue RHS
= Cmp
.getOperand(1);
14070 SDValue Chain
= N
->getOperand(0);
14071 SDValue BB
= N
->getOperand(1);
14072 SDValue ARMcc
= N
->getOperand(2);
14073 ARMCC::CondCodes CC
=
14074 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14076 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
14077 // -> (brcond Chain BB CC CPSR Cmp)
14078 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
14079 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
14080 LHS
->getOperand(0)->hasOneUse()) {
14081 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
14082 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
14083 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14084 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14085 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
14086 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
14087 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14088 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14089 return DAG
.getNode(
14090 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
14091 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
14098 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
14100 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14101 SDValue Cmp
= N
->getOperand(4);
14102 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14103 // Only looking at EQ and NE cases.
14106 EVT VT
= N
->getValueType(0);
14108 SDValue LHS
= Cmp
.getOperand(0);
14109 SDValue RHS
= Cmp
.getOperand(1);
14110 SDValue FalseVal
= N
->getOperand(0);
14111 SDValue TrueVal
= N
->getOperand(1);
14112 SDValue ARMcc
= N
->getOperand(2);
14113 ARMCC::CondCodes CC
=
14114 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14116 // BFI is only available on V6T2+.
14117 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
14118 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
14139 /// FIXME: Turn this into a target neutral optimization?
14141 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
14142 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
14143 N
->getOperand(3), Cmp
);
14144 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
14146 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
14147 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
14148 N
->getOperand(3), NewCmp
);
14151 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
14152 // -> (cmov F T CC CPSR Cmp)
14153 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
14154 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
14155 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14156 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14157 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
14158 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14159 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14160 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
14161 LHS
->getOperand(2), LHS
->getOperand(3),
14162 LHS
->getOperand(4));
14166 if (!VT
.isInteger())
14169 // Materialize a boolean comparison for integers so we can avoid branching.
14170 if (isNullConstant(FalseVal
)) {
14171 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
14172 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
14173 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
14174 // right 5 bits will make that 32 be 1, otherwise it will be 0.
14175 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
14176 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14177 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
14178 DAG
.getConstant(5, dl
, MVT::i32
));
14180 // CMOV 0, 1, ==, (CMPZ x, y) ->
14181 // (ADDCARRY (SUB x, y), t:0, t:1)
14182 // where t = (SUBCARRY 0, (SUB x, y), 0)
14184 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
14185 // x != y. In other words, a carry C == 1 when x == y, C == 0
14187 // The final ADDCARRY computes
14188 // x - y + (0 - (x - y)) + C == C
14189 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14190 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14191 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
14192 // ISD::SUBCARRY returns a borrow but we want the carry here
14195 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
14196 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
14197 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
14199 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
14200 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
14201 // This seems pointless but will allow us to combine it further below.
14202 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14204 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14205 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14206 Sub
.getValue(1), SDValue());
14207 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
14208 N
->getOperand(3), CPSRGlue
.getValue(1));
14211 } else if (isNullConstant(TrueVal
)) {
14212 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
14213 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
14214 // This seems pointless but will allow us to combine it further below
14215 // Note that we change == for != as this is the dual for the case above.
14216 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14218 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14219 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14220 Sub
.getValue(1), SDValue());
14221 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
14222 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
14223 N
->getOperand(3), CPSRGlue
.getValue(1));
14228 // On Thumb1, the DAG above may be further combined if z is a power of 2
14230 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14231 // t1 = (USUBO (SUB x, y), 1)
14232 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14233 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14235 // This also handles the special case of comparing against zero; it's
14236 // essentially, the same pattern, except there's no SUBS:
14237 // CMOV x, z, !=, (CMPZ x, 0) ->
14238 // t1 = (USUBO x, 1)
14239 // t2 = (SUBCARRY x, t1:0, t1:1)
14240 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14241 const APInt
*TrueConst
;
14242 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
14243 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
14244 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
14245 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
14246 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
14247 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14248 unsigned ShiftAmount
= TrueConst
->logBase2();
14250 TrueVal
= DAG
.getConstant(1, dl
, VT
);
14251 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
14252 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
14255 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
14256 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14259 if (Res
.getNode()) {
14260 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14261 // Capture demanded bits information that would be otherwise lost.
14262 if (Known
.Zero
== 0xfffffffe)
14263 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14264 DAG
.getValueType(MVT::i1
));
14265 else if (Known
.Zero
== 0xffffff00)
14266 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14267 DAG
.getValueType(MVT::i8
));
14268 else if (Known
.Zero
== 0xffff0000)
14269 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14270 DAG
.getValueType(MVT::i16
));
14276 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14277 DAGCombinerInfo
&DCI
) const {
14278 switch (N
->getOpcode()) {
14280 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14281 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14282 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14283 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14284 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14285 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14286 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14287 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14288 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14290 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14292 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14293 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14294 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14295 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14296 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14297 case ISD::STORE
: return PerformSTORECombine(N
, DCI
, Subtarget
);
14298 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14299 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14300 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14301 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14302 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14303 case ISD::FP_TO_SINT
:
14304 case ISD::FP_TO_UINT
:
14305 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14307 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14308 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14312 return PerformShiftCombine(N
, DCI
, Subtarget
);
14313 case ISD::SIGN_EXTEND
:
14314 case ISD::ZERO_EXTEND
:
14315 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14316 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14317 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14318 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14319 case ARMISD::VLD1DUP
:
14320 case ARMISD::VLD2DUP
:
14321 case ARMISD::VLD3DUP
:
14322 case ARMISD::VLD4DUP
:
14323 return PerformVLDCombine(N
, DCI
);
14324 case ARMISD::BUILD_VECTOR
:
14325 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14326 case ARMISD::PREDICATE_CAST
:
14327 return PerformPREDICATE_CASTCombine(N
, DCI
);
14328 case ARMISD::SMULWB
: {
14329 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14330 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14331 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14335 case ARMISD::SMULWT
: {
14336 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14337 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14338 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14342 case ARMISD::SMLALBB
: {
14343 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14344 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14345 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14346 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14350 case ARMISD::SMLALBT
: {
14351 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14352 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14353 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14354 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14355 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14356 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14360 case ARMISD::SMLALTB
: {
14361 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14362 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14363 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14364 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14365 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14366 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14370 case ARMISD::SMLALTT
: {
14371 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14372 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14373 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14374 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14378 case ISD::INTRINSIC_VOID
:
14379 case ISD::INTRINSIC_W_CHAIN
:
14380 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14381 case Intrinsic::arm_neon_vld1
:
14382 case Intrinsic::arm_neon_vld1x2
:
14383 case Intrinsic::arm_neon_vld1x3
:
14384 case Intrinsic::arm_neon_vld1x4
:
14385 case Intrinsic::arm_neon_vld2
:
14386 case Intrinsic::arm_neon_vld3
:
14387 case Intrinsic::arm_neon_vld4
:
14388 case Intrinsic::arm_neon_vld2lane
:
14389 case Intrinsic::arm_neon_vld3lane
:
14390 case Intrinsic::arm_neon_vld4lane
:
14391 case Intrinsic::arm_neon_vld2dup
:
14392 case Intrinsic::arm_neon_vld3dup
:
14393 case Intrinsic::arm_neon_vld4dup
:
14394 case Intrinsic::arm_neon_vst1
:
14395 case Intrinsic::arm_neon_vst1x2
:
14396 case Intrinsic::arm_neon_vst1x3
:
14397 case Intrinsic::arm_neon_vst1x4
:
14398 case Intrinsic::arm_neon_vst2
:
14399 case Intrinsic::arm_neon_vst3
:
14400 case Intrinsic::arm_neon_vst4
:
14401 case Intrinsic::arm_neon_vst2lane
:
14402 case Intrinsic::arm_neon_vst3lane
:
14403 case Intrinsic::arm_neon_vst4lane
:
14404 return PerformVLDCombine(N
, DCI
);
14412 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14414 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14417 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14418 unsigned Alignment
,
14419 MachineMemOperand::Flags
,
14420 bool *Fast
) const {
14421 // Depends what it gets converted into if the type is weird.
14422 if (!VT
.isSimple())
14425 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14426 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14427 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14429 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14430 // Unaligned access can use (for example) LRDB, LRDH, LDR
14431 if (AllowsUnaligned
) {
14433 *Fast
= Subtarget
->hasV7Ops();
14438 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14439 // For any little-endian targets with neon, we can support unaligned ld/st
14440 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14441 // A big-endian target may also explicitly support unaligned accesses
14442 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14449 if (!Subtarget
->hasMVEIntegerOps())
14452 // These are for predicates
14453 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14459 // These are for truncated stores/narrowing loads. They are fine so long as
14460 // the alignment is at least the size of the item being loaded
14461 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14462 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14468 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14469 // VSTRW.U32 all store the vector register in exactly the same format, and
14470 // differ only in the range of their immediate offset field and the required
14471 // alignment. So there is always a store that can be used, regardless of
14474 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14475 // VREV64.8) pair and get the same effect. This will likely be better than
14476 // aligning the vector through the stack.
14477 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14478 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14479 Ty
== MVT::v2f64
) {
14488 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14489 unsigned AlignCheck
) {
14490 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14491 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14494 EVT
ARMTargetLowering::getOptimalMemOpType(
14495 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14496 bool ZeroMemset
, bool MemcpyStrSrc
,
14497 const AttributeList
&FuncAttributes
) const {
14498 // See if we can use NEON instructions for this...
14499 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14500 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14503 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14504 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14505 MachineMemOperand::MONone
, &Fast
) &&
14508 } else if (Size
>= 8 &&
14509 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14510 (allowsMisalignedMemoryAccesses(
14511 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14517 // Let the target-independent logic figure it out.
14521 // 64-bit integers are split into their high and low parts and held in two
14522 // different registers, so the trunc is free since the low register can just
14524 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14525 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14527 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14528 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14529 return (SrcBits
== 64 && DestBits
== 32);
14532 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14533 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14534 !DstVT
.isInteger())
14536 unsigned SrcBits
= SrcVT
.getSizeInBits();
14537 unsigned DestBits
= DstVT
.getSizeInBits();
14538 return (SrcBits
== 64 && DestBits
== 32);
14541 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14542 if (Val
.getOpcode() != ISD::LOAD
)
14545 EVT VT1
= Val
.getValueType();
14546 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14547 !VT2
.isSimple() || !VT2
.isInteger())
14550 switch (VT1
.getSimpleVT().SimpleTy
) {
14555 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14562 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14563 if (!VT
.isSimple())
14566 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14567 // negate values directly (fneg is free). So, we don't want to let the DAG
14568 // combiner rewrite fneg into xors and some other instructions. For f16 and
14569 // FullFP16 argument passing, some bitcast nodes may be introduced,
14570 // triggering this DAG combine rewrite, so we are avoiding that with this.
14571 switch (VT
.getSimpleVT().SimpleTy
) {
14574 return Subtarget
->hasFullFP16();
14580 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14581 /// of the vector elements.
14582 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14583 auto areExtDoubled
= [](Instruction
*Ext
) {
14584 return Ext
->getType()->getScalarSizeInBits() ==
14585 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14588 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14589 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14590 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14591 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14597 /// Check if sinking \p I's operands to I's basic block is profitable, because
14598 /// the operands can be folded into a target instruction, e.g.
14599 /// sext/zext can be folded into vsubl.
14600 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14601 SmallVectorImpl
<Use
*> &Ops
) const {
14602 if (!I
->getType()->isVectorTy())
14605 if (Subtarget
->hasNEON()) {
14606 switch (I
->getOpcode()) {
14607 case Instruction::Sub
:
14608 case Instruction::Add
: {
14609 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14611 Ops
.push_back(&I
->getOperandUse(0));
14612 Ops
.push_back(&I
->getOperandUse(1));
14620 if (!Subtarget
->hasMVEIntegerOps())
14623 auto IsSinker
= [](Instruction
*I
, int Operand
) {
14624 switch (I
->getOpcode()) {
14625 case Instruction::Add
:
14626 case Instruction::Mul
:
14628 case Instruction::Sub
:
14629 return Operand
== 1;
14636 if (!isa
<ShuffleVectorInst
>(I
->getOperand(Op
)))
14638 if (!IsSinker(I
, Op
))
14640 if (!match(I
->getOperand(Op
),
14641 m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14642 m_Undef(), m_Zero()))) {
14645 Instruction
*Shuffle
= cast
<Instruction
>(I
->getOperand(Op
));
14646 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
14647 // and vector registers
14648 for (Use
&U
: Shuffle
->uses()) {
14649 Instruction
*Insn
= cast
<Instruction
>(U
.getUser());
14650 if (!IsSinker(Insn
, U
.getOperandNo()))
14653 Ops
.push_back(&Shuffle
->getOperandUse(0));
14654 Ops
.push_back(&I
->getOperandUse(Op
));
14658 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14659 EVT VT
= ExtVal
.getValueType();
14661 if (!isTypeLegal(VT
))
14664 // Don't create a loadext if we can fold the extension into a wide/long
14666 // If there's more than one user instruction, the loadext is desirable no
14667 // matter what. There can be two uses by the same instruction.
14668 if (ExtVal
->use_empty() ||
14669 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14672 SDNode
*U
= *ExtVal
->use_begin();
14673 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14674 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14680 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14681 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14684 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14687 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14689 // Assuming the caller doesn't have a zeroext or signext return parameter,
14690 // truncation all the way down to i1 is valid.
14694 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14695 const AddrMode
&AM
, Type
*Ty
,
14696 unsigned AS
) const {
14697 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14698 if (Subtarget
->hasFPAO())
14699 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14705 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14709 unsigned Scale
= 1;
14710 switch (VT
.getSimpleVT().SimpleTy
) {
14720 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14726 if ((V
& (Scale
- 1)) != 0)
14728 return isUInt
<5>(V
/ Scale
);
14731 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14732 const ARMSubtarget
*Subtarget
) {
14733 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14735 if (VT
.isVector() && Subtarget
->hasNEON())
14737 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14738 !Subtarget
->hasMVEFloatOps())
14741 bool IsNeg
= false;
14747 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14749 // MVE: size * imm7
14750 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14751 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14754 return isShiftedUInt
<7,2>(V
);
14757 return isShiftedUInt
<7,1>(V
);
14759 return isUInt
<7>(V
);
14765 // half VLDR: 2 * imm8
14766 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14767 return isShiftedUInt
<8, 1>(V
);
14768 // VLDR and LDRD: 4 * imm8
14769 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14770 return isShiftedUInt
<8, 2>(V
);
14772 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14773 // + imm12 or - imm8
14775 return isUInt
<8>(V
);
14776 return isUInt
<12>(V
);
14782 /// isLegalAddressImmediate - Return true if the integer value can be used
14783 /// as the offset of the target addressing mode for load / store of the
14785 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14786 const ARMSubtarget
*Subtarget
) {
14790 if (!VT
.isSimple())
14793 if (Subtarget
->isThumb1Only())
14794 return isLegalT1AddressImmediate(V
, VT
);
14795 else if (Subtarget
->isThumb2())
14796 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14801 switch (VT
.getSimpleVT().SimpleTy
) {
14802 default: return false;
14807 return isUInt
<12>(V
);
14810 return isUInt
<8>(V
);
14813 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14815 return isShiftedUInt
<8, 2>(V
);
14819 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14821 int Scale
= AM
.Scale
;
14825 switch (VT
.getSimpleVT().SimpleTy
) {
14826 default: return false;
14834 Scale
= Scale
& ~1;
14835 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14837 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14838 // version in Thumb mode.
14842 // r * 2 (this can be lowered to r + r).
14843 if (!AM
.HasBaseReg
&& Scale
== 2)
14847 // Note, we allow "void" uses (basically, uses that aren't loads or
14848 // stores), because arm allows folding a scale into many arithmetic
14849 // operations. This should be made more precise and revisited later.
14851 // Allow r << imm, but the imm has to be a multiple of two.
14852 if (Scale
& 1) return false;
14853 return isPowerOf2_32(Scale
);
14857 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14859 const int Scale
= AM
.Scale
;
14861 // Negative scales are not supported in Thumb1.
14865 // Thumb1 addressing modes do not support register scaling excepting the
14866 // following cases:
14867 // 1. Scale == 1 means no scaling.
14868 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14869 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14872 /// isLegalAddressingMode - Return true if the addressing mode represented
14873 /// by AM is legal for this target, for a load/store of the specified type.
14874 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14875 const AddrMode
&AM
, Type
*Ty
,
14876 unsigned AS
, Instruction
*I
) const {
14877 EVT VT
= getValueType(DL
, Ty
, true);
14878 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14881 // Can never fold addr of global into load/store.
14885 switch (AM
.Scale
) {
14886 case 0: // no scale reg, must be "r+i" or "r", or "i".
14889 // ARM doesn't support any R+R*scale+imm addr modes.
14893 if (!VT
.isSimple())
14896 if (Subtarget
->isThumb1Only())
14897 return isLegalT1ScaledAddressingMode(AM
, VT
);
14899 if (Subtarget
->isThumb2())
14900 return isLegalT2ScaledAddressingMode(AM
, VT
);
14902 int Scale
= AM
.Scale
;
14903 switch (VT
.getSimpleVT().SimpleTy
) {
14904 default: return false;
14908 if (Scale
< 0) Scale
= -Scale
;
14912 return isPowerOf2_32(Scale
& ~1);
14916 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14918 // r * 2 (this can be lowered to r + r).
14919 if (!AM
.HasBaseReg
&& Scale
== 2)
14924 // Note, we allow "void" uses (basically, uses that aren't loads or
14925 // stores), because arm allows folding a scale into many arithmetic
14926 // operations. This should be made more precise and revisited later.
14928 // Allow r << imm, but the imm has to be a multiple of two.
14929 if (Scale
& 1) return false;
14930 return isPowerOf2_32(Scale
);
14936 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14937 /// icmp immediate, that is the target has icmp instructions which can compare
14938 /// a register against the immediate without having to materialize the
14939 /// immediate into a register.
14940 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14941 // Thumb2 and ARM modes can use cmn for negative immediates.
14942 if (!Subtarget
->isThumb())
14943 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14944 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14945 if (Subtarget
->isThumb2())
14946 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14947 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14948 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14949 return Imm
>= 0 && Imm
<= 255;
14952 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14953 /// *or sub* immediate, that is the target has add or sub instructions which can
14954 /// add a register with the immediate without having to materialize the
14955 /// immediate into a register.
14956 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14957 // Same encoding for add/sub, just flip the sign.
14958 int64_t AbsImm
= std::abs(Imm
);
14959 if (!Subtarget
->isThumb())
14960 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14961 if (Subtarget
->isThumb2())
14962 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14963 // Thumb1 only has 8-bit unsigned immediate.
14964 return AbsImm
>= 0 && AbsImm
<= 255;
14967 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14968 bool isSEXTLoad
, SDValue
&Base
,
14969 SDValue
&Offset
, bool &isInc
,
14970 SelectionDAG
&DAG
) {
14971 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14974 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14975 // AddressingMode 3
14976 Base
= Ptr
->getOperand(0);
14977 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14978 int RHSC
= (int)RHS
->getZExtValue();
14979 if (RHSC
< 0 && RHSC
> -256) {
14980 assert(Ptr
->getOpcode() == ISD::ADD
);
14982 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14986 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14987 Offset
= Ptr
->getOperand(1);
14989 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14990 // AddressingMode 2
14991 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14992 int RHSC
= (int)RHS
->getZExtValue();
14993 if (RHSC
< 0 && RHSC
> -0x1000) {
14994 assert(Ptr
->getOpcode() == ISD::ADD
);
14996 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14997 Base
= Ptr
->getOperand(0);
15002 if (Ptr
->getOpcode() == ISD::ADD
) {
15004 ARM_AM::ShiftOpc ShOpcVal
=
15005 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
15006 if (ShOpcVal
!= ARM_AM::no_shift
) {
15007 Base
= Ptr
->getOperand(1);
15008 Offset
= Ptr
->getOperand(0);
15010 Base
= Ptr
->getOperand(0);
15011 Offset
= Ptr
->getOperand(1);
15016 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
15017 Base
= Ptr
->getOperand(0);
15018 Offset
= Ptr
->getOperand(1);
15022 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
15026 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
15027 bool isSEXTLoad
, SDValue
&Base
,
15028 SDValue
&Offset
, bool &isInc
,
15029 SelectionDAG
&DAG
) {
15030 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15033 Base
= Ptr
->getOperand(0);
15034 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15035 int RHSC
= (int)RHS
->getZExtValue();
15036 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
15037 assert(Ptr
->getOpcode() == ISD::ADD
);
15039 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15041 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
15042 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15043 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15051 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
15052 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
15053 SDValue
&Offset
, bool &isInc
,
15054 SelectionDAG
&DAG
) {
15055 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15057 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
15060 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
15061 int RHSC
= (int)RHS
->getZExtValue();
15063 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
15064 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
15065 assert(Ptr
->getOpcode() == ISD::ADD
);
15067 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15069 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
15070 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15071 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15077 // Try to find a matching instruction based on s/zext, Alignment, Offset and
15079 Base
= Ptr
->getOperand(0);
15080 if (VT
== MVT::v4i16
) {
15081 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
15083 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
15084 if (IsInRange(RHSC
, 0x80, 1))
15086 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
15087 IsInRange(RHSC
, 0x80, 4))
15089 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
15090 IsInRange(RHSC
, 0x80, 2))
15092 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
15097 /// getPreIndexedAddressParts - returns true by value, base pointer and
15098 /// offset pointer and addressing mode by reference if the node's address
15099 /// can be legally represented as pre-indexed load / store address.
15101 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
15103 ISD::MemIndexedMode
&AM
,
15104 SelectionDAG
&DAG
) const {
15105 if (Subtarget
->isThumb1Only())
15111 bool isSEXTLoad
= false;
15112 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15113 Ptr
= LD
->getBasePtr();
15114 VT
= LD
->getMemoryVT();
15115 Align
= LD
->getAlignment();
15116 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15117 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15118 Ptr
= ST
->getBasePtr();
15119 VT
= ST
->getMemoryVT();
15120 Align
= ST
->getAlignment();
15125 bool isLegal
= false;
15127 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15128 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
15129 Subtarget
->isLittle(), Base
, Offset
,
15132 if (Subtarget
->isThumb2())
15133 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15134 Offset
, isInc
, DAG
);
15136 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15137 Offset
, isInc
, DAG
);
15142 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
15146 /// getPostIndexedAddressParts - returns true by value, base pointer and
15147 /// offset pointer and addressing mode by reference if this node can be
15148 /// combined with a load / store to form a post-indexed load / store.
15149 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
15152 ISD::MemIndexedMode
&AM
,
15153 SelectionDAG
&DAG
) const {
15157 bool isSEXTLoad
= false, isNonExt
;
15158 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15159 VT
= LD
->getMemoryVT();
15160 Ptr
= LD
->getBasePtr();
15161 Align
= LD
->getAlignment();
15162 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15163 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
15164 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15165 VT
= ST
->getMemoryVT();
15166 Ptr
= ST
->getBasePtr();
15167 Align
= ST
->getAlignment();
15168 isNonExt
= !ST
->isTruncatingStore();
15172 if (Subtarget
->isThumb1Only()) {
15173 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
15174 // must be non-extending/truncating, i32, with an offset of 4.
15175 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
15176 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
15178 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
15179 if (!RHS
|| RHS
->getZExtValue() != 4)
15182 Offset
= Op
->getOperand(1);
15183 Base
= Op
->getOperand(0);
15184 AM
= ISD::POST_INC
;
15189 bool isLegal
= false;
15191 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15192 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
15193 Subtarget
->isLittle(), Base
, Offset
,
15196 if (Subtarget
->isThumb2())
15197 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15200 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15207 // Swap base ptr and offset to catch more post-index load / store when
15208 // it's legal. In Thumb2 mode, offset must be an immediate.
15209 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
15210 !Subtarget
->isThumb2())
15211 std::swap(Base
, Offset
);
15213 // Post-indexed load / store update the base pointer.
15218 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
15222 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
15224 const APInt
&DemandedElts
,
15225 const SelectionDAG
&DAG
,
15226 unsigned Depth
) const {
15227 unsigned BitWidth
= Known
.getBitWidth();
15229 switch (Op
.getOpcode()) {
15235 // Special cases when we convert a carry to a boolean.
15236 if (Op
.getResNo() == 0) {
15237 SDValue LHS
= Op
.getOperand(0);
15238 SDValue RHS
= Op
.getOperand(1);
15239 // (ADDE 0, 0, C) will give us a single bit.
15240 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
15241 isNullConstant(RHS
)) {
15242 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
15247 case ARMISD::CMOV
: {
15248 // Bits are known zero/one if known on the LHS and RHS.
15249 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
15250 if (Known
.isUnknown())
15253 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
15254 Known
.Zero
&= KnownRHS
.Zero
;
15255 Known
.One
&= KnownRHS
.One
;
15258 case ISD::INTRINSIC_W_CHAIN
: {
15259 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
15260 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
15263 case Intrinsic::arm_ldaex
:
15264 case Intrinsic::arm_ldrex
: {
15265 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
15266 unsigned MemBits
= VT
.getScalarSizeInBits();
15267 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
15272 case ARMISD::BFI
: {
15273 // Conservatively, we can recurse down the first operand
15274 // and just mask out all affected bits.
15275 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
15277 // The operand to BFI is already a mask suitable for removing the bits it
15279 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
15280 const APInt
&Mask
= CI
->getAPIntValue();
15281 Known
.Zero
&= Mask
;
15285 case ARMISD::VGETLANEs
:
15286 case ARMISD::VGETLANEu
: {
15287 const SDValue
&SrcSV
= Op
.getOperand(0);
15288 EVT VecVT
= SrcSV
.getValueType();
15289 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
15290 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
15291 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
15292 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
15293 "VGETLANE index out of bounds");
15294 unsigned Idx
= Pos
->getZExtValue();
15295 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
15296 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15298 EVT VT
= Op
.getValueType();
15299 const unsigned DstSz
= VT
.getScalarSizeInBits();
15300 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15302 assert(SrcSz
== Known
.getBitWidth());
15303 assert(DstSz
> SrcSz
);
15304 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15305 Known
= Known
.sext(DstSz
);
15307 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15309 assert(DstSz
== Known
.getBitWidth());
15316 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15317 const APInt
&DemandedAPInt
,
15318 TargetLoweringOpt
&TLO
) const {
15319 // Delay optimization, so we don't have to deal with illegal types, or block
15324 // Only optimize AND for now.
15325 if (Op
.getOpcode() != ISD::AND
)
15328 EVT VT
= Op
.getValueType();
15334 assert(VT
== MVT::i32
&& "Unexpected integer type");
15336 // Make sure the RHS really is a constant.
15337 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15341 unsigned Mask
= C
->getZExtValue();
15343 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15344 unsigned ShrunkMask
= Mask
& Demanded
;
15345 unsigned ExpandedMask
= Mask
| ~Demanded
;
15347 // If the mask is all zeros, let the target-independent code replace the
15348 // result with zero.
15349 if (ShrunkMask
== 0)
15352 // If the mask is all ones, erase the AND. (Currently, the target-independent
15353 // code won't do this, so we have to do it explicitly to avoid an infinite
15354 // loop in obscure cases.)
15355 if (ExpandedMask
== ~0U)
15356 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15358 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15359 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15361 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15362 if (NewMask
== Mask
)
15365 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15366 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15367 return TLO
.CombineTo(Op
, NewOp
);
15370 // Prefer uxtb mask.
15371 if (IsLegalMask(0xFF))
15372 return UseMask(0xFF);
15374 // Prefer uxth mask.
15375 if (IsLegalMask(0xFFFF))
15376 return UseMask(0xFFFF);
15378 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15379 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15380 if (ShrunkMask
< 256)
15381 return UseMask(ShrunkMask
);
15383 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15384 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15385 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15386 return UseMask(ExpandedMask
);
15388 // Potential improvements:
15390 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15391 // We could try to prefer Thumb1 immediates which can be lowered to a
15392 // two-instruction sequence.
15393 // We could try to recognize more legal ARM/Thumb2 immediates here.
15399 //===----------------------------------------------------------------------===//
15400 // ARM Inline Assembly Support
15401 //===----------------------------------------------------------------------===//
15403 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15404 // Looking for "rev" which is V6+.
15405 if (!Subtarget
->hasV6Ops())
15408 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15409 std::string AsmStr
= IA
->getAsmString();
15410 SmallVector
<StringRef
, 4> AsmPieces
;
15411 SplitString(AsmStr
, AsmPieces
, ";\n");
15413 switch (AsmPieces
.size()) {
15414 default: return false;
15416 AsmStr
= AsmPieces
[0];
15418 SplitString(AsmStr
, AsmPieces
, " \t,");
15421 if (AsmPieces
.size() == 3 &&
15422 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15423 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15424 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15425 if (Ty
&& Ty
->getBitWidth() == 32)
15426 return IntrinsicLowering::LowerToByteSwap(CI
);
15434 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15435 // At this point, we have to lower this constraint to something else, so we
15436 // lower it to an "r" or "w". However, by doing this we will force the result
15437 // to be in register, while the X constraint is much more permissive.
15439 // Although we are correct (we are free to emit anything, without
15440 // constraints), we might break use cases that would expect us to be more
15441 // efficient and emit something else.
15442 if (!Subtarget
->hasVFP2Base())
15444 if (ConstraintVT
.isFloatingPoint())
15446 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15447 (ConstraintVT
.getSizeInBits() == 64 ||
15448 ConstraintVT
.getSizeInBits() == 128))
15454 /// getConstraintType - Given a constraint letter, return the type of
15455 /// constraint it is for this target.
15456 ARMTargetLowering::ConstraintType
15457 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15458 unsigned S
= Constraint
.size();
15460 switch (Constraint
[0]) {
15462 case 'l': return C_RegisterClass
;
15463 case 'w': return C_RegisterClass
;
15464 case 'h': return C_RegisterClass
;
15465 case 'x': return C_RegisterClass
;
15466 case 't': return C_RegisterClass
;
15467 case 'j': return C_Immediate
; // Constant for movw.
15468 // An address with a single base register. Due to the way we
15469 // currently handle addresses it is the same as an 'r' memory constraint.
15470 case 'Q': return C_Memory
;
15472 } else if (S
== 2) {
15473 switch (Constraint
[0]) {
15475 case 'T': return C_RegisterClass
;
15476 // All 'U+' constraints are addresses.
15477 case 'U': return C_Memory
;
15480 return TargetLowering::getConstraintType(Constraint
);
15483 /// Examine constraint type and operand type and determine a weight value.
15484 /// This object must already have been set up with the operand type
15485 /// and the current alternative constraint selected.
15486 TargetLowering::ConstraintWeight
15487 ARMTargetLowering::getSingleConstraintMatchWeight(
15488 AsmOperandInfo
&info
, const char *constraint
) const {
15489 ConstraintWeight weight
= CW_Invalid
;
15490 Value
*CallOperandVal
= info
.CallOperandVal
;
15491 // If we don't have a value, we can't do a match,
15492 // but allow it at the lowest weight.
15493 if (!CallOperandVal
)
15495 Type
*type
= CallOperandVal
->getType();
15496 // Look at the constraint type.
15497 switch (*constraint
) {
15499 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15502 if (type
->isIntegerTy()) {
15503 if (Subtarget
->isThumb())
15504 weight
= CW_SpecificReg
;
15506 weight
= CW_Register
;
15510 if (type
->isFloatingPointTy())
15511 weight
= CW_Register
;
15517 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15519 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15520 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15521 switch (Constraint
.size()) {
15523 // GCC ARM Constraint Letters
15524 switch (Constraint
[0]) {
15525 case 'l': // Low regs or general regs.
15526 if (Subtarget
->isThumb())
15527 return RCPair(0U, &ARM::tGPRRegClass
);
15528 return RCPair(0U, &ARM::GPRRegClass
);
15529 case 'h': // High regs or no regs.
15530 if (Subtarget
->isThumb())
15531 return RCPair(0U, &ARM::hGPRRegClass
);
15534 if (Subtarget
->isThumb1Only())
15535 return RCPair(0U, &ARM::tGPRRegClass
);
15536 return RCPair(0U, &ARM::GPRRegClass
);
15538 if (VT
== MVT::Other
)
15540 if (VT
== MVT::f32
)
15541 return RCPair(0U, &ARM::SPRRegClass
);
15542 if (VT
.getSizeInBits() == 64)
15543 return RCPair(0U, &ARM::DPRRegClass
);
15544 if (VT
.getSizeInBits() == 128)
15545 return RCPair(0U, &ARM::QPRRegClass
);
15548 if (VT
== MVT::Other
)
15550 if (VT
== MVT::f32
)
15551 return RCPair(0U, &ARM::SPR_8RegClass
);
15552 if (VT
.getSizeInBits() == 64)
15553 return RCPair(0U, &ARM::DPR_8RegClass
);
15554 if (VT
.getSizeInBits() == 128)
15555 return RCPair(0U, &ARM::QPR_8RegClass
);
15558 if (VT
== MVT::Other
)
15560 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15561 return RCPair(0U, &ARM::SPRRegClass
);
15562 if (VT
.getSizeInBits() == 64)
15563 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15564 if (VT
.getSizeInBits() == 128)
15565 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15571 if (Constraint
[0] == 'T') {
15572 switch (Constraint
[1]) {
15576 return RCPair(0U, &ARM::tGPREvenRegClass
);
15578 return RCPair(0U, &ARM::tGPROddRegClass
);
15587 if (StringRef("{cc}").equals_lower(Constraint
))
15588 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15590 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15593 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15594 /// vector. If it is invalid, don't add anything to Ops.
15595 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15596 std::string
&Constraint
,
15597 std::vector
<SDValue
>&Ops
,
15598 SelectionDAG
&DAG
) const {
15601 // Currently only support length 1 constraints.
15602 if (Constraint
.length() != 1) return;
15604 char ConstraintLetter
= Constraint
[0];
15605 switch (ConstraintLetter
) {
15608 case 'I': case 'J': case 'K': case 'L':
15609 case 'M': case 'N': case 'O':
15610 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15614 int64_t CVal64
= C
->getSExtValue();
15615 int CVal
= (int) CVal64
;
15616 // None of these constraints allow values larger than 32 bits. Check
15617 // that the value fits in an int.
15618 if (CVal
!= CVal64
)
15621 switch (ConstraintLetter
) {
15623 // Constant suitable for movw, must be between 0 and
15625 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15626 if (CVal
>= 0 && CVal
<= 65535)
15630 if (Subtarget
->isThumb1Only()) {
15631 // This must be a constant between 0 and 255, for ADD
15633 if (CVal
>= 0 && CVal
<= 255)
15635 } else if (Subtarget
->isThumb2()) {
15636 // A constant that can be used as an immediate value in a
15637 // data-processing instruction.
15638 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15641 // A constant that can be used as an immediate value in a
15642 // data-processing instruction.
15643 if (ARM_AM::getSOImmVal(CVal
) != -1)
15649 if (Subtarget
->isThumb1Only()) {
15650 // This must be a constant between -255 and -1, for negated ADD
15651 // immediates. This can be used in GCC with an "n" modifier that
15652 // prints the negated value, for use with SUB instructions. It is
15653 // not useful otherwise but is implemented for compatibility.
15654 if (CVal
>= -255 && CVal
<= -1)
15657 // This must be a constant between -4095 and 4095. It is not clear
15658 // what this constraint is intended for. Implemented for
15659 // compatibility with GCC.
15660 if (CVal
>= -4095 && CVal
<= 4095)
15666 if (Subtarget
->isThumb1Only()) {
15667 // A 32-bit value where only one byte has a nonzero value. Exclude
15668 // zero to match GCC. This constraint is used by GCC internally for
15669 // constants that can be loaded with a move/shift combination.
15670 // It is not useful otherwise but is implemented for compatibility.
15671 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15673 } else if (Subtarget
->isThumb2()) {
15674 // A constant whose bitwise inverse can be used as an immediate
15675 // value in a data-processing instruction. This can be used in GCC
15676 // with a "B" modifier that prints the inverted value, for use with
15677 // BIC and MVN instructions. It is not useful otherwise but is
15678 // implemented for compatibility.
15679 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15682 // A constant whose bitwise inverse can be used as an immediate
15683 // value in a data-processing instruction. This can be used in GCC
15684 // with a "B" modifier that prints the inverted value, for use with
15685 // BIC and MVN instructions. It is not useful otherwise but is
15686 // implemented for compatibility.
15687 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15693 if (Subtarget
->isThumb1Only()) {
15694 // This must be a constant between -7 and 7,
15695 // for 3-operand ADD/SUB immediate instructions.
15696 if (CVal
>= -7 && CVal
< 7)
15698 } else if (Subtarget
->isThumb2()) {
15699 // A constant whose negation can be used as an immediate value in a
15700 // data-processing instruction. This can be used in GCC with an "n"
15701 // modifier that prints the negated value, for use with SUB
15702 // instructions. It is not useful otherwise but is implemented for
15704 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15707 // A constant whose negation can be used as an immediate value in a
15708 // data-processing instruction. This can be used in GCC with an "n"
15709 // modifier that prints the negated value, for use with SUB
15710 // instructions. It is not useful otherwise but is implemented for
15712 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15718 if (Subtarget
->isThumb1Only()) {
15719 // This must be a multiple of 4 between 0 and 1020, for
15720 // ADD sp + immediate.
15721 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15724 // A power of two or a constant between 0 and 32. This is used in
15725 // GCC for the shift amount on shifted register operands, but it is
15726 // useful in general for any shift amounts.
15727 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15733 if (Subtarget
->isThumb1Only()) {
15734 // This must be a constant between 0 and 31, for shift amounts.
15735 if (CVal
>= 0 && CVal
<= 31)
15741 if (Subtarget
->isThumb1Only()) {
15742 // This must be a multiple of 4 between -508 and 508, for
15743 // ADD/SUB sp = sp + immediate.
15744 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15749 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15753 if (Result
.getNode()) {
15754 Ops
.push_back(Result
);
15757 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15760 static RTLIB::Libcall
getDivRemLibcall(
15761 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15762 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15763 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15764 "Unhandled Opcode in getDivRemLibcall");
15765 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15766 N
->getOpcode() == ISD::SREM
;
15769 default: llvm_unreachable("Unexpected request for libcall!");
15770 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15771 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15772 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15773 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15778 static TargetLowering::ArgListTy
getDivRemArgList(
15779 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15780 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15781 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15782 "Unhandled Opcode in getDivRemArgList");
15783 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15784 N
->getOpcode() == ISD::SREM
;
15785 TargetLowering::ArgListTy Args
;
15786 TargetLowering::ArgListEntry Entry
;
15787 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15788 EVT ArgVT
= N
->getOperand(i
).getValueType();
15789 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15790 Entry
.Node
= N
->getOperand(i
);
15792 Entry
.IsSExt
= isSigned
;
15793 Entry
.IsZExt
= !isSigned
;
15794 Args
.push_back(Entry
);
15796 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15797 std::swap(Args
[0], Args
[1]);
15801 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15802 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15803 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15804 Subtarget
->isTargetWindows()) &&
15805 "Register-based DivRem lowering only");
15806 unsigned Opcode
= Op
->getOpcode();
15807 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15808 "Invalid opcode for Div/Rem lowering");
15809 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15810 EVT VT
= Op
->getValueType(0);
15811 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15814 // If the target has hardware divide, use divide + multiply + subtract:
15816 // rem = a - b * div
15817 // return {div, rem}
15818 // This should be lowered into UDIV/SDIV + MLS later on.
15819 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15820 : Subtarget
->hasDivideInARMMode();
15821 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15822 Op
->getSimpleValueType(0) == MVT::i32
) {
15823 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15824 const SDValue Dividend
= Op
->getOperand(0);
15825 const SDValue Divisor
= Op
->getOperand(1);
15826 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15827 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15828 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15830 SDValue Values
[2] = {Div
, Rem
};
15831 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15834 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15835 VT
.getSimpleVT().SimpleTy
);
15836 SDValue InChain
= DAG
.getEntryNode();
15838 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15842 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15843 getPointerTy(DAG
.getDataLayout()));
15845 Type
*RetTy
= StructType::get(Ty
, Ty
);
15847 if (Subtarget
->isTargetWindows())
15848 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15850 TargetLowering::CallLoweringInfo
CLI(DAG
);
15851 CLI
.setDebugLoc(dl
).setChain(InChain
)
15852 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15853 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15855 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15856 return CallInfo
.first
;
15859 // Lowers REM using divmod helpers
15860 // see RTABI section 4.2/4.3
15861 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15862 // Build return types (div and rem)
15863 std::vector
<Type
*> RetTyParams
;
15864 Type
*RetTyElement
;
15866 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15867 default: llvm_unreachable("Unexpected request for libcall!");
15868 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15869 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15870 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15871 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15874 RetTyParams
.push_back(RetTyElement
);
15875 RetTyParams
.push_back(RetTyElement
);
15876 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15877 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15879 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15881 SDValue InChain
= DAG
.getEntryNode();
15882 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15884 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15885 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15886 getPointerTy(DAG
.getDataLayout()));
15888 if (Subtarget
->isTargetWindows())
15889 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15892 CallLoweringInfo
CLI(DAG
);
15893 CLI
.setChain(InChain
)
15894 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15895 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15896 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15898 // Return second (rem) result operand (first contains div)
15899 SDNode
*ResNode
= CallResult
.first
.getNode();
15900 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15901 return ResNode
->getOperand(1);
15905 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15906 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15910 SDValue Chain
= Op
.getOperand(0);
15911 SDValue Size
= Op
.getOperand(1);
15913 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15914 "no-stack-arg-probe")) {
15915 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15916 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15917 Chain
= SP
.getValue(1);
15918 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15920 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15921 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15922 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15923 SDValue Ops
[2] = { SP
, Chain
};
15924 return DAG
.getMergeValues(Ops
, DL
);
15927 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15928 DAG
.getConstant(2, DL
, MVT::i32
));
15931 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15932 Flag
= Chain
.getValue(1);
15934 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15935 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15937 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15938 Chain
= NewSP
.getValue(1);
15940 SDValue Ops
[2] = { NewSP
, Chain
};
15941 return DAG
.getMergeValues(Ops
, DL
);
15944 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15945 SDValue SrcVal
= Op
.getOperand(0);
15946 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15947 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15948 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15949 "Unexpected type for custom-lowering FP_EXTEND");
15951 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15952 "With both FP DP and 16, any FP conversion is legal!");
15954 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15955 "With FP16, 16 to 32 conversion is legal!");
15957 // Either we are converting from 16 -> 64, without FP16 and/or
15958 // FP.double-precision or without Armv8-fp. So we must do it in two
15960 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15961 // without FP16. So we must do a function call.
15964 MakeLibCallOptions CallOptions
;
15966 // Instruction from 16 -> 32
15967 if (Subtarget
->hasFP16())
15968 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15969 // Lib call from 16 -> 32
15971 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15972 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15973 "Unexpected type for custom-lowering FP_EXTEND");
15975 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
15981 // For sure now SrcVal is 32 bits
15982 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15983 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15985 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15986 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15987 "Unexpected type for custom-lowering FP_EXTEND");
15988 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
15991 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15992 SDValue SrcVal
= Op
.getOperand(0);
15993 EVT SrcVT
= SrcVal
.getValueType();
15994 EVT DstVT
= Op
.getValueType();
15995 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15996 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15998 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15999 "Unexpected type for custom-lowering FP_ROUND");
16001 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
16002 "With both FP DP and 16, any FP conversion is legal!");
16006 // Instruction from 32 -> 16 if hasFP16 is valid
16007 if (SrcSz
== 32 && Subtarget
->hasFP16())
16010 // Lib call from 32 -> 16 / 64 -> [32, 16]
16011 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
16012 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16013 "Unexpected type for custom-lowering FP_ROUND");
16014 MakeLibCallOptions CallOptions
;
16015 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
16018 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
16019 SelectionDAG
&DAG
) const {
16020 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
16021 MVT HalfT
= MVT::i32
;
16023 SDValue Hi
, Lo
, Tmp
;
16025 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
16026 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
16029 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
16030 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
16032 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16033 DAG
.getConstant(0, dl
, HalfT
));
16034 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16035 DAG
.getConstant(1, dl
, HalfT
));
16037 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
16038 DAG
.getConstant(OpTypeBits
- 1, dl
,
16039 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
16040 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
16041 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
16042 SDValue(Lo
.getNode(), 1));
16043 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
16044 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
16046 Results
.push_back(Lo
);
16047 Results
.push_back(Hi
);
16051 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
16052 // The ARM target isn't yet aware of offsets.
16056 bool ARM::isBitFieldInvertedMask(unsigned v
) {
16057 if (v
== 0xffffffff)
16060 // there can be 1's on either or both "outsides", all the "inside"
16061 // bits must be 0's
16062 return isShiftedMask_32(~v
);
16065 /// isFPImmLegal - Returns true if the target can instruction select the
16066 /// specified FP immediate natively. If false, the legalizer will
16067 /// materialize the FP immediate as a load from a constant pool.
16068 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
16069 bool ForCodeSize
) const {
16070 if (!Subtarget
->hasVFP3Base())
16072 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
16073 return ARM_AM::getFP16Imm(Imm
) != -1;
16074 if (VT
== MVT::f32
)
16075 return ARM_AM::getFP32Imm(Imm
) != -1;
16076 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
16077 return ARM_AM::getFP64Imm(Imm
) != -1;
16081 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
16082 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
16083 /// specified in the intrinsic calls.
16084 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
16086 MachineFunction
&MF
,
16087 unsigned Intrinsic
) const {
16088 switch (Intrinsic
) {
16089 case Intrinsic::arm_neon_vld1
:
16090 case Intrinsic::arm_neon_vld2
:
16091 case Intrinsic::arm_neon_vld3
:
16092 case Intrinsic::arm_neon_vld4
:
16093 case Intrinsic::arm_neon_vld2lane
:
16094 case Intrinsic::arm_neon_vld3lane
:
16095 case Intrinsic::arm_neon_vld4lane
:
16096 case Intrinsic::arm_neon_vld2dup
:
16097 case Intrinsic::arm_neon_vld3dup
:
16098 case Intrinsic::arm_neon_vld4dup
: {
16099 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16100 // Conservatively set memVT to the entire set of vectors loaded.
16101 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16102 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16103 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16104 Info
.ptrVal
= I
.getArgOperand(0);
16106 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16107 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16108 // volatile loads with NEON intrinsics not supported
16109 Info
.flags
= MachineMemOperand::MOLoad
;
16112 case Intrinsic::arm_neon_vld1x2
:
16113 case Intrinsic::arm_neon_vld1x3
:
16114 case Intrinsic::arm_neon_vld1x4
: {
16115 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16116 // Conservatively set memVT to the entire set of vectors loaded.
16117 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16118 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16119 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16120 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16122 Info
.align
.reset();
16123 // volatile loads with NEON intrinsics not supported
16124 Info
.flags
= MachineMemOperand::MOLoad
;
16127 case Intrinsic::arm_neon_vst1
:
16128 case Intrinsic::arm_neon_vst2
:
16129 case Intrinsic::arm_neon_vst3
:
16130 case Intrinsic::arm_neon_vst4
:
16131 case Intrinsic::arm_neon_vst2lane
:
16132 case Intrinsic::arm_neon_vst3lane
:
16133 case Intrinsic::arm_neon_vst4lane
: {
16134 Info
.opc
= ISD::INTRINSIC_VOID
;
16135 // Conservatively set memVT to the entire set of vectors stored.
16136 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16137 unsigned NumElts
= 0;
16138 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16139 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16140 if (!ArgTy
->isVectorTy())
16142 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16144 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16145 Info
.ptrVal
= I
.getArgOperand(0);
16147 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16148 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16149 // volatile stores with NEON intrinsics not supported
16150 Info
.flags
= MachineMemOperand::MOStore
;
16153 case Intrinsic::arm_neon_vst1x2
:
16154 case Intrinsic::arm_neon_vst1x3
:
16155 case Intrinsic::arm_neon_vst1x4
: {
16156 Info
.opc
= ISD::INTRINSIC_VOID
;
16157 // Conservatively set memVT to the entire set of vectors stored.
16158 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16159 unsigned NumElts
= 0;
16160 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16161 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16162 if (!ArgTy
->isVectorTy())
16164 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16166 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16167 Info
.ptrVal
= I
.getArgOperand(0);
16169 Info
.align
.reset();
16170 // volatile stores with NEON intrinsics not supported
16171 Info
.flags
= MachineMemOperand::MOStore
;
16174 case Intrinsic::arm_ldaex
:
16175 case Intrinsic::arm_ldrex
: {
16176 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16177 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
16178 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16179 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16180 Info
.ptrVal
= I
.getArgOperand(0);
16182 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16183 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16186 case Intrinsic::arm_stlex
:
16187 case Intrinsic::arm_strex
: {
16188 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16189 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
16190 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16191 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16192 Info
.ptrVal
= I
.getArgOperand(1);
16194 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16195 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16198 case Intrinsic::arm_stlexd
:
16199 case Intrinsic::arm_strexd
:
16200 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16201 Info
.memVT
= MVT::i64
;
16202 Info
.ptrVal
= I
.getArgOperand(2);
16204 Info
.align
= Align(8);
16205 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16208 case Intrinsic::arm_ldaexd
:
16209 case Intrinsic::arm_ldrexd
:
16210 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16211 Info
.memVT
= MVT::i64
;
16212 Info
.ptrVal
= I
.getArgOperand(0);
16214 Info
.align
= Align(8);
16215 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16225 /// Returns true if it is beneficial to convert a load of a constant
16226 /// to just the constant itself.
16227 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
16229 assert(Ty
->isIntegerTy());
16231 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
16232 if (Bits
== 0 || Bits
> 32)
16237 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
16238 unsigned Index
) const {
16239 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
16242 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
16245 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
16246 ARM_MB::MemBOpt Domain
) const {
16247 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16249 // First, if the target has no DMB, see what fallback we can use.
16250 if (!Subtarget
->hasDataBarrier()) {
16251 // Some ARMv6 cpus can support data barriers with an mcr instruction.
16252 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16254 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
16255 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
16256 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
16257 Builder
.getInt32(0), Builder
.getInt32(7),
16258 Builder
.getInt32(10), Builder
.getInt32(5)};
16259 return Builder
.CreateCall(MCR
, args
);
16261 // Instead of using barriers, atomic accesses on these subtargets use
16263 llvm_unreachable("makeDMB on a target so old that it has no barriers");
16266 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
16267 // Only a full system barrier exists in the M-class architectures.
16268 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
16269 Constant
*CDomain
= Builder
.getInt32(Domain
);
16270 return Builder
.CreateCall(DMB
, CDomain
);
16274 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
16275 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
16277 AtomicOrdering Ord
) const {
16279 case AtomicOrdering::NotAtomic
:
16280 case AtomicOrdering::Unordered
:
16281 llvm_unreachable("Invalid fence: unordered/non-atomic");
16282 case AtomicOrdering::Monotonic
:
16283 case AtomicOrdering::Acquire
:
16284 return nullptr; // Nothing to do
16285 case AtomicOrdering::SequentiallyConsistent
:
16286 if (!Inst
->hasAtomicStore())
16287 return nullptr; // Nothing to do
16289 case AtomicOrdering::Release
:
16290 case AtomicOrdering::AcquireRelease
:
16291 if (Subtarget
->preferISHSTBarriers())
16292 return makeDMB(Builder
, ARM_MB::ISHST
);
16293 // FIXME: add a comment with a link to documentation justifying this.
16295 return makeDMB(Builder
, ARM_MB::ISH
);
16297 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16300 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16302 AtomicOrdering Ord
) const {
16304 case AtomicOrdering::NotAtomic
:
16305 case AtomicOrdering::Unordered
:
16306 llvm_unreachable("Invalid fence: unordered/not-atomic");
16307 case AtomicOrdering::Monotonic
:
16308 case AtomicOrdering::Release
:
16309 return nullptr; // Nothing to do
16310 case AtomicOrdering::Acquire
:
16311 case AtomicOrdering::AcquireRelease
:
16312 case AtomicOrdering::SequentiallyConsistent
:
16313 return makeDMB(Builder
, ARM_MB::ISH
);
16315 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16318 // Loads and stores less than 64-bits are already atomic; ones above that
16319 // are doomed anyway, so defer to the default libcall and blame the OS when
16320 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16321 // anything for those.
16322 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16323 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16324 return (Size
== 64) && !Subtarget
->isMClass();
16327 // Loads and stores less than 64-bits are already atomic; ones above that
16328 // are doomed anyway, so defer to the default libcall and blame the OS when
16329 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16330 // anything for those.
16331 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16332 // guarantee, see DDI0406C ARM architecture reference manual,
16333 // sections A8.8.72-74 LDRD)
16334 TargetLowering::AtomicExpansionKind
16335 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16336 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16337 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16338 : AtomicExpansionKind::None
;
16341 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16342 // and up to 64 bits on the non-M profiles
16343 TargetLowering::AtomicExpansionKind
16344 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16345 if (AI
->isFloatingPointOperation())
16346 return AtomicExpansionKind::CmpXChg
;
16348 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16349 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16350 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16351 ? AtomicExpansionKind::LLSC
16352 : AtomicExpansionKind::None
;
16355 TargetLowering::AtomicExpansionKind
16356 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16357 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16358 // implement cmpxchg without spilling. If the address being exchanged is also
16359 // on the stack and close enough to the spill slot, this can lead to a
16360 // situation where the monitor always gets cleared and the atomic operation
16361 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16362 bool HasAtomicCmpXchg
=
16363 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16364 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16365 return AtomicExpansionKind::LLSC
;
16366 return AtomicExpansionKind::None
;
16369 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16370 const Instruction
*I
) const {
16371 return InsertFencesForAtomic
;
16374 // This has so far only been implemented for MachO.
16375 bool ARMTargetLowering::useLoadStackGuardNode() const {
16376 return Subtarget
->isTargetMachO();
16379 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16380 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16381 return TargetLowering::insertSSPDeclarations(M
);
16383 // MSVC CRT has a global variable holding security cookie.
16384 M
.getOrInsertGlobal("__security_cookie",
16385 Type::getInt8PtrTy(M
.getContext()));
16387 // MSVC CRT has a function to validate security cookie.
16388 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16389 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16390 Type::getInt8PtrTy(M
.getContext()));
16391 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16392 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16395 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16396 // MSVC CRT has a global variable holding security cookie.
16397 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16398 return M
.getGlobalVariable("__security_cookie");
16399 return TargetLowering::getSDagStackGuard(M
);
16402 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16403 // MSVC CRT has a function to validate security cookie.
16404 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16405 return M
.getFunction("__security_check_cookie");
16406 return TargetLowering::getSSPStackGuardCheck(M
);
16409 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16410 unsigned &Cost
) const {
16411 // If we do not have NEON, vector types are not natively supported.
16412 if (!Subtarget
->hasNEON())
16415 // Floating point values and vector values map to the same register file.
16416 // Therefore, although we could do a store extract of a vector type, this is
16417 // better to leave at float as we have more freedom in the addressing mode for
16419 if (VectorTy
->isFPOrFPVectorTy())
16422 // If the index is unknown at compile time, this is very expensive to lower
16423 // and it is not possible to combine the store with the extract.
16424 if (!isa
<ConstantInt
>(Idx
))
16427 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16428 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16429 // We can do a store + vector extract on any vector that fits perfectly in a D
16431 if (BitWidth
== 64 || BitWidth
== 128) {
16438 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16439 return Subtarget
->hasV6T2Ops();
16442 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16443 return Subtarget
->hasV6T2Ops();
16446 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16447 return !Subtarget
->hasMinSize();
16450 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16451 AtomicOrdering Ord
) const {
16452 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16453 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16454 bool IsAcquire
= isAcquireOrStronger(Ord
);
16456 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16457 // intrinsic must return {i32, i32} and we have to recombine them into a
16458 // single i64 here.
16459 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16460 Intrinsic::ID Int
=
16461 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16462 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16464 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16465 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16467 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16468 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16469 if (!Subtarget
->isLittle())
16470 std::swap (Lo
, Hi
);
16471 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16472 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16473 return Builder
.CreateOr(
16474 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16477 Type
*Tys
[] = { Addr
->getType() };
16478 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16479 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16481 return Builder
.CreateTruncOrBitCast(
16482 Builder
.CreateCall(Ldrex
, Addr
),
16483 cast
<PointerType
>(Addr
->getType())->getElementType());
16486 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16487 IRBuilder
<> &Builder
) const {
16488 if (!Subtarget
->hasV7Ops())
16490 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16491 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16494 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16496 AtomicOrdering Ord
) const {
16497 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16498 bool IsRelease
= isReleaseOrStronger(Ord
);
16500 // Since the intrinsics must have legal type, the i64 intrinsics take two
16501 // parameters: "i32, i32". We must marshal Val into the appropriate form
16502 // before the call.
16503 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16504 Intrinsic::ID Int
=
16505 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16506 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16507 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16509 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16510 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16511 if (!Subtarget
->isLittle())
16513 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16514 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16517 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16518 Type
*Tys
[] = { Addr
->getType() };
16519 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16521 return Builder
.CreateCall(
16522 Strex
, {Builder
.CreateZExtOrBitCast(
16523 Val
, Strex
->getFunctionType()->getParamType(0)),
16528 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16529 return Subtarget
->isMClass();
16532 /// A helper function for determining the number of interleaved accesses we
16533 /// will generate when lowering accesses of the given type.
16535 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16536 const DataLayout
&DL
) const {
16537 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16540 bool ARMTargetLowering::isLegalInterleavedAccessType(
16541 VectorType
*VecTy
, const DataLayout
&DL
) const {
16543 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16544 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16546 // Ensure the vector doesn't have f16 elements. Even though we could do an
16547 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16549 if (VecTy
->getElementType()->isHalfTy())
16552 // Ensure the number of vector elements is greater than 1.
16553 if (VecTy
->getNumElements() < 2)
16556 // Ensure the element type is legal.
16557 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16560 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16561 // 128 will be split into multiple interleaved accesses.
16562 return VecSize
== 64 || VecSize
% 128 == 0;
16565 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16566 if (Subtarget
->hasNEON())
16568 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16571 /// Lower an interleaved load into a vldN intrinsic.
16573 /// E.g. Lower an interleaved load (Factor = 2):
16574 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16575 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16576 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16579 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16580 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16581 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16582 bool ARMTargetLowering::lowerInterleavedLoad(
16583 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16584 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16585 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16586 "Invalid interleave factor");
16587 assert(!Shuffles
.empty() && "Empty shufflevector input");
16588 assert(Shuffles
.size() == Indices
.size() &&
16589 "Unmatched number of shufflevectors and indices");
16591 VectorType
*VecTy
= Shuffles
[0]->getType();
16592 Type
*EltTy
= VecTy
->getVectorElementType();
16594 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16596 // Skip if we do not have NEON and skip illegal vector types. We can
16597 // "legalize" wide vector types into multiple interleaved accesses as long as
16598 // the vector types are divisible by 128.
16599 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16602 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16604 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16605 // load integer vectors first and then convert to pointer vectors.
16606 if (EltTy
->isPointerTy())
16608 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16610 IRBuilder
<> Builder(LI
);
16612 // The base address of the load.
16613 Value
*BaseAddr
= LI
->getPointerOperand();
16615 if (NumLoads
> 1) {
16616 // If we're going to generate more than one load, reset the sub-vector type
16617 // to something legal.
16618 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16619 VecTy
->getVectorNumElements() / NumLoads
);
16621 // We will compute the pointer operand of each load from the original base
16622 // address using GEPs. Cast the base address to a pointer to the scalar
16624 BaseAddr
= Builder
.CreateBitCast(
16625 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16626 LI
->getPointerAddressSpace()));
16629 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16631 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16632 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16633 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16634 Intrinsic::arm_neon_vld3
,
16635 Intrinsic::arm_neon_vld4
};
16636 Function
*VldnFunc
=
16637 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16639 // Holds sub-vectors extracted from the load intrinsic return values. The
16640 // sub-vectors are associated with the shufflevector instructions they will
16642 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16644 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16645 // If we're generating more than one load, compute the base address of
16646 // subsequent loads as an offset from the previous.
16649 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16650 VecTy
->getVectorNumElements() * Factor
);
16652 SmallVector
<Value
*, 2> Ops
;
16653 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16654 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16656 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16658 // Replace uses of each shufflevector with the corresponding vector loaded
16660 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16661 ShuffleVectorInst
*SV
= Shuffles
[i
];
16662 unsigned Index
= Indices
[i
];
16664 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16666 // Convert the integer vector to pointer vector if the element is pointer.
16667 if (EltTy
->isPointerTy())
16668 SubVec
= Builder
.CreateIntToPtr(
16669 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16670 VecTy
->getVectorNumElements()));
16672 SubVecs
[SV
].push_back(SubVec
);
16676 // Replace uses of the shufflevector instructions with the sub-vectors
16677 // returned by the load intrinsic. If a shufflevector instruction is
16678 // associated with more than one sub-vector, those sub-vectors will be
16679 // concatenated into a single wide vector.
16680 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16681 auto &SubVec
= SubVecs
[SVI
];
16683 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16684 SVI
->replaceAllUsesWith(WideVec
);
16690 /// Lower an interleaved store into a vstN intrinsic.
16692 /// E.g. Lower an interleaved store (Factor = 3):
16693 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16694 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16695 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16698 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16699 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16700 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16701 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16703 /// Note that the new shufflevectors will be removed and we'll only generate one
16704 /// vst3 instruction in CodeGen.
16706 /// Example for a more general valid mask (Factor 3). Lower:
16707 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16708 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16709 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16712 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16713 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16714 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16715 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16716 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16717 ShuffleVectorInst
*SVI
,
16718 unsigned Factor
) const {
16719 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16720 "Invalid interleave factor");
16722 VectorType
*VecTy
= SVI
->getType();
16723 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16724 "Invalid interleaved store");
16726 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16727 Type
*EltTy
= VecTy
->getVectorElementType();
16728 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16730 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16732 // Skip if we do not have NEON and skip illegal vector types. We can
16733 // "legalize" wide vector types into multiple interleaved accesses as long as
16734 // the vector types are divisible by 128.
16735 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16738 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16740 Value
*Op0
= SVI
->getOperand(0);
16741 Value
*Op1
= SVI
->getOperand(1);
16742 IRBuilder
<> Builder(SI
);
16744 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16745 // vectors to integer vectors.
16746 if (EltTy
->isPointerTy()) {
16747 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16749 // Convert to the corresponding integer vector.
16751 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16752 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16753 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16755 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16758 // The base address of the store.
16759 Value
*BaseAddr
= SI
->getPointerOperand();
16761 if (NumStores
> 1) {
16762 // If we're going to generate more than one store, reset the lane length
16763 // and sub-vector type to something legal.
16764 LaneLen
/= NumStores
;
16765 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16767 // We will compute the pointer operand of each store from the original base
16768 // address using GEPs. Cast the base address to a pointer to the scalar
16770 BaseAddr
= Builder
.CreateBitCast(
16771 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16772 SI
->getPointerAddressSpace()));
16775 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16777 auto Mask
= SVI
->getShuffleMask();
16779 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16780 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16781 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16782 Intrinsic::arm_neon_vst3
,
16783 Intrinsic::arm_neon_vst4
};
16785 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16786 // If we generating more than one store, we compute the base address of
16787 // subsequent stores as an offset from the previous.
16788 if (StoreCount
> 0)
16789 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16790 BaseAddr
, LaneLen
* Factor
);
16792 SmallVector
<Value
*, 6> Ops
;
16793 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16795 Function
*VstNFunc
=
16796 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16798 // Split the shufflevector operands into sub vectors for the new vstN call.
16799 for (unsigned i
= 0; i
< Factor
; i
++) {
16800 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16801 if (Mask
[IdxI
] >= 0) {
16802 Ops
.push_back(Builder
.CreateShuffleVector(
16803 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16805 unsigned StartMask
= 0;
16806 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16807 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16808 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16809 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16813 // Note: If all elements in a chunk are undefs, StartMask=0!
16814 // Note: Filling undef gaps with random elements is ok, since
16815 // those elements were being written anyway (with undefs).
16816 // In the case of all undefs we're defaulting to using elems from 0
16817 // Note: StartMask cannot be negative, it's checked in
16818 // isReInterleaveMask
16819 Ops
.push_back(Builder
.CreateShuffleVector(
16820 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16824 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16825 Builder
.CreateCall(VstNFunc
, Ops
);
16838 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16839 uint64_t &Members
) {
16840 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16841 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16842 uint64_t SubMembers
= 0;
16843 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16845 Members
+= SubMembers
;
16847 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16848 uint64_t SubMembers
= 0;
16849 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16851 Members
+= SubMembers
* AT
->getNumElements();
16852 } else if (Ty
->isFloatTy()) {
16853 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16857 } else if (Ty
->isDoubleTy()) {
16858 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16862 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16869 return VT
->getBitWidth() == 64;
16871 return VT
->getBitWidth() == 128;
16873 switch (VT
->getBitWidth()) {
16886 return (Members
> 0 && Members
<= 4);
16889 /// Return the correct alignment for the current calling convention.
16891 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16892 DataLayout DL
) const {
16893 if (!ArgTy
->isVectorTy())
16894 return DL
.getABITypeAlignment(ArgTy
);
16896 // Avoid over-aligning vector parameters. It would require realigning the
16897 // stack and waste space for no real benefit.
16898 return std::min(DL
.getABITypeAlignment(ArgTy
),
16899 (unsigned)DL
.getStackAlignment().value());
16902 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16903 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16904 /// passing according to AAPCS rules.
16905 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16906 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16907 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16908 CallingConv::ARM_AAPCS_VFP
)
16911 HABaseType Base
= HA_UNKNOWN
;
16912 uint64_t Members
= 0;
16913 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16914 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16916 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16917 return IsHA
|| IsIntArray
;
16920 unsigned ARMTargetLowering::getExceptionPointerRegister(
16921 const Constant
*PersonalityFn
) const {
16922 // Platforms which do not use SjLj EH may return values in these registers
16923 // via the personality function.
16924 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16927 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16928 const Constant
*PersonalityFn
) const {
16929 // Platforms which do not use SjLj EH may return values in these registers
16930 // via the personality function.
16931 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16934 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16935 // Update IsSplitCSR in ARMFunctionInfo.
16936 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16937 AFI
->setIsSplitCSR(true);
16940 void ARMTargetLowering::insertCopiesSplitCSR(
16941 MachineBasicBlock
*Entry
,
16942 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16943 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16944 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16948 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16949 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16950 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16951 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16952 const TargetRegisterClass
*RC
= nullptr;
16953 if (ARM::GPRRegClass
.contains(*I
))
16954 RC
= &ARM::GPRRegClass
;
16955 else if (ARM::DPRRegClass
.contains(*I
))
16956 RC
= &ARM::DPRRegClass
;
16958 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16960 Register NewVR
= MRI
->createVirtualRegister(RC
);
16961 // Create copy from CSR to a virtual register.
16962 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16963 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16964 // nounwind. If we want to generalize this later, we may need to emit
16965 // CFI pseudo-instructions.
16966 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16967 Attribute::NoUnwind
) &&
16968 "Function should be nounwind in insertCopiesSplitCSR!");
16969 Entry
->addLiveIn(*I
);
16970 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16973 // Insert the copy-back instructions right before the terminator.
16974 for (auto *Exit
: Exits
)
16975 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16976 TII
->get(TargetOpcode::COPY
), *I
)
16981 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16982 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16983 TargetLoweringBase::finalizeLowering(MF
);