[ARM] VQADD instructions
[llvm-complete.git] / lib / Target / RISCV / Utils / RISCVMatInt.cpp
blobf390ddb89e3c9a6a127400313c817ad758df5895
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/SmallVector.h"
12 #include "llvm/Support/MachineValueType.h"
13 #include "llvm/Support/MathExtras.h"
14 #include <cstdint>
16 namespace llvm {
18 namespace RISCVMatInt {
19 void generateInstSeq(int64_t Val, bool IsRV64, InstSeq &Res) {
20 if (isInt<32>(Val)) {
21 // Depending on the active bits in the immediate Value v, the following
22 // instruction sequences are emitted:
24 // v == 0 : ADDI
25 // v[0,12) != 0 && v[12,32) == 0 : ADDI
26 // v[0,12) == 0 && v[12,32) != 0 : LUI
27 // v[0,32) != 0 : LUI+ADDI(W)
28 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
29 int64_t Lo12 = SignExtend64<12>(Val);
31 if (Hi20)
32 Res.push_back(Inst(RISCV::LUI, Hi20));
34 if (Lo12 || Hi20 == 0) {
35 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
36 Res.push_back(Inst(AddiOpc, Lo12));
38 return;
41 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
43 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
44 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
45 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
46 // while the following ADDI instructions contribute up to 12 bits each.
48 // On the first glance, implementing this seems to be possible by simply
49 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
50 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
51 // fact that ADDI performs a sign extended addition, doing it like that would
52 // only be possible when at most 11 bits of the ADDI instructions are used.
53 // Using all 12 bits of the ADDI instructions, like done by GAS, actually
54 // requires that the constant is processed starting with the least significant
55 // bit.
57 // In the following, constants are processed from LSB to MSB but instruction
58 // emission is performed from MSB to LSB by recursively calling
59 // generateInstSeq. In each recursion, first the lowest 12 bits are removed
60 // from the constant and the optimal shift amount, which can be greater than
61 // 12 bits if the constant is sparse, is determined. Then, the shifted
62 // remaining constant is processed recursively and gets emitted as soon as it
63 // fits into 32 bits. The emission of the shifts and additions is subsequently
64 // performed when the recursion returns.
66 int64_t Lo12 = SignExtend64<12>(Val);
67 int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
68 int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
69 Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
71 generateInstSeq(Hi52, IsRV64, Res);
73 Res.push_back(Inst(RISCV::SLLI, ShiftAmount));
74 if (Lo12)
75 Res.push_back(Inst(RISCV::ADDI, Lo12));
78 int getIntMatCost(const APInt &Val, unsigned Size, bool IsRV64) {
79 int PlatRegSize = IsRV64 ? 64 : 32;
81 // Split the constant into platform register sized chunks, and calculate cost
82 // of each chunk.
83 int Cost = 0;
84 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
85 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
86 InstSeq MatSeq;
87 generateInstSeq(Chunk.getSExtValue(), IsRV64, MatSeq);
88 Cost += MatSeq.size();
90 return std::max(1, Cost);
92 } // namespace RISCVMatInt
93 } // namespace llvm