[ARM] MVE integer min and max
[llvm-complete.git] / lib / ExecutionEngine / RuntimeDyld / Targets / RuntimeDyldCOFFX86_64.h
blobd2d74534cf902ce934a59690c9e80188f9aa8129
1 //===-- RuntimeDyldCOFFX86_64.h --- COFF/X86_64 specific code ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // COFF x86_x64 support for MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFF86_64_H
14 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFF86_64_H
16 #include "../RuntimeDyldCOFF.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/COFF.h"
20 #define DEBUG_TYPE "dyld"
22 namespace llvm {
24 class RuntimeDyldCOFFX86_64 : public RuntimeDyldCOFF {
26 private:
27 // When a module is loaded we save the SectionID of the unwind
28 // sections in a table until we receive a request to register all
29 // unregisteredEH frame sections with the memory manager.
30 SmallVector<SID, 2> UnregisteredEHFrameSections;
31 SmallVector<SID, 2> RegisteredEHFrameSections;
32 uint64_t ImageBase;
34 // Fake an __ImageBase pointer by returning the section with the lowest adress
35 uint64_t getImageBase() {
36 if (!ImageBase) {
37 ImageBase = std::numeric_limits<uint64_t>::max();
38 for (const SectionEntry &Section : Sections)
39 // The Sections list may contain sections that weren't loaded for
40 // whatever reason: they may be debug sections, and ProcessAllSections
41 // is false, or they may be sections that contain 0 bytes. If the
42 // section isn't loaded, the load address will be 0, and it should not
43 // be included in the ImageBase calculation.
44 if (Section.getLoadAddress() != 0)
45 ImageBase = std::min(ImageBase, Section.getLoadAddress());
47 return ImageBase;
50 void write32BitOffset(uint8_t *Target, int64_t Addend, uint64_t Delta) {
51 uint64_t Result = Addend + Delta;
52 assert(Result <= UINT32_MAX && "Relocation overflow");
53 writeBytesUnaligned(Result, Target, 4);
56 public:
57 RuntimeDyldCOFFX86_64(RuntimeDyld::MemoryManager &MM,
58 JITSymbolResolver &Resolver)
59 : RuntimeDyldCOFF(MM, Resolver), ImageBase(0) {}
61 unsigned getStubAlignment() override { return 1; }
63 // 2-byte jmp instruction + 32-bit relative address + 64-bit absolute jump
64 unsigned getMaxStubSize() const override { return 14; }
66 // The target location for the relocation is described by RE.SectionID and
67 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
68 // SectionEntry has three members describing its location.
69 // SectionEntry::Address is the address at which the section has been loaded
70 // into memory in the current (host) process. SectionEntry::LoadAddress is
71 // the address that the section will have in the target process.
72 // SectionEntry::ObjAddress is the address of the bits for this section in the
73 // original emitted object image (also in the current address space).
75 // Relocations will be applied as if the section were loaded at
76 // SectionEntry::LoadAddress, but they will be applied at an address based
77 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer
78 // to Target memory contents if they are required for value calculations.
80 // The Value parameter here is the load address of the symbol for the
81 // relocation to be applied. For relocations which refer to symbols in the
82 // current object Value will be the LoadAddress of the section in which
83 // the symbol resides (RE.Addend provides additional information about the
84 // symbol location). For external symbols, Value will be the address of the
85 // symbol in the target address space.
86 void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
87 const SectionEntry &Section = Sections[RE.SectionID];
88 uint8_t *Target = Section.getAddressWithOffset(RE.Offset);
90 switch (RE.RelType) {
92 case COFF::IMAGE_REL_AMD64_REL32:
93 case COFF::IMAGE_REL_AMD64_REL32_1:
94 case COFF::IMAGE_REL_AMD64_REL32_2:
95 case COFF::IMAGE_REL_AMD64_REL32_3:
96 case COFF::IMAGE_REL_AMD64_REL32_4:
97 case COFF::IMAGE_REL_AMD64_REL32_5: {
98 uint64_t FinalAddress = Section.getLoadAddressWithOffset(RE.Offset);
99 // Delta is the distance from the start of the reloc to the end of the
100 // instruction with the reloc.
101 uint64_t Delta = 4 + (RE.RelType - COFF::IMAGE_REL_AMD64_REL32);
102 Value -= FinalAddress + Delta;
103 uint64_t Result = Value + RE.Addend;
104 assert(((int64_t)Result <= INT32_MAX) && "Relocation overflow");
105 assert(((int64_t)Result >= INT32_MIN) && "Relocation underflow");
106 writeBytesUnaligned(Result, Target, 4);
107 break;
110 case COFF::IMAGE_REL_AMD64_ADDR32NB: {
111 // ADDR32NB requires an offset less than 2GB from 'ImageBase'.
112 // The MemoryManager can make sure this is always true by forcing the
113 // memory layout to be: CodeSection < ReadOnlySection < ReadWriteSection.
114 const uint64_t ImageBase = getImageBase();
115 if (Value < ImageBase || ((Value - ImageBase) > UINT32_MAX)) {
116 llvm::errs() << "IMAGE_REL_AMD64_ADDR32NB relocation requires an"
117 << "ordered section layout.\n";
118 write32BitOffset(Target, 0, 0);
119 } else {
120 write32BitOffset(Target, RE.Addend, Value - ImageBase);
122 break;
125 case COFF::IMAGE_REL_AMD64_ADDR64: {
126 writeBytesUnaligned(Value + RE.Addend, Target, 8);
127 break;
130 case COFF::IMAGE_REL_AMD64_SECREL: {
131 assert(static_cast<int64_t>(RE.Addend) <= INT32_MAX && "Relocation overflow");
132 assert(static_cast<int64_t>(RE.Addend) >= INT32_MIN && "Relocation underflow");
133 writeBytesUnaligned(RE.Addend, Target, 4);
134 break;
137 default:
138 llvm_unreachable("Relocation type not implemented yet!");
139 break;
143 std::tuple<uint64_t, uint64_t, uint64_t>
144 generateRelocationStub(unsigned SectionID, StringRef TargetName,
145 uint64_t Offset, uint64_t RelType, uint64_t Addend,
146 StubMap &Stubs) {
147 uintptr_t StubOffset;
148 SectionEntry &Section = Sections[SectionID];
150 RelocationValueRef OriginalRelValueRef;
151 OriginalRelValueRef.SectionID = SectionID;
152 OriginalRelValueRef.Offset = Offset;
153 OriginalRelValueRef.Addend = Addend;
154 OriginalRelValueRef.SymbolName = TargetName.data();
156 auto Stub = Stubs.find(OriginalRelValueRef);
157 if (Stub == Stubs.end()) {
158 LLVM_DEBUG(dbgs() << " Create a new stub function for "
159 << TargetName.data() << "\n");
161 StubOffset = Section.getStubOffset();
162 Stubs[OriginalRelValueRef] = StubOffset;
163 createStubFunction(Section.getAddressWithOffset(StubOffset));
164 Section.advanceStubOffset(getMaxStubSize());
165 } else {
166 LLVM_DEBUG(dbgs() << " Stub function found for " << TargetName.data()
167 << "\n");
168 StubOffset = Stub->second;
171 // FIXME: If RelType == COFF::IMAGE_REL_AMD64_ADDR32NB we should be able
172 // to ignore the __ImageBase requirement and just forward to the stub
173 // directly as an offset of this section:
174 // write32BitOffset(Section.getAddressWithOffset(Offset), 0, StubOffset);
175 // .xdata exception handler's aren't having this though.
177 // Resolve original relocation to stub function.
178 const RelocationEntry RE(SectionID, Offset, RelType, Addend);
179 resolveRelocation(RE, Section.getLoadAddressWithOffset(StubOffset));
181 // adjust relocation info so resolution writes to the stub function
182 Addend = 0;
183 Offset = StubOffset + 6;
184 RelType = COFF::IMAGE_REL_AMD64_ADDR64;
186 return std::make_tuple(Offset, RelType, Addend);
189 Expected<object::relocation_iterator>
190 processRelocationRef(unsigned SectionID,
191 object::relocation_iterator RelI,
192 const object::ObjectFile &Obj,
193 ObjSectionToIDMap &ObjSectionToID,
194 StubMap &Stubs) override {
195 // If possible, find the symbol referred to in the relocation,
196 // and the section that contains it.
197 object::symbol_iterator Symbol = RelI->getSymbol();
198 if (Symbol == Obj.symbol_end())
199 report_fatal_error("Unknown symbol in relocation");
200 auto SectionOrError = Symbol->getSection();
201 if (!SectionOrError)
202 return SectionOrError.takeError();
203 object::section_iterator SecI = *SectionOrError;
204 // If there is no section, this must be an external reference.
205 const bool IsExtern = SecI == Obj.section_end();
207 // Determine the Addend used to adjust the relocation value.
208 uint64_t RelType = RelI->getType();
209 uint64_t Offset = RelI->getOffset();
210 uint64_t Addend = 0;
211 SectionEntry &Section = Sections[SectionID];
212 uintptr_t ObjTarget = Section.getObjAddress() + Offset;
214 Expected<StringRef> TargetNameOrErr = Symbol->getName();
215 if (!TargetNameOrErr)
216 return TargetNameOrErr.takeError();
217 StringRef TargetName = *TargetNameOrErr;
219 switch (RelType) {
221 case COFF::IMAGE_REL_AMD64_REL32:
222 case COFF::IMAGE_REL_AMD64_REL32_1:
223 case COFF::IMAGE_REL_AMD64_REL32_2:
224 case COFF::IMAGE_REL_AMD64_REL32_3:
225 case COFF::IMAGE_REL_AMD64_REL32_4:
226 case COFF::IMAGE_REL_AMD64_REL32_5:
227 case COFF::IMAGE_REL_AMD64_ADDR32NB: {
228 uint8_t *Displacement = (uint8_t *)ObjTarget;
229 Addend = readBytesUnaligned(Displacement, 4);
231 if (IsExtern)
232 std::tie(Offset, RelType, Addend) = generateRelocationStub(
233 SectionID, TargetName, Offset, RelType, Addend, Stubs);
235 break;
238 case COFF::IMAGE_REL_AMD64_ADDR64: {
239 uint8_t *Displacement = (uint8_t *)ObjTarget;
240 Addend = readBytesUnaligned(Displacement, 8);
241 break;
244 default:
245 break;
248 LLVM_DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
249 << " RelType: " << RelType << " TargetName: "
250 << TargetName << " Addend " << Addend << "\n");
252 if (IsExtern) {
253 RelocationEntry RE(SectionID, Offset, RelType, Addend);
254 addRelocationForSymbol(RE, TargetName);
255 } else {
256 bool IsCode = SecI->isText();
257 unsigned TargetSectionID;
258 if (auto TargetSectionIDOrErr =
259 findOrEmitSection(Obj, *SecI, IsCode, ObjSectionToID))
260 TargetSectionID = *TargetSectionIDOrErr;
261 else
262 return TargetSectionIDOrErr.takeError();
263 uint64_t TargetOffset = getSymbolOffset(*Symbol);
264 RelocationEntry RE(SectionID, Offset, RelType, TargetOffset + Addend);
265 addRelocationForSection(RE, TargetSectionID);
268 return ++RelI;
271 void registerEHFrames() override {
272 for (auto const &EHFrameSID : UnregisteredEHFrameSections) {
273 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
274 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
275 size_t EHFrameSize = Sections[EHFrameSID].getSize();
276 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
277 RegisteredEHFrameSections.push_back(EHFrameSID);
279 UnregisteredEHFrameSections.clear();
282 Error finalizeLoad(const object::ObjectFile &Obj,
283 ObjSectionToIDMap &SectionMap) override {
284 // Look for and record the EH frame section IDs.
285 for (const auto &SectionPair : SectionMap) {
286 const object::SectionRef &Section = SectionPair.first;
287 StringRef Name;
288 if (auto EC = Section.getName(Name))
289 return errorCodeToError(EC);
291 // Note unwind info is stored in .pdata but often points to .xdata
292 // with an IMAGE_REL_AMD64_ADDR32NB relocation. Using a memory manager
293 // that keeps sections ordered in relation to __ImageBase is necessary.
294 if (Name == ".pdata")
295 UnregisteredEHFrameSections.push_back(SectionPair.second);
297 return Error::success();
301 } // end namespace llvm
303 #undef DEBUG_TYPE
305 #endif