[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / BPF / BPFISelLowering.cpp
blobff69941d26fbd45e4cbb5fbe5a4dc053106654c7
1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/DiagnosticPrinter.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
33 #define DEBUG_TYPE "bpf-lower"
35 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
36 cl::Hidden, cl::init(false),
37 cl::desc("Expand memcpy into load/store pairs in order"));
39 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
40 MachineFunction &MF = DAG.getMachineFunction();
41 DAG.getContext()->diagnose(
42 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
45 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
46 SDValue Val) {
47 MachineFunction &MF = DAG.getMachineFunction();
48 std::string Str;
49 raw_string_ostream OS(Str);
50 OS << Msg;
51 Val->print(OS);
52 OS.flush();
53 DAG.getContext()->diagnose(
54 DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
57 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
58 const BPFSubtarget &STI)
59 : TargetLowering(TM) {
61 // Set up the register classes.
62 addRegisterClass(MVT::i64, &BPF::GPRRegClass);
63 if (STI.getHasAlu32())
64 addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
66 // Compute derived properties from the register classes
67 computeRegisterProperties(STI.getRegisterInfo());
69 setStackPointerRegisterToSaveRestore(BPF::R11);
71 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
72 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
73 setOperationAction(ISD::BRIND, MVT::Other, Expand);
74 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
76 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
78 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
79 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
80 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
82 for (auto VT : { MVT::i32, MVT::i64 }) {
83 if (VT == MVT::i32 && !STI.getHasAlu32())
84 continue;
86 setOperationAction(ISD::SDIVREM, VT, Expand);
87 setOperationAction(ISD::UDIVREM, VT, Expand);
88 setOperationAction(ISD::SREM, VT, Expand);
89 setOperationAction(ISD::UREM, VT, Expand);
90 setOperationAction(ISD::MULHU, VT, Expand);
91 setOperationAction(ISD::MULHS, VT, Expand);
92 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
93 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
94 setOperationAction(ISD::ROTR, VT, Expand);
95 setOperationAction(ISD::ROTL, VT, Expand);
96 setOperationAction(ISD::SHL_PARTS, VT, Expand);
97 setOperationAction(ISD::SRL_PARTS, VT, Expand);
98 setOperationAction(ISD::SRA_PARTS, VT, Expand);
99 setOperationAction(ISD::CTPOP, VT, Expand);
101 setOperationAction(ISD::SETCC, VT, Expand);
102 setOperationAction(ISD::SELECT, VT, Expand);
103 setOperationAction(ISD::SELECT_CC, VT, Custom);
106 if (STI.getHasAlu32()) {
107 setOperationAction(ISD::BSWAP, MVT::i32, Promote);
108 setOperationAction(ISD::BR_CC, MVT::i32,
109 STI.getHasJmp32() ? Custom : Promote);
112 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
113 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
114 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
115 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
122 // Extended load operations for i1 types must be promoted
123 for (MVT VT : MVT::integer_valuetypes()) {
124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
133 setBooleanContents(ZeroOrOneBooleanContent);
135 // Function alignments (log2)
136 setMinFunctionAlignment(3);
137 setPrefFunctionAlignment(3);
139 if (BPFExpandMemcpyInOrder) {
140 // LLVM generic code will try to expand memcpy into load/store pairs at this
141 // stage which is before quite a few IR optimization passes, therefore the
142 // loads and stores could potentially be moved apart from each other which
143 // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
144 // compilers.
146 // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
147 // of memcpy to later stage in IR optimization pipeline so those load/store
148 // pairs won't be touched and could be kept in order. Hence, we set
149 // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
150 // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
151 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
152 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
153 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
154 } else {
155 // inline memcpy() for kernel to see explicit copy
156 unsigned CommonMaxStores =
157 STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
159 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
160 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
161 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
164 // CPU/Feature control
165 HasAlu32 = STI.getHasAlu32();
166 HasJmp32 = STI.getHasJmp32();
167 HasJmpExt = STI.getHasJmpExt();
170 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
171 return false;
174 std::pair<unsigned, const TargetRegisterClass *>
175 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
176 StringRef Constraint,
177 MVT VT) const {
178 if (Constraint.size() == 1)
179 // GCC Constraint Letters
180 switch (Constraint[0]) {
181 case 'r': // GENERAL_REGS
182 return std::make_pair(0U, &BPF::GPRRegClass);
183 default:
184 break;
187 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
190 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
191 switch (Op.getOpcode()) {
192 case ISD::BR_CC:
193 return LowerBR_CC(Op, DAG);
194 case ISD::GlobalAddress:
195 return LowerGlobalAddress(Op, DAG);
196 case ISD::SELECT_CC:
197 return LowerSELECT_CC(Op, DAG);
198 default:
199 llvm_unreachable("unimplemented operand");
203 // Calling Convention Implementation
204 #include "BPFGenCallingConv.inc"
206 SDValue BPFTargetLowering::LowerFormalArguments(
207 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
208 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
209 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
210 switch (CallConv) {
211 default:
212 report_fatal_error("Unsupported calling convention");
213 case CallingConv::C:
214 case CallingConv::Fast:
215 break;
218 MachineFunction &MF = DAG.getMachineFunction();
219 MachineRegisterInfo &RegInfo = MF.getRegInfo();
221 // Assign locations to all of the incoming arguments.
222 SmallVector<CCValAssign, 16> ArgLocs;
223 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
224 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
226 for (auto &VA : ArgLocs) {
227 if (VA.isRegLoc()) {
228 // Arguments passed in registers
229 EVT RegVT = VA.getLocVT();
230 MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
231 switch (SimpleTy) {
232 default: {
233 errs() << "LowerFormalArguments Unhandled argument type: "
234 << RegVT.getEVTString() << '\n';
235 llvm_unreachable(0);
237 case MVT::i32:
238 case MVT::i64:
239 unsigned VReg = RegInfo.createVirtualRegister(SimpleTy == MVT::i64 ?
240 &BPF::GPRRegClass :
241 &BPF::GPR32RegClass);
242 RegInfo.addLiveIn(VA.getLocReg(), VReg);
243 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
245 // If this is an value that has been promoted to wider types, insert an
246 // assert[sz]ext to capture this, then truncate to the right size.
247 if (VA.getLocInfo() == CCValAssign::SExt)
248 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
249 DAG.getValueType(VA.getValVT()));
250 else if (VA.getLocInfo() == CCValAssign::ZExt)
251 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
252 DAG.getValueType(VA.getValVT()));
254 if (VA.getLocInfo() != CCValAssign::Full)
255 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
257 InVals.push_back(ArgValue);
259 break;
261 } else {
262 fail(DL, DAG, "defined with too many args");
263 InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
267 if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
268 fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
271 return Chain;
274 const unsigned BPFTargetLowering::MaxArgs = 5;
276 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
277 SmallVectorImpl<SDValue> &InVals) const {
278 SelectionDAG &DAG = CLI.DAG;
279 auto &Outs = CLI.Outs;
280 auto &OutVals = CLI.OutVals;
281 auto &Ins = CLI.Ins;
282 SDValue Chain = CLI.Chain;
283 SDValue Callee = CLI.Callee;
284 bool &IsTailCall = CLI.IsTailCall;
285 CallingConv::ID CallConv = CLI.CallConv;
286 bool IsVarArg = CLI.IsVarArg;
287 MachineFunction &MF = DAG.getMachineFunction();
289 // BPF target does not support tail call optimization.
290 IsTailCall = false;
292 switch (CallConv) {
293 default:
294 report_fatal_error("Unsupported calling convention");
295 case CallingConv::Fast:
296 case CallingConv::C:
297 break;
300 // Analyze operands of the call, assigning locations to each operand.
301 SmallVector<CCValAssign, 16> ArgLocs;
302 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
304 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
306 unsigned NumBytes = CCInfo.getNextStackOffset();
308 if (Outs.size() > MaxArgs)
309 fail(CLI.DL, DAG, "too many args to ", Callee);
311 for (auto &Arg : Outs) {
312 ISD::ArgFlagsTy Flags = Arg.Flags;
313 if (!Flags.isByVal())
314 continue;
316 fail(CLI.DL, DAG, "pass by value not supported ", Callee);
319 auto PtrVT = getPointerTy(MF.getDataLayout());
320 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
322 SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
324 // Walk arg assignments
325 for (unsigned i = 0,
326 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
327 i != e; ++i) {
328 CCValAssign &VA = ArgLocs[i];
329 SDValue Arg = OutVals[i];
331 // Promote the value if needed.
332 switch (VA.getLocInfo()) {
333 default:
334 llvm_unreachable("Unknown loc info");
335 case CCValAssign::Full:
336 break;
337 case CCValAssign::SExt:
338 Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
339 break;
340 case CCValAssign::ZExt:
341 Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
342 break;
343 case CCValAssign::AExt:
344 Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
345 break;
348 // Push arguments into RegsToPass vector
349 if (VA.isRegLoc())
350 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
351 else
352 llvm_unreachable("call arg pass bug");
355 SDValue InFlag;
357 // Build a sequence of copy-to-reg nodes chained together with token chain and
358 // flag operands which copy the outgoing args into registers. The InFlag in
359 // necessary since all emitted instructions must be stuck together.
360 for (auto &Reg : RegsToPass) {
361 Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
362 InFlag = Chain.getValue(1);
365 // If the callee is a GlobalAddress node (quite common, every direct call is)
366 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
367 // Likewise ExternalSymbol -> TargetExternalSymbol.
368 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
369 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
370 G->getOffset(), 0);
371 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
372 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
373 fail(CLI.DL, DAG, Twine("A call to built-in function '"
374 + StringRef(E->getSymbol())
375 + "' is not supported."));
378 // Returns a chain & a flag for retval copy to use.
379 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
380 SmallVector<SDValue, 8> Ops;
381 Ops.push_back(Chain);
382 Ops.push_back(Callee);
384 // Add argument registers to the end of the list so that they are
385 // known live into the call.
386 for (auto &Reg : RegsToPass)
387 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
389 if (InFlag.getNode())
390 Ops.push_back(InFlag);
392 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
393 InFlag = Chain.getValue(1);
395 // Create the CALLSEQ_END node.
396 Chain = DAG.getCALLSEQ_END(
397 Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
398 DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
399 InFlag = Chain.getValue(1);
401 // Handle result values, copying them out of physregs into vregs that we
402 // return.
403 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
404 InVals);
407 SDValue
408 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
409 bool IsVarArg,
410 const SmallVectorImpl<ISD::OutputArg> &Outs,
411 const SmallVectorImpl<SDValue> &OutVals,
412 const SDLoc &DL, SelectionDAG &DAG) const {
413 unsigned Opc = BPFISD::RET_FLAG;
415 // CCValAssign - represent the assignment of the return value to a location
416 SmallVector<CCValAssign, 16> RVLocs;
417 MachineFunction &MF = DAG.getMachineFunction();
419 // CCState - Info about the registers and stack slot.
420 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
422 if (MF.getFunction().getReturnType()->isAggregateType()) {
423 fail(DL, DAG, "only integer returns supported");
424 return DAG.getNode(Opc, DL, MVT::Other, Chain);
427 // Analize return values.
428 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
430 SDValue Flag;
431 SmallVector<SDValue, 4> RetOps(1, Chain);
433 // Copy the result values into the output registers.
434 for (unsigned i = 0; i != RVLocs.size(); ++i) {
435 CCValAssign &VA = RVLocs[i];
436 assert(VA.isRegLoc() && "Can only return in registers!");
438 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
440 // Guarantee that all emitted copies are stuck together,
441 // avoiding something bad.
442 Flag = Chain.getValue(1);
443 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
446 RetOps[0] = Chain; // Update chain.
448 // Add the flag if we have it.
449 if (Flag.getNode())
450 RetOps.push_back(Flag);
452 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
455 SDValue BPFTargetLowering::LowerCallResult(
456 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
457 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
458 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
460 MachineFunction &MF = DAG.getMachineFunction();
461 // Assign locations to each value returned by this call.
462 SmallVector<CCValAssign, 16> RVLocs;
463 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
465 if (Ins.size() >= 2) {
466 fail(DL, DAG, "only small returns supported");
467 for (unsigned i = 0, e = Ins.size(); i != e; ++i)
468 InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
469 return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
472 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
474 // Copy all of the result registers out of their specified physreg.
475 for (auto &Val : RVLocs) {
476 Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
477 Val.getValVT(), InFlag).getValue(1);
478 InFlag = Chain.getValue(2);
479 InVals.push_back(Chain.getValue(0));
482 return Chain;
485 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
486 switch (CC) {
487 default:
488 break;
489 case ISD::SETULT:
490 case ISD::SETULE:
491 case ISD::SETLT:
492 case ISD::SETLE:
493 CC = ISD::getSetCCSwappedOperands(CC);
494 std::swap(LHS, RHS);
495 break;
499 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
500 SDValue Chain = Op.getOperand(0);
501 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
502 SDValue LHS = Op.getOperand(2);
503 SDValue RHS = Op.getOperand(3);
504 SDValue Dest = Op.getOperand(4);
505 SDLoc DL(Op);
507 if (!getHasJmpExt())
508 NegateCC(LHS, RHS, CC);
510 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
511 DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
514 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
515 SDValue LHS = Op.getOperand(0);
516 SDValue RHS = Op.getOperand(1);
517 SDValue TrueV = Op.getOperand(2);
518 SDValue FalseV = Op.getOperand(3);
519 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
520 SDLoc DL(Op);
522 if (!getHasJmpExt())
523 NegateCC(LHS, RHS, CC);
525 SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
526 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
527 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
529 return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
532 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
533 switch ((BPFISD::NodeType)Opcode) {
534 case BPFISD::FIRST_NUMBER:
535 break;
536 case BPFISD::RET_FLAG:
537 return "BPFISD::RET_FLAG";
538 case BPFISD::CALL:
539 return "BPFISD::CALL";
540 case BPFISD::SELECT_CC:
541 return "BPFISD::SELECT_CC";
542 case BPFISD::BR_CC:
543 return "BPFISD::BR_CC";
544 case BPFISD::Wrapper:
545 return "BPFISD::Wrapper";
546 case BPFISD::MEMCPY:
547 return "BPFISD::MEMCPY";
549 return nullptr;
552 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
553 SelectionDAG &DAG) const {
554 auto N = cast<GlobalAddressSDNode>(Op);
555 assert(N->getOffset() == 0 && "Invalid offset for global address");
557 SDLoc DL(Op);
558 const GlobalValue *GV = N->getGlobal();
559 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
561 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
564 unsigned
565 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
566 unsigned Reg, bool isSigned) const {
567 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
568 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
569 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
570 MachineFunction *F = BB->getParent();
571 DebugLoc DL = MI.getDebugLoc();
573 MachineRegisterInfo &RegInfo = F->getRegInfo();
574 unsigned PromotedReg0 = RegInfo.createVirtualRegister(RC);
575 unsigned PromotedReg1 = RegInfo.createVirtualRegister(RC);
576 unsigned PromotedReg2 = RegInfo.createVirtualRegister(RC);
577 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
578 BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
579 .addReg(PromotedReg0).addImm(32);
580 BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
581 .addReg(PromotedReg1).addImm(32);
583 return PromotedReg2;
586 MachineBasicBlock *
587 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
588 MachineBasicBlock *BB)
589 const {
590 MachineFunction *MF = MI.getParent()->getParent();
591 MachineRegisterInfo &MRI = MF->getRegInfo();
592 MachineInstrBuilder MIB(*MF, MI);
593 unsigned ScratchReg;
595 // This function does custom insertion during lowering BPFISD::MEMCPY which
596 // only has two register operands from memcpy semantics, the copy source
597 // address and the copy destination address.
599 // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
600 // a third scratch register to serve as the destination register of load and
601 // source register of store.
603 // The scratch register here is with the Define | Dead | EarlyClobber flags.
604 // The EarlyClobber flag has the semantic property that the operand it is
605 // attached to is clobbered before the rest of the inputs are read. Hence it
606 // must be unique among the operands to the instruction. The Define flag is
607 // needed to coerce the machine verifier that an Undef value isn't a problem
608 // as we anyway is loading memory into it. The Dead flag is needed as the
609 // value in scratch isn't supposed to be used by any other instruction.
610 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
611 MIB.addReg(ScratchReg,
612 RegState::Define | RegState::Dead | RegState::EarlyClobber);
614 return BB;
617 MachineBasicBlock *
618 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
619 MachineBasicBlock *BB) const {
620 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
621 DebugLoc DL = MI.getDebugLoc();
622 unsigned Opc = MI.getOpcode();
623 bool isSelectRROp = (Opc == BPF::Select ||
624 Opc == BPF::Select_64_32 ||
625 Opc == BPF::Select_32 ||
626 Opc == BPF::Select_32_64);
628 bool isMemcpyOp = Opc == BPF::MEMCPY;
630 #ifndef NDEBUG
631 bool isSelectRIOp = (Opc == BPF::Select_Ri ||
632 Opc == BPF::Select_Ri_64_32 ||
633 Opc == BPF::Select_Ri_32 ||
634 Opc == BPF::Select_Ri_32_64);
637 assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
638 "Unexpected instr type to insert");
639 #endif
641 if (isMemcpyOp)
642 return EmitInstrWithCustomInserterMemcpy(MI, BB);
644 bool is32BitCmp = (Opc == BPF::Select_32 ||
645 Opc == BPF::Select_32_64 ||
646 Opc == BPF::Select_Ri_32 ||
647 Opc == BPF::Select_Ri_32_64);
649 // To "insert" a SELECT instruction, we actually have to insert the diamond
650 // control-flow pattern. The incoming instruction knows the destination vreg
651 // to set, the condition code register to branch on, the true/false values to
652 // select between, and a branch opcode to use.
653 const BasicBlock *LLVM_BB = BB->getBasicBlock();
654 MachineFunction::iterator I = ++BB->getIterator();
656 // ThisMBB:
657 // ...
658 // TrueVal = ...
659 // jmp_XX r1, r2 goto Copy1MBB
660 // fallthrough --> Copy0MBB
661 MachineBasicBlock *ThisMBB = BB;
662 MachineFunction *F = BB->getParent();
663 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
664 MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
666 F->insert(I, Copy0MBB);
667 F->insert(I, Copy1MBB);
668 // Update machine-CFG edges by transferring all successors of the current
669 // block to the new block which will contain the Phi node for the select.
670 Copy1MBB->splice(Copy1MBB->begin(), BB,
671 std::next(MachineBasicBlock::iterator(MI)), BB->end());
672 Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
673 // Next, add the true and fallthrough blocks as its successors.
674 BB->addSuccessor(Copy0MBB);
675 BB->addSuccessor(Copy1MBB);
677 // Insert Branch if Flag
678 int CC = MI.getOperand(3).getImm();
679 int NewCC;
680 switch (CC) {
681 #define SET_NEWCC(X, Y) \
682 case ISD::X: \
683 if (is32BitCmp && HasJmp32) \
684 NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
685 else \
686 NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
687 break
688 SET_NEWCC(SETGT, JSGT);
689 SET_NEWCC(SETUGT, JUGT);
690 SET_NEWCC(SETGE, JSGE);
691 SET_NEWCC(SETUGE, JUGE);
692 SET_NEWCC(SETEQ, JEQ);
693 SET_NEWCC(SETNE, JNE);
694 SET_NEWCC(SETLT, JSLT);
695 SET_NEWCC(SETULT, JULT);
696 SET_NEWCC(SETLE, JSLE);
697 SET_NEWCC(SETULE, JULE);
698 default:
699 report_fatal_error("unimplemented select CondCode " + Twine(CC));
702 unsigned LHS = MI.getOperand(1).getReg();
703 bool isSignedCmp = (CC == ISD::SETGT ||
704 CC == ISD::SETGE ||
705 CC == ISD::SETLT ||
706 CC == ISD::SETLE);
708 // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
709 // to be promoted, however if the 32-bit comparison operands are destination
710 // registers then they are implicitly zero-extended already, there is no
711 // need of explicit zero-extend sequence for them.
713 // We simply do extension for all situations in this method, but we will
714 // try to remove those unnecessary in BPFMIPeephole pass.
715 if (is32BitCmp && !HasJmp32)
716 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
718 if (isSelectRROp) {
719 unsigned RHS = MI.getOperand(2).getReg();
721 if (is32BitCmp && !HasJmp32)
722 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
724 BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
725 } else {
726 int64_t imm32 = MI.getOperand(2).getImm();
727 // sanity check before we build J*_ri instruction.
728 assert (isInt<32>(imm32));
729 BuildMI(BB, DL, TII.get(NewCC))
730 .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
733 // Copy0MBB:
734 // %FalseValue = ...
735 // # fallthrough to Copy1MBB
736 BB = Copy0MBB;
738 // Update machine-CFG edges
739 BB->addSuccessor(Copy1MBB);
741 // Copy1MBB:
742 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
743 // ...
744 BB = Copy1MBB;
745 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
746 .addReg(MI.getOperand(5).getReg())
747 .addMBB(Copy0MBB)
748 .addReg(MI.getOperand(4).getReg())
749 .addMBB(ThisMBB);
751 MI.eraseFromParent(); // The pseudo instruction is gone now.
752 return BB;
755 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
756 EVT VT) const {
757 return getHasAlu32() ? MVT::i32 : MVT::i64;
760 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
761 EVT VT) const {
762 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;