1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //===----------------------------------------------------------------------===//
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/RegisterScavenging.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCDwarf.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
65 #define DEBUG_TYPE "hexagon-pei"
67 // Hexagon stack frame layout as defined by the ABI:
73 // SP during function's FP during function's |
74 // +-- runtime (top of stack) runtime (bottom) --+ |
76 // --++---------------------+------------------+-----------------++-+-------
77 // | parameter area for | variable-size | fixed-size |LR| arg
78 // | called functions | local objects | local objects |FP|
79 // --+----------------------+------------------+-----------------+--+-------
80 // <- size known -> <- size unknown -> <- size known ->
82 // Low address High address
87 // - In any circumstances, the outgoing function arguments are always accessi-
88 // ble using the SP, and the incoming arguments are accessible using the FP.
89 // - If the local objects are not aligned, they can always be accessed using
91 // - If there are no variable-sized objects, the local objects can always be
92 // accessed using the SP, regardless whether they are aligned or not. (The
93 // alignment padding will be at the bottom of the stack (highest address),
94 // and so the offset with respect to the SP will be known at the compile-
97 // The only complication occurs if there are both, local aligned objects, and
98 // dynamically allocated (variable-sized) objects. The alignment pad will be
99 // placed between the FP and the local objects, thus preventing the use of the
100 // FP to access the local objects. At the same time, the variable-sized objects
101 // will be between the SP and the local objects, thus introducing an unknown
102 // distance from the SP to the locals.
104 // To avoid this problem, a new register is created that holds the aligned
105 // address of the bottom of the stack, referred in the sources as AP (aligned
106 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
107 // that aligns AP to the required boundary (a maximum of the alignments of
108 // all stack objects, fixed- and variable-sized). All local objects[1] will
109 // then use AP as the base pointer.
110 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
111 // their name from being allocated at fixed locations on the stack, relative
112 // to the FP. In the presence of dynamic allocation and local alignment, such
113 // objects can only be accessed through the FP.
115 // Illustration of the AP:
118 // ---------------+---------------------+-----+-----------------------++-+--
119 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
120 // stack frame | (aligned) | | (CSR, spills, etc.) |FP|
121 // ---------------+---------------------+-----+-----------------+-----+--+--
122 // |<-- Multiple of the -->|
123 // stack alignment +-- AP
125 // The AP is set up at the beginning of the function. Since it is not a dedi-
126 // cated (reserved) register, it needs to be kept live throughout the function
127 // to be available as the base register for local object accesses.
128 // Normally, an address of a stack objects is obtained by a pseudo-instruction
129 // PS_fi. To access local objects with the AP register present, a different
130 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
131 // argument compared to PS_fi: the first input register is the AP register.
132 // This keeps the register live between its definition and its uses.
134 // The AP register is originally set up using pseudo-instruction PS_aligna:
137 // A - required stack alignment
138 // The alignment value must be the maximum of all alignments required by
141 // The dynamic allocation uses a pseudo-instruction PS_alloca:
142 // Rd = PS_alloca Rs, A
144 // Rd - address of the allocated space
145 // Rs - minimum size (the actual allocated can be larger to accommodate
147 // A - required alignment
149 using namespace llvm
;
151 static cl::opt
<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
152 cl::Hidden
, cl::desc("Disable Dealloc Return for Hexagon target"));
154 static cl::opt
<unsigned> NumberScavengerSlots("number-scavenger-slots",
155 cl::Hidden
, cl::desc("Set the number of scavenger slots"), cl::init(2),
158 static cl::opt
<int> SpillFuncThreshold("spill-func-threshold",
159 cl::Hidden
, cl::desc("Specify O2(not Os) spill func threshold"),
160 cl::init(6), cl::ZeroOrMore
);
162 static cl::opt
<int> SpillFuncThresholdOs("spill-func-threshold-Os",
163 cl::Hidden
, cl::desc("Specify Os spill func threshold"),
164 cl::init(1), cl::ZeroOrMore
);
166 static cl::opt
<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
167 cl::Hidden
, cl::desc("Enable runtime checks for stack overflow."),
168 cl::init(false), cl::ZeroOrMore
);
170 static cl::opt
<bool> EnableShrinkWrapping("hexagon-shrink-frame",
171 cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
172 cl::desc("Enable stack frame shrink wrapping"));
174 static cl::opt
<unsigned> ShrinkLimit("shrink-frame-limit",
175 cl::init(std::numeric_limits
<unsigned>::max()), cl::Hidden
, cl::ZeroOrMore
,
176 cl::desc("Max count of stack frame shrink-wraps"));
178 static cl::opt
<bool> EnableSaveRestoreLong("enable-save-restore-long",
179 cl::Hidden
, cl::desc("Enable long calls for save-restore stubs."),
180 cl::init(false), cl::ZeroOrMore
);
182 static cl::opt
<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
183 cl::Hidden
, cl::desc("Refrain from using FP whenever possible"));
185 static cl::opt
<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden
,
186 cl::init(true), cl::desc("Optimize spill slots"));
189 static cl::opt
<unsigned> SpillOptMax("spill-opt-max", cl::Hidden
,
190 cl::init(std::numeric_limits
<unsigned>::max()));
191 static unsigned SpillOptCount
= 0;
196 void initializeHexagonCallFrameInformationPass(PassRegistry
&);
197 FunctionPass
*createHexagonCallFrameInformation();
199 } // end namespace llvm
203 class HexagonCallFrameInformation
: public MachineFunctionPass
{
207 HexagonCallFrameInformation() : MachineFunctionPass(ID
) {
208 PassRegistry
&PR
= *PassRegistry::getPassRegistry();
209 initializeHexagonCallFrameInformationPass(PR
);
212 bool runOnMachineFunction(MachineFunction
&MF
) override
;
214 MachineFunctionProperties
getRequiredProperties() const override
{
215 return MachineFunctionProperties().set(
216 MachineFunctionProperties::Property::NoVRegs
);
220 char HexagonCallFrameInformation::ID
= 0;
222 } // end anonymous namespace
224 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction
&MF
) {
225 auto &HFI
= *MF
.getSubtarget
<HexagonSubtarget
>().getFrameLowering();
226 bool NeedCFI
= MF
.getMMI().hasDebugInfo() ||
227 MF
.getFunction().needsUnwindTableEntry();
231 HFI
.insertCFIInstructions(MF
);
235 INITIALIZE_PASS(HexagonCallFrameInformation
, "hexagon-cfi",
236 "Hexagon call frame information", false, false)
238 FunctionPass
*llvm::createHexagonCallFrameInformation() {
239 return new HexagonCallFrameInformation();
242 /// Map a register pair Reg to the subregister that has the greater "number",
243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
244 static unsigned getMax32BitSubRegister(unsigned Reg
,
245 const TargetRegisterInfo
&TRI
,
247 if (Reg
< Hexagon::D0
|| Reg
> Hexagon::D15
)
251 for (MCSubRegIterator
SubRegs(Reg
, &TRI
); SubRegs
.isValid(); ++SubRegs
) {
253 if (*SubRegs
> RegNo
)
256 if (!RegNo
|| *SubRegs
< RegNo
)
263 /// Returns the callee saved register with the largest id in the vector.
264 static unsigned getMaxCalleeSavedReg(const std::vector
<CalleeSavedInfo
> &CSI
,
265 const TargetRegisterInfo
&TRI
) {
266 static_assert(Hexagon::R1
> 0,
267 "Assume physical registers are encoded as positive integers");
271 unsigned Max
= getMax32BitSubRegister(CSI
[0].getReg(), TRI
);
272 for (unsigned I
= 1, E
= CSI
.size(); I
< E
; ++I
) {
273 unsigned Reg
= getMax32BitSubRegister(CSI
[I
].getReg(), TRI
);
280 /// Checks if the basic block contains any instruction that needs a stack
281 /// frame to be already in place.
282 static bool needsStackFrame(const MachineBasicBlock
&MBB
, const BitVector
&CSR
,
283 const HexagonRegisterInfo
&HRI
) {
284 for (auto &I
: MBB
) {
285 const MachineInstr
*MI
= &I
;
288 unsigned Opc
= MI
->getOpcode();
290 case Hexagon::PS_alloca
:
291 case Hexagon::PS_aligna
:
296 // Check individual operands.
297 for (const MachineOperand
&MO
: MI
->operands()) {
298 // While the presence of a frame index does not prove that a stack
299 // frame will be required, all frame indexes should be within alloc-
300 // frame/deallocframe. Otherwise, the code that translates a frame
301 // index into an offset would have to be aware of the placement of
302 // the frame creation/destruction instructions.
306 unsigned R
= MO
.getReg();
307 // Virtual registers will need scavenging, which then may require
309 if (TargetRegisterInfo::isVirtualRegister(R
))
311 for (MCSubRegIterator
S(R
, &HRI
, true); S
.isValid(); ++S
)
316 if (MO
.isRegMask()) {
317 // A regmask would normally have all callee-saved registers marked
318 // as preserved, so this check would not be needed, but in case of
319 // ever having other regmasks (for other calling conventions),
320 // make sure they would be processed correctly.
321 const uint32_t *BM
= MO
.getRegMask();
322 for (int x
= CSR
.find_first(); x
>= 0; x
= CSR
.find_next(x
)) {
324 // If this regmask does not preserve a CSR, a frame will be needed.
325 if (!(BM
[R
/32] & (1u << (R
%32))))
334 /// Returns true if MBB has a machine instructions that indicates a tail call
336 static bool hasTailCall(const MachineBasicBlock
&MBB
) {
337 MachineBasicBlock::const_iterator I
= MBB
.getLastNonDebugInstr();
340 unsigned RetOpc
= I
->getOpcode();
341 return RetOpc
== Hexagon::PS_tailcall_i
|| RetOpc
== Hexagon::PS_tailcall_r
;
344 /// Returns true if MBB contains an instruction that returns.
345 static bool hasReturn(const MachineBasicBlock
&MBB
) {
346 for (auto I
= MBB
.getFirstTerminator(), E
= MBB
.end(); I
!= E
; ++I
)
352 /// Returns the "return" instruction from this block, or nullptr if there
354 static MachineInstr
*getReturn(MachineBasicBlock
&MBB
) {
361 static bool isRestoreCall(unsigned Opc
) {
363 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
364 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
365 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT
:
366 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
:
367 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
:
368 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
:
369 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
:
370 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
:
376 static inline bool isOptNone(const MachineFunction
&MF
) {
377 return MF
.getFunction().hasOptNone() ||
378 MF
.getTarget().getOptLevel() == CodeGenOpt::None
;
381 static inline bool isOptSize(const MachineFunction
&MF
) {
382 const Function
&F
= MF
.getFunction();
383 return F
.hasOptSize() && !F
.hasMinSize();
386 static inline bool isMinSize(const MachineFunction
&MF
) {
387 return MF
.getFunction().hasMinSize();
390 /// Implements shrink-wrapping of the stack frame. By default, stack frame
391 /// is created in the function entry block, and is cleaned up in every block
392 /// that returns. This function finds alternate blocks: one for the frame
393 /// setup (prolog) and one for the cleanup (epilog).
394 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction
&MF
,
395 MachineBasicBlock
*&PrologB
, MachineBasicBlock
*&EpilogB
) const {
396 static unsigned ShrinkCounter
= 0;
398 if (ShrinkLimit
.getPosition()) {
399 if (ShrinkCounter
>= ShrinkLimit
)
404 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
406 MachineDominatorTree MDT
;
407 MDT
.runOnMachineFunction(MF
);
408 MachinePostDominatorTree MPT
;
409 MPT
.runOnMachineFunction(MF
);
411 using UnsignedMap
= DenseMap
<unsigned, unsigned>;
412 using RPOTType
= ReversePostOrderTraversal
<const MachineFunction
*>;
417 for (RPOTType::rpo_iterator I
= RPOT
.begin(), E
= RPOT
.end(); I
!= E
; ++I
)
418 RPO
[(*I
)->getNumber()] = RPON
++;
420 // Don't process functions that have loops, at least for now. Placement
421 // of prolog and epilog must take loop structure into account. For simpli-
422 // city don't do it right now.
424 unsigned BN
= RPO
[I
.getNumber()];
425 for (auto SI
= I
.succ_begin(), SE
= I
.succ_end(); SI
!= SE
; ++SI
) {
426 // If found a back-edge, return.
427 if (RPO
[(*SI
)->getNumber()] <= BN
)
432 // Collect the set of blocks that need a stack frame to execute. Scan
433 // each block for uses/defs of callee-saved registers, calls, etc.
434 SmallVector
<MachineBasicBlock
*,16> SFBlocks
;
435 BitVector
CSR(Hexagon::NUM_TARGET_REGS
);
436 for (const MCPhysReg
*P
= HRI
.getCalleeSavedRegs(&MF
); *P
; ++P
)
437 for (MCSubRegIterator
S(*P
, &HRI
, true); S
.isValid(); ++S
)
441 if (needsStackFrame(I
, CSR
, HRI
))
442 SFBlocks
.push_back(&I
);
445 dbgs() << "Blocks needing SF: {";
446 for (auto &B
: SFBlocks
)
447 dbgs() << " " << printMBBReference(*B
);
451 if (SFBlocks
.empty())
454 // Pick a common dominator and a common post-dominator.
455 MachineBasicBlock
*DomB
= SFBlocks
[0];
456 for (unsigned i
= 1, n
= SFBlocks
.size(); i
< n
; ++i
) {
457 DomB
= MDT
.findNearestCommonDominator(DomB
, SFBlocks
[i
]);
461 MachineBasicBlock
*PDomB
= SFBlocks
[0];
462 for (unsigned i
= 1, n
= SFBlocks
.size(); i
< n
; ++i
) {
463 PDomB
= MPT
.findNearestCommonDominator(PDomB
, SFBlocks
[i
]);
468 dbgs() << "Computed dom block: ";
470 dbgs() << printMBBReference(*DomB
);
473 dbgs() << ", computed pdom block: ";
475 dbgs() << printMBBReference(*PDomB
);
483 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
484 if (!MDT
.dominates(DomB
, PDomB
)) {
485 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
488 if (!MPT
.dominates(PDomB
, DomB
)) {
489 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
493 // Finally, everything seems right.
498 /// Perform most of the PEI work here:
499 /// - saving/restoring of the callee-saved registers,
500 /// - stack frame creation and destruction.
501 /// Normally, this work is distributed among various functions, but doing it
502 /// in one place allows shrink-wrapping of the stack frame.
503 void HexagonFrameLowering::emitPrologue(MachineFunction
&MF
,
504 MachineBasicBlock
&MBB
) const {
505 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
507 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
508 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
510 MachineBasicBlock
*PrologB
= &MF
.front(), *EpilogB
= nullptr;
511 if (EnableShrinkWrapping
)
512 findShrunkPrologEpilog(MF
, PrologB
, EpilogB
);
514 bool PrologueStubs
= false;
515 insertCSRSpillsInBlock(*PrologB
, CSI
, HRI
, PrologueStubs
);
516 insertPrologueInBlock(*PrologB
, PrologueStubs
);
517 updateEntryPaths(MF
, *PrologB
);
520 insertCSRRestoresInBlock(*EpilogB
, CSI
, HRI
);
521 insertEpilogueInBlock(*EpilogB
);
524 if (B
.isReturnBlock())
525 insertCSRRestoresInBlock(B
, CSI
, HRI
);
528 if (B
.isReturnBlock())
529 insertEpilogueInBlock(B
);
534 MachineInstr
*RetI
= getReturn(B
);
535 if (!RetI
|| isRestoreCall(RetI
->getOpcode()))
538 RetI
->addOperand(MachineOperand::CreateReg(R
.getReg(), false, true));
543 // If there is an epilog block, it may not have a return instruction.
544 // In such case, we need to add the callee-saved registers as live-ins
545 // in all blocks on all paths from the epilog to any return block.
546 unsigned MaxBN
= MF
.getNumBlockIDs();
547 BitVector
DoneT(MaxBN
+1), DoneF(MaxBN
+1), Path(MaxBN
+1);
548 updateExitPaths(*EpilogB
, *EpilogB
, DoneT
, DoneF
, Path
);
552 /// Returns true if the target can safely skip saving callee-saved registers
553 /// for noreturn nounwind functions.
554 bool HexagonFrameLowering::enableCalleeSaveSkip(
555 const MachineFunction
&MF
) const {
556 const auto &F
= MF
.getFunction();
557 assert(F
.hasFnAttribute(Attribute::NoReturn
) &&
558 F
.getFunction().hasFnAttribute(Attribute::NoUnwind
) &&
559 !F
.getFunction().hasFnAttribute(Attribute::UWTable
));
562 // No need to save callee saved registers if the function does not return.
563 return MF
.getSubtarget
<HexagonSubtarget
>().noreturnStackElim();
566 // Helper function used to determine when to eliminate the stack frame for
567 // functions marked as noreturn and when the noreturn-stack-elim options are
568 // specified. When both these conditions are true, then a FP may not be needed
569 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
570 // but it used to check if the allocframe can be eliminated as well.
571 static bool enableAllocFrameElim(const MachineFunction
&MF
) {
572 const auto &F
= MF
.getFunction();
573 const auto &MFI
= MF
.getFrameInfo();
574 const auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
575 assert(!MFI
.hasVarSizedObjects() &&
576 !HST
.getRegisterInfo()->needsStackRealignment(MF
));
577 return F
.hasFnAttribute(Attribute::NoReturn
) &&
578 F
.hasFnAttribute(Attribute::NoUnwind
) &&
579 !F
.hasFnAttribute(Attribute::UWTable
) && HST
.noreturnStackElim() &&
580 MFI
.getStackSize() == 0;
583 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock
&MBB
,
584 bool PrologueStubs
) const {
585 MachineFunction
&MF
= *MBB
.getParent();
586 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
587 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
588 auto &HII
= *HST
.getInstrInfo();
589 auto &HRI
= *HST
.getRegisterInfo();
591 unsigned MaxAlign
= std::max(MFI
.getMaxAlignment(), getStackAlignment());
593 // Calculate the total stack frame size.
594 // Get the number of bytes to allocate from the FrameInfo.
595 unsigned FrameSize
= MFI
.getStackSize();
596 // Round up the max call frame size to the max alignment on the stack.
597 unsigned MaxCFA
= alignTo(MFI
.getMaxCallFrameSize(), MaxAlign
);
598 MFI
.setMaxCallFrameSize(MaxCFA
);
600 FrameSize
= MaxCFA
+ alignTo(FrameSize
, MaxAlign
);
601 MFI
.setStackSize(FrameSize
);
603 bool AlignStack
= (MaxAlign
> getStackAlignment());
605 // Get the number of bytes to allocate from the FrameInfo.
606 unsigned NumBytes
= MFI
.getStackSize();
607 unsigned SP
= HRI
.getStackRegister();
608 unsigned MaxCF
= MFI
.getMaxCallFrameSize();
609 MachineBasicBlock::iterator InsertPt
= MBB
.begin();
611 SmallVector
<MachineInstr
*, 4> AdjustRegs
;
614 if (MI
.getOpcode() == Hexagon::PS_alloca
)
615 AdjustRegs
.push_back(&MI
);
617 for (auto MI
: AdjustRegs
) {
618 assert((MI
->getOpcode() == Hexagon::PS_alloca
) && "Expected alloca");
619 expandAlloca(MI
, HII
, SP
, MaxCF
);
620 MI
->eraseFromParent();
623 DebugLoc dl
= MBB
.findDebugLoc(InsertPt
);
626 insertAllocframe(MBB
, InsertPt
, NumBytes
);
628 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_andir
), SP
)
630 .addImm(-int64_t(MaxAlign
));
632 // If the stack-checking is enabled, and we spilled the callee-saved
633 // registers inline (i.e. did not use a spill function), then call
634 // the stack checker directly.
635 if (EnableStackOVFSanitizer
&& !PrologueStubs
)
636 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::PS_call_stk
))
637 .addExternalSymbol("__runtime_stack_check");
638 } else if (NumBytes
> 0) {
639 assert(alignTo(NumBytes
, 8) == NumBytes
);
640 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
642 .addImm(-int(NumBytes
));
646 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock
&MBB
) const {
647 MachineFunction
&MF
= *MBB
.getParent();
648 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
649 auto &HII
= *HST
.getInstrInfo();
650 auto &HRI
= *HST
.getRegisterInfo();
651 unsigned SP
= HRI
.getStackRegister();
653 MachineBasicBlock::iterator InsertPt
= MBB
.getFirstTerminator();
654 DebugLoc dl
= MBB
.findDebugLoc(InsertPt
);
657 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
658 if (unsigned NumBytes
= MFI
.getStackSize()) {
659 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
666 MachineInstr
*RetI
= getReturn(MBB
);
667 unsigned RetOpc
= RetI
? RetI
->getOpcode() : 0;
670 if (RetOpc
== Hexagon::EH_RETURN_JMPR
) {
671 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::L2_deallocframe
))
672 .addDef(Hexagon::D15
)
673 .addReg(Hexagon::R30
);
674 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_add
), SP
)
676 .addReg(Hexagon::R28
);
680 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
681 // frame instruction if we encounter it.
682 if (RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4
||
683 RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
||
684 RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT
||
685 RetOpc
== Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
) {
686 MachineBasicBlock::iterator It
= RetI
;
688 // Delete all instructions after the RESTORE (except labels).
689 while (It
!= MBB
.end()) {
698 // It is possible that the restoring code is a call to a library function.
699 // All of the restore* functions include "deallocframe", so we need to make
700 // sure that we don't add an extra one.
701 bool NeedsDeallocframe
= true;
702 if (!MBB
.empty() && InsertPt
!= MBB
.begin()) {
703 MachineBasicBlock::iterator PrevIt
= std::prev(InsertPt
);
704 unsigned COpc
= PrevIt
->getOpcode();
705 if (COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
||
706 COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
||
707 COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
||
708 COpc
== Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
||
709 COpc
== Hexagon::PS_call_nr
|| COpc
== Hexagon::PS_callr_nr
)
710 NeedsDeallocframe
= false;
713 if (!NeedsDeallocframe
)
715 // If the returning instruction is PS_jmpret, replace it with dealloc_return,
716 // otherwise just add deallocframe. The function could be returning via a
718 if (RetOpc
!= Hexagon::PS_jmpret
|| DisableDeallocRet
) {
719 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::L2_deallocframe
))
720 .addDef(Hexagon::D15
)
721 .addReg(Hexagon::R30
);
724 unsigned NewOpc
= Hexagon::L4_return
;
725 MachineInstr
*NewI
= BuildMI(MBB
, RetI
, dl
, HII
.get(NewOpc
))
726 .addDef(Hexagon::D15
)
727 .addReg(Hexagon::R30
);
728 // Transfer the function live-out registers.
729 NewI
->copyImplicitOps(MF
, *RetI
);
733 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock
&MBB
,
734 MachineBasicBlock::iterator InsertPt
, unsigned NumBytes
) const {
735 MachineFunction
&MF
= *MBB
.getParent();
736 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
737 auto &HII
= *HST
.getInstrInfo();
738 auto &HRI
= *HST
.getRegisterInfo();
740 // Check for overflow.
741 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
742 const unsigned int ALLOCFRAME_MAX
= 16384;
744 // Create a dummy memory operand to avoid allocframe from being treated as
745 // a volatile memory reference.
746 auto *MMO
= MF
.getMachineMemOperand(MachinePointerInfo::getStack(MF
, 0),
747 MachineMemOperand::MOStore
, 4, 4);
749 DebugLoc dl
= MBB
.findDebugLoc(InsertPt
);
750 unsigned SP
= HRI
.getStackRegister();
752 if (NumBytes
>= ALLOCFRAME_MAX
) {
753 // Emit allocframe(#0).
754 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::S2_allocframe
))
760 // Subtract the size from the stack pointer.
761 unsigned SP
= HRI
.getStackRegister();
762 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::A2_addi
), SP
)
764 .addImm(-int(NumBytes
));
766 BuildMI(MBB
, InsertPt
, dl
, HII
.get(Hexagon::S2_allocframe
))
774 void HexagonFrameLowering::updateEntryPaths(MachineFunction
&MF
,
775 MachineBasicBlock
&SaveB
) const {
776 SetVector
<unsigned> Worklist
;
778 MachineBasicBlock
&EntryB
= MF
.front();
779 Worklist
.insert(EntryB
.getNumber());
781 unsigned SaveN
= SaveB
.getNumber();
782 auto &CSI
= MF
.getFrameInfo().getCalleeSavedInfo();
784 for (unsigned i
= 0; i
< Worklist
.size(); ++i
) {
785 unsigned BN
= Worklist
[i
];
786 MachineBasicBlock
&MBB
= *MF
.getBlockNumbered(BN
);
788 if (!MBB
.isLiveIn(R
.getReg()))
789 MBB
.addLiveIn(R
.getReg());
791 for (auto &SB
: MBB
.successors())
792 Worklist
.insert(SB
->getNumber());
796 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock
&MBB
,
797 MachineBasicBlock
&RestoreB
, BitVector
&DoneT
, BitVector
&DoneF
,
798 BitVector
&Path
) const {
799 assert(MBB
.getNumber() >= 0);
800 unsigned BN
= MBB
.getNumber();
801 if (Path
[BN
] || DoneF
[BN
])
806 auto &CSI
= MBB
.getParent()->getFrameInfo().getCalleeSavedInfo();
809 bool ReachedExit
= false;
810 for (auto &SB
: MBB
.successors())
811 ReachedExit
|= updateExitPaths(*SB
, RestoreB
, DoneT
, DoneF
, Path
);
813 if (!MBB
.empty() && MBB
.back().isReturn()) {
814 // Add implicit uses of all callee-saved registers to the reached
815 // return instructions. This is to prevent the anti-dependency breaker
816 // from renaming these registers.
817 MachineInstr
&RetI
= MBB
.back();
818 if (!isRestoreCall(RetI
.getOpcode()))
820 RetI
.addOperand(MachineOperand::CreateReg(R
.getReg(), false, true));
824 // We don't want to add unnecessary live-ins to the restore block: since
825 // the callee-saved registers are being defined in it, the entry of the
826 // restore block cannot be on the path from the definitions to any exit.
827 if (ReachedExit
&& &MBB
!= &RestoreB
) {
829 if (!MBB
.isLiveIn(R
.getReg()))
830 MBB
.addLiveIn(R
.getReg());
840 static Optional
<MachineBasicBlock::iterator
>
841 findCFILocation(MachineBasicBlock
&B
) {
842 // The CFI instructions need to be inserted right after allocframe.
843 // An exception to this is a situation where allocframe is bundled
844 // with a call: then the CFI instructions need to be inserted before
845 // the packet with the allocframe+call (in case the call throws an
847 auto End
= B
.instr_end();
849 for (MachineInstr
&I
: B
) {
850 MachineBasicBlock::iterator It
= I
.getIterator();
852 if (I
.getOpcode() == Hexagon::S2_allocframe
)
853 return std::next(It
);
857 bool HasCall
= false, HasAllocFrame
= false;
858 auto T
= It
.getInstrIterator();
859 while (++T
!= End
&& T
->isBundled()) {
860 if (T
->getOpcode() == Hexagon::S2_allocframe
)
861 HasAllocFrame
= true;
862 else if (T
->isCall())
866 return HasCall
? It
: std::next(It
);
871 void HexagonFrameLowering::insertCFIInstructions(MachineFunction
&MF
) const {
873 auto At
= findCFILocation(B
);
875 insertCFIInstructionsAt(B
, At
.getValue());
879 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock
&MBB
,
880 MachineBasicBlock::iterator At
) const {
881 MachineFunction
&MF
= *MBB
.getParent();
882 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
883 MachineModuleInfo
&MMI
= MF
.getMMI();
884 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
885 auto &HII
= *HST
.getInstrInfo();
886 auto &HRI
= *HST
.getRegisterInfo();
888 // If CFI instructions have debug information attached, something goes
889 // wrong with the final assembly generation: the prolog_end is placed
890 // in a wrong location.
892 const MCInstrDesc
&CFID
= HII
.get(TargetOpcode::CFI_INSTRUCTION
);
894 MCSymbol
*FrameLabel
= MMI
.getContext().createTempSymbol();
895 bool HasFP
= hasFP(MF
);
898 unsigned DwFPReg
= HRI
.getDwarfRegNum(HRI
.getFrameRegister(), true);
899 unsigned DwRAReg
= HRI
.getDwarfRegNum(HRI
.getRARegister(), true);
901 // Define CFA via an offset from the value of FP.
904 // --+----+----+---------------------
905 // | FP | LR | increasing addresses -->
906 // --+----+----+---------------------
907 // | +-- Old SP (before allocframe)
908 // +-- New FP (after allocframe)
910 // MCCFIInstruction::createDefCfa subtracts the offset from the register.
911 // MCCFIInstruction::createOffset takes the offset without sign change.
912 auto DefCfa
= MCCFIInstruction::createDefCfa(FrameLabel
, DwFPReg
, -8);
913 BuildMI(MBB
, At
, DL
, CFID
)
914 .addCFIIndex(MF
.addFrameInst(DefCfa
));
915 // R31 (return addr) = CFA - 4
916 auto OffR31
= MCCFIInstruction::createOffset(FrameLabel
, DwRAReg
, -4);
917 BuildMI(MBB
, At
, DL
, CFID
)
918 .addCFIIndex(MF
.addFrameInst(OffR31
));
919 // R30 (frame ptr) = CFA - 8
920 auto OffR30
= MCCFIInstruction::createOffset(FrameLabel
, DwFPReg
, -8);
921 BuildMI(MBB
, At
, DL
, CFID
)
922 .addCFIIndex(MF
.addFrameInst(OffR30
));
925 static unsigned int RegsToMove
[] = {
926 Hexagon::R1
, Hexagon::R0
, Hexagon::R3
, Hexagon::R2
,
927 Hexagon::R17
, Hexagon::R16
, Hexagon::R19
, Hexagon::R18
,
928 Hexagon::R21
, Hexagon::R20
, Hexagon::R23
, Hexagon::R22
,
929 Hexagon::R25
, Hexagon::R24
, Hexagon::R27
, Hexagon::R26
,
930 Hexagon::D0
, Hexagon::D1
, Hexagon::D8
, Hexagon::D9
,
931 Hexagon::D10
, Hexagon::D11
, Hexagon::D12
, Hexagon::D13
,
935 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
937 for (unsigned i
= 0; RegsToMove
[i
] != Hexagon::NoRegister
; ++i
) {
938 unsigned Reg
= RegsToMove
[i
];
939 auto IfR
= [Reg
] (const CalleeSavedInfo
&C
) -> bool {
940 return C
.getReg() == Reg
;
942 auto F
= find_if(CSI
, IfR
);
948 // If the function has a frame pointer (i.e. has an allocframe),
949 // then the CFA has been defined in terms of FP. Any offsets in
950 // the following CFI instructions have to be defined relative
951 // to FP, which points to the bottom of the stack frame.
952 // The function getFrameIndexReference can still choose to use SP
953 // for the offset calculation, so we cannot simply call it here.
954 // Instead, get the offset (relative to the FP) directly.
955 Offset
= MFI
.getObjectOffset(F
->getFrameIdx());
958 Offset
= getFrameIndexReference(MF
, F
->getFrameIdx(), FrameReg
);
960 // Subtract 8 to make room for R30 and R31, which are added above.
963 if (Reg
< Hexagon::D0
|| Reg
> Hexagon::D15
) {
964 unsigned DwarfReg
= HRI
.getDwarfRegNum(Reg
, true);
965 auto OffReg
= MCCFIInstruction::createOffset(FrameLabel
, DwarfReg
,
967 BuildMI(MBB
, At
, DL
, CFID
)
968 .addCFIIndex(MF
.addFrameInst(OffReg
));
970 // Split the double regs into subregs, and generate appropriate
972 // The only reason, we are split double regs is, llvm-mc does not
973 // understand paired registers for cfi_offset.
974 // Eg .cfi_offset r1:0, -64
976 unsigned HiReg
= HRI
.getSubReg(Reg
, Hexagon::isub_hi
);
977 unsigned LoReg
= HRI
.getSubReg(Reg
, Hexagon::isub_lo
);
978 unsigned HiDwarfReg
= HRI
.getDwarfRegNum(HiReg
, true);
979 unsigned LoDwarfReg
= HRI
.getDwarfRegNum(LoReg
, true);
980 auto OffHi
= MCCFIInstruction::createOffset(FrameLabel
, HiDwarfReg
,
982 BuildMI(MBB
, At
, DL
, CFID
)
983 .addCFIIndex(MF
.addFrameInst(OffHi
));
984 auto OffLo
= MCCFIInstruction::createOffset(FrameLabel
, LoDwarfReg
,
986 BuildMI(MBB
, At
, DL
, CFID
)
987 .addCFIIndex(MF
.addFrameInst(OffLo
));
992 bool HexagonFrameLowering::hasFP(const MachineFunction
&MF
) const {
993 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
996 auto &MFI
= MF
.getFrameInfo();
997 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
998 bool HasExtraAlign
= HRI
.needsStackRealignment(MF
);
999 bool HasAlloca
= MFI
.hasVarSizedObjects();
1001 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
1002 // that this shouldn't be required, but doing so now because gcc does and
1003 // gdb can't break at the start of the function without it. Will remove if
1004 // this turns out to be a gdb bug.
1006 if (MF
.getTarget().getOptLevel() == CodeGenOpt::None
)
1009 // By default we want to use SP (since it's always there). FP requires
1010 // some setup (i.e. ALLOCFRAME).
1011 // Both, alloca and stack alignment modify the stack pointer by an
1012 // undetermined value, so we need to save it at the entry to the function
1013 // (i.e. use allocframe).
1014 if (HasAlloca
|| HasExtraAlign
)
1017 if (MFI
.getStackSize() > 0) {
1018 // If FP-elimination is disabled, we have to use FP at this point.
1019 const TargetMachine
&TM
= MF
.getTarget();
1020 if (TM
.Options
.DisableFramePointerElim(MF
) || !EliminateFramePointer
)
1022 if (EnableStackOVFSanitizer
)
1026 const auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
1027 if ((MFI
.hasCalls() && !enableAllocFrameElim(MF
)) || HMFI
.hasClobberLR())
1039 static const char *getSpillFunctionFor(unsigned MaxReg
, SpillKind SpillType
,
1040 bool Stkchk
= false) {
1041 const char * V4SpillToMemoryFunctions
[] = {
1042 "__save_r16_through_r17",
1043 "__save_r16_through_r19",
1044 "__save_r16_through_r21",
1045 "__save_r16_through_r23",
1046 "__save_r16_through_r25",
1047 "__save_r16_through_r27" };
1049 const char * V4SpillToMemoryStkchkFunctions
[] = {
1050 "__save_r16_through_r17_stkchk",
1051 "__save_r16_through_r19_stkchk",
1052 "__save_r16_through_r21_stkchk",
1053 "__save_r16_through_r23_stkchk",
1054 "__save_r16_through_r25_stkchk",
1055 "__save_r16_through_r27_stkchk" };
1057 const char * V4SpillFromMemoryFunctions
[] = {
1058 "__restore_r16_through_r17_and_deallocframe",
1059 "__restore_r16_through_r19_and_deallocframe",
1060 "__restore_r16_through_r21_and_deallocframe",
1061 "__restore_r16_through_r23_and_deallocframe",
1062 "__restore_r16_through_r25_and_deallocframe",
1063 "__restore_r16_through_r27_and_deallocframe" };
1065 const char * V4SpillFromMemoryTailcallFunctions
[] = {
1066 "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1067 "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1068 "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1069 "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1070 "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1071 "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1074 const char **SpillFunc
= nullptr;
1078 SpillFunc
= Stkchk
? V4SpillToMemoryStkchkFunctions
1079 : V4SpillToMemoryFunctions
;
1082 SpillFunc
= V4SpillFromMemoryFunctions
;
1084 case SK_FromMemTailcall
:
1085 SpillFunc
= V4SpillFromMemoryTailcallFunctions
;
1088 assert(SpillFunc
&& "Unknown spill kind");
1090 // Spill all callee-saved registers up to the highest register used.
1093 return SpillFunc
[0];
1095 return SpillFunc
[1];
1097 return SpillFunc
[2];
1099 return SpillFunc
[3];
1101 return SpillFunc
[4];
1103 return SpillFunc
[5];
1105 llvm_unreachable("Unhandled maximum callee save register");
1110 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction
&MF
,
1111 int FI
, unsigned &FrameReg
) const {
1112 auto &MFI
= MF
.getFrameInfo();
1113 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1115 int Offset
= MFI
.getObjectOffset(FI
);
1116 bool HasAlloca
= MFI
.hasVarSizedObjects();
1117 bool HasExtraAlign
= HRI
.needsStackRealignment(MF
);
1118 bool NoOpt
= MF
.getTarget().getOptLevel() == CodeGenOpt::None
;
1120 auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
1121 unsigned FrameSize
= MFI
.getStackSize();
1122 unsigned SP
= HRI
.getStackRegister();
1123 unsigned FP
= HRI
.getFrameRegister();
1124 unsigned AP
= HMFI
.getStackAlignBasePhysReg();
1125 // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1126 // is true. HasExtraAlign may be set because of vector spills, without
1127 // aligned locals or aligned outgoing function arguments. Since vector
1128 // spills will ultimately be "unaligned", it is safe to use FP as the
1130 // In fact, in such a scenario the stack is actually not required to be
1131 // aligned, although it may end up being aligned anyway, since this
1132 // particular case is not easily detectable. The alignment will be
1133 // unnecessary, but not incorrect.
1134 // Unfortunately there is no quick way to verify that the above is
1135 // indeed the case (and that it's not a result of an error), so just
1136 // assume that missing AP will be replaced by FP.
1137 // (A better fix would be to rematerialize AP from FP and always align
1142 bool UseFP
= false, UseAP
= false; // Default: use SP (except at -O0).
1143 // Use FP at -O0, except when there are objects with extra alignment.
1144 // That additional alignment requirement may cause a pad to be inserted,
1145 // which will make it impossible to use FP to access objects located
1147 if (NoOpt
&& !HasExtraAlign
)
1149 if (MFI
.isFixedObjectIndex(FI
) || MFI
.isObjectPreAllocated(FI
)) {
1150 // Fixed and preallocated objects will be located before any padding
1151 // so FP must be used to access them.
1152 UseFP
|= (HasAlloca
|| HasExtraAlign
);
1162 // If FP was picked, then there had better be FP.
1163 bool HasFP
= hasFP(MF
);
1164 assert((HasFP
|| !UseFP
) && "This function must have frame pointer");
1166 // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1167 // FP/LR. If the base register is used to access an object across these
1168 // 8 bytes, then the offset will need to be adjusted by 8.
1170 // After allocframe:
1171 // HexagonISelLowering adds 8 to ---+
1172 // the offsets of all stack-based |
1175 // getObjectOffset < 0 0 8 getObjectOffset >= 8
1176 // ------------------------+-----+------------------------> increasing
1177 // <local objects> |FP/LR| <input arguments> addresses
1178 // -----------------+------+-----+------------------------>
1180 // SP/AP point --+ +-- FP points here (**)
1182 // this side of FP/LR
1184 // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1185 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1187 // The lowering assumes that FP/LR is present, and so the offsets of
1188 // the formal arguments start at 8. If FP/LR is not there we need to
1189 // reduce the offset by 8.
1190 if (Offset
> 0 && !HasFP
)
1200 // Calculate the actual offset in the instruction. If there is no FP
1201 // (in other words, no allocframe), then SP will not be adjusted (i.e.
1202 // there will be no SP -= FrameSize), so the frame size should not be
1203 // added to the calculated offset.
1204 int RealOffset
= Offset
;
1205 if (!UseFP
&& !UseAP
)
1206 RealOffset
= FrameSize
+Offset
;
1210 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock
&MBB
,
1211 const CSIVect
&CSI
, const HexagonRegisterInfo
&HRI
,
1212 bool &PrologueStubs
) const {
1216 MachineBasicBlock::iterator MI
= MBB
.begin();
1217 PrologueStubs
= false;
1218 MachineFunction
&MF
= *MBB
.getParent();
1219 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
1220 auto &HII
= *HST
.getInstrInfo();
1222 if (useSpillFunction(MF
, CSI
)) {
1223 PrologueStubs
= true;
1224 unsigned MaxReg
= getMaxCalleeSavedReg(CSI
, HRI
);
1225 bool StkOvrFlowEnabled
= EnableStackOVFSanitizer
;
1226 const char *SpillFun
= getSpillFunctionFor(MaxReg
, SK_ToMem
,
1228 auto &HTM
= static_cast<const HexagonTargetMachine
&>(MF
.getTarget());
1229 bool IsPIC
= HTM
.isPositionIndependent();
1230 bool LongCalls
= HST
.useLongCalls() || EnableSaveRestoreLong
;
1232 // Call spill function.
1233 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc() : DebugLoc();
1235 if (StkOvrFlowEnabled
) {
1237 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1238 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT
;
1240 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1241 : Hexagon::SAVE_REGISTERS_CALL_V4STK
;
1244 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1245 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT
;
1247 SpillOpc
= IsPIC
? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1248 : Hexagon::SAVE_REGISTERS_CALL_V4
;
1251 MachineInstr
*SaveRegsCall
=
1252 BuildMI(MBB
, MI
, DL
, HII
.get(SpillOpc
))
1253 .addExternalSymbol(SpillFun
);
1255 // Add callee-saved registers as use.
1256 addCalleeSaveRegistersAsImpOperand(SaveRegsCall
, CSI
, false, true);
1257 // Add live in registers.
1258 for (unsigned I
= 0; I
< CSI
.size(); ++I
)
1259 MBB
.addLiveIn(CSI
[I
].getReg());
1263 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
1264 unsigned Reg
= CSI
[i
].getReg();
1265 // Add live in registers. We treat eh_return callee saved register r0 - r3
1266 // specially. They are not really callee saved registers as they are not
1267 // supposed to be killed.
1268 bool IsKill
= !HRI
.isEHReturnCalleeSaveReg(Reg
);
1269 int FI
= CSI
[i
].getFrameIdx();
1270 const TargetRegisterClass
*RC
= HRI
.getMinimalPhysRegClass(Reg
);
1271 HII
.storeRegToStackSlot(MBB
, MI
, Reg
, IsKill
, FI
, RC
, &HRI
);
1278 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock
&MBB
,
1279 const CSIVect
&CSI
, const HexagonRegisterInfo
&HRI
) const {
1283 MachineBasicBlock::iterator MI
= MBB
.getFirstTerminator();
1284 MachineFunction
&MF
= *MBB
.getParent();
1285 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
1286 auto &HII
= *HST
.getInstrInfo();
1288 if (useRestoreFunction(MF
, CSI
)) {
1289 bool HasTC
= hasTailCall(MBB
) || !hasReturn(MBB
);
1290 unsigned MaxR
= getMaxCalleeSavedReg(CSI
, HRI
);
1291 SpillKind Kind
= HasTC
? SK_FromMemTailcall
: SK_FromMem
;
1292 const char *RestoreFn
= getSpillFunctionFor(MaxR
, Kind
);
1293 auto &HTM
= static_cast<const HexagonTargetMachine
&>(MF
.getTarget());
1294 bool IsPIC
= HTM
.isPositionIndependent();
1295 bool LongCalls
= HST
.useLongCalls() || EnableSaveRestoreLong
;
1297 // Call spill function.
1298 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc()
1299 : MBB
.findDebugLoc(MBB
.end());
1300 MachineInstr
*DeallocCall
= nullptr;
1305 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1306 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT
;
1308 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1309 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4
;
1310 DeallocCall
= BuildMI(MBB
, MI
, DL
, HII
.get(RetOpc
))
1311 .addExternalSymbol(RestoreFn
);
1313 // The block has a return.
1314 MachineBasicBlock::iterator It
= MBB
.getFirstTerminator();
1315 assert(It
->isReturn() && std::next(It
) == MBB
.end());
1318 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1319 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT
;
1321 RetOpc
= IsPIC
? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1322 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4
;
1323 DeallocCall
= BuildMI(MBB
, It
, DL
, HII
.get(RetOpc
))
1324 .addExternalSymbol(RestoreFn
);
1325 // Transfer the function live-out registers.
1326 DeallocCall
->copyImplicitOps(MF
, *It
);
1328 addCalleeSaveRegistersAsImpOperand(DeallocCall
, CSI
, true, false);
1332 for (unsigned i
= 0; i
< CSI
.size(); ++i
) {
1333 unsigned Reg
= CSI
[i
].getReg();
1334 const TargetRegisterClass
*RC
= HRI
.getMinimalPhysRegClass(Reg
);
1335 int FI
= CSI
[i
].getFrameIdx();
1336 HII
.loadRegFromStackSlot(MBB
, MI
, Reg
, FI
, RC
, &HRI
);
1342 MachineBasicBlock::iterator
HexagonFrameLowering::eliminateCallFramePseudoInstr(
1343 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
1344 MachineBasicBlock::iterator I
) const {
1345 MachineInstr
&MI
= *I
;
1346 unsigned Opc
= MI
.getOpcode();
1347 (void)Opc
; // Silence compiler warning.
1348 assert((Opc
== Hexagon::ADJCALLSTACKDOWN
|| Opc
== Hexagon::ADJCALLSTACKUP
) &&
1349 "Cannot handle this call frame pseudo instruction");
1350 return MBB
.erase(I
);
1353 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1354 MachineFunction
&MF
, RegScavenger
*RS
) const {
1355 // If this function has uses aligned stack and also has variable sized stack
1356 // objects, then we need to map all spill slots to fixed positions, so that
1357 // they can be accessed through FP. Otherwise they would have to be accessed
1358 // via AP, which may not be available at the particular place in the program.
1359 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1360 bool HasAlloca
= MFI
.hasVarSizedObjects();
1361 bool NeedsAlign
= (MFI
.getMaxAlignment() > getStackAlignment());
1363 if (!HasAlloca
|| !NeedsAlign
)
1366 unsigned LFS
= MFI
.getLocalFrameSize();
1367 for (int i
= 0, e
= MFI
.getObjectIndexEnd(); i
!= e
; ++i
) {
1368 if (!MFI
.isSpillSlotObjectIndex(i
) || MFI
.isDeadObjectIndex(i
))
1370 unsigned S
= MFI
.getObjectSize(i
);
1371 // Reduce the alignment to at most 8. This will require unaligned vector
1372 // stores if they happen here.
1373 unsigned A
= std::max(MFI
.getObjectAlignment(i
), 8U);
1374 MFI
.setObjectAlignment(i
, 8);
1375 LFS
= alignTo(LFS
+S
, A
);
1376 MFI
.mapLocalFrameObject(i
, -LFS
);
1379 MFI
.setLocalFrameSize(LFS
);
1380 unsigned A
= MFI
.getLocalFrameMaxAlign();
1381 assert(A
<= 8 && "Unexpected local frame alignment");
1383 MFI
.setLocalFrameMaxAlign(8);
1384 MFI
.setUseLocalStackAllocationBlock(true);
1386 // Set the physical aligned-stack base address register.
1388 if (const MachineInstr
*AI
= getAlignaInstr(MF
))
1389 AP
= AI
->getOperand(0).getReg();
1390 auto &HMFI
= *MF
.getInfo
<HexagonMachineFunctionInfo
>();
1391 HMFI
.setStackAlignBasePhysReg(AP
);
1394 /// Returns true if there are no caller-saved registers available in class RC.
1395 static bool needToReserveScavengingSpillSlots(MachineFunction
&MF
,
1396 const HexagonRegisterInfo
&HRI
, const TargetRegisterClass
*RC
) {
1397 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1399 auto IsUsed
= [&HRI
,&MRI
] (unsigned Reg
) -> bool {
1400 for (MCRegAliasIterator
AI(Reg
, &HRI
, true); AI
.isValid(); ++AI
)
1401 if (MRI
.isPhysRegUsed(*AI
))
1406 // Check for an unused caller-saved register. Callee-saved registers
1407 // have become pristine by now.
1408 for (const MCPhysReg
*P
= HRI
.getCallerSavedRegs(&MF
, RC
); *P
; ++P
)
1412 // All caller-saved registers are used.
1417 static void dump_registers(BitVector
&Regs
, const TargetRegisterInfo
&TRI
) {
1419 for (int x
= Regs
.find_first(); x
>= 0; x
= Regs
.find_next(x
)) {
1421 dbgs() << ' ' << printReg(R
, &TRI
);
1427 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction
&MF
,
1428 const TargetRegisterInfo
*TRI
, std::vector
<CalleeSavedInfo
> &CSI
) const {
1429 LLVM_DEBUG(dbgs() << __func__
<< " on " << MF
.getName() << '\n');
1430 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1431 BitVector
SRegs(Hexagon::NUM_TARGET_REGS
);
1433 // Generate a set of unique, callee-saved registers (SRegs), where each
1434 // register in the set is maximal in terms of sub-/super-register relation,
1435 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1437 // (1) For each callee-saved register, add that register and all of its
1438 // sub-registers to SRegs.
1439 LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1440 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
1441 unsigned R
= CSI
[i
].getReg();
1442 LLVM_DEBUG(dbgs() << ' ' << printReg(R
, TRI
));
1443 for (MCSubRegIterator
SR(R
, TRI
, true); SR
.isValid(); ++SR
)
1446 LLVM_DEBUG(dbgs() << " }\n");
1447 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs
, *TRI
);
1450 // (2) For each reserved register, remove that register and all of its
1451 // sub- and super-registers from SRegs.
1452 BitVector Reserved
= TRI
->getReservedRegs(MF
);
1453 for (int x
= Reserved
.find_first(); x
>= 0; x
= Reserved
.find_next(x
)) {
1455 for (MCSuperRegIterator
SR(R
, TRI
, true); SR
.isValid(); ++SR
)
1458 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved
, *TRI
);
1460 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs
, *TRI
);
1463 // (3) Collect all registers that have at least one sub-register in SRegs,
1464 // and also have no sub-registers that are reserved. These will be the can-
1465 // didates for saving as a whole instead of their individual sub-registers.
1466 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1467 BitVector
TmpSup(Hexagon::NUM_TARGET_REGS
);
1468 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1470 for (MCSuperRegIterator
SR(R
, TRI
); SR
.isValid(); ++SR
)
1473 for (int x
= TmpSup
.find_first(); x
>= 0; x
= TmpSup
.find_next(x
)) {
1475 for (MCSubRegIterator
SR(R
, TRI
, true); SR
.isValid(); ++SR
) {
1482 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup
, *TRI
);
1485 // (4) Include all super-registers found in (3) into SRegs.
1487 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs
, *TRI
);
1490 // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1491 // remove R from SRegs.
1492 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1494 for (MCSuperRegIterator
SR(R
, TRI
); SR
.isValid(); ++SR
) {
1501 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs
, *TRI
);
1504 // Now, for each register that has a fixed stack slot, create the stack
1508 using SpillSlot
= TargetFrameLowering::SpillSlot
;
1511 int MinOffset
= 0; // CS offsets are negative.
1512 const SpillSlot
*FixedSlots
= getCalleeSavedSpillSlots(NumFixed
);
1513 for (const SpillSlot
*S
= FixedSlots
; S
!= FixedSlots
+NumFixed
; ++S
) {
1516 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(S
->Reg
);
1517 int FI
= MFI
.CreateFixedSpillStackObject(TRI
->getSpillSize(*RC
), S
->Offset
);
1518 MinOffset
= std::min(MinOffset
, S
->Offset
);
1519 CSI
.push_back(CalleeSavedInfo(S
->Reg
, FI
));
1520 SRegs
[S
->Reg
] = false;
1523 // There can be some registers that don't have fixed slots. For example,
1524 // we need to store R0-R3 in functions with exception handling. For each
1525 // such register, create a non-fixed stack object.
1526 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1528 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(R
);
1529 unsigned Size
= TRI
->getSpillSize(*RC
);
1530 int Off
= MinOffset
- Size
;
1531 unsigned Align
= std::min(TRI
->getSpillAlignment(*RC
), getStackAlignment());
1532 assert(isPowerOf2_32(Align
));
1534 int FI
= MFI
.CreateFixedSpillStackObject(Size
, Off
);
1535 MinOffset
= std::min(MinOffset
, Off
);
1536 CSI
.push_back(CalleeSavedInfo(R
, FI
));
1541 dbgs() << "CS information: {";
1542 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
1543 int FI
= CSI
[i
].getFrameIdx();
1544 int Off
= MFI
.getObjectOffset(FI
);
1545 dbgs() << ' ' << printReg(CSI
[i
].getReg(), TRI
) << ":fi#" << FI
<< ":sp";
1554 // Verify that all registers were handled.
1555 bool MissedReg
= false;
1556 for (int x
= SRegs
.find_first(); x
>= 0; x
= SRegs
.find_next(x
)) {
1558 dbgs() << printReg(R
, TRI
) << ' ';
1562 llvm_unreachable("...there are unhandled callee-saved registers!");
1568 bool HexagonFrameLowering::expandCopy(MachineBasicBlock
&B
,
1569 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1570 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1571 MachineInstr
*MI
= &*It
;
1572 DebugLoc DL
= MI
->getDebugLoc();
1573 unsigned DstR
= MI
->getOperand(0).getReg();
1574 unsigned SrcR
= MI
->getOperand(1).getReg();
1575 if (!Hexagon::ModRegsRegClass
.contains(DstR
) ||
1576 !Hexagon::ModRegsRegClass
.contains(SrcR
))
1579 unsigned TmpR
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1580 BuildMI(B
, It
, DL
, HII
.get(TargetOpcode::COPY
), TmpR
).add(MI
->getOperand(1));
1581 BuildMI(B
, It
, DL
, HII
.get(TargetOpcode::COPY
), DstR
)
1582 .addReg(TmpR
, RegState::Kill
);
1584 NewRegs
.push_back(TmpR
);
1589 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock
&B
,
1590 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1591 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1592 MachineInstr
*MI
= &*It
;
1593 if (!MI
->getOperand(0).isFI())
1596 DebugLoc DL
= MI
->getDebugLoc();
1597 unsigned Opc
= MI
->getOpcode();
1598 unsigned SrcR
= MI
->getOperand(2).getReg();
1599 bool IsKill
= MI
->getOperand(2).isKill();
1600 int FI
= MI
->getOperand(0).getIndex();
1602 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
1603 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
1604 unsigned TmpR
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1605 unsigned TfrOpc
= (Opc
== Hexagon::STriw_pred
) ? Hexagon::C2_tfrpr
1606 : Hexagon::A2_tfrcrr
;
1607 BuildMI(B
, It
, DL
, HII
.get(TfrOpc
), TmpR
)
1608 .addReg(SrcR
, getKillRegState(IsKill
));
1610 // S2_storeri_io FI, 0, TmpR
1611 BuildMI(B
, It
, DL
, HII
.get(Hexagon::S2_storeri_io
))
1614 .addReg(TmpR
, RegState::Kill
)
1617 NewRegs
.push_back(TmpR
);
1622 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock
&B
,
1623 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1624 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1625 MachineInstr
*MI
= &*It
;
1626 if (!MI
->getOperand(1).isFI())
1629 DebugLoc DL
= MI
->getDebugLoc();
1630 unsigned Opc
= MI
->getOpcode();
1631 unsigned DstR
= MI
->getOperand(0).getReg();
1632 int FI
= MI
->getOperand(1).getIndex();
1634 // TmpR = L2_loadri_io FI, 0
1635 unsigned TmpR
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1636 BuildMI(B
, It
, DL
, HII
.get(Hexagon::L2_loadri_io
), TmpR
)
1641 // DstR = C2_tfrrp TmpR if DstR is a predicate register
1642 // DstR = A2_tfrrcr TmpR if DstR is a modifier register
1643 unsigned TfrOpc
= (Opc
== Hexagon::LDriw_pred
) ? Hexagon::C2_tfrrp
1644 : Hexagon::A2_tfrrcr
;
1645 BuildMI(B
, It
, DL
, HII
.get(TfrOpc
), DstR
)
1646 .addReg(TmpR
, RegState::Kill
);
1648 NewRegs
.push_back(TmpR
);
1653 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock
&B
,
1654 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1655 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1656 MachineInstr
*MI
= &*It
;
1657 if (!MI
->getOperand(0).isFI())
1660 DebugLoc DL
= MI
->getDebugLoc();
1661 unsigned SrcR
= MI
->getOperand(2).getReg();
1662 bool IsKill
= MI
->getOperand(2).isKill();
1663 int FI
= MI
->getOperand(0).getIndex();
1664 auto *RC
= &Hexagon::HvxVRRegClass
;
1666 // Insert transfer to general vector register.
1667 // TmpR0 = A2_tfrsi 0x01010101
1668 // TmpR1 = V6_vandqrt Qx, TmpR0
1669 // store FI, 0, TmpR1
1670 unsigned TmpR0
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1671 unsigned TmpR1
= MRI
.createVirtualRegister(RC
);
1673 BuildMI(B
, It
, DL
, HII
.get(Hexagon::A2_tfrsi
), TmpR0
)
1674 .addImm(0x01010101);
1676 BuildMI(B
, It
, DL
, HII
.get(Hexagon::V6_vandqrt
), TmpR1
)
1677 .addReg(SrcR
, getKillRegState(IsKill
))
1678 .addReg(TmpR0
, RegState::Kill
);
1680 auto *HRI
= B
.getParent()->getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1681 HII
.storeRegToStackSlot(B
, It
, TmpR1
, true, FI
, RC
, HRI
);
1682 expandStoreVec(B
, std::prev(It
), MRI
, HII
, NewRegs
);
1684 NewRegs
.push_back(TmpR0
);
1685 NewRegs
.push_back(TmpR1
);
1690 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock
&B
,
1691 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1692 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1693 MachineInstr
*MI
= &*It
;
1694 if (!MI
->getOperand(1).isFI())
1697 DebugLoc DL
= MI
->getDebugLoc();
1698 unsigned DstR
= MI
->getOperand(0).getReg();
1699 int FI
= MI
->getOperand(1).getIndex();
1700 auto *RC
= &Hexagon::HvxVRRegClass
;
1702 // TmpR0 = A2_tfrsi 0x01010101
1703 // TmpR1 = load FI, 0
1704 // DstR = V6_vandvrt TmpR1, TmpR0
1705 unsigned TmpR0
= MRI
.createVirtualRegister(&Hexagon::IntRegsRegClass
);
1706 unsigned TmpR1
= MRI
.createVirtualRegister(RC
);
1708 BuildMI(B
, It
, DL
, HII
.get(Hexagon::A2_tfrsi
), TmpR0
)
1709 .addImm(0x01010101);
1710 MachineFunction
&MF
= *B
.getParent();
1711 auto *HRI
= MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1712 HII
.loadRegFromStackSlot(B
, It
, TmpR1
, FI
, RC
, HRI
);
1713 expandLoadVec(B
, std::prev(It
), MRI
, HII
, NewRegs
);
1715 BuildMI(B
, It
, DL
, HII
.get(Hexagon::V6_vandvrt
), DstR
)
1716 .addReg(TmpR1
, RegState::Kill
)
1717 .addReg(TmpR0
, RegState::Kill
);
1719 NewRegs
.push_back(TmpR0
);
1720 NewRegs
.push_back(TmpR1
);
1725 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock
&B
,
1726 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1727 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1728 MachineFunction
&MF
= *B
.getParent();
1729 auto &MFI
= MF
.getFrameInfo();
1730 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1731 MachineInstr
*MI
= &*It
;
1732 if (!MI
->getOperand(0).isFI())
1735 // It is possible that the double vector being stored is only partially
1736 // defined. From the point of view of the liveness tracking, it is ok to
1737 // store it as a whole, but if we break it up we may end up storing a
1738 // register that is entirely undefined.
1739 LivePhysRegs
LPR(HRI
);
1741 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>,2> Clobbers
;
1742 for (auto R
= B
.begin(); R
!= It
; ++R
) {
1744 LPR
.stepForward(*R
, Clobbers
);
1747 DebugLoc DL
= MI
->getDebugLoc();
1748 unsigned SrcR
= MI
->getOperand(2).getReg();
1749 unsigned SrcLo
= HRI
.getSubReg(SrcR
, Hexagon::vsub_lo
);
1750 unsigned SrcHi
= HRI
.getSubReg(SrcR
, Hexagon::vsub_hi
);
1751 bool IsKill
= MI
->getOperand(2).isKill();
1752 int FI
= MI
->getOperand(0).getIndex();
1754 unsigned Size
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1755 unsigned NeedAlign
= HRI
.getSpillAlignment(Hexagon::HvxVRRegClass
);
1756 unsigned HasAlign
= MFI
.getObjectAlignment(FI
);
1760 if (LPR
.contains(SrcLo
)) {
1761 StoreOpc
= NeedAlign
<= HasAlign
? Hexagon::V6_vS32b_ai
1762 : Hexagon::V6_vS32Ub_ai
;
1763 BuildMI(B
, It
, DL
, HII
.get(StoreOpc
))
1766 .addReg(SrcLo
, getKillRegState(IsKill
))
1771 if (LPR
.contains(SrcHi
)) {
1772 StoreOpc
= NeedAlign
<= MinAlign(HasAlign
, Size
) ? Hexagon::V6_vS32b_ai
1773 : Hexagon::V6_vS32Ub_ai
;
1774 BuildMI(B
, It
, DL
, HII
.get(StoreOpc
))
1777 .addReg(SrcHi
, getKillRegState(IsKill
))
1785 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock
&B
,
1786 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1787 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1788 MachineFunction
&MF
= *B
.getParent();
1789 auto &MFI
= MF
.getFrameInfo();
1790 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1791 MachineInstr
*MI
= &*It
;
1792 if (!MI
->getOperand(1).isFI())
1795 DebugLoc DL
= MI
->getDebugLoc();
1796 unsigned DstR
= MI
->getOperand(0).getReg();
1797 unsigned DstHi
= HRI
.getSubReg(DstR
, Hexagon::vsub_hi
);
1798 unsigned DstLo
= HRI
.getSubReg(DstR
, Hexagon::vsub_lo
);
1799 int FI
= MI
->getOperand(1).getIndex();
1801 unsigned Size
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1802 unsigned NeedAlign
= HRI
.getSpillAlignment(Hexagon::HvxVRRegClass
);
1803 unsigned HasAlign
= MFI
.getObjectAlignment(FI
);
1807 LoadOpc
= NeedAlign
<= HasAlign
? Hexagon::V6_vL32b_ai
1808 : Hexagon::V6_vL32Ub_ai
;
1809 BuildMI(B
, It
, DL
, HII
.get(LoadOpc
), DstLo
)
1815 LoadOpc
= NeedAlign
<= MinAlign(HasAlign
, Size
) ? Hexagon::V6_vL32b_ai
1816 : Hexagon::V6_vL32Ub_ai
;
1817 BuildMI(B
, It
, DL
, HII
.get(LoadOpc
), DstHi
)
1826 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock
&B
,
1827 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1828 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1829 MachineFunction
&MF
= *B
.getParent();
1830 auto &MFI
= MF
.getFrameInfo();
1831 MachineInstr
*MI
= &*It
;
1832 if (!MI
->getOperand(0).isFI())
1835 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1836 DebugLoc DL
= MI
->getDebugLoc();
1837 unsigned SrcR
= MI
->getOperand(2).getReg();
1838 bool IsKill
= MI
->getOperand(2).isKill();
1839 int FI
= MI
->getOperand(0).getIndex();
1841 unsigned NeedAlign
= HRI
.getSpillAlignment(Hexagon::HvxVRRegClass
);
1842 unsigned HasAlign
= MFI
.getObjectAlignment(FI
);
1843 unsigned StoreOpc
= NeedAlign
<= HasAlign
? Hexagon::V6_vS32b_ai
1844 : Hexagon::V6_vS32Ub_ai
;
1845 BuildMI(B
, It
, DL
, HII
.get(StoreOpc
))
1848 .addReg(SrcR
, getKillRegState(IsKill
))
1855 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock
&B
,
1856 MachineBasicBlock::iterator It
, MachineRegisterInfo
&MRI
,
1857 const HexagonInstrInfo
&HII
, SmallVectorImpl
<unsigned> &NewRegs
) const {
1858 MachineFunction
&MF
= *B
.getParent();
1859 auto &MFI
= MF
.getFrameInfo();
1860 MachineInstr
*MI
= &*It
;
1861 if (!MI
->getOperand(1).isFI())
1864 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1865 DebugLoc DL
= MI
->getDebugLoc();
1866 unsigned DstR
= MI
->getOperand(0).getReg();
1867 int FI
= MI
->getOperand(1).getIndex();
1869 unsigned NeedAlign
= HRI
.getSpillAlignment(Hexagon::HvxVRRegClass
);
1870 unsigned HasAlign
= MFI
.getObjectAlignment(FI
);
1871 unsigned LoadOpc
= NeedAlign
<= HasAlign
? Hexagon::V6_vL32b_ai
1872 : Hexagon::V6_vL32Ub_ai
;
1873 BuildMI(B
, It
, DL
, HII
.get(LoadOpc
), DstR
)
1882 bool HexagonFrameLowering::expandSpillMacros(MachineFunction
&MF
,
1883 SmallVectorImpl
<unsigned> &NewRegs
) const {
1884 auto &HII
= *MF
.getSubtarget
<HexagonSubtarget
>().getInstrInfo();
1885 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1886 bool Changed
= false;
1888 for (auto &B
: MF
) {
1889 // Traverse the basic block.
1890 MachineBasicBlock::iterator NextI
;
1891 for (auto I
= B
.begin(), E
= B
.end(); I
!= E
; I
= NextI
) {
1892 MachineInstr
*MI
= &*I
;
1893 NextI
= std::next(I
);
1894 unsigned Opc
= MI
->getOpcode();
1897 case TargetOpcode::COPY
:
1898 Changed
|= expandCopy(B
, I
, MRI
, HII
, NewRegs
);
1900 case Hexagon::STriw_pred
:
1901 case Hexagon::STriw_ctr
:
1902 Changed
|= expandStoreInt(B
, I
, MRI
, HII
, NewRegs
);
1904 case Hexagon::LDriw_pred
:
1905 case Hexagon::LDriw_ctr
:
1906 Changed
|= expandLoadInt(B
, I
, MRI
, HII
, NewRegs
);
1908 case Hexagon::PS_vstorerq_ai
:
1909 Changed
|= expandStoreVecPred(B
, I
, MRI
, HII
, NewRegs
);
1911 case Hexagon::PS_vloadrq_ai
:
1912 Changed
|= expandLoadVecPred(B
, I
, MRI
, HII
, NewRegs
);
1914 case Hexagon::PS_vloadrw_ai
:
1915 case Hexagon::PS_vloadrwu_ai
:
1916 Changed
|= expandLoadVec2(B
, I
, MRI
, HII
, NewRegs
);
1918 case Hexagon::PS_vstorerw_ai
:
1919 case Hexagon::PS_vstorerwu_ai
:
1920 Changed
|= expandStoreVec2(B
, I
, MRI
, HII
, NewRegs
);
1929 void HexagonFrameLowering::determineCalleeSaves(MachineFunction
&MF
,
1930 BitVector
&SavedRegs
,
1931 RegScavenger
*RS
) const {
1932 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1934 SavedRegs
.resize(HRI
.getNumRegs());
1936 // If we have a function containing __builtin_eh_return we want to spill and
1937 // restore all callee saved registers. Pretend that they are used.
1938 if (MF
.getInfo
<HexagonMachineFunctionInfo
>()->hasEHReturn())
1939 for (const MCPhysReg
*R
= HRI
.getCalleeSavedRegs(&MF
); *R
; ++R
)
1942 // Replace predicate register pseudo spill code.
1943 SmallVector
<unsigned,8> NewRegs
;
1944 expandSpillMacros(MF
, NewRegs
);
1945 if (OptimizeSpillSlots
&& !isOptNone(MF
))
1946 optimizeSpillSlots(MF
, NewRegs
);
1948 // We need to reserve a spill slot if scavenging could potentially require
1949 // spilling a scavenged register.
1950 if (!NewRegs
.empty() || mayOverflowFrameOffset(MF
)) {
1951 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1952 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1953 SetVector
<const TargetRegisterClass
*> SpillRCs
;
1954 // Reserve an int register in any case, because it could be used to hold
1955 // the stack offset in case it does not fit into a spill instruction.
1956 SpillRCs
.insert(&Hexagon::IntRegsRegClass
);
1958 for (unsigned VR
: NewRegs
)
1959 SpillRCs
.insert(MRI
.getRegClass(VR
));
1961 for (auto *RC
: SpillRCs
) {
1962 if (!needToReserveScavengingSpillSlots(MF
, HRI
, RC
))
1964 unsigned Num
= RC
== &Hexagon::IntRegsRegClass
? NumberScavengerSlots
: 1;
1965 unsigned S
= HRI
.getSpillSize(*RC
), A
= HRI
.getSpillAlignment(*RC
);
1966 for (unsigned i
= 0; i
< Num
; i
++) {
1967 int NewFI
= MFI
.CreateSpillStackObject(S
, A
);
1968 RS
->addScavengingFrameIndex(NewFI
);
1973 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
1976 unsigned HexagonFrameLowering::findPhysReg(MachineFunction
&MF
,
1977 HexagonBlockRanges::IndexRange
&FIR
,
1978 HexagonBlockRanges::InstrIndexMap
&IndexMap
,
1979 HexagonBlockRanges::RegToRangeMap
&DeadMap
,
1980 const TargetRegisterClass
*RC
) const {
1981 auto &HRI
= *MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
1982 auto &MRI
= MF
.getRegInfo();
1984 auto isDead
= [&FIR
,&DeadMap
] (unsigned Reg
) -> bool {
1985 auto F
= DeadMap
.find({Reg
,0});
1986 if (F
== DeadMap
.end())
1988 for (auto &DR
: F
->second
)
1989 if (DR
.contains(FIR
))
1994 for (unsigned Reg
: RC
->getRawAllocationOrder(MF
)) {
1996 for (auto R
: HexagonBlockRanges::expandToSubRegs({Reg
,0}, MRI
, HRI
)) {
2008 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction
&MF
,
2009 SmallVectorImpl
<unsigned> &VRegs
) const {
2010 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
2011 auto &HII
= *HST
.getInstrInfo();
2012 auto &HRI
= *HST
.getRegisterInfo();
2013 auto &MRI
= MF
.getRegInfo();
2014 HexagonBlockRanges
HBR(MF
);
2016 using BlockIndexMap
=
2017 std::map
<MachineBasicBlock
*, HexagonBlockRanges::InstrIndexMap
>;
2018 using BlockRangeMap
=
2019 std::map
<MachineBasicBlock
*, HexagonBlockRanges::RangeList
>;
2020 using IndexType
= HexagonBlockRanges::IndexType
;
2025 const TargetRegisterClass
*RC
= nullptr;
2027 SlotInfo() = default;
2030 BlockIndexMap BlockIndexes
;
2031 SmallSet
<int,4> BadFIs
;
2032 std::map
<int,SlotInfo
> FIRangeMap
;
2034 // Accumulate register classes: get a common class for a pre-existing
2035 // class HaveRC and a new class NewRC. Return nullptr if a common class
2036 // cannot be found, otherwise return the resulting class. If HaveRC is
2037 // nullptr, assume that it is still unset.
2039 [](const TargetRegisterClass
*HaveRC
,
2040 const TargetRegisterClass
*NewRC
) -> const TargetRegisterClass
* {
2041 if (HaveRC
== nullptr || HaveRC
== NewRC
)
2043 // Different classes, both non-null. Pick the more general one.
2044 if (HaveRC
->hasSubClassEq(NewRC
))
2046 if (NewRC
->hasSubClassEq(HaveRC
))
2051 // Scan all blocks in the function. Check all occurrences of frame indexes,
2052 // and collect relevant information.
2053 for (auto &B
: MF
) {
2054 std::map
<int,IndexType
> LastStore
, LastLoad
;
2055 // Emplace appears not to be supported in gcc 4.7.2-4.
2056 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2057 auto P
= BlockIndexes
.insert(
2058 std::make_pair(&B
, HexagonBlockRanges::InstrIndexMap(B
)));
2059 auto &IndexMap
= P
.first
->second
;
2060 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B
) << "\n"
2061 << IndexMap
<< '\n');
2063 for (auto &In
: B
) {
2065 bool Load
= HII
.isLoadFromStackSlot(In
, LFI
) && !HII
.isPredicated(In
);
2066 bool Store
= HII
.isStoreToStackSlot(In
, SFI
) && !HII
.isPredicated(In
);
2067 if (Load
&& Store
) {
2068 // If it's both a load and a store, then we won't handle it.
2073 // Check for register classes of the register used as the source for
2074 // the store, and the register used as the destination for the load.
2075 // Also, only accept base+imm_offset addressing modes. Other addressing
2076 // modes can have side-effects (post-increments, etc.). For stack
2077 // slots they are very unlikely, so there is not much loss due to
2078 // this restriction.
2079 if (Load
|| Store
) {
2080 int TFI
= Load
? LFI
: SFI
;
2081 unsigned AM
= HII
.getAddrMode(In
);
2082 SlotInfo
&SI
= FIRangeMap
[TFI
];
2083 bool Bad
= (AM
!= HexagonII::BaseImmOffset
);
2085 // If the addressing mode is ok, check the register class.
2086 unsigned OpNum
= Load
? 0 : 2;
2087 auto *RC
= HII
.getRegClass(In
.getDesc(), OpNum
, &HRI
, MF
);
2088 RC
= getCommonRC(SI
.RC
, RC
);
2096 unsigned S
= HII
.getMemAccessSize(In
);
2097 if (SI
.Size
!= 0 && SI
.Size
!= S
)
2103 for (auto *Mo
: In
.memoperands()) {
2104 if (!Mo
->isVolatile() && !Mo
->isAtomic())
2114 // Locate uses of frame indices.
2115 for (unsigned i
= 0, n
= In
.getNumOperands(); i
< n
; ++i
) {
2116 const MachineOperand
&Op
= In
.getOperand(i
);
2119 int FI
= Op
.getIndex();
2120 // Make sure that the following operand is an immediate and that
2121 // it is 0. This is the offset in the stack object.
2122 if (i
+1 >= n
|| !In
.getOperand(i
+1).isImm() ||
2123 In
.getOperand(i
+1).getImm() != 0)
2125 if (BadFIs
.count(FI
))
2128 IndexType Index
= IndexMap
.getIndex(&In
);
2130 if (LastStore
[FI
] == IndexType::None
)
2131 LastStore
[FI
] = IndexType::Entry
;
2132 LastLoad
[FI
] = Index
;
2134 HexagonBlockRanges::RangeList
&RL
= FIRangeMap
[FI
].Map
[&B
];
2135 if (LastStore
[FI
] != IndexType::None
)
2136 RL
.add(LastStore
[FI
], LastLoad
[FI
], false, false);
2137 else if (LastLoad
[FI
] != IndexType::None
)
2138 RL
.add(IndexType::Entry
, LastLoad
[FI
], false, false);
2139 LastLoad
[FI
] = IndexType::None
;
2140 LastStore
[FI
] = Index
;
2147 for (auto &I
: LastLoad
) {
2148 IndexType LL
= I
.second
;
2149 if (LL
== IndexType::None
)
2151 auto &RL
= FIRangeMap
[I
.first
].Map
[&B
];
2152 IndexType
&LS
= LastStore
[I
.first
];
2153 if (LS
!= IndexType::None
)
2154 RL
.add(LS
, LL
, false, false);
2156 RL
.add(IndexType::Entry
, LL
, false, false);
2157 LS
= IndexType::None
;
2159 for (auto &I
: LastStore
) {
2160 IndexType LS
= I
.second
;
2161 if (LS
== IndexType::None
)
2163 auto &RL
= FIRangeMap
[I
.first
].Map
[&B
];
2164 RL
.add(LS
, IndexType::None
, false, false);
2169 for (auto &P
: FIRangeMap
) {
2170 dbgs() << "fi#" << P
.first
;
2171 if (BadFIs
.count(P
.first
))
2174 if (P
.second
.RC
!= nullptr)
2175 dbgs() << HRI
.getRegClassName(P
.second
.RC
) << '\n';
2177 dbgs() << "<null>\n";
2178 for (auto &R
: P
.second
.Map
)
2179 dbgs() << " " << printMBBReference(*R
.first
) << " { " << R
.second
2184 // When a slot is loaded from in a block without being stored to in the
2185 // same block, it is live-on-entry to this block. To avoid CFG analysis,
2186 // consider this slot to be live-on-exit from all blocks.
2187 SmallSet
<int,4> LoxFIs
;
2189 std::map
<MachineBasicBlock
*,std::vector
<int>> BlockFIMap
;
2191 for (auto &P
: FIRangeMap
) {
2192 // P = pair(FI, map: BB->RangeList)
2193 if (BadFIs
.count(P
.first
))
2195 for (auto &B
: MF
) {
2196 auto F
= P
.second
.Map
.find(&B
);
2197 // F = pair(BB, RangeList)
2198 if (F
== P
.second
.Map
.end() || F
->second
.empty())
2200 HexagonBlockRanges::IndexRange
&IR
= F
->second
.front();
2201 if (IR
.start() == IndexType::Entry
)
2202 LoxFIs
.insert(P
.first
);
2203 BlockFIMap
[&B
].push_back(P
.first
);
2208 dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2209 for (auto &P
: BlockFIMap
) {
2210 auto &FIs
= P
.second
;
2213 dbgs() << " " << printMBBReference(*P
.first
) << ": {";
2214 for (auto I
: FIs
) {
2215 dbgs() << " fi#" << I
;
2216 if (LoxFIs
.count(I
))
2224 bool HasOptLimit
= SpillOptMax
.getPosition();
2227 // eliminate loads, when all loads eliminated, eliminate all stores.
2228 for (auto &B
: MF
) {
2229 auto F
= BlockIndexes
.find(&B
);
2230 assert(F
!= BlockIndexes
.end());
2231 HexagonBlockRanges::InstrIndexMap
&IM
= F
->second
;
2232 HexagonBlockRanges::RegToRangeMap LM
= HBR
.computeLiveMap(IM
);
2233 HexagonBlockRanges::RegToRangeMap DM
= HBR
.computeDeadMap(IM
, LM
);
2234 LLVM_DEBUG(dbgs() << printMBBReference(B
) << " dead map\n"
2235 << HexagonBlockRanges::PrintRangeMap(DM
, HRI
));
2237 for (auto FI
: BlockFIMap
[&B
]) {
2238 if (BadFIs
.count(FI
))
2240 LLVM_DEBUG(dbgs() << "Working on fi#" << FI
<< '\n');
2241 HexagonBlockRanges::RangeList
&RL
= FIRangeMap
[FI
].Map
[&B
];
2242 for (auto &Range
: RL
) {
2243 LLVM_DEBUG(dbgs() << "--Examining range:" << RL
<< '\n');
2244 if (!IndexType::isInstr(Range
.start()) ||
2245 !IndexType::isInstr(Range
.end()))
2247 MachineInstr
&SI
= *IM
.getInstr(Range
.start());
2248 MachineInstr
&EI
= *IM
.getInstr(Range
.end());
2249 assert(SI
.mayStore() && "Unexpected start instruction");
2250 assert(EI
.mayLoad() && "Unexpected end instruction");
2251 MachineOperand
&SrcOp
= SI
.getOperand(2);
2253 HexagonBlockRanges::RegisterRef SrcRR
= { SrcOp
.getReg(),
2254 SrcOp
.getSubReg() };
2255 auto *RC
= HII
.getRegClass(SI
.getDesc(), 2, &HRI
, MF
);
2256 // The this-> is needed to unconfuse MSVC.
2257 unsigned FoundR
= this->findPhysReg(MF
, Range
, IM
, DM
, RC
);
2258 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR
, &HRI
)
2264 if (SpillOptCount
>= SpillOptMax
)
2270 // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2271 MachineBasicBlock::iterator StartIt
= SI
.getIterator(), NextIt
;
2272 MachineInstr
*CopyIn
= nullptr;
2273 if (SrcRR
.Reg
!= FoundR
|| SrcRR
.Sub
!= 0) {
2274 const DebugLoc
&DL
= SI
.getDebugLoc();
2275 CopyIn
= BuildMI(B
, StartIt
, DL
, HII
.get(TargetOpcode::COPY
), FoundR
)
2280 // Check if this is a last store and the FI is live-on-exit.
2281 if (LoxFIs
.count(FI
) && (&Range
== &RL
.back())) {
2282 // Update store's source register.
2283 if (unsigned SR
= SrcOp
.getSubReg())
2284 SrcOp
.setReg(HRI
.getSubReg(FoundR
, SR
));
2286 SrcOp
.setReg(FoundR
);
2288 // We are keeping this register live.
2289 SrcOp
.setIsKill(false);
2292 IM
.replaceInstr(&SI
, CopyIn
);
2295 auto EndIt
= std::next(EI
.getIterator());
2296 for (auto It
= StartIt
; It
!= EndIt
; It
= NextIt
) {
2297 MachineInstr
&MI
= *It
;
2298 NextIt
= std::next(It
);
2300 if (!HII
.isLoadFromStackSlot(MI
, TFI
) || TFI
!= FI
)
2302 unsigned DstR
= MI
.getOperand(0).getReg();
2303 assert(MI
.getOperand(0).getSubReg() == 0);
2304 MachineInstr
*CopyOut
= nullptr;
2305 if (DstR
!= FoundR
) {
2306 DebugLoc DL
= MI
.getDebugLoc();
2307 unsigned MemSize
= HII
.getMemAccessSize(MI
);
2308 assert(HII
.getAddrMode(MI
) == HexagonII::BaseImmOffset
);
2309 unsigned CopyOpc
= TargetOpcode::COPY
;
2310 if (HII
.isSignExtendingLoad(MI
))
2311 CopyOpc
= (MemSize
== 1) ? Hexagon::A2_sxtb
: Hexagon::A2_sxth
;
2312 else if (HII
.isZeroExtendingLoad(MI
))
2313 CopyOpc
= (MemSize
== 1) ? Hexagon::A2_zxtb
: Hexagon::A2_zxth
;
2314 CopyOut
= BuildMI(B
, It
, DL
, HII
.get(CopyOpc
), DstR
)
2315 .addReg(FoundR
, getKillRegState(&MI
== &EI
));
2317 IM
.replaceInstr(&MI
, CopyOut
);
2321 // Update the dead map.
2322 HexagonBlockRanges::RegisterRef FoundRR
= { FoundR
, 0 };
2323 for (auto RR
: HexagonBlockRanges::expandToSubRegs(FoundRR
, MRI
, HRI
))
2324 DM
[RR
].subtract(Range
);
2325 } // for Range in range list
2330 void HexagonFrameLowering::expandAlloca(MachineInstr
*AI
,
2331 const HexagonInstrInfo
&HII
, unsigned SP
, unsigned CF
) const {
2332 MachineBasicBlock
&MB
= *AI
->getParent();
2333 DebugLoc DL
= AI
->getDebugLoc();
2334 unsigned A
= AI
->getOperand(2).getImm();
2337 // Rd = alloca Rs, #A
2339 // If Rs and Rd are different registers, use this sequence:
2340 // Rd = sub(r29, Rs)
2341 // r29 = sub(r29, Rs)
2342 // Rd = and(Rd, #-A) ; if necessary
2343 // r29 = and(r29, #-A) ; if necessary
2344 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2346 // Rd = sub(r29, Rs)
2347 // Rd = and(Rd, #-A) ; if necessary
2349 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2351 MachineOperand
&RdOp
= AI
->getOperand(0);
2352 MachineOperand
&RsOp
= AI
->getOperand(1);
2353 unsigned Rd
= RdOp
.getReg(), Rs
= RsOp
.getReg();
2355 // Rd = sub(r29, Rs)
2356 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_sub
), Rd
)
2360 // r29 = sub(r29, Rs)
2361 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_sub
), SP
)
2366 // Rd = and(Rd, #-A)
2367 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_andir
), Rd
)
2369 .addImm(-int64_t(A
));
2371 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_andir
), SP
)
2373 .addImm(-int64_t(A
));
2377 BuildMI(MB
, AI
, DL
, HII
.get(TargetOpcode::COPY
), SP
)
2381 // Rd = add(Rd, #CF)
2382 BuildMI(MB
, AI
, DL
, HII
.get(Hexagon::A2_addi
), Rd
)
2388 bool HexagonFrameLowering::needsAligna(const MachineFunction
&MF
) const {
2389 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2390 if (!MFI
.hasVarSizedObjects())
2392 unsigned MaxA
= MFI
.getMaxAlignment();
2393 if (MaxA
<= getStackAlignment())
2398 const MachineInstr
*HexagonFrameLowering::getAlignaInstr(
2399 const MachineFunction
&MF
) const {
2402 if (I
.getOpcode() == Hexagon::PS_aligna
)
2407 /// Adds all callee-saved registers as implicit uses or defs to the
2409 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr
*MI
,
2410 const CSIVect
&CSI
, bool IsDef
, bool IsKill
) const {
2411 // Add the callee-saved registers as implicit uses.
2413 MI
->addOperand(MachineOperand::CreateReg(R
.getReg(), IsDef
, true, IsKill
));
2416 /// Determine whether the callee-saved register saves and restores should
2417 /// be generated via inline code. If this function returns "true", inline
2418 /// code will be generated. If this function returns "false", additional
2419 /// checks are performed, which may still lead to the inline code.
2420 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction
&MF
,
2421 const CSIVect
&CSI
) const {
2422 if (MF
.getInfo
<HexagonMachineFunctionInfo
>()->hasEHReturn())
2426 if (!isOptSize(MF
) && !isMinSize(MF
))
2427 if (MF
.getTarget().getOptLevel() > CodeGenOpt::Default
)
2430 // Check if CSI only has double registers, and if the registers form
2431 // a contiguous block starting from D8.
2432 BitVector
Regs(Hexagon::NUM_TARGET_REGS
);
2433 for (unsigned i
= 0, n
= CSI
.size(); i
< n
; ++i
) {
2434 unsigned R
= CSI
[i
].getReg();
2435 if (!Hexagon::DoubleRegsRegClass
.contains(R
))
2439 int F
= Regs
.find_first();
2440 if (F
!= Hexagon::D8
)
2443 int N
= Regs
.find_next(F
);
2444 if (N
>= 0 && N
!= F
+1)
2452 bool HexagonFrameLowering::useSpillFunction(const MachineFunction
&MF
,
2453 const CSIVect
&CSI
) const {
2454 if (shouldInlineCSR(MF
, CSI
))
2456 unsigned NumCSI
= CSI
.size();
2460 unsigned Threshold
= isOptSize(MF
) ? SpillFuncThresholdOs
2461 : SpillFuncThreshold
;
2462 return Threshold
< NumCSI
;
2465 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction
&MF
,
2466 const CSIVect
&CSI
) const {
2467 if (shouldInlineCSR(MF
, CSI
))
2469 // The restore functions do a bit more than just restoring registers.
2470 // The non-returning versions will go back directly to the caller's
2471 // caller, others will clean up the stack frame in preparation for
2472 // a tail call. Using them can still save code size even if only one
2473 // register is getting restores. Make the decision based on -Oz:
2474 // using -Os will use inline restore for a single register.
2477 unsigned NumCSI
= CSI
.size();
2481 unsigned Threshold
= isOptSize(MF
) ? SpillFuncThresholdOs
-1
2482 : SpillFuncThreshold
;
2483 return Threshold
< NumCSI
;
2486 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction
&MF
) const {
2487 unsigned StackSize
= MF
.getFrameInfo().estimateStackSize(MF
);
2488 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
2489 // A fairly simplistic guess as to whether a potential load/store to a
2490 // stack location could require an extra register.
2491 if (HST
.useHVXOps() && StackSize
> 256)
2494 // Check if the function has store-immediate instructions that access
2495 // the stack. Since the offset field is not extendable, if the stack
2496 // size exceeds the offset limit (6 bits, shifted), the stores will
2497 // require a new base register.
2498 bool HasImmStack
= false;
2499 unsigned MinLS
= ~0u; // Log_2 of the memory access size.
2501 for (const MachineBasicBlock
&B
: MF
) {
2502 for (const MachineInstr
&MI
: B
) {
2504 switch (MI
.getOpcode()) {
2505 case Hexagon::S4_storeirit_io
:
2506 case Hexagon::S4_storeirif_io
:
2507 case Hexagon::S4_storeiri_io
:
2510 case Hexagon::S4_storeirht_io
:
2511 case Hexagon::S4_storeirhf_io
:
2512 case Hexagon::S4_storeirh_io
:
2515 case Hexagon::S4_storeirbt_io
:
2516 case Hexagon::S4_storeirbf_io
:
2517 case Hexagon::S4_storeirb_io
:
2518 if (MI
.getOperand(0).isFI())
2520 MinLS
= std::min(MinLS
, LS
);
2527 return !isUInt
<6>(StackSize
>> MinLS
);