1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Top-level implementation for the NVPTX target.
11 //===----------------------------------------------------------------------===//
13 #include "NVPTXTargetMachine.h"
15 #include "NVPTXAllocaHoisting.h"
16 #include "NVPTXLowerAggrCopies.h"
17 #include "NVPTXTargetObjectFile.h"
18 #include "NVPTXTargetTransformInfo.h"
19 #include "TargetInfo/NVPTXTargetInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/LegacyPassManager.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/TargetRegistry.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Transforms/Scalar/GVN.h"
34 #include "llvm/Transforms/Vectorize.h"
40 // LSV is still relatively new; this switch lets us turn it off in case we
41 // encounter (or suspect) a bug.
43 DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
44 cl::desc("Disable load/store vectorizer"),
45 cl::init(false), cl::Hidden
);
47 // TODO: Remove this flag when we are confident with no regressions.
48 static cl::opt
<bool> DisableRequireStructuredCFG(
49 "disable-nvptx-require-structured-cfg",
50 cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
51 "structured CFG. The requirement should be disabled only when "
52 "unexpected regressions happen."),
53 cl::init(false), cl::Hidden
);
55 static cl::opt
<bool> UseShortPointersOpt(
58 "Use 32-bit pointers for accessing const/local/shared address spaces."),
59 cl::init(false), cl::Hidden
);
63 void initializeNVVMIntrRangePass(PassRegistry
&);
64 void initializeNVVMReflectPass(PassRegistry
&);
65 void initializeGenericToNVVMPass(PassRegistry
&);
66 void initializeNVPTXAllocaHoistingPass(PassRegistry
&);
67 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry
&);
68 void initializeNVPTXLowerAggrCopiesPass(PassRegistry
&);
69 void initializeNVPTXLowerArgsPass(PassRegistry
&);
70 void initializeNVPTXLowerAllocaPass(PassRegistry
&);
71 void initializeNVPTXProxyRegErasurePass(PassRegistry
&);
73 } // end namespace llvm
75 extern "C" void LLVMInitializeNVPTXTarget() {
76 // Register the target.
77 RegisterTargetMachine
<NVPTXTargetMachine32
> X(getTheNVPTXTarget32());
78 RegisterTargetMachine
<NVPTXTargetMachine64
> Y(getTheNVPTXTarget64());
80 // FIXME: This pass is really intended to be invoked during IR optimization,
81 // but it's very NVPTX-specific.
82 PassRegistry
&PR
= *PassRegistry::getPassRegistry();
83 initializeNVVMReflectPass(PR
);
84 initializeNVVMIntrRangePass(PR
);
85 initializeGenericToNVVMPass(PR
);
86 initializeNVPTXAllocaHoistingPass(PR
);
87 initializeNVPTXAssignValidGlobalNamesPass(PR
);
88 initializeNVPTXLowerArgsPass(PR
);
89 initializeNVPTXLowerAllocaPass(PR
);
90 initializeNVPTXLowerAggrCopiesPass(PR
);
91 initializeNVPTXProxyRegErasurePass(PR
);
94 static std::string
computeDataLayout(bool is64Bit
, bool UseShortPointers
) {
95 std::string Ret
= "e";
99 else if (UseShortPointers
)
100 Ret
+= "-p3:32:32-p4:32:32-p5:32:32";
102 Ret
+= "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
107 NVPTXTargetMachine::NVPTXTargetMachine(const Target
&T
, const Triple
&TT
,
108 StringRef CPU
, StringRef FS
,
109 const TargetOptions
&Options
,
110 Optional
<Reloc::Model
> RM
,
111 Optional
<CodeModel::Model
> CM
,
112 CodeGenOpt::Level OL
, bool is64bit
)
113 // The pic relocation model is used regardless of what the client has
114 // specified, as it is the only relocation model currently supported.
115 : LLVMTargetMachine(T
, computeDataLayout(is64bit
, UseShortPointersOpt
), TT
,
116 CPU
, FS
, Options
, Reloc::PIC_
,
117 getEffectiveCodeModel(CM
, CodeModel::Small
), OL
),
118 is64bit(is64bit
), UseShortPointers(UseShortPointersOpt
),
119 TLOF(llvm::make_unique
<NVPTXTargetObjectFile
>()),
120 Subtarget(TT
, CPU
, FS
, *this) {
121 if (TT
.getOS() == Triple::NVCL
)
122 drvInterface
= NVPTX::NVCL
;
124 drvInterface
= NVPTX::CUDA
;
125 if (!DisableRequireStructuredCFG
)
126 setRequiresStructuredCFG(true);
130 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
132 void NVPTXTargetMachine32::anchor() {}
134 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target
&T
, const Triple
&TT
,
135 StringRef CPU
, StringRef FS
,
136 const TargetOptions
&Options
,
137 Optional
<Reloc::Model
> RM
,
138 Optional
<CodeModel::Model
> CM
,
139 CodeGenOpt::Level OL
, bool JIT
)
140 : NVPTXTargetMachine(T
, TT
, CPU
, FS
, Options
, RM
, CM
, OL
, false) {}
142 void NVPTXTargetMachine64::anchor() {}
144 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target
&T
, const Triple
&TT
,
145 StringRef CPU
, StringRef FS
,
146 const TargetOptions
&Options
,
147 Optional
<Reloc::Model
> RM
,
148 Optional
<CodeModel::Model
> CM
,
149 CodeGenOpt::Level OL
, bool JIT
)
150 : NVPTXTargetMachine(T
, TT
, CPU
, FS
, Options
, RM
, CM
, OL
, true) {}
154 class NVPTXPassConfig
: public TargetPassConfig
{
156 NVPTXPassConfig(NVPTXTargetMachine
&TM
, PassManagerBase
&PM
)
157 : TargetPassConfig(TM
, PM
) {}
159 NVPTXTargetMachine
&getNVPTXTargetMachine() const {
160 return getTM
<NVPTXTargetMachine
>();
163 void addIRPasses() override
;
164 bool addInstSelector() override
;
165 void addPreRegAlloc() override
;
166 void addPostRegAlloc() override
;
167 void addMachineSSAOptimization() override
;
169 FunctionPass
*createTargetRegisterAllocator(bool) override
;
170 void addFastRegAlloc() override
;
171 void addOptimizedRegAlloc() override
;
173 bool addRegAssignmentFast() override
{
174 llvm_unreachable("should not be used");
177 bool addRegAssignmentOptimized() override
{
178 llvm_unreachable("should not be used");
182 // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
183 // function is only called in opt mode.
184 void addEarlyCSEOrGVNPass();
186 // Add passes that propagate special memory spaces.
187 void addAddressSpaceInferencePasses();
189 // Add passes that perform straight-line scalar optimizations.
190 void addStraightLineScalarOptimizationPasses();
193 } // end anonymous namespace
195 TargetPassConfig
*NVPTXTargetMachine::createPassConfig(PassManagerBase
&PM
) {
196 return new NVPTXPassConfig(*this, PM
);
199 void NVPTXTargetMachine::adjustPassManager(PassManagerBuilder
&Builder
) {
200 Builder
.addExtension(
201 PassManagerBuilder::EP_EarlyAsPossible
,
202 [&](const PassManagerBuilder
&, legacy::PassManagerBase
&PM
) {
203 PM
.add(createNVVMReflectPass(Subtarget
.getSmVersion()));
204 PM
.add(createNVVMIntrRangePass(Subtarget
.getSmVersion()));
209 NVPTXTargetMachine::getTargetTransformInfo(const Function
&F
) {
210 return TargetTransformInfo(NVPTXTTIImpl(this, F
));
213 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
214 if (getOptLevel() == CodeGenOpt::Aggressive
)
215 addPass(createGVNPass());
217 addPass(createEarlyCSEPass());
220 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
221 // NVPTXLowerArgs emits alloca for byval parameters which can often
222 // be eliminated by SROA.
223 addPass(createSROAPass());
224 addPass(createNVPTXLowerAllocaPass());
225 addPass(createInferAddressSpacesPass());
228 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
229 addPass(createSeparateConstOffsetFromGEPPass());
230 addPass(createSpeculativeExecutionPass());
231 // ReassociateGEPs exposes more opportunites for SLSR. See
232 // the example in reassociate-geps-and-slsr.ll.
233 addPass(createStraightLineStrengthReducePass());
234 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
235 // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
236 // for some of our benchmarks.
237 addEarlyCSEOrGVNPass();
238 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
239 addPass(createNaryReassociatePass());
240 // NaryReassociate on GEPs creates redundant common expressions, so run
241 // EarlyCSE after it.
242 addPass(createEarlyCSEPass());
245 void NVPTXPassConfig::addIRPasses() {
246 // The following passes are known to not play well with virtual regs hanging
247 // around after register allocation (which in our case, is *all* registers).
248 // We explicitly disable them here. We do, however, need some functionality
249 // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
250 // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
251 disablePass(&PrologEpilogCodeInserterID
);
252 disablePass(&MachineCopyPropagationID
);
253 disablePass(&TailDuplicateID
);
254 disablePass(&StackMapLivenessID
);
255 disablePass(&LiveDebugValuesID
);
256 disablePass(&PostRAMachineSinkingID
);
257 disablePass(&PostRASchedulerID
);
258 disablePass(&FuncletLayoutID
);
259 disablePass(&PatchableFunctionID
);
260 disablePass(&ShrinkWrapID
);
262 // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
263 // it here does nothing. But since we need it for correctness when lowering
264 // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
265 // call addEarlyAsPossiblePasses.
266 const NVPTXSubtarget
&ST
= *getTM
<NVPTXTargetMachine
>().getSubtargetImpl();
267 addPass(createNVVMReflectPass(ST
.getSmVersion()));
269 if (getOptLevel() != CodeGenOpt::None
)
270 addPass(createNVPTXImageOptimizerPass());
271 addPass(createNVPTXAssignValidGlobalNamesPass());
272 addPass(createGenericToNVVMPass());
274 // NVPTXLowerArgs is required for correctness and should be run right
275 // before the address space inference passes.
276 addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine()));
277 if (getOptLevel() != CodeGenOpt::None
) {
278 addAddressSpaceInferencePasses();
279 if (!DisableLoadStoreVectorizer
)
280 addPass(createLoadStoreVectorizerPass());
281 addStraightLineScalarOptimizationPasses();
284 // === LSR and other generic IR passes ===
285 TargetPassConfig::addIRPasses();
286 // EarlyCSE is not always strong enough to clean up what LSR produces. For
287 // example, GVN can combine
294 // %0 = shl nsw %a, 2
297 // but EarlyCSE can do neither of them.
298 if (getOptLevel() != CodeGenOpt::None
)
299 addEarlyCSEOrGVNPass();
302 bool NVPTXPassConfig::addInstSelector() {
303 const NVPTXSubtarget
&ST
= *getTM
<NVPTXTargetMachine
>().getSubtargetImpl();
305 addPass(createLowerAggrCopies());
306 addPass(createAllocaHoisting());
307 addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
309 if (!ST
.hasImageHandles())
310 addPass(createNVPTXReplaceImageHandlesPass());
315 void NVPTXPassConfig::addPreRegAlloc() {
316 // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
317 addPass(createNVPTXProxyRegErasurePass());
320 void NVPTXPassConfig::addPostRegAlloc() {
321 addPass(createNVPTXPrologEpilogPass(), false);
322 if (getOptLevel() != CodeGenOpt::None
) {
323 // NVPTXPrologEpilogPass calculates frame object offset and replace frame
324 // index with VRFrame register. NVPTXPeephole need to be run after that and
325 // will replace VRFrame with VRFrameLocal when possible.
326 addPass(createNVPTXPeephole());
330 FunctionPass
*NVPTXPassConfig::createTargetRegisterAllocator(bool) {
331 return nullptr; // No reg alloc
334 void NVPTXPassConfig::addFastRegAlloc() {
335 addPass(&PHIEliminationID
);
336 addPass(&TwoAddressInstructionPassID
);
339 void NVPTXPassConfig::addOptimizedRegAlloc() {
340 addPass(&ProcessImplicitDefsID
);
341 addPass(&LiveVariablesID
);
342 addPass(&MachineLoopInfoID
);
343 addPass(&PHIEliminationID
);
345 addPass(&TwoAddressInstructionPassID
);
346 addPass(&RegisterCoalescerID
);
348 // PreRA instruction scheduling.
349 if (addPass(&MachineSchedulerID
))
350 printAndVerify("After Machine Scheduling");
353 addPass(&StackSlotColoringID
);
355 // FIXME: Needs physical registers
356 //addPass(&MachineLICMID);
358 printAndVerify("After StackSlotColoring");
361 void NVPTXPassConfig::addMachineSSAOptimization() {
362 // Pre-ra tail duplication.
363 if (addPass(&EarlyTailDuplicateID
))
364 printAndVerify("After Pre-RegAlloc TailDuplicate");
366 // Optimize PHIs before DCE: removing dead PHI cycles may make more
367 // instructions dead.
368 addPass(&OptimizePHIsID
);
370 // This pass merges large allocas. StackSlotColoring is a different pass
371 // which merges spill slots.
372 addPass(&StackColoringID
);
374 // If the target requests it, assign local variables to stack slots relative
375 // to one another and simplify frame index references where possible.
376 addPass(&LocalStackSlotAllocationID
);
378 // With optimization, dead code should already be eliminated. However
379 // there is one known exception: lowered code for arguments that are only
380 // used by tail calls, where the tail calls reuse the incoming stack
381 // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
382 addPass(&DeadMachineInstructionElimID
);
383 printAndVerify("After codegen DCE pass");
385 // Allow targets to insert passes that improve instruction level parallelism,
386 // like if-conversion. Such passes will typically need dominator trees and
387 // loop info, just like LICM and CSE below.
389 printAndVerify("After ILP optimizations");
391 addPass(&EarlyMachineLICMID
);
392 addPass(&MachineCSEID
);
394 addPass(&MachineSinkingID
);
395 printAndVerify("After Machine LICM, CSE and Sinking passes");
397 addPass(&PeepholeOptimizerID
);
398 printAndVerify("After codegen peephole optimization pass");