1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCInstrInfo.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
41 // Temporarily disable FMA mutation by default, since it doesn't handle
42 // cross-basic-block intervals well.
43 // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
44 // http://reviews.llvm.org/D17087
45 static cl::opt
<bool> DisableVSXFMAMutate(
46 "disable-ppc-vsx-fma-mutation",
47 cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
50 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
52 namespace llvm
{ namespace PPC
{
53 int getAltVSXFMAOpcode(uint16_t Opcode
);
57 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
58 // (Altivec and scalar floating-point registers), we need to transform the
59 // copies into subregister copies with other restrictions.
60 struct PPCVSXFMAMutate
: public MachineFunctionPass
{
62 PPCVSXFMAMutate() : MachineFunctionPass(ID
) {
63 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
67 const PPCInstrInfo
*TII
;
70 bool processBlock(MachineBasicBlock
&MBB
) {
73 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
74 const TargetRegisterInfo
*TRI
= &TII
->getRegisterInfo();
75 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
77 MachineInstr
&MI
= *I
;
79 // The default (A-type) VSX FMA form kills the addend (it is taken from
80 // the target register, which is then updated to reflect the result of
81 // the FMA). If the instruction, however, kills one of the registers
82 // used for the product, then we can use the M-form instruction (which
83 // will take that value from the to-be-defined register).
85 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
89 // This pass is run after register coalescing, and so we're looking for
90 // a situation like this:
92 // %5 = COPY %9; VSLRC:%5,%9
93 // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
94 // implicit %rm; VSLRC:%5,%17,%16
96 // %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
97 // implicit %rm; VSLRC:%9,%17,%19
99 // Where we can eliminate the copy by changing from the A-type to the
100 // M-type instruction. Specifically, for this example, this means:
101 // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
102 // implicit %rm; VSLRC:%5,%17,%16
104 // %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
105 // implicit %rm; VSLRC:%16,%18,%9
106 // and we remove: %5 = COPY %9; VSLRC:%5,%9
108 SlotIndex FMAIdx
= LIS
->getInstructionIndex(MI
);
110 VNInfo
*AddendValNo
=
111 LIS
->getInterval(MI
.getOperand(1).getReg()).Query(FMAIdx
).valueIn();
113 // This can be null if the register is undef.
117 MachineInstr
*AddendMI
= LIS
->getInstructionFromIndex(AddendValNo
->def
);
119 // The addend and this instruction must be in the same block.
121 if (!AddendMI
|| AddendMI
->getParent() != MI
.getParent())
124 // The addend must be a full copy within the same register class.
126 if (!AddendMI
->isFullCopy())
129 unsigned AddendSrcReg
= AddendMI
->getOperand(1).getReg();
130 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg
)) {
131 if (MRI
.getRegClass(AddendMI
->getOperand(0).getReg()) !=
132 MRI
.getRegClass(AddendSrcReg
))
135 // If AddendSrcReg is a physical register, make sure the destination
136 // register class contains it.
137 if (!MRI
.getRegClass(AddendMI
->getOperand(0).getReg())
138 ->contains(AddendSrcReg
))
142 // In theory, there could be other uses of the addend copy before this
143 // fma. We could deal with this, but that would require additional
144 // logic below and I suspect it will not occur in any relevant
145 // situations. Additionally, check whether the copy source is killed
146 // prior to the fma. In order to replace the addend here with the
147 // source of the copy, it must still be live here. We can't use
148 // interval testing for a physical register, so as long as we're
149 // walking the MIs we may as well test liveness here.
151 // FIXME: There is a case that occurs in practice, like this:
152 // %9 = COPY %f1; VSSRC:%9
154 // %6 = COPY %9; VSSRC:%6,%9
155 // %7 = COPY %9; VSSRC:%7,%9
156 // %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
157 // %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
158 // %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
159 // which prevents an otherwise-profitable transformation.
160 bool OtherUsers
= false, KillsAddendSrc
= false;
161 for (auto J
= std::prev(I
), JE
= MachineBasicBlock::iterator(AddendMI
);
163 if (J
->readsVirtualRegister(AddendMI
->getOperand(0).getReg())) {
167 if (J
->modifiesRegister(AddendSrcReg
, TRI
) ||
168 J
->killsRegister(AddendSrcReg
, TRI
)) {
169 KillsAddendSrc
= true;
174 if (OtherUsers
|| KillsAddendSrc
)
178 // The transformation doesn't work well with things like:
179 // %5 = A-form-op %5, %11, %5;
180 // unless %11 is also a kill, so skip when it is not,
181 // and check operand 3 to see it is also a kill to handle the case:
182 // %5 = A-form-op %5, %5, %11;
183 // where %5 and %11 are both kills. This case would be skipped
185 unsigned OldFMAReg
= MI
.getOperand(0).getReg();
187 // Find one of the product operands that is killed by this instruction.
188 unsigned KilledProdOp
= 0, OtherProdOp
= 0;
189 unsigned Reg2
= MI
.getOperand(2).getReg();
190 unsigned Reg3
= MI
.getOperand(3).getReg();
191 if (LIS
->getInterval(Reg2
).Query(FMAIdx
).isKill()
192 && Reg2
!= OldFMAReg
) {
195 } else if (LIS
->getInterval(Reg3
).Query(FMAIdx
).isKill()
196 && Reg3
!= OldFMAReg
) {
201 // If there are no usable killed product operands, then this
202 // transformation is likely not profitable.
206 // If the addend copy is used only by this MI, then the addend source
207 // register is likely not live here. This could be fixed (based on the
208 // legality checks above, the live range for the addend source register
209 // could be extended), but it seems likely that such a trivial copy can
210 // be coalesced away later, and thus is not worth the effort.
211 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg
) &&
212 !LIS
->getInterval(AddendSrcReg
).liveAt(FMAIdx
))
215 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
217 unsigned KilledProdReg
= MI
.getOperand(KilledProdOp
).getReg();
218 unsigned OtherProdReg
= MI
.getOperand(OtherProdOp
).getReg();
220 unsigned AddSubReg
= AddendMI
->getOperand(1).getSubReg();
221 unsigned KilledProdSubReg
= MI
.getOperand(KilledProdOp
).getSubReg();
222 unsigned OtherProdSubReg
= MI
.getOperand(OtherProdOp
).getSubReg();
224 bool AddRegKill
= AddendMI
->getOperand(1).isKill();
225 bool KilledProdRegKill
= MI
.getOperand(KilledProdOp
).isKill();
226 bool OtherProdRegKill
= MI
.getOperand(OtherProdOp
).isKill();
228 bool AddRegUndef
= AddendMI
->getOperand(1).isUndef();
229 bool KilledProdRegUndef
= MI
.getOperand(KilledProdOp
).isUndef();
230 bool OtherProdRegUndef
= MI
.getOperand(OtherProdOp
).isUndef();
232 // If there isn't a class that fits, we can't perform the transform.
233 // This is needed for correctness with a mixture of VSX and Altivec
234 // instructions to make sure that a low VSX register is not assigned to
235 // the Altivec instruction.
236 if (!MRI
.constrainRegClass(KilledProdReg
,
237 MRI
.getRegClass(OldFMAReg
)))
240 assert(OldFMAReg
== AddendMI
->getOperand(0).getReg() &&
241 "Addend copy not tied to old FMA output!");
243 LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI
);
245 MI
.getOperand(0).setReg(KilledProdReg
);
246 MI
.getOperand(1).setReg(KilledProdReg
);
247 MI
.getOperand(3).setReg(AddendSrcReg
);
249 MI
.getOperand(0).setSubReg(KilledProdSubReg
);
250 MI
.getOperand(1).setSubReg(KilledProdSubReg
);
251 MI
.getOperand(3).setSubReg(AddSubReg
);
253 MI
.getOperand(1).setIsKill(KilledProdRegKill
);
254 MI
.getOperand(3).setIsKill(AddRegKill
);
256 MI
.getOperand(1).setIsUndef(KilledProdRegUndef
);
257 MI
.getOperand(3).setIsUndef(AddRegUndef
);
259 MI
.setDesc(TII
->get(AltOpc
));
261 // If the addend is also a multiplicand, replace it with the addend
262 // source in both places.
263 if (OtherProdReg
== AddendMI
->getOperand(0).getReg()) {
264 MI
.getOperand(2).setReg(AddendSrcReg
);
265 MI
.getOperand(2).setSubReg(AddSubReg
);
266 MI
.getOperand(2).setIsKill(AddRegKill
);
267 MI
.getOperand(2).setIsUndef(AddRegUndef
);
269 MI
.getOperand(2).setReg(OtherProdReg
);
270 MI
.getOperand(2).setSubReg(OtherProdSubReg
);
271 MI
.getOperand(2).setIsKill(OtherProdRegKill
);
272 MI
.getOperand(2).setIsUndef(OtherProdRegUndef
);
275 LLVM_DEBUG(dbgs() << " -> " << MI
);
277 // The killed product operand was killed here, so we can reuse it now
278 // for the result of the fma.
280 LiveInterval
&FMAInt
= LIS
->getInterval(OldFMAReg
);
281 VNInfo
*FMAValNo
= FMAInt
.getVNInfoAt(FMAIdx
.getRegSlot());
282 for (auto UI
= MRI
.reg_nodbg_begin(OldFMAReg
), UE
= MRI
.reg_nodbg_end();
284 MachineOperand
&UseMO
= *UI
;
285 MachineInstr
*UseMI
= UseMO
.getParent();
288 // Don't replace the result register of the copy we're about to erase.
289 if (UseMI
== AddendMI
)
292 UseMO
.substVirtReg(KilledProdReg
, KilledProdSubReg
, *TRI
);
295 // Extend the live intervals of the killed product operand to hold the
298 LiveInterval
&NewFMAInt
= LIS
->getInterval(KilledProdReg
);
299 for (LiveInterval::iterator AI
= FMAInt
.begin(), AE
= FMAInt
.end();
301 // Don't add the segment that corresponds to the original copy.
302 if (AI
->valno
== AddendValNo
)
305 VNInfo
*NewFMAValNo
=
306 NewFMAInt
.getNextValue(AI
->start
,
307 LIS
->getVNInfoAllocator());
309 NewFMAInt
.addSegment(LiveInterval::Segment(AI
->start
, AI
->end
,
312 LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt
<< '\n');
314 // Extend the live interval of the addend source (it might end at the
315 // copy to be removed, or somewhere in between there and here). This
316 // is necessary only if it is a physical register.
317 if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg
))
318 for (MCRegUnitIterator
Units(AddendSrcReg
, TRI
); Units
.isValid();
320 unsigned Unit
= *Units
;
322 LiveRange
&AddendSrcRange
= LIS
->getRegUnit(Unit
);
323 AddendSrcRange
.extendInBlock(LIS
->getMBBStartIdx(&MBB
),
324 FMAIdx
.getRegSlot());
325 LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange
<< '\n');
328 FMAInt
.removeValNo(FMAValNo
);
329 LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt
<< '\n');
331 // Remove the (now unused) copy.
333 LLVM_DEBUG(dbgs() << " removing: " << *AddendMI
<< '\n');
334 LIS
->RemoveMachineInstrFromMaps(*AddendMI
);
335 AddendMI
->eraseFromParent();
344 bool runOnMachineFunction(MachineFunction
&MF
) override
{
345 if (skipFunction(MF
.getFunction()))
348 // If we don't have VSX then go ahead and return without doing
350 const PPCSubtarget
&STI
= MF
.getSubtarget
<PPCSubtarget
>();
354 LIS
= &getAnalysis
<LiveIntervals
>();
356 TII
= STI
.getInstrInfo();
358 bool Changed
= false;
360 if (DisableVSXFMAMutate
)
363 for (MachineFunction::iterator I
= MF
.begin(); I
!= MF
.end();) {
364 MachineBasicBlock
&B
= *I
++;
372 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
373 AU
.addRequired
<LiveIntervals
>();
374 AU
.addPreserved
<LiveIntervals
>();
375 AU
.addRequired
<SlotIndexes
>();
376 AU
.addPreserved
<SlotIndexes
>();
377 AU
.addRequired
<MachineDominatorTree
>();
378 AU
.addPreserved
<MachineDominatorTree
>();
379 MachineFunctionPass::getAnalysisUsage(AU
);
384 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate
, DEBUG_TYPE
,
385 "PowerPC VSX FMA Mutation", false, false)
386 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
387 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
388 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
389 INITIALIZE_PASS_END(PPCVSXFMAMutate
, DEBUG_TYPE
,
390 "PowerPC VSX FMA Mutation", false, false)
392 char &llvm::PPCVSXFMAMutateID
= PPCVSXFMAMutate::ID
;
394 char PPCVSXFMAMutate::ID
= 0;
395 FunctionPass
*llvm::createPPCVSXFMAMutatePass() {
396 return new PPCVSXFMAMutate();