[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / WebAssembly / WebAssemblyInstrSIMD.td
blobdd8930f079b08b9940cf2df42a2780ce3438f6cf
1 // WebAssemblyInstrSIMD.td - WebAssembly SIMD codegen support -*- tablegen -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// WebAssembly SIMD operand code-gen constructs.
11 ///
12 //===----------------------------------------------------------------------===//
14 // Instructions requiring HasSIMD128 and the simd128 prefix byte
15 multiclass SIMD_I<dag oops_r, dag iops_r, dag oops_s, dag iops_s,
16                   list<dag> pattern_r, string asmstr_r = "",
17                   string asmstr_s = "", bits<32> simdop = -1> {
18   defm "" : I<oops_r, iops_r, oops_s, iops_s, pattern_r, asmstr_r, asmstr_s,
19               !or(0xfd00, !and(0xff, simdop))>,
20             Requires<[HasSIMD128]>;
23 defm "" : ARGUMENT<V128, v16i8>;
24 defm "" : ARGUMENT<V128, v8i16>;
25 defm "" : ARGUMENT<V128, v4i32>;
26 defm "" : ARGUMENT<V128, v2i64>;
27 defm "" : ARGUMENT<V128, v4f32>;
28 defm "" : ARGUMENT<V128, v2f64>;
30 // Constrained immediate argument types
31 foreach SIZE = [8, 16] in
32 def ImmI#SIZE : ImmLeaf<i32,
33   "return -(1 << ("#SIZE#" - 1)) <= Imm && Imm < (1 << ("#SIZE#" - 1));"
35 foreach SIZE = [2, 4, 8, 16, 32] in
36 def LaneIdx#SIZE : ImmLeaf<i32, "return 0 <= Imm && Imm < "#SIZE#";">;
38 //===----------------------------------------------------------------------===//
39 // Load and store
40 //===----------------------------------------------------------------------===//
42 // Load: v128.load
43 multiclass SIMDLoad<ValueType vec_t> {
44   let mayLoad = 1, UseNamedOperandTable = 1 in
45   defm LOAD_#vec_t :
46     SIMD_I<(outs V128:$dst), (ins P2Align:$p2align, offset32_op:$off, I32:$addr),
47            (outs), (ins P2Align:$p2align, offset32_op:$off), [],
48            "v128.load\t$dst, ${off}(${addr})$p2align",
49            "v128.load\t$off$p2align", 0>;
52 foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
53 defm "" : SIMDLoad<vec_t>;
55 // Def load and store patterns from WebAssemblyInstrMemory.td for vector types
56 def : LoadPatNoOffset<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
57 def : LoadPatImmOff<vec_t, load, regPlusImm, !cast<NI>("LOAD_"#vec_t)>;
58 def : LoadPatImmOff<vec_t, load, or_is_add, !cast<NI>("LOAD_"#vec_t)>;
59 def : LoadPatGlobalAddr<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
60 def : LoadPatOffsetOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
61 def : LoadPatGlobalAddrOffOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
64 // Store: v128.store
65 multiclass SIMDStore<ValueType vec_t> {
66   let mayStore = 1, UseNamedOperandTable = 1 in
67   defm STORE_#vec_t :
68     SIMD_I<(outs), (ins P2Align:$p2align, offset32_op:$off, I32:$addr, V128:$vec),
69            (outs), (ins P2Align:$p2align, offset32_op:$off), [],
70            "v128.store\t${off}(${addr})$p2align, $vec",
71            "v128.store\t$off$p2align", 1>;
74 foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
75 defm "" : SIMDStore<vec_t>;
77 // Def load and store patterns from WebAssemblyInstrMemory.td for vector types
78 def : StorePatNoOffset<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
79 def : StorePatImmOff<vec_t, store, regPlusImm, !cast<NI>("STORE_"#vec_t)>;
80 def : StorePatImmOff<vec_t, store, or_is_add, !cast<NI>("STORE_"#vec_t)>;
81 def : StorePatGlobalAddr<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
82 def : StorePatOffsetOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
83 def : StorePatGlobalAddrOffOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
86 //===----------------------------------------------------------------------===//
87 // Constructing SIMD values
88 //===----------------------------------------------------------------------===//
90 // Constant: v128.const
91 multiclass ConstVec<ValueType vec_t, dag ops, dag pat, string args> {
92   let isMoveImm = 1, isReMaterializable = 1,
93       Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
94   defm CONST_V128_#vec_t : SIMD_I<(outs V128:$dst), ops, (outs), ops,
95                                   [(set V128:$dst, (vec_t pat))],
96                                   "v128.const\t$dst, "#args,
97                                   "v128.const\t"#args, 2>;
100 defm "" : ConstVec<v16i8,
101                    (ins vec_i8imm_op:$i0, vec_i8imm_op:$i1,
102                         vec_i8imm_op:$i2, vec_i8imm_op:$i3,
103                         vec_i8imm_op:$i4, vec_i8imm_op:$i5,
104                         vec_i8imm_op:$i6, vec_i8imm_op:$i7,
105                         vec_i8imm_op:$i8, vec_i8imm_op:$i9,
106                         vec_i8imm_op:$iA, vec_i8imm_op:$iB,
107                         vec_i8imm_op:$iC, vec_i8imm_op:$iD,
108                         vec_i8imm_op:$iE, vec_i8imm_op:$iF),
109                    (build_vector ImmI8:$i0, ImmI8:$i1, ImmI8:$i2, ImmI8:$i3,
110                                  ImmI8:$i4, ImmI8:$i5, ImmI8:$i6, ImmI8:$i7,
111                                  ImmI8:$i8, ImmI8:$i9, ImmI8:$iA, ImmI8:$iB,
112                                  ImmI8:$iC, ImmI8:$iD, ImmI8:$iE, ImmI8:$iF),
113                    !strconcat("$i0, $i1, $i2, $i3, $i4, $i5, $i6, $i7, ",
114                               "$i8, $i9, $iA, $iB, $iC, $iD, $iE, $iF")>;
115 defm "" : ConstVec<v8i16,
116                    (ins vec_i16imm_op:$i0, vec_i16imm_op:$i1,
117                         vec_i16imm_op:$i2, vec_i16imm_op:$i3,
118                         vec_i16imm_op:$i4, vec_i16imm_op:$i5,
119                         vec_i16imm_op:$i6, vec_i16imm_op:$i7),
120                    (build_vector
121                      ImmI16:$i0, ImmI16:$i1, ImmI16:$i2, ImmI16:$i3,
122                      ImmI16:$i4, ImmI16:$i5, ImmI16:$i6, ImmI16:$i7),
123                    "$i0, $i1, $i2, $i3, $i4, $i5, $i6, $i7">;
124 let IsCanonical = 1 in
125 defm "" : ConstVec<v4i32,
126                    (ins vec_i32imm_op:$i0, vec_i32imm_op:$i1,
127                         vec_i32imm_op:$i2, vec_i32imm_op:$i3),
128                    (build_vector (i32 imm:$i0), (i32 imm:$i1),
129                                  (i32 imm:$i2), (i32 imm:$i3)),
130                    "$i0, $i1, $i2, $i3">;
131 defm "" : ConstVec<v2i64,
132                    (ins vec_i64imm_op:$i0, vec_i64imm_op:$i1),
133                    (build_vector (i64 imm:$i0), (i64 imm:$i1)),
134                    "$i0, $i1">;
135 defm "" : ConstVec<v4f32,
136                    (ins f32imm_op:$i0, f32imm_op:$i1,
137                         f32imm_op:$i2, f32imm_op:$i3),
138                    (build_vector (f32 fpimm:$i0), (f32 fpimm:$i1),
139                                  (f32 fpimm:$i2), (f32 fpimm:$i3)),
140                    "$i0, $i1, $i2, $i3">;
141 defm "" : ConstVec<v2f64,
142                   (ins f64imm_op:$i0, f64imm_op:$i1),
143                   (build_vector (f64 fpimm:$i0), (f64 fpimm:$i1)),
144                   "$i0, $i1">;
146 // Shuffle lanes: shuffle
147 defm SHUFFLE :
148   SIMD_I<(outs V128:$dst),
149          (ins V128:$x, V128:$y,
150            vec_i8imm_op:$m0, vec_i8imm_op:$m1,
151            vec_i8imm_op:$m2, vec_i8imm_op:$m3,
152            vec_i8imm_op:$m4, vec_i8imm_op:$m5,
153            vec_i8imm_op:$m6, vec_i8imm_op:$m7,
154            vec_i8imm_op:$m8, vec_i8imm_op:$m9,
155            vec_i8imm_op:$mA, vec_i8imm_op:$mB,
156            vec_i8imm_op:$mC, vec_i8imm_op:$mD,
157            vec_i8imm_op:$mE, vec_i8imm_op:$mF),
158          (outs),
159          (ins
160            vec_i8imm_op:$m0, vec_i8imm_op:$m1,
161            vec_i8imm_op:$m2, vec_i8imm_op:$m3,
162            vec_i8imm_op:$m4, vec_i8imm_op:$m5,
163            vec_i8imm_op:$m6, vec_i8imm_op:$m7,
164            vec_i8imm_op:$m8, vec_i8imm_op:$m9,
165            vec_i8imm_op:$mA, vec_i8imm_op:$mB,
166            vec_i8imm_op:$mC, vec_i8imm_op:$mD,
167            vec_i8imm_op:$mE, vec_i8imm_op:$mF),
168          [],
169          "v8x16.shuffle\t$dst, $x, $y, "#
170            "$m0, $m1, $m2, $m3, $m4, $m5, $m6, $m7, "#
171            "$m8, $m9, $mA, $mB, $mC, $mD, $mE, $mF",
172          "v8x16.shuffle\t"#
173            "$m0, $m1, $m2, $m3, $m4, $m5, $m6, $m7, "#
174            "$m8, $m9, $mA, $mB, $mC, $mD, $mE, $mF",
175          3>;
177 // Shuffles after custom lowering
178 def wasm_shuffle_t : SDTypeProfile<1, 18, []>;
179 def wasm_shuffle : SDNode<"WebAssemblyISD::SHUFFLE", wasm_shuffle_t>;
180 foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
181 def : Pat<(vec_t (wasm_shuffle (vec_t V128:$x), (vec_t V128:$y),
182             (i32 LaneIdx32:$m0), (i32 LaneIdx32:$m1),
183             (i32 LaneIdx32:$m2), (i32 LaneIdx32:$m3),
184             (i32 LaneIdx32:$m4), (i32 LaneIdx32:$m5),
185             (i32 LaneIdx32:$m6), (i32 LaneIdx32:$m7),
186             (i32 LaneIdx32:$m8), (i32 LaneIdx32:$m9),
187             (i32 LaneIdx32:$mA), (i32 LaneIdx32:$mB),
188             (i32 LaneIdx32:$mC), (i32 LaneIdx32:$mD),
189             (i32 LaneIdx32:$mE), (i32 LaneIdx32:$mF))),
190           (vec_t (SHUFFLE (vec_t V128:$x), (vec_t V128:$y),
191             (i32 LaneIdx32:$m0), (i32 LaneIdx32:$m1),
192             (i32 LaneIdx32:$m2), (i32 LaneIdx32:$m3),
193             (i32 LaneIdx32:$m4), (i32 LaneIdx32:$m5),
194             (i32 LaneIdx32:$m6), (i32 LaneIdx32:$m7),
195             (i32 LaneIdx32:$m8), (i32 LaneIdx32:$m9),
196             (i32 LaneIdx32:$mA), (i32 LaneIdx32:$mB),
197             (i32 LaneIdx32:$mC), (i32 LaneIdx32:$mD),
198             (i32 LaneIdx32:$mE), (i32 LaneIdx32:$mF)))>;
201 // Create vector with identical lanes: splat
202 def splat2 : PatFrag<(ops node:$x), (build_vector node:$x, node:$x)>;
203 def splat4 : PatFrag<(ops node:$x), (build_vector
204                        node:$x, node:$x, node:$x, node:$x)>;
205 def splat8 : PatFrag<(ops node:$x), (build_vector
206                        node:$x, node:$x, node:$x, node:$x,
207                        node:$x, node:$x, node:$x, node:$x)>;
208 def splat16 : PatFrag<(ops node:$x), (build_vector
209                         node:$x, node:$x, node:$x, node:$x,
210                         node:$x, node:$x, node:$x, node:$x,
211                         node:$x, node:$x, node:$x, node:$x,
212                         node:$x, node:$x, node:$x, node:$x)>;
214 multiclass Splat<ValueType vec_t, string vec, WebAssemblyRegClass reg_t,
215                  PatFrag splat_pat, bits<32> simdop> {
216   // Prefer splats over v128.const for const splats (65 is lowest that works)
217   let AddedComplexity = 65 in
218   defm SPLAT_#vec_t : SIMD_I<(outs V128:$dst), (ins reg_t:$x), (outs), (ins),
219                              [(set (vec_t V128:$dst), (splat_pat reg_t:$x))],
220                              vec#".splat\t$dst, $x", vec#".splat", simdop>;
223 defm "" : Splat<v16i8, "i8x16", I32, splat16, 4>;
224 defm "" : Splat<v8i16, "i16x8", I32, splat8, 8>;
225 defm "" : Splat<v4i32, "i32x4", I32, splat4, 12>;
226 defm "" : Splat<v2i64, "i64x2", I64, splat2, 15>;
227 defm "" : Splat<v4f32, "f32x4", F32, splat4, 18>;
228 defm "" : Splat<v2f64, "f64x2", F64, splat2, 21>;
230 // scalar_to_vector leaves high lanes undefined, so can be a splat
231 class ScalarSplatPat<ValueType vec_t, ValueType lane_t,
232                      WebAssemblyRegClass reg_t> :
233   Pat<(vec_t (scalar_to_vector (lane_t reg_t:$x))),
234       (!cast<Instruction>("SPLAT_"#vec_t) reg_t:$x)>;
236 def : ScalarSplatPat<v16i8, i32, I32>;
237 def : ScalarSplatPat<v8i16, i32, I32>;
238 def : ScalarSplatPat<v4i32, i32, I32>;
239 def : ScalarSplatPat<v2i64, i64, I64>;
240 def : ScalarSplatPat<v4f32, f32, F32>;
241 def : ScalarSplatPat<v2f64, f64, F64>;
243 //===----------------------------------------------------------------------===//
244 // Accessing lanes
245 //===----------------------------------------------------------------------===//
247 // Extract lane as a scalar: extract_lane / extract_lane_s / extract_lane_u
248 multiclass ExtractLane<ValueType vec_t, string vec, ImmLeaf imm_t,
249                        WebAssemblyRegClass reg_t, bits<32> simdop,
250                        string suffix = "", SDNode extract = vector_extract> {
251   defm EXTRACT_LANE_#vec_t#suffix :
252       SIMD_I<(outs reg_t:$dst), (ins V128:$vec, vec_i8imm_op:$idx),
253              (outs), (ins vec_i8imm_op:$idx),
254              [(set reg_t:$dst, (extract (vec_t V128:$vec), (i32 imm_t:$idx)))],
255              vec#".extract_lane"#suffix#"\t$dst, $vec, $idx",
256              vec#".extract_lane"#suffix#"\t$idx", simdop>;
259 multiclass ExtractPat<ValueType lane_t, int mask> {
260   def _s : PatFrag<(ops node:$vec, node:$idx),
261                    (i32 (sext_inreg
262                      (i32 (vector_extract
263                        node:$vec,
264                        node:$idx
265                      )),
266                      lane_t
267                    ))>;
268   def _u : PatFrag<(ops node:$vec, node:$idx),
269                    (i32 (and
270                      (i32 (vector_extract
271                        node:$vec,
272                        node:$idx
273                      )),
274                      (i32 mask)
275                    ))>;
278 defm extract_i8x16 : ExtractPat<i8, 0xff>;
279 defm extract_i16x8 : ExtractPat<i16, 0xffff>;
281 multiclass ExtractLaneExtended<string sign, bits<32> baseInst> {
282   defm "" : ExtractLane<v16i8, "i8x16", LaneIdx16, I32, baseInst, sign,
283                         !cast<PatFrag>("extract_i8x16"#sign)>;
284   defm "" : ExtractLane<v8i16, "i16x8", LaneIdx8, I32, !add(baseInst, 4), sign,
285                         !cast<PatFrag>("extract_i16x8"#sign)>;
288 defm "" : ExtractLaneExtended<"_s", 5>;
289 let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
290 defm "" : ExtractLaneExtended<"_u", 6>;
291 defm "" : ExtractLane<v4i32, "i32x4", LaneIdx4, I32, 13>;
292 defm "" : ExtractLane<v2i64, "i64x2", LaneIdx2, I64, 16>;
293 defm "" : ExtractLane<v4f32, "f32x4", LaneIdx4, F32, 19>;
294 defm "" : ExtractLane<v2f64, "f64x2", LaneIdx2, F64, 22>;
296 // It would be more conventional to use unsigned extracts, but v8
297 // doesn't implement them yet
298 def : Pat<(i32 (vector_extract (v16i8 V128:$vec), (i32 LaneIdx16:$idx))),
299           (EXTRACT_LANE_v16i8_s V128:$vec, (i32 LaneIdx16:$idx))>;
300 def : Pat<(i32 (vector_extract (v8i16 V128:$vec), (i32 LaneIdx8:$idx))),
301           (EXTRACT_LANE_v8i16_s V128:$vec, (i32 LaneIdx8:$idx))>;
303 // Lower undef lane indices to zero
304 def : Pat<(and (i32 (vector_extract (v16i8 V128:$vec), undef)), (i32 0xff)),
305           (EXTRACT_LANE_v16i8_u V128:$vec, 0)>;
306 def : Pat<(and (i32 (vector_extract (v8i16 V128:$vec), undef)), (i32 0xffff)),
307           (EXTRACT_LANE_v8i16_u V128:$vec, 0)>;
308 def : Pat<(i32 (vector_extract (v16i8 V128:$vec), undef)),
309           (EXTRACT_LANE_v16i8_u V128:$vec, 0)>;
310 def : Pat<(i32 (vector_extract (v8i16 V128:$vec), undef)),
311           (EXTRACT_LANE_v8i16_u V128:$vec, 0)>;
312 def : Pat<(sext_inreg (i32 (vector_extract (v16i8 V128:$vec), undef)), i8),
313           (EXTRACT_LANE_v16i8_s V128:$vec, 0)>;
314 def : Pat<(sext_inreg (i32 (vector_extract (v8i16 V128:$vec), undef)), i16),
315           (EXTRACT_LANE_v8i16_s V128:$vec, 0)>;
316 def : Pat<(vector_extract (v4i32 V128:$vec), undef),
317           (EXTRACT_LANE_v4i32 V128:$vec, 0)>;
318 def : Pat<(vector_extract (v2i64 V128:$vec), undef),
319           (EXTRACT_LANE_v2i64 V128:$vec, 0)>;
320 def : Pat<(vector_extract (v4f32 V128:$vec), undef),
321           (EXTRACT_LANE_v4f32 V128:$vec, 0)>;
322 def : Pat<(vector_extract (v2f64 V128:$vec), undef),
323           (EXTRACT_LANE_v2f64 V128:$vec, 0)>;
325 // Replace lane value: replace_lane
326 multiclass ReplaceLane<ValueType vec_t, string vec, ImmLeaf imm_t,
327                        WebAssemblyRegClass reg_t, ValueType lane_t,
328                        bits<32> simdop> {
329   defm REPLACE_LANE_#vec_t :
330       SIMD_I<(outs V128:$dst), (ins V128:$vec, vec_i8imm_op:$idx, reg_t:$x),
331              (outs), (ins vec_i8imm_op:$idx),
332              [(set V128:$dst, (vector_insert
333                (vec_t V128:$vec), (lane_t reg_t:$x), (i32 imm_t:$idx)))],
334              vec#".replace_lane\t$dst, $vec, $idx, $x",
335              vec#".replace_lane\t$idx", simdop>;
338 defm "" : ReplaceLane<v16i8, "i8x16", LaneIdx16, I32, i32, 7>;
339 defm "" : ReplaceLane<v8i16, "i16x8", LaneIdx8, I32, i32, 11>;
340 defm "" : ReplaceLane<v4i32, "i32x4", LaneIdx4, I32, i32, 14>;
341 defm "" : ReplaceLane<v2i64, "i64x2", LaneIdx2, I64, i64, 17>;
342 defm "" : ReplaceLane<v4f32, "f32x4", LaneIdx4, F32, f32, 20>;
343 defm "" : ReplaceLane<v2f64, "f64x2", LaneIdx2, F64, f64, 23>;
345 // Lower undef lane indices to zero
346 def : Pat<(vector_insert (v16i8 V128:$vec), I32:$x, undef),
347           (REPLACE_LANE_v16i8 V128:$vec, 0, I32:$x)>;
348 def : Pat<(vector_insert (v8i16 V128:$vec), I32:$x, undef),
349           (REPLACE_LANE_v8i16 V128:$vec, 0, I32:$x)>;
350 def : Pat<(vector_insert (v4i32 V128:$vec), I32:$x, undef),
351           (REPLACE_LANE_v4i32 V128:$vec, 0, I32:$x)>;
352 def : Pat<(vector_insert (v2i64 V128:$vec), I64:$x, undef),
353           (REPLACE_LANE_v2i64 V128:$vec, 0, I64:$x)>;
354 def : Pat<(vector_insert (v4f32 V128:$vec), F32:$x, undef),
355           (REPLACE_LANE_v4f32 V128:$vec, 0, F32:$x)>;
356 def : Pat<(vector_insert (v2f64 V128:$vec), F64:$x, undef),
357           (REPLACE_LANE_v2f64 V128:$vec, 0, F64:$x)>;
359 //===----------------------------------------------------------------------===//
360 // Comparisons
361 //===----------------------------------------------------------------------===//
363 multiclass SIMDCondition<ValueType vec_t, ValueType out_t, string vec,
364                          string name, CondCode cond, bits<32> simdop> {
365   defm _#vec_t :
366     SIMD_I<(outs V128:$dst), (ins V128:$lhs, V128:$rhs), (outs), (ins),
367            [(set (out_t V128:$dst),
368              (setcc (vec_t V128:$lhs), (vec_t V128:$rhs), cond)
369            )],
370            vec#"."#name#"\t$dst, $lhs, $rhs", vec#"."#name, simdop>;
373 multiclass SIMDConditionInt<string name, CondCode cond, bits<32> baseInst> {
374   defm "" : SIMDCondition<v16i8, v16i8, "i8x16", name, cond, baseInst>;
375   defm "" : SIMDCondition<v8i16, v8i16, "i16x8", name, cond,
376                           !add(baseInst, 10)>;
377   defm "" : SIMDCondition<v4i32, v4i32, "i32x4", name, cond,
378                           !add(baseInst, 20)>;
381 multiclass SIMDConditionFP<string name, CondCode cond, bits<32> baseInst> {
382   defm "" : SIMDCondition<v4f32, v4i32, "f32x4", name, cond, baseInst>;
383   defm "" : SIMDCondition<v2f64, v2i64, "f64x2", name, cond,
384                           !add(baseInst, 6)>;
387 // Equality: eq
388 let isCommutable = 1 in {
389 defm EQ : SIMDConditionInt<"eq", SETEQ, 24>;
390 defm EQ : SIMDConditionFP<"eq", SETOEQ, 64>;
391 } // isCommutable = 1
393 // Non-equality: ne
394 let isCommutable = 1 in {
395 defm NE : SIMDConditionInt<"ne", SETNE, 25>;
396 defm NE : SIMDConditionFP<"ne", SETUNE, 65>;
397 } // isCommutable = 1
399 // Less than: lt_s / lt_u / lt
400 defm LT_S : SIMDConditionInt<"lt_s", SETLT, 26>;
401 defm LT_U : SIMDConditionInt<"lt_u", SETULT, 27>;
402 defm LT : SIMDConditionFP<"lt", SETOLT, 66>;
404 // Greater than: gt_s / gt_u / gt
405 defm GT_S : SIMDConditionInt<"gt_s", SETGT, 28>;
406 defm GT_U : SIMDConditionInt<"gt_u", SETUGT, 29>;
407 defm GT : SIMDConditionFP<"gt", SETOGT, 67>;
409 // Less than or equal: le_s / le_u / le
410 defm LE_S : SIMDConditionInt<"le_s", SETLE, 30>;
411 defm LE_U : SIMDConditionInt<"le_u", SETULE, 31>;
412 defm LE : SIMDConditionFP<"le", SETOLE, 68>;
414 // Greater than or equal: ge_s / ge_u / ge
415 defm GE_S : SIMDConditionInt<"ge_s", SETGE, 32>;
416 defm GE_U : SIMDConditionInt<"ge_u", SETUGE, 33>;
417 defm GE : SIMDConditionFP<"ge", SETOGE, 69>;
419 // Lower float comparisons that don't care about NaN to standard WebAssembly
420 // float comparisons. These instructions are generated with nnan and in the
421 // target-independent expansion of unordered comparisons and ordered ne.
422 foreach nodes = [[seteq, EQ_v4f32], [setne, NE_v4f32], [setlt, LT_v4f32],
423                  [setgt, GT_v4f32], [setle, LE_v4f32], [setge, GE_v4f32]] in
424 def : Pat<(v4i32 (nodes[0] (v4f32 V128:$lhs), (v4f32 V128:$rhs))),
425           (v4i32 (nodes[1] (v4f32 V128:$lhs), (v4f32 V128:$rhs)))>;
427 foreach nodes = [[seteq, EQ_v2f64], [setne, NE_v2f64], [setlt, LT_v2f64],
428                  [setgt, GT_v2f64], [setle, LE_v2f64], [setge, GE_v2f64]] in
429 def : Pat<(v2i64 (nodes[0] (v2f64 V128:$lhs), (v2f64 V128:$rhs))),
430           (v2i64 (nodes[1] (v2f64 V128:$lhs), (v2f64 V128:$rhs)))>;
433 //===----------------------------------------------------------------------===//
434 // Bitwise operations
435 //===----------------------------------------------------------------------===//
437 multiclass SIMDBinary<ValueType vec_t, string vec, SDNode node, string name,
438                       bits<32> simdop> {
439   defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$lhs, V128:$rhs),
440                         (outs), (ins),
441                         [(set (vec_t V128:$dst),
442                           (node (vec_t V128:$lhs), (vec_t V128:$rhs))
443                         )],
444                         vec#"."#name#"\t$dst, $lhs, $rhs", vec#"."#name,
445                         simdop>;
448 multiclass SIMDBitwise<SDNode node, string name, bits<32> simdop> {
449   defm "" : SIMDBinary<v16i8, "v128", node, name, simdop>;
450   defm "" : SIMDBinary<v8i16, "v128", node, name, simdop>;
451   defm "" : SIMDBinary<v4i32, "v128", node, name, simdop>;
452   defm "" : SIMDBinary<v2i64, "v128", node, name, simdop>;
455 multiclass SIMDUnary<ValueType vec_t, string vec, SDNode node, string name,
456                      bits<32> simdop> {
457   defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$vec), (outs), (ins),
458                         [(set (vec_t V128:$dst),
459                           (vec_t (node (vec_t V128:$vec)))
460                         )],
461                         vec#"."#name#"\t$dst, $vec", vec#"."#name, simdop>;
464 // Bitwise logic: v128.not
465 foreach vec_t = [v16i8, v8i16, v4i32, v2i64] in
466 defm NOT: SIMDUnary<vec_t, "v128", vnot, "not", 76>;
468 // Bitwise logic: v128.and / v128.or / v128.xor
469 let isCommutable = 1 in {
470 defm AND : SIMDBitwise<and, "and", 77>;
471 defm OR : SIMDBitwise<or, "or", 78>;
472 defm XOR : SIMDBitwise<xor, "xor", 79>;
473 } // isCommutable = 1
475 // Bitwise select: v128.bitselect
476 foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in
477   defm BITSELECT_#vec_t :
478     SIMD_I<(outs V128:$dst), (ins V128:$v1, V128:$v2, V128:$c), (outs), (ins),
479            [(set (vec_t V128:$dst),
480              (vec_t (int_wasm_bitselect
481                (vec_t V128:$v1), (vec_t V128:$v2), (vec_t V128:$c)
482              ))
483            )],
484            "v128.bitselect\t$dst, $v1, $v2, $c", "v128.bitselect", 80>;
486 // Bitselect is equivalent to (c & v1) | (~c & v2)
487 foreach vec_t = [v16i8, v8i16, v4i32, v2i64] in
488   def : Pat<(vec_t (or (and (vec_t V128:$c), (vec_t V128:$v1)),
489               (and (vnot V128:$c), (vec_t V128:$v2)))),
490             (!cast<Instruction>("BITSELECT_"#vec_t)
491               V128:$v1, V128:$v2, V128:$c)>;
493 //===----------------------------------------------------------------------===//
494 // Integer unary arithmetic
495 //===----------------------------------------------------------------------===//
497 multiclass SIMDUnaryInt<SDNode node, string name, bits<32> baseInst> {
498   defm "" : SIMDUnary<v16i8, "i8x16", node, name, baseInst>;
499   defm "" : SIMDUnary<v8i16, "i16x8", node, name, !add(baseInst, 17)>;
500   defm "" : SIMDUnary<v4i32, "i32x4", node, name, !add(baseInst, 34)>;
501   defm "" : SIMDUnary<v2i64, "i64x2", node, name, !add(baseInst, 51)>;
504 multiclass SIMDReduceVec<ValueType vec_t, string vec, SDNode op, string name,
505                          bits<32> simdop> {
506   defm _#vec_t : SIMD_I<(outs I32:$dst), (ins V128:$vec), (outs), (ins),
507                         [(set I32:$dst, (i32 (op (vec_t V128:$vec))))],
508                         vec#"."#name#"\t$dst, $vec", vec#"."#name, simdop>;
511 multiclass SIMDReduce<SDNode op, string name, bits<32> baseInst> {
512   defm "" : SIMDReduceVec<v16i8, "i8x16", op, name, baseInst>;
513   defm "" : SIMDReduceVec<v8i16, "i16x8", op, name, !add(baseInst, 17)>;
514   defm "" : SIMDReduceVec<v4i32, "i32x4", op, name, !add(baseInst, 34)>;
515   defm "" : SIMDReduceVec<v2i64, "i64x2", op, name, !add(baseInst, 51)>;
518 // Integer vector negation
519 def ivneg : PatFrag<(ops node:$in), (sub immAllZerosV, node:$in)>;
521 // Integer negation: neg
522 defm NEG : SIMDUnaryInt<ivneg, "neg", 81>;
524 // Any lane true: any_true
525 defm ANYTRUE : SIMDReduce<int_wasm_anytrue, "any_true", 82>;
527 // All lanes true: all_true
528 defm ALLTRUE : SIMDReduce<int_wasm_alltrue, "all_true", 83>;
530 // Reductions already return 0 or 1, so and 1, setne 0, and seteq 1
531 // can be folded out
532 foreach reduction =
533   [["int_wasm_anytrue", "ANYTRUE"], ["int_wasm_alltrue", "ALLTRUE"]] in
534 foreach ty = [v16i8, v8i16, v4i32, v2i64] in {
535 def : Pat<(i32 (and
536             (i32 (!cast<Intrinsic>(reduction[0]) (ty V128:$x))),
537             (i32 1)
538           )),
539           (i32 (!cast<NI>(reduction[1]#"_"#ty) (ty V128:$x)))>;
540 def : Pat<(i32 (setne
541             (i32 (!cast<Intrinsic>(reduction[0]) (ty V128:$x))),
542             (i32 0)
543           )),
544           (i32 (!cast<NI>(reduction[1]#"_"#ty) (ty V128:$x)))>;
545 def : Pat<(i32 (seteq
546             (i32 (!cast<Intrinsic>(reduction[0]) (ty V128:$x))),
547             (i32 1)
548           )),
549           (i32 (!cast<NI>(reduction[1]#"_"#ty) (ty V128:$x)))>;
552 //===----------------------------------------------------------------------===//
553 // Bit shifts
554 //===----------------------------------------------------------------------===//
556 multiclass SIMDShift<ValueType vec_t, string vec, SDNode node, dag shift_vec,
557                      string name, bits<32> simdop> {
558   defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$vec, I32:$x),
559                         (outs), (ins),
560                         [(set (vec_t V128:$dst),
561                           (node V128:$vec, (vec_t shift_vec)))],
562                         vec#"."#name#"\t$dst, $vec, $x", vec#"."#name, simdop>;
565 multiclass SIMDShiftInt<SDNode node, string name, bits<32> baseInst> {
566   defm "" : SIMDShift<v16i8, "i8x16", node, (splat16 I32:$x), name, baseInst>;
567   defm "" : SIMDShift<v8i16, "i16x8", node, (splat8 I32:$x), name,
568                       !add(baseInst, 17)>;
569   defm "" : SIMDShift<v4i32, "i32x4", node, (splat4 I32:$x), name,
570                       !add(baseInst, 34)>;
571   defm "" : SIMDShift<v2i64, "i64x2", node, (splat2 (i64 (zext I32:$x))),
572                       name, !add(baseInst, 51)>;
575 // Left shift by scalar: shl
576 defm SHL : SIMDShiftInt<shl, "shl", 84>;
578 // Right shift by scalar: shr_s / shr_u
579 defm SHR_S : SIMDShiftInt<sra, "shr_s", 85>;
580 defm SHR_U : SIMDShiftInt<srl, "shr_u", 86>;
582 // Truncate i64 shift operands to i32s, except if they are already i32s
583 foreach shifts = [[shl, SHL_v2i64], [sra, SHR_S_v2i64], [srl, SHR_U_v2i64]] in {
584 def : Pat<(v2i64 (shifts[0]
585             (v2i64 V128:$vec),
586             (v2i64 (splat2 (i64 (sext I32:$x))))
587           )),
588           (v2i64 (shifts[1] (v2i64 V128:$vec), (i32 I32:$x)))>;
589 def : Pat<(v2i64 (shifts[0] (v2i64 V128:$vec), (v2i64 (splat2 I64:$x)))),
590           (v2i64 (shifts[1] (v2i64 V128:$vec), (I32_WRAP_I64 I64:$x)))>;
593 // 2xi64 shifts with constant shift amounts are custom lowered to avoid wrapping
594 def wasm_shift_t : SDTypeProfile<1, 2,
595   [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]
597 def wasm_shl : SDNode<"WebAssemblyISD::VEC_SHL", wasm_shift_t>;
598 def wasm_shr_s : SDNode<"WebAssemblyISD::VEC_SHR_S", wasm_shift_t>;
599 def wasm_shr_u : SDNode<"WebAssemblyISD::VEC_SHR_U", wasm_shift_t>;
600 foreach shifts = [[wasm_shl, SHL_v2i64],
601                   [wasm_shr_s, SHR_S_v2i64],
602                   [wasm_shr_u, SHR_U_v2i64]] in
603 def : Pat<(v2i64 (shifts[0] (v2i64 V128:$vec), I32:$x)),
604           (v2i64 (shifts[1] (v2i64 V128:$vec), I32:$x))>;
606 //===----------------------------------------------------------------------===//
607 // Integer binary arithmetic
608 //===----------------------------------------------------------------------===//
610 multiclass SIMDBinaryIntSmall<SDNode node, string name, bits<32> baseInst> {
611   defm "" : SIMDBinary<v16i8, "i8x16", node, name, baseInst>;
612   defm "" : SIMDBinary<v8i16, "i16x8", node, name, !add(baseInst, 17)>;
615 multiclass SIMDBinaryIntNoI64x2<SDNode node, string name, bits<32> baseInst> {
616   defm "" : SIMDBinaryIntSmall<node, name, baseInst>;
617   defm "" : SIMDBinary<v4i32, "i32x4", node, name, !add(baseInst, 34)>;
620 multiclass SIMDBinaryInt<SDNode node, string name, bits<32> baseInst> {
621   defm "" : SIMDBinaryIntNoI64x2<node, name, baseInst>;
622   defm "" : SIMDBinary<v2i64, "i64x2", node, name, !add(baseInst, 51)>;
625 // Integer addition: add / add_saturate_s / add_saturate_u
626 let isCommutable = 1 in {
627 defm ADD : SIMDBinaryInt<add, "add", 87>;
628 defm ADD_SAT_S : SIMDBinaryIntSmall<saddsat, "add_saturate_s", 88>;
629 defm ADD_SAT_U : SIMDBinaryIntSmall<uaddsat, "add_saturate_u", 89>;
630 } // isCommutable = 1
632 // Integer subtraction: sub / sub_saturate_s / sub_saturate_u
633 defm SUB : SIMDBinaryInt<sub, "sub", 90>;
634 defm SUB_SAT_S :
635   SIMDBinaryIntSmall<int_wasm_sub_saturate_signed, "sub_saturate_s", 91>;
636 defm SUB_SAT_U :
637   SIMDBinaryIntSmall<int_wasm_sub_saturate_unsigned, "sub_saturate_u", 92>;
639 // Integer multiplication: mul
640 defm MUL : SIMDBinaryIntNoI64x2<mul, "mul", 93>;
642 //===----------------------------------------------------------------------===//
643 // Floating-point unary arithmetic
644 //===----------------------------------------------------------------------===//
646 multiclass SIMDUnaryFP<SDNode node, string name, bits<32> baseInst> {
647   defm "" : SIMDUnary<v4f32, "f32x4", node, name, baseInst>;
648   defm "" : SIMDUnary<v2f64, "f64x2", node, name, !add(baseInst, 11)>;
651 // Absolute value: abs
652 defm ABS : SIMDUnaryFP<fabs, "abs", 149>;
654 // Negation: neg
655 defm NEG : SIMDUnaryFP<fneg, "neg", 150>;
657 // Square root: sqrt
658 let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
659 defm SQRT : SIMDUnaryFP<fsqrt, "sqrt", 151>;
661 //===----------------------------------------------------------------------===//
662 // Floating-point binary arithmetic
663 //===----------------------------------------------------------------------===//
665 multiclass SIMDBinaryFP<SDNode node, string name, bits<32> baseInst> {
666   defm "" : SIMDBinary<v4f32, "f32x4", node, name, baseInst>;
667   defm "" : SIMDBinary<v2f64, "f64x2", node, name, !add(baseInst, 11)>;
670 // Addition: add
671 let isCommutable = 1 in
672 defm ADD : SIMDBinaryFP<fadd, "add", 154>;
674 // Subtraction: sub
675 defm SUB : SIMDBinaryFP<fsub, "sub", 155>;
677 // Multiplication: mul
678 let isCommutable = 1 in
679 defm MUL : SIMDBinaryFP<fmul, "mul", 156>;
681 // Division: div
682 let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
683 defm DIV : SIMDBinaryFP<fdiv, "div", 157>;
685 // NaN-propagating minimum: min
686 defm MIN : SIMDBinaryFP<fminimum, "min", 158>;
688 // NaN-propagating maximum: max
689 defm MAX : SIMDBinaryFP<fmaximum, "max", 159>;
691 //===----------------------------------------------------------------------===//
692 // Conversions
693 //===----------------------------------------------------------------------===//
695 multiclass SIMDConvert<ValueType vec_t, ValueType arg_t, SDNode op,
696                        string name, bits<32> simdop> {
697   defm op#_#vec_t#_#arg_t :
698     SIMD_I<(outs V128:$dst), (ins V128:$vec), (outs), (ins),
699            [(set (vec_t V128:$dst), (vec_t (op (arg_t V128:$vec))))],
700            name#"\t$dst, $vec", name, simdop>;
703 // Integer to floating point: convert
704 defm "" : SIMDConvert<v4f32, v4i32, sint_to_fp, "f32x4.convert_i32x4_s", 175>;
705 defm "" : SIMDConvert<v4f32, v4i32, uint_to_fp, "f32x4.convert_i32x4_u", 176>;
706 defm "" : SIMDConvert<v2f64, v2i64, sint_to_fp, "f64x2.convert_i64x2_s", 177>;
707 defm "" : SIMDConvert<v2f64, v2i64, uint_to_fp, "f64x2.convert_i64x2_u", 178>;
709 // Floating point to integer with saturation: trunc_sat
710 defm "" : SIMDConvert<v4i32, v4f32, fp_to_sint, "i32x4.trunc_sat_f32x4_s", 171>;
711 defm "" : SIMDConvert<v4i32, v4f32, fp_to_uint, "i32x4.trunc_sat_f32x4_u", 172>;
712 defm "" : SIMDConvert<v2i64, v2f64, fp_to_sint, "i64x2.trunc_sat_f64x2_s", 173>;
713 defm "" : SIMDConvert<v2i64, v2f64, fp_to_uint, "i64x2.trunc_sat_f64x2_u", 174>;
715 // Lower llvm.wasm.trunc.saturate.* to saturating instructions
716 def : Pat<(v4i32 (int_wasm_trunc_saturate_signed (v4f32 V128:$src))),
717           (fp_to_sint_v4i32_v4f32 (v4f32 V128:$src))>;
718 def : Pat<(v4i32 (int_wasm_trunc_saturate_unsigned (v4f32 V128:$src))),
719           (fp_to_uint_v4i32_v4f32 (v4f32 V128:$src))>;
720 def : Pat<(v2i64 (int_wasm_trunc_saturate_signed (v2f64 V128:$src))),
721           (fp_to_sint_v2i64_v2f64 (v2f64 V128:$src))>;
722 def : Pat<(v2i64 (int_wasm_trunc_saturate_unsigned (v2f64 V128:$src))),
723           (fp_to_uint_v2i64_v2f64 (v2f64 V128:$src))>;
725 // Bitcasts are nops
726 // Matching bitcast t1 to t1 causes strange errors, so avoid repeating types
727 foreach t1 = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in
728 foreach t2 = !foldl(
729   []<ValueType>, [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
730   acc, cur, !if(!eq(!cast<string>(t1), !cast<string>(cur)),
731     acc, !listconcat(acc, [cur])
732   )
733 ) in
734 def : Pat<(t1 (bitconvert (t2 V128:$v))), (t1 V128:$v)>;