1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/Target/TargetOptions.h"
24 class X86TargetMachine
;
27 // X86 Specific DAG Nodes
28 enum NodeType
: unsigned {
29 // Start the numbering where the builtin ops leave off.
30 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
37 /// Double shift instructions. These correspond to
38 /// X86::SHLDxx and X86::SHRDxx instructions.
42 /// Bitwise logical AND of floating point values. This corresponds
43 /// to X86::ANDPS or X86::ANDPD.
46 /// Bitwise logical OR of floating point values. This corresponds
47 /// to X86::ORPS or X86::ORPD.
50 /// Bitwise logical XOR of floating point values. This corresponds
51 /// to X86::XORPS or X86::XORPD.
54 /// Bitwise logical ANDNOT of floating point values. This
55 /// corresponds to X86::ANDNPS or X86::ANDNPD.
58 /// These operations represent an abstract X86 call
59 /// instruction, which includes a bunch of information. In particular the
60 /// operands of these node are:
62 /// #0 - The incoming token chain
64 /// #2 - The number of arg bytes the caller pushes on the stack.
65 /// #3 - The number of arg bytes the callee pops off the stack.
66 /// #4 - The value to pass in AL/AX/EAX (optional)
67 /// #5 - The value to pass in DL/DX/EDX (optional)
69 /// The result values of these nodes are:
71 /// #0 - The outgoing token chain
72 /// #1 - The first register result value (optional)
73 /// #2 - The second register result value (optional)
77 /// Same as call except it adds the NoTrack prefix.
80 /// X86 compare and logical compare instructions.
83 /// X86 bit-test instructions.
86 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
87 /// operand, usually produced by a CMP instruction.
93 // Same as SETCC except it's materialized with a sbb and the value is all
94 // one's or all zero's.
95 SETCC_CARRY
, // R = carry_bit ? ~0 : 0
97 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
98 /// Operands are two FP values to compare; result is a mask of
99 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
102 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
103 /// and a version with SAE.
104 FSETCCM
, FSETCCM_SAE
,
106 /// X86 conditional moves. Operand 0 and operand 1 are the two values
107 /// to select from. Operand 2 is the condition code, and operand 3 is the
108 /// flag operand produced by a CMP or TEST instruction.
111 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
112 /// is the block to branch if condition is true, operand 2 is the
113 /// condition code, and operand 3 is the flag operand produced by a CMP
114 /// or TEST instruction.
117 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
118 /// operand 1 is the target address.
121 /// Return with a flag operand. Operand 0 is the chain operand, operand
122 /// 1 is the number of bytes of stack to pop.
125 /// Return from interrupt. Operand 0 is the number of bytes to pop.
128 /// Repeat fill, corresponds to X86::REP_STOSx.
131 /// Repeat move, corresponds to X86::REP_MOVSx.
134 /// On Darwin, this node represents the result of the popl
135 /// at function entry, used for PIC code.
138 /// A wrapper node for TargetConstantPool, TargetJumpTable,
139 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
140 /// MCSymbol and TargetBlockAddress.
143 /// Special wrapper used under X86-64 PIC mode for RIP
144 /// relative displacements.
147 /// Copies a 64-bit value from the low word of an XMM vector
148 /// to an MMX vector.
151 /// Copies a 32-bit value from the low word of a MMX
155 /// Copies a GPR into the low 32-bit word of a MMX vector
156 /// and zero out the high word.
159 /// Extract an 8-bit value from a vector and zero extend it to
160 /// i32, corresponds to X86::PEXTRB.
163 /// Extract a 16-bit value from a vector and zero extend it to
164 /// i32, corresponds to X86::PEXTRW.
167 /// Insert any element of a 4 x float vector into any element
168 /// of a destination 4 x floatvector.
171 /// Insert the lower 8-bits of a 32-bit value to a vector,
172 /// corresponds to X86::PINSRB.
175 /// Insert the lower 16-bits of a 32-bit value to a vector,
176 /// corresponds to X86::PINSRW.
179 /// Shuffle 16 8-bit values within a vector.
182 /// Compute Sum of Absolute Differences.
184 /// Compute Double Block Packed Sum-Absolute-Differences
187 /// Bitwise Logical AND NOT of Packed FP values.
190 /// Blend where the selector is an immediate.
193 /// Dynamic (non-constant condition) vector blend where only the sign bits
194 /// of the condition elements are used. This is used to enforce that the
195 /// condition mask is not valid for generic VSELECT optimizations. This
196 /// is also used to implement the intrinsics.
197 /// Operands are in VSELECT order: MASK, TRUE, FALSE
200 /// Combined add and sub on an FP vector.
203 // FP vector ops with rounding mode.
204 FADD_RND
, FADDS
, FADDS_RND
,
205 FSUB_RND
, FSUBS
, FSUBS_RND
,
206 FMUL_RND
, FMULS
, FMULS_RND
,
207 FDIV_RND
, FDIVS
, FDIVS_RND
,
210 FSQRT_RND
, FSQRTS
, FSQRTS_RND
,
212 // FP vector get exponent.
213 FGETEXP
, FGETEXP_SAE
, FGETEXPS
, FGETEXPS_SAE
,
214 // Extract Normalized Mantissas.
215 VGETMANT
, VGETMANT_SAE
, VGETMANTS
, VGETMANTS_SAE
,
218 SCALEFS
, SCALEFS_RND
,
220 // Unsigned Integer average.
223 /// Integer horizontal add/sub.
227 /// Floating point horizontal add/sub.
231 // Detect Conflicts Within a Vector
234 /// Floating point max and min.
237 /// Commutative FMIN and FMAX.
240 /// Scalar intrinsic floating point max and min.
243 /// Floating point reciprocal-sqrt and reciprocal approximation.
244 /// Note that these typically require refinement
245 /// in order to obtain suitable precision.
248 // AVX-512 reciprocal approximations with a little more precision.
249 RSQRT14
, RSQRT14S
, RCP14
, RCP14S
,
251 // Thread Local Storage.
254 // Thread Local Storage. A call to get the start address
255 // of the TLS block for the current module.
258 // Thread Local Storage. When calling to an OS provided
259 // thunk at the address from an earlier relocation.
262 // Exception Handling helpers.
265 // SjLj exception handling setjmp.
268 // SjLj exception handling longjmp.
271 // SjLj exception handling dispatch.
272 EH_SJLJ_SETUP_DISPATCH
,
274 /// Tail call return. See X86TargetLowering::LowerCall for
275 /// the list of operands.
278 // Vector move to low scalar and zero higher vector elements.
281 // Vector integer truncate.
283 // Vector integer truncate with unsigned/signed saturation.
286 // Masked version of the above. Used when less than a 128-bit result is
287 // produced since the mask only applies to the lower elements and can't
288 // be represented by a select.
289 // SRC, PASSTHRU, MASK
290 VMTRUNC
, VMTRUNCUS
, VMTRUNCS
,
293 VFPEXT
, VFPEXT_SAE
, VFPEXTS
, VFPEXTS_SAE
,
296 VFPROUND
, VFPROUND_RND
, VFPROUNDS
, VFPROUNDS_RND
,
298 // Masked version of above. Used for v2f64->v4f32.
299 // SRC, PASSTHRU, MASK
302 // 128-bit vector logical left / right shift
305 // Vector shift elements
308 // Vector variable shift
311 // Vector shift elements by immediate
314 // Shifts of mask registers.
317 // Bit rotate by immediate
320 // Vector packed double/float comparison.
323 // Vector integer comparisons.
326 // v8i16 Horizontal minimum and position.
331 /// Vector comparison generating mask bits for fp and
332 /// integer signed and unsigned data types.
334 // Vector comparison with SAE for FP values
337 // Arithmetic operations with FLAGS results.
338 ADD
, SUB
, ADC
, SBB
, SMUL
, UMUL
,
341 // Bit field extract.
344 // Zero High Bits Starting with Specified Bit Position.
347 // X86-specific multiply by immediate.
350 // Vector sign bit extraction.
353 // Vector bitwise comparisons.
356 // Vector packed fp sign bitwise comparisons.
359 // OR/AND test for masks.
366 // Several flavors of instructions with vector shuffle behaviors.
367 // Saturated signed/unnsigned packing.
370 // Intra-lane alignr.
372 // AVX512 inter-lane alignr.
378 // VBMI2 Concat & Shift.
383 //Shuffle Packed Values at 128-bit granularity.
399 // Variable Permute (VPERM).
400 // Res = VPERMV MaskV, V0
403 // 3-op Variable Permute (VPERMT2).
404 // Res = VPERMV3 V0, MaskV, V1
407 // Bitwise ternary logic.
409 // Fix Up Special Packed Float32/64 values.
410 VFIXUPIMM
, VFIXUPIMM_SAE
,
411 VFIXUPIMMS
, VFIXUPIMMS_SAE
,
412 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
413 VRANGE
, VRANGE_SAE
, VRANGES
, VRANGES_SAE
,
414 // Reduce - Perform Reduction Transformation on scalar\packed FP.
415 VREDUCE
, VREDUCE_SAE
, VREDUCES
, VREDUCES_SAE
,
416 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
417 // Also used by the legacy (V)ROUND intrinsics where we mask out the
418 // scaling part of the immediate.
419 VRNDSCALE
, VRNDSCALE_SAE
, VRNDSCALES
, VRNDSCALES_SAE
,
420 // Tests Types Of a FP Values for packed types.
422 // Tests Types Of a FP Values for scalar types.
425 // Broadcast scalar to vector.
427 // Broadcast mask to vector.
429 // Broadcast subvector to vector.
432 /// SSE4A Extraction and Insertion.
435 // XOP arithmetic/logical shifts.
437 // XOP signed/unsigned integer comparisons.
439 // XOP packed permute bytes.
441 // XOP two source permutation.
444 // Vector multiply packed unsigned doubleword integers.
446 // Vector multiply packed signed doubleword integers.
448 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
451 // Multiply and Add Packed Integers.
452 VPMADDUBSW
, VPMADDWD
,
454 // AVX512IFMA multiply and add.
455 // NOTE: These are different than the instruction and perform
457 VPMADD52L
, VPMADD52H
,
466 // We use the target independent ISD::FMA for the non-inverted case.
473 // FMA with rounding mode.
481 // Compress and expand.
488 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
489 SINT_TO_FP_RND
, UINT_TO_FP_RND
,
490 SCALAR_SINT_TO_FP
, SCALAR_UINT_TO_FP
,
491 SCALAR_SINT_TO_FP_RND
, SCALAR_UINT_TO_FP_RND
,
493 // Vector float/double to signed/unsigned integer.
494 CVTP2SI
, CVTP2UI
, CVTP2SI_RND
, CVTP2UI_RND
,
495 // Scalar float/double to signed/unsigned integer.
496 CVTS2SI
, CVTS2UI
, CVTS2SI_RND
, CVTS2UI_RND
,
498 // Vector float/double to signed/unsigned integer with truncation.
499 CVTTP2SI
, CVTTP2UI
, CVTTP2SI_SAE
, CVTTP2UI_SAE
,
500 // Scalar float/double to signed/unsigned integer with truncation.
501 CVTTS2SI
, CVTTS2UI
, CVTTS2SI_SAE
, CVTTS2UI_SAE
,
503 // Vector signed/unsigned integer to float/double.
506 // Masked versions of above. Used for v2f64->v4f32.
507 // SRC, PASSTHRU, MASK
508 MCVTP2SI
, MCVTP2UI
, MCVTTP2SI
, MCVTTP2UI
,
511 // Vector float to bfloat16.
512 // Convert TWO packed single data to one packed BF16 data
514 // Convert packed single data to packed BF16 data
516 // Masked version of above.
517 // SRC, PASSTHRU, MASK
520 // Dot product of BF16 pairs to accumulated into
521 // packed single precision.
524 // Save xmm argument registers to the stack, according to %al. An operator
525 // is needed so that this can be expanded with control flow.
526 VASTART_SAVE_XMM_REGS
,
528 // Windows's _chkstk call to do stack probing.
531 // For allocating variable amounts of stack space when using
532 // segmented stacks. Check if the current stacklet has enough space, and
533 // falls back to heap allocation if not.
540 // Store FP status word into i16 register.
543 // Store contents of %ah into %eflags.
546 // Get a random integer and indicate whether it is valid in CF.
549 // Get a NIST SP800-90B & C compliant random integer and
550 // indicate whether it is valid in CF.
554 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
555 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
559 // SSE42 string comparisons.
560 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
561 // will emit one or two instructions based on which results are used. If
562 // flags and index/mask this allows us to use a single instruction since
563 // we won't have to pick and opcode for flags. Instead we can rely on the
564 // DAG to CSE everything and decide at isel.
568 // Test if in transactional execution.
572 RSQRT28
, RSQRT28_SAE
, RSQRT28S
, RSQRT28S_SAE
,
573 RCP28
, RCP28_SAE
, RCP28S
, RCP28S_SAE
, EXP2
, EXP2_SAE
,
575 // Conversions between float and half-float.
576 CVTPS2PH
, CVTPH2PS
, CVTPH2PS_SAE
,
578 // Masked version of above.
579 // SRC, RND, PASSTHRU, MASK
582 // Galois Field Arithmetic Instructions
583 GF2P8AFFINEINVQB
, GF2P8AFFINEQB
, GF2P8MULB
,
585 // LWP insert record.
591 // Enqueue Stores Instructions
594 // For avx512-vp2intersect
598 LCMPXCHG_DAG
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
601 LCMPXCHG8_SAVE_EBX_DAG
,
602 LCMPXCHG16_SAVE_RBX_DAG
,
604 /// LOCK-prefixed arithmetic read-modify-write instructions.
605 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
606 LADD
, LSUB
, LOR
, LXOR
, LAND
,
608 // Load, scalar_to_vector, and zero extend.
611 // extract_vector_elt, store.
614 // Store FP control world into i16 memory.
617 /// This instruction implements FP_TO_SINT with the
618 /// integer destination in memory and a FP reg source. This corresponds
619 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
620 /// has two inputs (token chain and address) and two outputs (int value
621 /// and token chain). Memory VT specifies the type to store to.
624 /// This instruction implements SINT_TO_FP with the
625 /// integer source in memory and FP reg result. This corresponds to the
626 /// X86::FILD*m instructions. It has two inputs (token chain and address)
627 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
628 /// flag). The integer source type is specified by the memory VT.
632 /// This instruction implements a fp->int store from FP stack
633 /// slots. This corresponds to the fist instruction. It takes a
634 /// chain operand, value to store, address, and glue. The memory VT
635 /// specifies the type to store as.
638 /// This instruction implements an extending load to FP stack slots.
639 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
640 /// operand, and ptr to load from. The memory VT specifies the type to
644 /// This instruction implements a truncating store from FP stack
645 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
646 /// chain operand, value to store, address, and glue. The memory VT
647 /// specifies the type to store as.
650 /// This instruction grabs the address of the next argument
651 /// from a va_list. (reads and modifies the va_list in memory)
654 // Vector truncating store with unsigned/signed saturation
655 VTRUNCSTOREUS
, VTRUNCSTORES
,
656 // Vector truncating masked store with unsigned/signed saturation
657 VMTRUNCSTOREUS
, VMTRUNCSTORES
,
659 // X86 specific gather and scatter
662 // WARNING: Do not add anything in the end unless you want the node to
663 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
664 // opcodes will be thought as target memory ops!
666 } // end namespace X86ISD
668 /// Define some predicates that are used for node matching.
670 /// Returns true if Elt is a constant zero or floating point constant +0.0.
671 bool isZeroNode(SDValue Elt
);
673 /// Returns true of the given offset can be
674 /// fit into displacement field of the instruction.
675 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
676 bool hasSymbolicDisplacement
= true);
678 /// Determines whether the callee is required to pop its
679 /// own arguments. Callee pop is necessary to support tail calls.
680 bool isCalleePop(CallingConv::ID CallingConv
,
681 bool is64Bit
, bool IsVarArg
, bool GuaranteeTCO
);
683 } // end namespace X86
685 //===--------------------------------------------------------------------===//
686 // X86 Implementation of the TargetLowering interface
687 class X86TargetLowering final
: public TargetLowering
{
689 explicit X86TargetLowering(const X86TargetMachine
&TM
,
690 const X86Subtarget
&STI
);
692 unsigned getJumpTableEncoding() const override
;
693 bool useSoftFloat() const override
;
695 void markLibCallAttributes(MachineFunction
*MF
, unsigned CC
,
696 ArgListTy
&Args
) const override
;
698 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT VT
) const override
{
703 LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
704 const MachineBasicBlock
*MBB
, unsigned uid
,
705 MCContext
&Ctx
) const override
;
707 /// Returns relocation base for the given PIC jumptable.
708 SDValue
getPICJumpTableRelocBase(SDValue Table
,
709 SelectionDAG
&DAG
) const override
;
711 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
712 unsigned JTI
, MCContext
&Ctx
) const override
;
714 /// Return the desired alignment for ByVal aggregate
715 /// function arguments in the caller parameter area. For X86, aggregates
716 /// that contains are placed at 16-byte boundaries while the rest are at
717 /// 4-byte boundaries.
718 unsigned getByValTypeAlignment(Type
*Ty
,
719 const DataLayout
&DL
) const override
;
721 /// Returns the target specific optimal type for load
722 /// and store operations as a result of memset, memcpy, and memmove
723 /// lowering. If DstAlign is zero that means it's safe to destination
724 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
725 /// means there isn't a need to check it against alignment requirement,
726 /// probably because the source does not need to be loaded. If 'IsMemset' is
727 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
728 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
729 /// source is constant so it does not need to be loaded.
730 /// It returns EVT::Other if the type should be determined using generic
731 /// target-independent logic.
732 EVT
getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
733 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
734 const AttributeList
&FuncAttributes
) const override
;
736 /// Returns true if it's safe to use load / store of the
737 /// specified type to expand memcpy / memset inline. This is mostly true
738 /// for all types except for some special cases. For example, on X86
739 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
740 /// also does type conversion. Note the specified type doesn't have to be
741 /// legal as the hook is used before type legalization.
742 bool isSafeMemOpType(MVT VT
) const override
;
744 /// Returns true if the target allows unaligned memory accesses of the
745 /// specified type. Returns whether it is "fast" in the last argument.
746 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
, unsigned Align
,
747 MachineMemOperand::Flags Flags
,
748 bool *Fast
) const override
;
750 /// Provide custom lowering hooks for some operations.
752 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
754 /// Places new result values for the node in Results (their number
755 /// and types must exactly match those of the original return values of
756 /// the node), or leaves Results empty, which indicates that the node is not
757 /// to be custom lowered after all.
758 void LowerOperationWrapper(SDNode
*N
,
759 SmallVectorImpl
<SDValue
> &Results
,
760 SelectionDAG
&DAG
) const override
;
762 /// Replace the results of node with an illegal result
763 /// type with new values built out of custom code.
765 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
766 SelectionDAG
&DAG
) const override
;
768 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
770 // Return true if it is profitable to combine a BUILD_VECTOR with a
771 // stride-pattern to a shuffle and a truncate.
772 // Example of such a combine:
773 // v4i32 build_vector((extract_elt V, 1),
774 // (extract_elt V, 3),
775 // (extract_elt V, 5),
776 // (extract_elt V, 7))
778 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
780 bool isDesirableToCombineBuildVectorToShuffleTruncate(
781 ArrayRef
<int> ShuffleMask
, EVT SrcVT
, EVT TruncVT
) const override
;
783 /// Return true if the target has native support for
784 /// the specified value type and it is 'desirable' to use the type for the
785 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
786 /// instruction encodings are longer and some i16 instructions are slow.
787 bool isTypeDesirableForOp(unsigned Opc
, EVT VT
) const override
;
789 /// Return true if the target has native support for the
790 /// specified value type and it is 'desirable' to use the type. e.g. On x86
791 /// i16 is legal, but undesirable since i16 instruction encodings are longer
792 /// and some i16 instructions are slow.
793 bool IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const override
;
796 EmitInstrWithCustomInserter(MachineInstr
&MI
,
797 MachineBasicBlock
*MBB
) const override
;
799 /// This method returns the name of a target specific DAG node.
800 const char *getTargetNodeName(unsigned Opcode
) const override
;
802 /// Do not merge vector stores after legalization because that may conflict
803 /// with x86-specific store splitting optimizations.
804 bool mergeStoresAfterLegalization(EVT MemVT
) const override
{
805 return !MemVT
.isVector();
808 bool canMergeStoresTo(unsigned AddressSpace
, EVT MemVT
,
809 const SelectionDAG
&DAG
) const override
;
811 bool isCheapToSpeculateCttz() const override
;
813 bool isCheapToSpeculateCtlz() const override
;
815 bool isCtlzFast() const override
;
817 bool hasBitPreservingFPLogic(EVT VT
) const override
{
818 return VT
== MVT::f32
|| VT
== MVT::f64
|| VT
.isVector();
821 bool isMultiStoresCheaperThanBitsMerge(EVT LTy
, EVT HTy
) const override
{
822 // If the pair to store is a mixture of float and int values, we will
823 // save two bitwise instructions and one float-to-int instruction and
824 // increase one store instruction. There is potentially a more
825 // significant benefit because it avoids the float->int domain switch
826 // for input value. So It is more likely a win.
827 if ((LTy
.isFloatingPoint() && HTy
.isInteger()) ||
828 (LTy
.isInteger() && HTy
.isFloatingPoint()))
830 // If the pair only contains int values, we will save two bitwise
831 // instructions and increase one store instruction (costing one more
832 // store buffer). Since the benefit is more blurred so we leave
833 // such pair out until we get testcase to prove it is a win.
837 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
839 bool hasAndNotCompare(SDValue Y
) const override
;
841 bool hasAndNot(SDValue Y
) const override
;
843 bool shouldFoldConstantShiftPairToMask(const SDNode
*N
,
844 CombineLevel Level
) const override
;
846 bool shouldFoldMaskToVariableShiftPair(SDValue Y
) const override
;
849 shouldTransformSignedTruncationCheck(EVT XVT
,
850 unsigned KeptBits
) const override
{
851 // For vectors, we don't have a preference..
855 auto VTIsOk
= [](EVT VT
) -> bool {
856 return VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
||
860 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
861 // XVT will be larger than KeptBitsVT.
862 MVT KeptBitsVT
= MVT::getIntegerVT(KeptBits
);
863 return VTIsOk(XVT
) && VTIsOk(KeptBitsVT
);
866 bool shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const override
{
867 if (DAG
.getMachineFunction().getFunction().hasMinSize())
872 bool shouldSplatInsEltVarIndex(EVT VT
) const override
;
874 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
875 return VT
.isScalarInteger();
878 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
879 MVT
hasFastEqualityCompare(unsigned NumBits
) const override
;
881 /// Return the value type to use for ISD::SETCC.
882 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
883 EVT VT
) const override
;
885 bool targetShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
886 TargetLoweringOpt
&TLO
) const override
;
888 /// Determine which of the bits specified in Mask are known to be either
889 /// zero or one and return them in the KnownZero/KnownOne bitsets.
890 void computeKnownBitsForTargetNode(const SDValue Op
,
892 const APInt
&DemandedElts
,
893 const SelectionDAG
&DAG
,
894 unsigned Depth
= 0) const override
;
896 /// Determine the number of bits in the operation that are sign bits.
897 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
898 const APInt
&DemandedElts
,
899 const SelectionDAG
&DAG
,
900 unsigned Depth
) const override
;
902 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op
,
903 const APInt
&DemandedElts
,
906 TargetLoweringOpt
&TLO
,
907 unsigned Depth
) const override
;
909 bool SimplifyDemandedBitsForTargetNode(SDValue Op
,
910 const APInt
&DemandedBits
,
911 const APInt
&DemandedElts
,
913 TargetLoweringOpt
&TLO
,
914 unsigned Depth
) const override
;
916 const Constant
*getTargetConstantFromLoad(LoadSDNode
*LD
) const override
;
918 SDValue
unwrapAddress(SDValue N
) const override
;
920 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
) const;
922 bool ExpandInlineAsm(CallInst
*CI
) const override
;
924 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
926 /// Examine constraint string and operand type and determine a weight value.
927 /// The operand object must already have been set up with the operand type.
929 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
930 const char *constraint
) const override
;
932 const char *LowerXConstraint(EVT ConstraintVT
) const override
;
934 /// Lower the specified operand into the Ops vector. If it is invalid, don't
935 /// add anything to Ops. If hasMemory is true it means one of the asm
936 /// constraint of the inline asm instruction being processed is 'm'.
937 void LowerAsmOperandForConstraint(SDValue Op
,
938 std::string
&Constraint
,
939 std::vector
<SDValue
> &Ops
,
940 SelectionDAG
&DAG
) const override
;
943 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
944 if (ConstraintCode
== "i")
945 return InlineAsm::Constraint_i
;
946 else if (ConstraintCode
== "o")
947 return InlineAsm::Constraint_o
;
948 else if (ConstraintCode
== "v")
949 return InlineAsm::Constraint_v
;
950 else if (ConstraintCode
== "X")
951 return InlineAsm::Constraint_X
;
952 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
955 /// Handle Lowering flag assembly outputs.
956 SDValue
LowerAsmOutputForConstraint(SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
,
957 const AsmOperandInfo
&Constraint
,
958 SelectionDAG
&DAG
) const override
;
960 /// Given a physical register constraint
961 /// (e.g. {edx}), return the register number and the register class for the
962 /// register. This should only be used for C_Register constraints. On
963 /// error, this returns a register number of 0.
964 std::pair
<unsigned, const TargetRegisterClass
*>
965 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
966 StringRef Constraint
, MVT VT
) const override
;
968 /// Return true if the addressing mode represented
969 /// by AM is legal for this target, for a load/store of the specified type.
970 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
971 Type
*Ty
, unsigned AS
,
972 Instruction
*I
= nullptr) const override
;
974 /// Return true if the specified immediate is legal
975 /// icmp immediate, that is the target has icmp instructions which can
976 /// compare a register against the immediate without having to materialize
977 /// the immediate into a register.
978 bool isLegalICmpImmediate(int64_t Imm
) const override
;
980 /// Return true if the specified immediate is legal
981 /// add immediate, that is the target has add instructions which can
982 /// add a register and the immediate without having to materialize
983 /// the immediate into a register.
984 bool isLegalAddImmediate(int64_t Imm
) const override
;
986 bool isLegalStoreImmediate(int64_t Imm
) const override
;
988 /// Return the cost of the scaling factor used in the addressing
989 /// mode represented by AM for this target, for a load/store
990 /// of the specified type.
991 /// If the AM is supported, the return value must be >= 0.
992 /// If the AM is not supported, it returns a negative value.
993 int getScalingFactorCost(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
994 unsigned AS
) const override
;
996 bool isVectorShiftByScalarCheap(Type
*Ty
) const override
;
998 /// Add x86-specific opcodes to the default list.
999 bool isBinOp(unsigned Opcode
) const override
;
1001 /// Returns true if the opcode is a commutative binary operation.
1002 bool isCommutativeBinOp(unsigned Opcode
) const override
;
1004 /// Return true if it's free to truncate a value of
1005 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1006 /// register EAX to i16 by referencing its sub-register AX.
1007 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
1008 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
1010 bool allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const override
;
1012 /// Return true if any actual instruction that defines a
1013 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1014 /// register. This does not necessarily include registers defined in
1015 /// unknown ways, such as incoming arguments, or copies from unknown
1016 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1017 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1018 /// all instructions that define 32-bit values implicit zero-extend the
1019 /// result out to 64 bits.
1020 bool isZExtFree(Type
*Ty1
, Type
*Ty2
) const override
;
1021 bool isZExtFree(EVT VT1
, EVT VT2
) const override
;
1022 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
1024 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1025 /// extend node) is profitable.
1026 bool isVectorLoadExtDesirable(SDValue
) const override
;
1028 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1029 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1030 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1031 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
1033 /// Return true if it's profitable to narrow
1034 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1035 /// from i32 to i8 but not from i32 to i16.
1036 bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const override
;
1038 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1039 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1040 /// true and stores the intrinsic information into the IntrinsicInfo that was
1041 /// passed to the function.
1042 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
, const CallInst
&I
,
1043 MachineFunction
&MF
,
1044 unsigned Intrinsic
) const override
;
1046 /// Returns true if the target can instruction select the
1047 /// specified FP immediate natively. If false, the legalizer will
1048 /// materialize the FP immediate as a load from a constant pool.
1049 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
1050 bool ForCodeSize
) const override
;
1052 /// Targets can use this to indicate that they only support *some*
1053 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1054 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1056 bool isShuffleMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1058 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1059 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1060 /// constant pool entry.
1061 bool isVectorClearMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1063 /// Returns true if lowering to a jump table is allowed.
1064 bool areJTsAllowed(const Function
*Fn
) const override
;
1066 /// If true, then instruction selection should
1067 /// seek to shrink the FP constant of the specified type to a smaller type
1068 /// in order to save space and / or reduce runtime.
1069 bool ShouldShrinkFPConstant(EVT VT
) const override
{
1070 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1071 // expensive than a straight movsd. On the other hand, it's important to
1072 // shrink long double fp constant since fldt is very slow.
1073 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
1076 /// Return true if we believe it is correct and profitable to reduce the
1077 /// load node to a smaller type.
1078 bool shouldReduceLoadWidth(SDNode
*Load
, ISD::LoadExtType ExtTy
,
1079 EVT NewVT
) const override
;
1081 /// Return true if the specified scalar FP type is computed in an SSE
1082 /// register, not on the X87 floating point stack.
1083 bool isScalarFPTypeInSSEReg(EVT VT
) const {
1084 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
1085 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
1088 /// Returns true if it is beneficial to convert a load of a constant
1089 /// to just the constant itself.
1090 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
1091 Type
*Ty
) const override
;
1093 bool reduceSelectOfFPConstantLoads(bool IsFPSetCC
) const override
;
1095 bool convertSelectOfConstantsToMath(EVT VT
) const override
;
1097 bool decomposeMulByConstant(EVT VT
, SDValue C
) const override
;
1099 bool shouldUseStrictFP_TO_INT(EVT FpVT
, EVT IntVT
,
1100 bool IsSigned
) const override
;
1102 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1103 /// with this index.
1104 bool isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
1105 unsigned Index
) const override
;
1107 /// Scalar ops always have equal or better analysis/performance/power than
1108 /// the vector equivalent, so this always makes sense if the scalar op is
1110 bool shouldScalarizeBinop(SDValue
) const override
;
1112 /// Extract of a scalar FP value from index 0 of a vector is free.
1113 bool isExtractVecEltCheap(EVT VT
, unsigned Index
) const override
{
1114 EVT EltVT
= VT
.getScalarType();
1115 return (EltVT
== MVT::f32
|| EltVT
== MVT::f64
) && Index
== 0;
1118 /// Overflow nodes should get combined/lowered to optimal instructions
1119 /// (they should allow eliminating explicit compares by getting flags from
1121 bool shouldFormOverflowOp(unsigned Opcode
, EVT VT
) const override
;
1123 bool storeOfVectorConstantIsCheap(EVT MemVT
, unsigned NumElem
,
1124 unsigned AddrSpace
) const override
{
1125 // If we can replace more than 2 scalar stores, there will be a reduction
1126 // in instructions even after we add a vector constant load.
1130 bool isLoadBitCastBeneficial(EVT LoadVT
, EVT BitcastVT
,
1131 const SelectionDAG
&DAG
,
1132 const MachineMemOperand
&MMO
) const override
;
1134 /// Intel processors have a unified instruction and data cache
1135 const char * getClearCacheBuiltinName() const override
{
1136 return nullptr; // nothing to do, move along.
1139 unsigned getRegisterByName(const char* RegName
, EVT VT
,
1140 SelectionDAG
&DAG
) const override
;
1142 /// If a physical register, this returns the register that receives the
1143 /// exception address on entry to an EH pad.
1145 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
1147 /// If a physical register, this returns the register that receives the
1148 /// exception typeid on entry to a landing pad.
1150 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
1152 virtual bool needsFixedCatchObjects() const override
;
1154 /// This method returns a target specific FastISel object,
1155 /// or null if the target does not support "fast" ISel.
1156 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1157 const TargetLibraryInfo
*libInfo
) const override
;
1159 /// If the target has a standard location for the stack protector cookie,
1160 /// returns the address of that location. Otherwise, returns nullptr.
1161 Value
*getIRStackGuard(IRBuilder
<> &IRB
) const override
;
1163 bool useLoadStackGuardNode() const override
;
1164 bool useStackGuardXorFP() const override
;
1165 void insertSSPDeclarations(Module
&M
) const override
;
1166 Value
*getSDagStackGuard(const Module
&M
) const override
;
1167 Function
*getSSPStackGuardCheck(const Module
&M
) const override
;
1168 SDValue
emitStackGuardXorFP(SelectionDAG
&DAG
, SDValue Val
,
1169 const SDLoc
&DL
) const override
;
1172 /// Return true if the target stores SafeStack pointer at a fixed offset in
1173 /// some non-standard address space, and populates the address space and
1174 /// offset as appropriate.
1175 Value
*getSafeStackPointerLocation(IRBuilder
<> &IRB
) const override
;
1177 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
1178 SelectionDAG
&DAG
) const;
1180 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
;
1182 /// Customize the preferred legalization strategy for certain types.
1183 LegalizeTypeAction
getPreferredVectorAction(MVT VT
) const override
;
1185 MVT
getRegisterTypeForCallingConv(LLVMContext
&Context
, CallingConv::ID CC
,
1186 EVT VT
) const override
;
1188 unsigned getNumRegistersForCallingConv(LLVMContext
&Context
,
1190 EVT VT
) const override
;
1192 bool isIntDivCheap(EVT VT
, AttributeList Attr
) const override
;
1194 bool supportSwiftError() const override
;
1196 StringRef
getStackProbeSymbolName(MachineFunction
&MF
) const override
;
1198 bool hasVectorBlend() const override
{ return true; }
1200 unsigned getMaxSupportedInterleaveFactor() const override
{ return 4; }
1202 /// Lower interleaved load(s) into target specific
1203 /// instructions/intrinsics.
1204 bool lowerInterleavedLoad(LoadInst
*LI
,
1205 ArrayRef
<ShuffleVectorInst
*> Shuffles
,
1206 ArrayRef
<unsigned> Indices
,
1207 unsigned Factor
) const override
;
1209 /// Lower interleaved store(s) into target specific
1210 /// instructions/intrinsics.
1211 bool lowerInterleavedStore(StoreInst
*SI
, ShuffleVectorInst
*SVI
,
1212 unsigned Factor
) const override
;
1214 SDValue
expandIndirectJTBranch(const SDLoc
& dl
, SDValue Value
,
1215 SDValue Addr
, SelectionDAG
&DAG
)
1219 std::pair
<const TargetRegisterClass
*, uint8_t>
1220 findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1221 MVT VT
) const override
;
1224 /// Keep a reference to the X86Subtarget around so that we can
1225 /// make the right decision when generating code for different targets.
1226 const X86Subtarget
&Subtarget
;
1228 /// Select between SSE or x87 floating point ops.
1229 /// When SSE is available, use it for f32 operations.
1230 /// When SSE2 is available, use it for f64 operations.
1231 bool X86ScalarSSEf32
;
1232 bool X86ScalarSSEf64
;
1234 /// A list of legal FP immediates.
1235 std::vector
<APFloat
> LegalFPImmediates
;
1237 /// Indicate that this x86 target can instruction
1238 /// select the specified FP immediate natively.
1239 void addLegalFPImmediate(const APFloat
& Imm
) {
1240 LegalFPImmediates
.push_back(Imm
);
1243 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1244 CallingConv::ID CallConv
, bool isVarArg
,
1245 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1246 const SDLoc
&dl
, SelectionDAG
&DAG
,
1247 SmallVectorImpl
<SDValue
> &InVals
,
1248 uint32_t *RegMask
) const;
1249 SDValue
LowerMemArgument(SDValue Chain
, CallingConv::ID CallConv
,
1250 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
1251 const SDLoc
&dl
, SelectionDAG
&DAG
,
1252 const CCValAssign
&VA
, MachineFrameInfo
&MFI
,
1254 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
1255 const SDLoc
&dl
, SelectionDAG
&DAG
,
1256 const CCValAssign
&VA
,
1257 ISD::ArgFlagsTy Flags
) const;
1259 // Call lowering helpers.
1261 /// Check whether the call is eligible for tail call optimization. Targets
1262 /// that want to do tail call optimization should implement this function.
1263 bool IsEligibleForTailCallOptimization(SDValue Callee
,
1264 CallingConv::ID CalleeCC
,
1266 bool isCalleeStructRet
,
1267 bool isCallerStructRet
,
1269 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1270 const SmallVectorImpl
<SDValue
> &OutVals
,
1271 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1272 SelectionDAG
& DAG
) const;
1273 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
1274 SDValue Chain
, bool IsTailCall
,
1275 bool Is64Bit
, int FPDiff
,
1276 const SDLoc
&dl
) const;
1278 unsigned GetAlignedArgumentStackSize(unsigned StackSize
,
1279 SelectionDAG
&DAG
) const;
1281 unsigned getAddressSpace(void) const;
1283 SDValue
FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool isSigned
) const;
1285 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1286 SDValue
LowerVSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1287 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1288 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1290 unsigned getGlobalWrapperKind(const GlobalValue
*GV
= nullptr,
1291 const unsigned char OpFlags
= 0) const;
1292 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
1293 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1294 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1295 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1296 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const;
1298 /// Creates target global address or external symbol nodes for calls or
1300 SDValue
LowerGlobalOrExternal(SDValue Op
, SelectionDAG
&DAG
,
1301 bool ForCall
) const;
1303 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1304 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1305 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
1306 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const;
1307 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
1308 SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
1309 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1310 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const;
1311 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
1312 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
1313 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
1314 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
1315 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1316 SDValue
LowerADDROFRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1317 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1318 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
1319 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const;
1320 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1321 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1322 SDValue
lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
, SelectionDAG
&DAG
) const;
1323 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1324 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
1325 SDValue
LowerWin64_i128OP(SDValue Op
, SelectionDAG
&DAG
) const;
1326 SDValue
LowerGC_TRANSITION_START(SDValue Op
, SelectionDAG
&DAG
) const;
1327 SDValue
LowerGC_TRANSITION_END(SDValue Op
, SelectionDAG
&DAG
) const;
1328 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
1331 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1332 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1333 const SDLoc
&dl
, SelectionDAG
&DAG
,
1334 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1335 SDValue
LowerCall(CallLoweringInfo
&CLI
,
1336 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1338 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1339 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1340 const SmallVectorImpl
<SDValue
> &OutVals
,
1341 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1343 bool supportSplitCSR(MachineFunction
*MF
) const override
{
1344 return MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
1345 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
1347 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
1348 void insertCopiesSplitCSR(
1349 MachineBasicBlock
*Entry
,
1350 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
1352 bool isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const override
;
1354 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1356 EVT
getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
1357 ISD::NodeType ExtendKind
) const override
;
1359 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1361 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1362 LLVMContext
&Context
) const override
;
1364 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
1366 TargetLoweringBase::AtomicExpansionKind
1367 shouldExpandAtomicLoadInIR(LoadInst
*SI
) const override
;
1368 bool shouldExpandAtomicStoreInIR(StoreInst
*SI
) const override
;
1369 TargetLoweringBase::AtomicExpansionKind
1370 shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const override
;
1373 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst
*AI
) const override
;
1375 bool needsCmpXchgNb(Type
*MemType
) const;
1377 void SetupEntryBlockForSjLj(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
1378 MachineBasicBlock
*DispatchBB
, int FI
) const;
1380 // Utility function to emit the low-level va_arg code for X86-64.
1382 EmitVAARG64WithCustomInserter(MachineInstr
&MI
,
1383 MachineBasicBlock
*MBB
) const;
1385 /// Utility function to emit the xmm reg save portion of va_start.
1387 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr
&BInstr
,
1388 MachineBasicBlock
*BB
) const;
1390 MachineBasicBlock
*EmitLoweredCascadedSelect(MachineInstr
&MI1
,
1392 MachineBasicBlock
*BB
) const;
1394 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
&I
,
1395 MachineBasicBlock
*BB
) const;
1397 MachineBasicBlock
*EmitLoweredAtomicFP(MachineInstr
&I
,
1398 MachineBasicBlock
*BB
) const;
1400 MachineBasicBlock
*EmitLoweredCatchRet(MachineInstr
&MI
,
1401 MachineBasicBlock
*BB
) const;
1403 MachineBasicBlock
*EmitLoweredCatchPad(MachineInstr
&MI
,
1404 MachineBasicBlock
*BB
) const;
1406 MachineBasicBlock
*EmitLoweredSegAlloca(MachineInstr
&MI
,
1407 MachineBasicBlock
*BB
) const;
1409 MachineBasicBlock
*EmitLoweredTLSAddr(MachineInstr
&MI
,
1410 MachineBasicBlock
*BB
) const;
1412 MachineBasicBlock
*EmitLoweredTLSCall(MachineInstr
&MI
,
1413 MachineBasicBlock
*BB
) const;
1415 MachineBasicBlock
*EmitLoweredRetpoline(MachineInstr
&MI
,
1416 MachineBasicBlock
*BB
) const;
1418 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
1419 MachineBasicBlock
*MBB
) const;
1421 void emitSetJmpShadowStackFix(MachineInstr
&MI
,
1422 MachineBasicBlock
*MBB
) const;
1424 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
1425 MachineBasicBlock
*MBB
) const;
1427 MachineBasicBlock
*emitLongJmpShadowStackFix(MachineInstr
&MI
,
1428 MachineBasicBlock
*MBB
) const;
1430 MachineBasicBlock
*emitFMA3Instr(MachineInstr
&MI
,
1431 MachineBasicBlock
*MBB
) const;
1433 MachineBasicBlock
*EmitSjLjDispatchBlock(MachineInstr
&MI
,
1434 MachineBasicBlock
*MBB
) const;
1436 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1437 /// equivalent, for use with the given x86 condition code.
1438 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
, const SDLoc
&dl
,
1439 SelectionDAG
&DAG
) const;
1441 /// Convert a comparison if required by the subtarget.
1442 SDValue
ConvertCmpIfNecessary(SDValue Cmp
, SelectionDAG
&DAG
) const;
1444 /// Emit flags for the given setcc condition and operands. Also returns the
1445 /// corresponding X86 condition code constant in X86CC.
1446 SDValue
emitFlagsForSetcc(SDValue Op0
, SDValue Op1
,
1447 ISD::CondCode CC
, const SDLoc
&dl
,
1449 SDValue
&X86CC
) const;
1451 /// Check if replacement of SQRT with RSQRT should be disabled.
1452 bool isFsqrtCheap(SDValue Operand
, SelectionDAG
&DAG
) const override
;
1454 /// Use rsqrt* to speed up sqrt calculations.
1455 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1456 int &RefinementSteps
, bool &UseOneConstNR
,
1457 bool Reciprocal
) const override
;
1459 /// Use rcp* to speed up fdiv calculations.
1460 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1461 int &RefinementSteps
) const override
;
1463 /// Reassociate floating point divisions into multiply by reciprocal.
1464 unsigned combineRepeatedFPDivisors() const override
;
1468 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1469 const TargetLibraryInfo
*libInfo
);
1470 } // end namespace X86
1472 // Base class for all X86 non-masked store operations.
1473 class X86StoreSDNode
: public MemSDNode
{
1475 X86StoreSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
,
1476 SDVTList VTs
, EVT MemVT
,
1477 MachineMemOperand
*MMO
)
1478 :MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1479 const SDValue
&getValue() const { return getOperand(1); }
1480 const SDValue
&getBasePtr() const { return getOperand(2); }
1482 static bool classof(const SDNode
*N
) {
1483 return N
->getOpcode() == X86ISD::VTRUNCSTORES
||
1484 N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1488 // Base class for all X86 masked store operations.
1489 // The class has the same order of operands as MaskedStoreSDNode for
1491 class X86MaskedStoreSDNode
: public MemSDNode
{
1493 X86MaskedStoreSDNode(unsigned Opcode
, unsigned Order
,
1494 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1495 MachineMemOperand
*MMO
)
1496 : MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1498 const SDValue
&getValue() const { return getOperand(1); }
1499 const SDValue
&getBasePtr() const { return getOperand(2); }
1500 const SDValue
&getMask() const { return getOperand(3); }
1502 static bool classof(const SDNode
*N
) {
1503 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
||
1504 N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1508 // X86 Truncating Store with Signed saturation.
1509 class TruncSStoreSDNode
: public X86StoreSDNode
{
1511 TruncSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1512 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1513 : X86StoreSDNode(X86ISD::VTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1515 static bool classof(const SDNode
*N
) {
1516 return N
->getOpcode() == X86ISD::VTRUNCSTORES
;
1520 // X86 Truncating Store with Unsigned saturation.
1521 class TruncUSStoreSDNode
: public X86StoreSDNode
{
1523 TruncUSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1524 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1525 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1527 static bool classof(const SDNode
*N
) {
1528 return N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1532 // X86 Truncating Masked Store with Signed saturation.
1533 class MaskedTruncSStoreSDNode
: public X86MaskedStoreSDNode
{
1535 MaskedTruncSStoreSDNode(unsigned Order
,
1536 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1537 MachineMemOperand
*MMO
)
1538 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1540 static bool classof(const SDNode
*N
) {
1541 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
;
1545 // X86 Truncating Masked Store with Unsigned saturation.
1546 class MaskedTruncUSStoreSDNode
: public X86MaskedStoreSDNode
{
1548 MaskedTruncUSStoreSDNode(unsigned Order
,
1549 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1550 MachineMemOperand
*MMO
)
1551 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1553 static bool classof(const SDNode
*N
) {
1554 return N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1558 // X86 specific Gather/Scatter nodes.
1559 // The class has the same order of operands as MaskedGatherScatterSDNode for
1561 class X86MaskedGatherScatterSDNode
: public MemSDNode
{
1563 X86MaskedGatherScatterSDNode(unsigned Opc
, unsigned Order
,
1564 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1565 MachineMemOperand
*MMO
)
1566 : MemSDNode(Opc
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1568 const SDValue
&getBasePtr() const { return getOperand(3); }
1569 const SDValue
&getIndex() const { return getOperand(4); }
1570 const SDValue
&getMask() const { return getOperand(2); }
1571 const SDValue
&getScale() const { return getOperand(5); }
1573 static bool classof(const SDNode
*N
) {
1574 return N
->getOpcode() == X86ISD::MGATHER
||
1575 N
->getOpcode() == X86ISD::MSCATTER
;
1579 class X86MaskedGatherSDNode
: public X86MaskedGatherScatterSDNode
{
1581 X86MaskedGatherSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1582 EVT MemVT
, MachineMemOperand
*MMO
)
1583 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER
, Order
, dl
, VTs
, MemVT
,
1586 const SDValue
&getPassThru() const { return getOperand(1); }
1588 static bool classof(const SDNode
*N
) {
1589 return N
->getOpcode() == X86ISD::MGATHER
;
1593 class X86MaskedScatterSDNode
: public X86MaskedGatherScatterSDNode
{
1595 X86MaskedScatterSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1596 EVT MemVT
, MachineMemOperand
*MMO
)
1597 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER
, Order
, dl
, VTs
, MemVT
,
1600 const SDValue
&getValue() const { return getOperand(1); }
1602 static bool classof(const SDNode
*N
) {
1603 return N
->getOpcode() == X86ISD::MSCATTER
;
1607 /// Generate unpacklo/unpackhi shuffle mask.
1608 template <typename T
= int>
1609 void createUnpackShuffleMask(MVT VT
, SmallVectorImpl
<T
> &Mask
, bool Lo
,
1611 assert(Mask
.empty() && "Expected an empty shuffle mask vector");
1612 int NumElts
= VT
.getVectorNumElements();
1613 int NumEltsInLane
= 128 / VT
.getScalarSizeInBits();
1614 for (int i
= 0; i
< NumElts
; ++i
) {
1615 unsigned LaneStart
= (i
/ NumEltsInLane
) * NumEltsInLane
;
1616 int Pos
= (i
% NumEltsInLane
) / 2 + LaneStart
;
1617 Pos
+= (Unary
? 0 : NumElts
* (i
% 2));
1618 Pos
+= (Lo
? 0 : NumEltsInLane
/ 2);
1619 Mask
.push_back(Pos
);
1623 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1624 /// mask index with the scaled sequential indices for an equivalent narrowed
1625 /// mask. This is the reverse process to canWidenShuffleElements, but can
1627 template <typename T
>
1628 void scaleShuffleMask(int Scale
, ArrayRef
<T
> Mask
,
1629 SmallVectorImpl
<T
> &ScaledMask
) {
1630 assert(0 < Scale
&& "Unexpected scaling factor");
1631 size_t NumElts
= Mask
.size();
1632 ScaledMask
.assign(NumElts
* Scale
, -1);
1634 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
1637 // Repeat sentinel values in every mask element.
1639 for (int s
= 0; s
!= Scale
; ++s
)
1640 ScaledMask
[(Scale
* i
) + s
] = M
;
1644 // Scale mask element and increment across each mask element.
1645 for (int s
= 0; s
!= Scale
; ++s
)
1646 ScaledMask
[(Scale
* i
) + s
] = (Scale
* M
) + s
;
1649 } // end namespace llvm
1651 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H