1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains code to lower X86 MachineInstrs to their corresponding
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86InstComments.h"
17 #include "MCTargetDesc/X86TargetStreamer.h"
18 #include "Utils/X86ShuffleDecode.h"
19 #include "X86AsmPrinter.h"
20 #include "X86RegisterInfo.h"
21 #include "X86ShuffleDecodeConstantPool.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/StackMaps.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCCodeEmitter.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCFixup.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCSectionELF.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/MCSymbolELF.h"
45 #include "llvm/Target/TargetLoweringObjectFile.h"
51 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
52 class X86MCInstLower
{
54 const MachineFunction
&MF
;
55 const TargetMachine
&TM
;
57 X86AsmPrinter
&AsmPrinter
;
60 X86MCInstLower(const MachineFunction
&MF
, X86AsmPrinter
&asmprinter
);
62 Optional
<MCOperand
> LowerMachineOperand(const MachineInstr
*MI
,
63 const MachineOperand
&MO
) const;
64 void Lower(const MachineInstr
*MI
, MCInst
&OutMI
) const;
66 MCSymbol
*GetSymbolFromOperand(const MachineOperand
&MO
) const;
67 MCOperand
LowerSymbolOperand(const MachineOperand
&MO
, MCSymbol
*Sym
) const;
70 MachineModuleInfoMachO
&getMachOMMI() const;
73 } // end anonymous namespace
75 // Emit a minimal sequence of nops spanning NumBytes bytes.
76 static void EmitNops(MCStreamer
&OS
, unsigned NumBytes
, bool Is64Bit
,
77 const MCSubtargetInfo
&STI
);
79 void X86AsmPrinter::StackMapShadowTracker::count(MCInst
&Inst
,
80 const MCSubtargetInfo
&STI
,
81 MCCodeEmitter
*CodeEmitter
) {
83 SmallString
<256> Code
;
84 SmallVector
<MCFixup
, 4> Fixups
;
85 raw_svector_ostream
VecOS(Code
);
86 CodeEmitter
->encodeInstruction(Inst
, VecOS
, Fixups
, STI
);
87 CurrentShadowSize
+= Code
.size();
88 if (CurrentShadowSize
>= RequiredShadowSize
)
89 InShadow
= false; // The shadow is big enough. Stop counting.
93 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
94 MCStreamer
&OutStreamer
, const MCSubtargetInfo
&STI
) {
95 if (InShadow
&& CurrentShadowSize
< RequiredShadowSize
) {
97 EmitNops(OutStreamer
, RequiredShadowSize
- CurrentShadowSize
,
98 MF
->getSubtarget
<X86Subtarget
>().is64Bit(), STI
);
102 void X86AsmPrinter::EmitAndCountInstruction(MCInst
&Inst
) {
103 OutStreamer
->EmitInstruction(Inst
, getSubtargetInfo());
104 SMShadowTracker
.count(Inst
, getSubtargetInfo(), CodeEmitter
.get());
107 X86MCInstLower::X86MCInstLower(const MachineFunction
&mf
,
108 X86AsmPrinter
&asmprinter
)
109 : Ctx(mf
.getContext()), MF(mf
), TM(mf
.getTarget()), MAI(*TM
.getMCAsmInfo()),
110 AsmPrinter(asmprinter
) {}
112 MachineModuleInfoMachO
&X86MCInstLower::getMachOMMI() const {
113 return MF
.getMMI().getObjFileInfo
<MachineModuleInfoMachO
>();
116 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
117 /// operand to an MCSymbol.
118 MCSymbol
*X86MCInstLower::GetSymbolFromOperand(const MachineOperand
&MO
) const {
119 const DataLayout
&DL
= MF
.getDataLayout();
120 assert((MO
.isGlobal() || MO
.isSymbol() || MO
.isMBB()) &&
121 "Isn't a symbol reference");
123 MCSymbol
*Sym
= nullptr;
124 SmallString
<128> Name
;
127 switch (MO
.getTargetFlags()) {
128 case X86II::MO_DLLIMPORT
:
129 // Handle dllimport linkage.
132 case X86II::MO_COFFSTUB
:
135 case X86II::MO_DARWIN_NONLAZY
:
136 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
:
137 Suffix
= "$non_lazy_ptr";
142 Name
+= DL
.getPrivateGlobalPrefix();
145 const GlobalValue
*GV
= MO
.getGlobal();
146 AsmPrinter
.getNameWithPrefix(Name
, GV
);
147 } else if (MO
.isSymbol()) {
148 Mangler::getNameWithPrefix(Name
, MO
.getSymbolName(), DL
);
149 } else if (MO
.isMBB()) {
150 assert(Suffix
.empty());
151 Sym
= MO
.getMBB()->getSymbol();
156 Sym
= Ctx
.getOrCreateSymbol(Name
);
158 // If the target flags on the operand changes the name of the symbol, do that
159 // before we return the symbol.
160 switch (MO
.getTargetFlags()) {
163 case X86II::MO_COFFSTUB
: {
164 MachineModuleInfoCOFF
&MMICOFF
=
165 MF
.getMMI().getObjFileInfo
<MachineModuleInfoCOFF
>();
166 MachineModuleInfoImpl::StubValueTy
&StubSym
= MMICOFF
.getGVStubEntry(Sym
);
167 if (!StubSym
.getPointer()) {
168 assert(MO
.isGlobal() && "Extern symbol not handled yet");
169 StubSym
= MachineModuleInfoImpl::StubValueTy(
170 AsmPrinter
.getSymbol(MO
.getGlobal()), true);
174 case X86II::MO_DARWIN_NONLAZY
:
175 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: {
176 MachineModuleInfoImpl::StubValueTy
&StubSym
=
177 getMachOMMI().getGVStubEntry(Sym
);
178 if (!StubSym
.getPointer()) {
179 assert(MO
.isGlobal() && "Extern symbol not handled yet");
180 StubSym
= MachineModuleInfoImpl::StubValueTy(
181 AsmPrinter
.getSymbol(MO
.getGlobal()),
182 !MO
.getGlobal()->hasInternalLinkage());
191 MCOperand
X86MCInstLower::LowerSymbolOperand(const MachineOperand
&MO
,
192 MCSymbol
*Sym
) const {
193 // FIXME: We would like an efficient form for this, so we don't have to do a
194 // lot of extra uniquing.
195 const MCExpr
*Expr
= nullptr;
196 MCSymbolRefExpr::VariantKind RefKind
= MCSymbolRefExpr::VK_None
;
198 switch (MO
.getTargetFlags()) {
200 llvm_unreachable("Unknown target flag on GV operand");
201 case X86II::MO_NO_FLAG
: // No flag.
202 // These affect the name of the symbol, not any suffix.
203 case X86II::MO_DARWIN_NONLAZY
:
204 case X86II::MO_DLLIMPORT
:
205 case X86II::MO_COFFSTUB
:
209 RefKind
= MCSymbolRefExpr::VK_TLVP
;
211 case X86II::MO_TLVP_PIC_BASE
:
212 Expr
= MCSymbolRefExpr::create(Sym
, MCSymbolRefExpr::VK_TLVP
, Ctx
);
213 // Subtract the pic base.
214 Expr
= MCBinaryExpr::createSub(
215 Expr
, MCSymbolRefExpr::create(MF
.getPICBaseSymbol(), Ctx
), Ctx
);
217 case X86II::MO_SECREL
:
218 RefKind
= MCSymbolRefExpr::VK_SECREL
;
220 case X86II::MO_TLSGD
:
221 RefKind
= MCSymbolRefExpr::VK_TLSGD
;
223 case X86II::MO_TLSLD
:
224 RefKind
= MCSymbolRefExpr::VK_TLSLD
;
226 case X86II::MO_TLSLDM
:
227 RefKind
= MCSymbolRefExpr::VK_TLSLDM
;
229 case X86II::MO_GOTTPOFF
:
230 RefKind
= MCSymbolRefExpr::VK_GOTTPOFF
;
232 case X86II::MO_INDNTPOFF
:
233 RefKind
= MCSymbolRefExpr::VK_INDNTPOFF
;
235 case X86II::MO_TPOFF
:
236 RefKind
= MCSymbolRefExpr::VK_TPOFF
;
238 case X86II::MO_DTPOFF
:
239 RefKind
= MCSymbolRefExpr::VK_DTPOFF
;
241 case X86II::MO_NTPOFF
:
242 RefKind
= MCSymbolRefExpr::VK_NTPOFF
;
244 case X86II::MO_GOTNTPOFF
:
245 RefKind
= MCSymbolRefExpr::VK_GOTNTPOFF
;
247 case X86II::MO_GOTPCREL
:
248 RefKind
= MCSymbolRefExpr::VK_GOTPCREL
;
251 RefKind
= MCSymbolRefExpr::VK_GOT
;
253 case X86II::MO_GOTOFF
:
254 RefKind
= MCSymbolRefExpr::VK_GOTOFF
;
257 RefKind
= MCSymbolRefExpr::VK_PLT
;
260 RefKind
= MCSymbolRefExpr::VK_X86_ABS8
;
262 case X86II::MO_PIC_BASE_OFFSET
:
263 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
:
264 Expr
= MCSymbolRefExpr::create(Sym
, Ctx
);
265 // Subtract the pic base.
266 Expr
= MCBinaryExpr::createSub(
267 Expr
, MCSymbolRefExpr::create(MF
.getPICBaseSymbol(), Ctx
), Ctx
);
269 assert(MAI
.doesSetDirectiveSuppressReloc());
270 // If .set directive is supported, use it to reduce the number of
271 // relocations the assembler will generate for differences between
272 // local labels. This is only safe when the symbols are in the same
273 // section so we are restricting it to jumptable references.
274 MCSymbol
*Label
= Ctx
.createTempSymbol();
275 AsmPrinter
.OutStreamer
->EmitAssignment(Label
, Expr
);
276 Expr
= MCSymbolRefExpr::create(Label
, Ctx
);
282 Expr
= MCSymbolRefExpr::create(Sym
, RefKind
, Ctx
);
284 if (!MO
.isJTI() && !MO
.isMBB() && MO
.getOffset())
285 Expr
= MCBinaryExpr::createAdd(
286 Expr
, MCConstantExpr::create(MO
.getOffset(), Ctx
), Ctx
);
287 return MCOperand::createExpr(Expr
);
290 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
291 /// a short fixed-register form.
292 static void SimplifyShortImmForm(MCInst
&Inst
, unsigned Opcode
) {
293 unsigned ImmOp
= Inst
.getNumOperands() - 1;
294 assert(Inst
.getOperand(0).isReg() &&
295 (Inst
.getOperand(ImmOp
).isImm() || Inst
.getOperand(ImmOp
).isExpr()) &&
296 ((Inst
.getNumOperands() == 3 && Inst
.getOperand(1).isReg() &&
297 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg()) ||
298 Inst
.getNumOperands() == 2) &&
299 "Unexpected instruction!");
301 // Check whether the destination register can be fixed.
302 unsigned Reg
= Inst
.getOperand(0).getReg();
303 if (Reg
!= X86::AL
&& Reg
!= X86::AX
&& Reg
!= X86::EAX
&& Reg
!= X86::RAX
)
306 // If so, rewrite the instruction.
307 MCOperand Saved
= Inst
.getOperand(ImmOp
);
309 Inst
.setOpcode(Opcode
);
310 Inst
.addOperand(Saved
);
313 /// If a movsx instruction has a shorter encoding for the used register
314 /// simplify the instruction to use it instead.
315 static void SimplifyMOVSX(MCInst
&Inst
) {
316 unsigned NewOpcode
= 0;
317 unsigned Op0
= Inst
.getOperand(0).getReg(), Op1
= Inst
.getOperand(1).getReg();
318 switch (Inst
.getOpcode()) {
320 llvm_unreachable("Unexpected instruction!");
321 case X86::MOVSX16rr8
: // movsbw %al, %ax --> cbtw
322 if (Op0
== X86::AX
&& Op1
== X86::AL
)
323 NewOpcode
= X86::CBW
;
325 case X86::MOVSX32rr16
: // movswl %ax, %eax --> cwtl
326 if (Op0
== X86::EAX
&& Op1
== X86::AX
)
327 NewOpcode
= X86::CWDE
;
329 case X86::MOVSX64rr32
: // movslq %eax, %rax --> cltq
330 if (Op0
== X86::RAX
&& Op1
== X86::EAX
)
331 NewOpcode
= X86::CDQE
;
335 if (NewOpcode
!= 0) {
337 Inst
.setOpcode(NewOpcode
);
341 /// Simplify things like MOV32rm to MOV32o32a.
342 static void SimplifyShortMoveForm(X86AsmPrinter
&Printer
, MCInst
&Inst
,
344 // Don't make these simplifications in 64-bit mode; other assemblers don't
345 // perform them because they make the code larger.
346 if (Printer
.getSubtarget().is64Bit())
349 bool IsStore
= Inst
.getOperand(0).isReg() && Inst
.getOperand(1).isReg();
350 unsigned AddrBase
= IsStore
;
351 unsigned RegOp
= IsStore
? 0 : 5;
352 unsigned AddrOp
= AddrBase
+ 3;
354 Inst
.getNumOperands() == 6 && Inst
.getOperand(RegOp
).isReg() &&
355 Inst
.getOperand(AddrBase
+ X86::AddrBaseReg
).isReg() &&
356 Inst
.getOperand(AddrBase
+ X86::AddrScaleAmt
).isImm() &&
357 Inst
.getOperand(AddrBase
+ X86::AddrIndexReg
).isReg() &&
358 Inst
.getOperand(AddrBase
+ X86::AddrSegmentReg
).isReg() &&
359 (Inst
.getOperand(AddrOp
).isExpr() || Inst
.getOperand(AddrOp
).isImm()) &&
360 "Unexpected instruction!");
362 // Check whether the destination register can be fixed.
363 unsigned Reg
= Inst
.getOperand(RegOp
).getReg();
364 if (Reg
!= X86::AL
&& Reg
!= X86::AX
&& Reg
!= X86::EAX
&& Reg
!= X86::RAX
)
367 // Check whether this is an absolute address.
368 // FIXME: We know TLVP symbol refs aren't, but there should be a better way
370 bool Absolute
= true;
371 if (Inst
.getOperand(AddrOp
).isExpr()) {
372 const MCExpr
*MCE
= Inst
.getOperand(AddrOp
).getExpr();
373 if (const MCSymbolRefExpr
*SRE
= dyn_cast
<MCSymbolRefExpr
>(MCE
))
374 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLVP
)
379 (Inst
.getOperand(AddrBase
+ X86::AddrBaseReg
).getReg() != 0 ||
380 Inst
.getOperand(AddrBase
+ X86::AddrScaleAmt
).getImm() != 1 ||
381 Inst
.getOperand(AddrBase
+ X86::AddrIndexReg
).getReg() != 0))
384 // If so, rewrite the instruction.
385 MCOperand Saved
= Inst
.getOperand(AddrOp
);
386 MCOperand Seg
= Inst
.getOperand(AddrBase
+ X86::AddrSegmentReg
);
388 Inst
.setOpcode(Opcode
);
389 Inst
.addOperand(Saved
);
390 Inst
.addOperand(Seg
);
393 static unsigned getRetOpcode(const X86Subtarget
&Subtarget
) {
394 return Subtarget
.is64Bit() ? X86::RETQ
: X86::RETL
;
398 X86MCInstLower::LowerMachineOperand(const MachineInstr
*MI
,
399 const MachineOperand
&MO
) const {
400 switch (MO
.getType()) {
403 llvm_unreachable("unknown operand type");
404 case MachineOperand::MO_Register
:
405 // Ignore all implicit register operands.
408 return MCOperand::createReg(MO
.getReg());
409 case MachineOperand::MO_Immediate
:
410 return MCOperand::createImm(MO
.getImm());
411 case MachineOperand::MO_MachineBasicBlock
:
412 case MachineOperand::MO_GlobalAddress
:
413 case MachineOperand::MO_ExternalSymbol
:
414 return LowerSymbolOperand(MO
, GetSymbolFromOperand(MO
));
415 case MachineOperand::MO_MCSymbol
:
416 return LowerSymbolOperand(MO
, MO
.getMCSymbol());
417 case MachineOperand::MO_JumpTableIndex
:
418 return LowerSymbolOperand(MO
, AsmPrinter
.GetJTISymbol(MO
.getIndex()));
419 case MachineOperand::MO_ConstantPoolIndex
:
420 return LowerSymbolOperand(MO
, AsmPrinter
.GetCPISymbol(MO
.getIndex()));
421 case MachineOperand::MO_BlockAddress
:
422 return LowerSymbolOperand(
423 MO
, AsmPrinter
.GetBlockAddressSymbol(MO
.getBlockAddress()));
424 case MachineOperand::MO_RegisterMask
:
425 // Ignore call clobbers.
430 void X86MCInstLower::Lower(const MachineInstr
*MI
, MCInst
&OutMI
) const {
431 OutMI
.setOpcode(MI
->getOpcode());
433 for (const MachineOperand
&MO
: MI
->operands())
434 if (auto MaybeMCOp
= LowerMachineOperand(MI
, MO
))
435 OutMI
.addOperand(MaybeMCOp
.getValue());
437 // Handle a few special cases to eliminate operand modifiers.
438 switch (OutMI
.getOpcode()) {
443 // LEA should have a segment register, but it must be empty.
444 assert(OutMI
.getNumOperands() == 1 + X86::AddrNumOperands
&&
445 "Unexpected # of LEA operands");
446 assert(OutMI
.getOperand(1 + X86::AddrSegmentReg
).getReg() == 0 &&
447 "LEA has segment specified!");
450 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
451 // if one of the registers is extended, but other isn't.
452 case X86::VMOVZPQILo2PQIrr
:
454 case X86::VMOVAPDYrr
:
456 case X86::VMOVAPSYrr
:
458 case X86::VMOVDQAYrr
:
460 case X86::VMOVDQUYrr
:
462 case X86::VMOVUPDYrr
:
464 case X86::VMOVUPSYrr
: {
465 if (!X86II::isX86_64ExtendedReg(OutMI
.getOperand(0).getReg()) &&
466 X86II::isX86_64ExtendedReg(OutMI
.getOperand(1).getReg())) {
468 switch (OutMI
.getOpcode()) {
469 default: llvm_unreachable("Invalid opcode");
470 case X86::VMOVZPQILo2PQIrr
: NewOpc
= X86::VMOVPQI2QIrr
; break;
471 case X86::VMOVAPDrr
: NewOpc
= X86::VMOVAPDrr_REV
; break;
472 case X86::VMOVAPDYrr
: NewOpc
= X86::VMOVAPDYrr_REV
; break;
473 case X86::VMOVAPSrr
: NewOpc
= X86::VMOVAPSrr_REV
; break;
474 case X86::VMOVAPSYrr
: NewOpc
= X86::VMOVAPSYrr_REV
; break;
475 case X86::VMOVDQArr
: NewOpc
= X86::VMOVDQArr_REV
; break;
476 case X86::VMOVDQAYrr
: NewOpc
= X86::VMOVDQAYrr_REV
; break;
477 case X86::VMOVDQUrr
: NewOpc
= X86::VMOVDQUrr_REV
; break;
478 case X86::VMOVDQUYrr
: NewOpc
= X86::VMOVDQUYrr_REV
; break;
479 case X86::VMOVUPDrr
: NewOpc
= X86::VMOVUPDrr_REV
; break;
480 case X86::VMOVUPDYrr
: NewOpc
= X86::VMOVUPDYrr_REV
; break;
481 case X86::VMOVUPSrr
: NewOpc
= X86::VMOVUPSrr_REV
; break;
482 case X86::VMOVUPSYrr
: NewOpc
= X86::VMOVUPSYrr_REV
; break;
484 OutMI
.setOpcode(NewOpc
);
489 case X86::VMOVSSrr
: {
490 if (!X86II::isX86_64ExtendedReg(OutMI
.getOperand(0).getReg()) &&
491 X86II::isX86_64ExtendedReg(OutMI
.getOperand(2).getReg())) {
493 switch (OutMI
.getOpcode()) {
494 default: llvm_unreachable("Invalid opcode");
495 case X86::VMOVSDrr
: NewOpc
= X86::VMOVSDrr_REV
; break;
496 case X86::VMOVSSrr
: NewOpc
= X86::VMOVSSrr_REV
; break;
498 OutMI
.setOpcode(NewOpc
);
503 // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
504 // inputs modeled as normal uses instead of implicit uses. As such, truncate
505 // off all but the first operand (the callee). FIXME: Change isel.
506 case X86::TAILJMPr64
:
507 case X86::TAILJMPr64_REX
:
509 case X86::CALL64pcrel32
: {
510 unsigned Opcode
= OutMI
.getOpcode();
511 MCOperand Saved
= OutMI
.getOperand(0);
513 OutMI
.setOpcode(Opcode
);
514 OutMI
.addOperand(Saved
);
519 case X86::EH_RETURN64
: {
521 OutMI
.setOpcode(getRetOpcode(AsmPrinter
.getSubtarget()));
525 case X86::CLEANUPRET
: {
526 // Replace CLEANUPRET with the appropriate RET.
528 OutMI
.setOpcode(getRetOpcode(AsmPrinter
.getSubtarget()));
532 case X86::CATCHRET
: {
533 // Replace CATCHRET with the appropriate RET.
534 const X86Subtarget
&Subtarget
= AsmPrinter
.getSubtarget();
535 unsigned ReturnReg
= Subtarget
.is64Bit() ? X86::RAX
: X86::EAX
;
537 OutMI
.setOpcode(getRetOpcode(Subtarget
));
538 OutMI
.addOperand(MCOperand::createReg(ReturnReg
));
542 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
547 Opcode
= X86::JMP32r
;
548 goto SetTailJmpOpcode
;
550 case X86::TAILJMPd64
:
552 goto SetTailJmpOpcode
;
555 MCOperand Saved
= OutMI
.getOperand(0);
557 OutMI
.setOpcode(Opcode
);
558 OutMI
.addOperand(Saved
);
562 case X86::TAILJMPd_CC
:
563 case X86::TAILJMPd64_CC
: {
564 MCOperand Saved
= OutMI
.getOperand(0);
565 MCOperand Saved2
= OutMI
.getOperand(1);
567 OutMI
.setOpcode(X86::JCC_1
);
568 OutMI
.addOperand(Saved
);
569 OutMI
.addOperand(Saved2
);
577 // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
578 if (!AsmPrinter
.getSubtarget().is64Bit()) {
580 switch (OutMI
.getOpcode()) {
581 default: llvm_unreachable("Invalid opcode");
582 case X86::DEC16r
: Opcode
= X86::DEC16r_alt
; break;
583 case X86::DEC32r
: Opcode
= X86::DEC32r_alt
; break;
584 case X86::INC16r
: Opcode
= X86::INC16r_alt
; break;
585 case X86::INC32r
: Opcode
= X86::INC32r_alt
; break;
587 OutMI
.setOpcode(Opcode
);
591 // We don't currently select the correct instruction form for instructions
592 // which have a short %eax, etc. form. Handle this by custom lowering, for
595 // Note, we are currently not handling the following instructions:
596 // MOV64ao8, MOV64o8a
597 // XCHG16ar, XCHG32ar, XCHG64ar
598 case X86::MOV8mr_NOREX
:
600 case X86::MOV8rm_NOREX
:
607 switch (OutMI
.getOpcode()) {
608 default: llvm_unreachable("Invalid opcode");
609 case X86::MOV8mr_NOREX
:
610 case X86::MOV8mr
: NewOpc
= X86::MOV8o32a
; break;
611 case X86::MOV8rm_NOREX
:
612 case X86::MOV8rm
: NewOpc
= X86::MOV8ao32
; break;
613 case X86::MOV16mr
: NewOpc
= X86::MOV16o32a
; break;
614 case X86::MOV16rm
: NewOpc
= X86::MOV16ao32
; break;
615 case X86::MOV32mr
: NewOpc
= X86::MOV32o32a
; break;
616 case X86::MOV32rm
: NewOpc
= X86::MOV32ao32
; break;
618 SimplifyShortMoveForm(AsmPrinter
, OutMI
, NewOpc
);
622 case X86::ADC8ri
: case X86::ADC16ri
: case X86::ADC32ri
: case X86::ADC64ri32
:
623 case X86::ADD8ri
: case X86::ADD16ri
: case X86::ADD32ri
: case X86::ADD64ri32
:
624 case X86::AND8ri
: case X86::AND16ri
: case X86::AND32ri
: case X86::AND64ri32
:
625 case X86::CMP8ri
: case X86::CMP16ri
: case X86::CMP32ri
: case X86::CMP64ri32
:
626 case X86::OR8ri
: case X86::OR16ri
: case X86::OR32ri
: case X86::OR64ri32
:
627 case X86::SBB8ri
: case X86::SBB16ri
: case X86::SBB32ri
: case X86::SBB64ri32
:
628 case X86::SUB8ri
: case X86::SUB16ri
: case X86::SUB32ri
: case X86::SUB64ri32
:
629 case X86::TEST8ri
:case X86::TEST16ri
:case X86::TEST32ri
:case X86::TEST64ri32
:
630 case X86::XOR8ri
: case X86::XOR16ri
: case X86::XOR32ri
: case X86::XOR64ri32
: {
632 switch (OutMI
.getOpcode()) {
633 default: llvm_unreachable("Invalid opcode");
634 case X86::ADC8ri
: NewOpc
= X86::ADC8i8
; break;
635 case X86::ADC16ri
: NewOpc
= X86::ADC16i16
; break;
636 case X86::ADC32ri
: NewOpc
= X86::ADC32i32
; break;
637 case X86::ADC64ri32
: NewOpc
= X86::ADC64i32
; break;
638 case X86::ADD8ri
: NewOpc
= X86::ADD8i8
; break;
639 case X86::ADD16ri
: NewOpc
= X86::ADD16i16
; break;
640 case X86::ADD32ri
: NewOpc
= X86::ADD32i32
; break;
641 case X86::ADD64ri32
: NewOpc
= X86::ADD64i32
; break;
642 case X86::AND8ri
: NewOpc
= X86::AND8i8
; break;
643 case X86::AND16ri
: NewOpc
= X86::AND16i16
; break;
644 case X86::AND32ri
: NewOpc
= X86::AND32i32
; break;
645 case X86::AND64ri32
: NewOpc
= X86::AND64i32
; break;
646 case X86::CMP8ri
: NewOpc
= X86::CMP8i8
; break;
647 case X86::CMP16ri
: NewOpc
= X86::CMP16i16
; break;
648 case X86::CMP32ri
: NewOpc
= X86::CMP32i32
; break;
649 case X86::CMP64ri32
: NewOpc
= X86::CMP64i32
; break;
650 case X86::OR8ri
: NewOpc
= X86::OR8i8
; break;
651 case X86::OR16ri
: NewOpc
= X86::OR16i16
; break;
652 case X86::OR32ri
: NewOpc
= X86::OR32i32
; break;
653 case X86::OR64ri32
: NewOpc
= X86::OR64i32
; break;
654 case X86::SBB8ri
: NewOpc
= X86::SBB8i8
; break;
655 case X86::SBB16ri
: NewOpc
= X86::SBB16i16
; break;
656 case X86::SBB32ri
: NewOpc
= X86::SBB32i32
; break;
657 case X86::SBB64ri32
: NewOpc
= X86::SBB64i32
; break;
658 case X86::SUB8ri
: NewOpc
= X86::SUB8i8
; break;
659 case X86::SUB16ri
: NewOpc
= X86::SUB16i16
; break;
660 case X86::SUB32ri
: NewOpc
= X86::SUB32i32
; break;
661 case X86::SUB64ri32
: NewOpc
= X86::SUB64i32
; break;
662 case X86::TEST8ri
: NewOpc
= X86::TEST8i8
; break;
663 case X86::TEST16ri
: NewOpc
= X86::TEST16i16
; break;
664 case X86::TEST32ri
: NewOpc
= X86::TEST32i32
; break;
665 case X86::TEST64ri32
: NewOpc
= X86::TEST64i32
; break;
666 case X86::XOR8ri
: NewOpc
= X86::XOR8i8
; break;
667 case X86::XOR16ri
: NewOpc
= X86::XOR16i16
; break;
668 case X86::XOR32ri
: NewOpc
= X86::XOR32i32
; break;
669 case X86::XOR64ri32
: NewOpc
= X86::XOR64i32
; break;
671 SimplifyShortImmForm(OutMI
, NewOpc
);
675 // Try to shrink some forms of movsx.
676 case X86::MOVSX16rr8
:
677 case X86::MOVSX32rr16
:
678 case X86::MOVSX64rr32
:
679 SimplifyMOVSX(OutMI
);
684 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower
&MCInstLowering
,
685 const MachineInstr
&MI
) {
686 bool Is64Bits
= MI
.getOpcode() == X86::TLS_addr64
||
687 MI
.getOpcode() == X86::TLS_base_addr64
;
688 MCContext
&Ctx
= OutStreamer
->getContext();
690 MCSymbolRefExpr::VariantKind SRVK
;
691 switch (MI
.getOpcode()) {
692 case X86::TLS_addr32
:
693 case X86::TLS_addr64
:
694 SRVK
= MCSymbolRefExpr::VK_TLSGD
;
696 case X86::TLS_base_addr32
:
697 SRVK
= MCSymbolRefExpr::VK_TLSLDM
;
699 case X86::TLS_base_addr64
:
700 SRVK
= MCSymbolRefExpr::VK_TLSLD
;
703 llvm_unreachable("unexpected opcode");
706 const MCSymbolRefExpr
*Sym
= MCSymbolRefExpr::create(
707 MCInstLowering
.GetSymbolFromOperand(MI
.getOperand(3)), SRVK
, Ctx
);
709 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
710 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
711 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
712 // only using GOT when GOTPCRELX is enabled.
713 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
714 bool UseGot
= MMI
->getModule()->getRtLibUseGOT() &&
715 Ctx
.getAsmInfo()->canRelaxRelocations();
718 bool NeedsPadding
= SRVK
== MCSymbolRefExpr::VK_TLSGD
;
720 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX
));
721 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r
)
728 const MCSymbol
*TlsGetAddr
= Ctx
.getOrCreateSymbol("__tls_get_addr");
731 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX
));
732 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX
));
733 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX
));
736 const MCExpr
*Expr
= MCSymbolRefExpr::create(
737 TlsGetAddr
, MCSymbolRefExpr::VK_GOTPCREL
, Ctx
);
738 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m
)
745 EmitAndCountInstruction(
746 MCInstBuilder(X86::CALL64pcrel32
)
747 .addExpr(MCSymbolRefExpr::create(TlsGetAddr
,
748 MCSymbolRefExpr::VK_PLT
, Ctx
)));
751 if (SRVK
== MCSymbolRefExpr::VK_TLSGD
&& !UseGot
) {
752 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r
)
760 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r
)
769 const MCSymbol
*TlsGetAddr
= Ctx
.getOrCreateSymbol("___tls_get_addr");
772 MCSymbolRefExpr::create(TlsGetAddr
, MCSymbolRefExpr::VK_GOT
, Ctx
);
773 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m
)
780 EmitAndCountInstruction(
781 MCInstBuilder(X86::CALLpcrel32
)
782 .addExpr(MCSymbolRefExpr::create(TlsGetAddr
,
783 MCSymbolRefExpr::VK_PLT
, Ctx
)));
788 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
789 /// bytes. Return the size of nop emitted.
790 static unsigned EmitNop(MCStreamer
&OS
, unsigned NumBytes
, bool Is64Bit
,
791 const MCSubtargetInfo
&STI
) {
792 // This works only for 64bit. For 32bit we have to do additional checking if
793 // the CPU supports multi-byte nops.
794 assert(Is64Bit
&& "EmitNops only supports X86-64");
797 unsigned Opc
, BaseReg
, ScaleVal
, IndexReg
, Displacement
, SegmentReg
;
798 IndexReg
= Displacement
= SegmentReg
= 0;
803 llvm_unreachable("Zero nops?");
856 SegmentReg
= X86::CS
;
860 unsigned NumPrefixes
= std::min(NumBytes
- NopSize
, 5U);
861 NopSize
+= NumPrefixes
;
862 for (unsigned i
= 0; i
!= NumPrefixes
; ++i
)
863 OS
.EmitBytes("\x66");
866 default: llvm_unreachable("Unexpected opcode");
868 OS
.EmitInstruction(MCInstBuilder(Opc
), STI
);
871 OS
.EmitInstruction(MCInstBuilder(Opc
).addReg(X86::AX
).addReg(X86::AX
), STI
);
875 OS
.EmitInstruction(MCInstBuilder(Opc
)
879 .addImm(Displacement
)
884 assert(NopSize
<= NumBytes
&& "We overemitted?");
888 /// Emit the optimal amount of multi-byte nops on X86.
889 static void EmitNops(MCStreamer
&OS
, unsigned NumBytes
, bool Is64Bit
,
890 const MCSubtargetInfo
&STI
) {
891 unsigned NopsToEmit
= NumBytes
;
894 NumBytes
-= EmitNop(OS
, NumBytes
, Is64Bit
, STI
);
895 assert(NopsToEmit
>= NumBytes
&& "Emitted more than I asked for!");
899 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr
&MI
,
900 X86MCInstLower
&MCIL
) {
901 assert(Subtarget
->is64Bit() && "Statepoint currently only supports X86-64");
903 StatepointOpers
SOpers(&MI
);
904 if (unsigned PatchBytes
= SOpers
.getNumPatchBytes()) {
905 EmitNops(*OutStreamer
, PatchBytes
, Subtarget
->is64Bit(),
908 // Lower call target and choose correct opcode
909 const MachineOperand
&CallTarget
= SOpers
.getCallTarget();
910 MCOperand CallTargetMCOp
;
912 switch (CallTarget
.getType()) {
913 case MachineOperand::MO_GlobalAddress
:
914 case MachineOperand::MO_ExternalSymbol
:
915 CallTargetMCOp
= MCIL
.LowerSymbolOperand(
916 CallTarget
, MCIL
.GetSymbolFromOperand(CallTarget
));
917 CallOpcode
= X86::CALL64pcrel32
;
918 // Currently, we only support relative addressing with statepoints.
919 // Otherwise, we'll need a scratch register to hold the target
920 // address. You'll fail asserts during load & relocation if this
921 // symbol is to far away. (TODO: support non-relative addressing)
923 case MachineOperand::MO_Immediate
:
924 CallTargetMCOp
= MCOperand::createImm(CallTarget
.getImm());
925 CallOpcode
= X86::CALL64pcrel32
;
926 // Currently, we only support relative addressing with statepoints.
927 // Otherwise, we'll need a scratch register to hold the target
928 // immediate. You'll fail asserts during load & relocation if this
929 // address is to far away. (TODO: support non-relative addressing)
931 case MachineOperand::MO_Register
:
932 // FIXME: Add retpoline support and remove this.
933 if (Subtarget
->useRetpolineIndirectCalls())
934 report_fatal_error("Lowering register statepoints with retpoline not "
936 CallTargetMCOp
= MCOperand::createReg(CallTarget
.getReg());
937 CallOpcode
= X86::CALL64r
;
940 llvm_unreachable("Unsupported operand type in statepoint call target");
946 CallInst
.setOpcode(CallOpcode
);
947 CallInst
.addOperand(CallTargetMCOp
);
948 OutStreamer
->EmitInstruction(CallInst
, getSubtargetInfo());
951 // Record our statepoint node in the same section used by STACKMAP
953 SM
.recordStatepoint(MI
);
956 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr
&FaultingMI
,
957 X86MCInstLower
&MCIL
) {
958 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
959 // <opcode>, <operands>
961 unsigned DefRegister
= FaultingMI
.getOperand(0).getReg();
962 FaultMaps::FaultKind FK
=
963 static_cast<FaultMaps::FaultKind
>(FaultingMI
.getOperand(1).getImm());
964 MCSymbol
*HandlerLabel
= FaultingMI
.getOperand(2).getMBB()->getSymbol();
965 unsigned Opcode
= FaultingMI
.getOperand(3).getImm();
966 unsigned OperandsBeginIdx
= 4;
968 assert(FK
< FaultMaps::FaultKindMax
&& "Invalid Faulting Kind!");
969 FM
.recordFaultingOp(FK
, HandlerLabel
);
972 MI
.setOpcode(Opcode
);
974 if (DefRegister
!= X86::NoRegister
)
975 MI
.addOperand(MCOperand::createReg(DefRegister
));
977 for (auto I
= FaultingMI
.operands_begin() + OperandsBeginIdx
,
978 E
= FaultingMI
.operands_end();
980 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&FaultingMI
, *I
))
981 MI
.addOperand(MaybeOperand
.getValue());
983 OutStreamer
->AddComment("on-fault: " + HandlerLabel
->getName());
984 OutStreamer
->EmitInstruction(MI
, getSubtargetInfo());
987 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr
&MI
,
988 X86MCInstLower
&MCIL
) {
989 bool Is64Bits
= Subtarget
->is64Bit();
990 MCContext
&Ctx
= OutStreamer
->getContext();
991 MCSymbol
*fentry
= Ctx
.getOrCreateSymbol("__fentry__");
992 const MCSymbolRefExpr
*Op
=
993 MCSymbolRefExpr::create(fentry
, MCSymbolRefExpr::VK_None
, Ctx
);
995 EmitAndCountInstruction(
996 MCInstBuilder(Is64Bits
? X86::CALL64pcrel32
: X86::CALLpcrel32
)
1000 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr
&MI
,
1001 X86MCInstLower
&MCIL
) {
1002 // PATCHABLE_OP minsize, opcode, operands
1004 unsigned MinSize
= MI
.getOperand(0).getImm();
1005 unsigned Opcode
= MI
.getOperand(1).getImm();
1008 MCI
.setOpcode(Opcode
);
1009 for (auto &MO
: make_range(MI
.operands_begin() + 2, MI
.operands_end()))
1010 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&MI
, MO
))
1011 MCI
.addOperand(MaybeOperand
.getValue());
1013 SmallString
<256> Code
;
1014 SmallVector
<MCFixup
, 4> Fixups
;
1015 raw_svector_ostream
VecOS(Code
);
1016 CodeEmitter
->encodeInstruction(MCI
, VecOS
, Fixups
, getSubtargetInfo());
1018 if (Code
.size() < MinSize
) {
1019 if (MinSize
== 2 && Opcode
== X86::PUSH64r
) {
1020 // This is an optimization that lets us get away without emitting a nop in
1023 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1024 // bytes too, so the check on MinSize is important.
1025 MCI
.setOpcode(X86::PUSH64rmr
);
1027 unsigned NopSize
= EmitNop(*OutStreamer
, MinSize
, Subtarget
->is64Bit(),
1028 getSubtargetInfo());
1029 assert(NopSize
== MinSize
&& "Could not implement MinSize!");
1034 OutStreamer
->EmitInstruction(MCI
, getSubtargetInfo());
1037 // Lower a stackmap of the form:
1038 // <id>, <shadowBytes>, ...
1039 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr
&MI
) {
1040 SMShadowTracker
.emitShadowPadding(*OutStreamer
, getSubtargetInfo());
1041 SM
.recordStackMap(MI
);
1042 unsigned NumShadowBytes
= MI
.getOperand(1).getImm();
1043 SMShadowTracker
.reset(NumShadowBytes
);
1046 // Lower a patchpoint of the form:
1047 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1048 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr
&MI
,
1049 X86MCInstLower
&MCIL
) {
1050 assert(Subtarget
->is64Bit() && "Patchpoint currently only supports X86-64");
1052 SMShadowTracker
.emitShadowPadding(*OutStreamer
, getSubtargetInfo());
1054 SM
.recordPatchPoint(MI
);
1056 PatchPointOpers
opers(&MI
);
1057 unsigned ScratchIdx
= opers
.getNextScratchIdx();
1058 unsigned EncodedBytes
= 0;
1059 const MachineOperand
&CalleeMO
= opers
.getCallTarget();
1061 // Check for null target. If target is non-null (i.e. is non-zero or is
1062 // symbolic) then emit a call.
1063 if (!(CalleeMO
.isImm() && !CalleeMO
.getImm())) {
1064 MCOperand CalleeMCOp
;
1065 switch (CalleeMO
.getType()) {
1067 /// FIXME: Add a verifier check for bad callee types.
1068 llvm_unreachable("Unrecognized callee operand type.");
1069 case MachineOperand::MO_Immediate
:
1070 if (CalleeMO
.getImm())
1071 CalleeMCOp
= MCOperand::createImm(CalleeMO
.getImm());
1073 case MachineOperand::MO_ExternalSymbol
:
1074 case MachineOperand::MO_GlobalAddress
:
1075 CalleeMCOp
= MCIL
.LowerSymbolOperand(CalleeMO
,
1076 MCIL
.GetSymbolFromOperand(CalleeMO
));
1080 // Emit MOV to materialize the target address and the CALL to target.
1081 // This is encoded with 12-13 bytes, depending on which register is used.
1082 unsigned ScratchReg
= MI
.getOperand(ScratchIdx
).getReg();
1083 if (X86II::isX86_64ExtendedReg(ScratchReg
))
1088 EmitAndCountInstruction(
1089 MCInstBuilder(X86::MOV64ri
).addReg(ScratchReg
).addOperand(CalleeMCOp
));
1090 // FIXME: Add retpoline support and remove this.
1091 if (Subtarget
->useRetpolineIndirectCalls())
1093 "Lowering patchpoint with retpoline not yet implemented.");
1094 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r
).addReg(ScratchReg
));
1098 unsigned NumBytes
= opers
.getNumPatchBytes();
1099 assert(NumBytes
>= EncodedBytes
&&
1100 "Patchpoint can't request size less than the length of a call.");
1102 EmitNops(*OutStreamer
, NumBytes
- EncodedBytes
, Subtarget
->is64Bit(),
1103 getSubtargetInfo());
1106 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr
&MI
,
1107 X86MCInstLower
&MCIL
) {
1108 assert(Subtarget
->is64Bit() && "XRay custom events only supports X86-64");
1110 // We want to emit the following pattern, which follows the x86 calling
1111 // convention to prepare for the trampoline call to be patched in.
1114 // .Lxray_event_sled_N:
1115 // jmp +N // jump across the instrumentation sled
1116 // ... // set up arguments in register
1117 // callq __xray_CustomEvent@plt // force dependency to symbol
1121 // After patching, it would look something like:
1123 // nopw (2-byte nop)
1125 // callq __xrayCustomEvent // already lowered
1129 // First we emit the label and the jump.
1130 auto CurSled
= OutContext
.createTempSymbol("xray_event_sled_", true);
1131 OutStreamer
->AddComment("# XRay Custom Event Log");
1132 OutStreamer
->EmitCodeAlignment(2);
1133 OutStreamer
->EmitLabel(CurSled
);
1135 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1136 // an operand (computed as an offset from the jmp instruction).
1137 // FIXME: Find another less hacky way do force the relative jump.
1138 OutStreamer
->EmitBinaryData("\xeb\x0f");
1140 // The default C calling convention will place two arguments into %rcx and
1141 // %rdx -- so we only work with those.
1142 unsigned DestRegs
[] = {X86::RDI
, X86::RSI
};
1143 bool UsedMask
[] = {false, false};
1144 // Filled out in loop.
1145 unsigned SrcRegs
[] = {0, 0};
1147 // Then we put the operands in the %rdi and %rsi registers. We spill the
1148 // values in the register before we clobber them, and mark them as used in
1149 // UsedMask. In case the arguments are already in the correct register, we use
1150 // emit nops appropriately sized to keep the sled the same size in every
1152 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1153 if (auto Op
= MCIL
.LowerMachineOperand(&MI
, MI
.getOperand(I
))) {
1154 assert(Op
->isReg() && "Only support arguments in registers");
1155 SrcRegs
[I
] = Op
->getReg();
1156 if (SrcRegs
[I
] != DestRegs
[I
]) {
1158 EmitAndCountInstruction(
1159 MCInstBuilder(X86::PUSH64r
).addReg(DestRegs
[I
]));
1161 EmitNops(*OutStreamer
, 4, Subtarget
->is64Bit(), getSubtargetInfo());
1165 // Now that the register values are stashed, mov arguments into place.
1166 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1167 if (SrcRegs
[I
] != DestRegs
[I
])
1168 EmitAndCountInstruction(
1169 MCInstBuilder(X86::MOV64rr
).addReg(DestRegs
[I
]).addReg(SrcRegs
[I
]));
1171 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1172 // name of the trampoline to be implemented by the XRay runtime.
1173 auto TSym
= OutContext
.getOrCreateSymbol("__xray_CustomEvent");
1174 MachineOperand TOp
= MachineOperand::CreateMCSymbol(TSym
);
1175 if (isPositionIndependent())
1176 TOp
.setTargetFlags(X86II::MO_PLT
);
1178 // Emit the call instruction.
1179 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32
)
1180 .addOperand(MCIL
.LowerSymbolOperand(TOp
, TSym
)));
1182 // Restore caller-saved and used registers.
1183 for (unsigned I
= sizeof UsedMask
; I
-- > 0;)
1185 EmitAndCountInstruction(MCInstBuilder(X86::POP64r
).addReg(DestRegs
[I
]));
1187 EmitNops(*OutStreamer
, 1, Subtarget
->is64Bit(), getSubtargetInfo());
1189 OutStreamer
->AddComment("xray custom event end.");
1191 // Record the sled version. Older versions of this sled were spelled
1192 // differently, so we let the runtime handle the different offsets we're
1194 recordSled(CurSled
, MI
, SledKind::CUSTOM_EVENT
, 1);
1197 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr
&MI
,
1198 X86MCInstLower
&MCIL
) {
1199 assert(Subtarget
->is64Bit() && "XRay typed events only supports X86-64");
1201 // We want to emit the following pattern, which follows the x86 calling
1202 // convention to prepare for the trampoline call to be patched in.
1205 // .Lxray_event_sled_N:
1206 // jmp +N // jump across the instrumentation sled
1207 // ... // set up arguments in register
1208 // callq __xray_TypedEvent@plt // force dependency to symbol
1212 // After patching, it would look something like:
1214 // nopw (2-byte nop)
1216 // callq __xrayTypedEvent // already lowered
1220 // First we emit the label and the jump.
1221 auto CurSled
= OutContext
.createTempSymbol("xray_typed_event_sled_", true);
1222 OutStreamer
->AddComment("# XRay Typed Event Log");
1223 OutStreamer
->EmitCodeAlignment(2);
1224 OutStreamer
->EmitLabel(CurSled
);
1226 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1227 // an operand (computed as an offset from the jmp instruction).
1228 // FIXME: Find another less hacky way do force the relative jump.
1229 OutStreamer
->EmitBinaryData("\xeb\x14");
1231 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1232 // so we'll work with those. Or we may be called via SystemV, in which case
1233 // we don't have to do any translation.
1234 unsigned DestRegs
[] = {X86::RDI
, X86::RSI
, X86::RDX
};
1235 bool UsedMask
[] = {false, false, false};
1237 // Will fill out src regs in the loop.
1238 unsigned SrcRegs
[] = {0, 0, 0};
1240 // Then we put the operands in the SystemV registers. We spill the values in
1241 // the registers before we clobber them, and mark them as used in UsedMask.
1242 // In case the arguments are already in the correct register, we emit nops
1243 // appropriately sized to keep the sled the same size in every situation.
1244 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1245 if (auto Op
= MCIL
.LowerMachineOperand(&MI
, MI
.getOperand(I
))) {
1246 // TODO: Is register only support adequate?
1247 assert(Op
->isReg() && "Only supports arguments in registers");
1248 SrcRegs
[I
] = Op
->getReg();
1249 if (SrcRegs
[I
] != DestRegs
[I
]) {
1251 EmitAndCountInstruction(
1252 MCInstBuilder(X86::PUSH64r
).addReg(DestRegs
[I
]));
1254 EmitNops(*OutStreamer
, 4, Subtarget
->is64Bit(), getSubtargetInfo());
1258 // In the above loop we only stash all of the destination registers or emit
1259 // nops if the arguments are already in the right place. Doing the actually
1260 // moving is postponed until after all the registers are stashed so nothing
1261 // is clobbers. We've already added nops to account for the size of mov and
1262 // push if the register is in the right place, so we only have to worry about
1264 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1266 EmitAndCountInstruction(
1267 MCInstBuilder(X86::MOV64rr
).addReg(DestRegs
[I
]).addReg(SrcRegs
[I
]));
1269 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1270 // name of the trampoline to be implemented by the XRay runtime.
1271 auto TSym
= OutContext
.getOrCreateSymbol("__xray_TypedEvent");
1272 MachineOperand TOp
= MachineOperand::CreateMCSymbol(TSym
);
1273 if (isPositionIndependent())
1274 TOp
.setTargetFlags(X86II::MO_PLT
);
1276 // Emit the call instruction.
1277 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32
)
1278 .addOperand(MCIL
.LowerSymbolOperand(TOp
, TSym
)));
1280 // Restore caller-saved and used registers.
1281 for (unsigned I
= sizeof UsedMask
; I
-- > 0;)
1283 EmitAndCountInstruction(MCInstBuilder(X86::POP64r
).addReg(DestRegs
[I
]));
1285 EmitNops(*OutStreamer
, 1, Subtarget
->is64Bit(), getSubtargetInfo());
1287 OutStreamer
->AddComment("xray typed event end.");
1289 // Record the sled version.
1290 recordSled(CurSled
, MI
, SledKind::TYPED_EVENT
, 0);
1293 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr
&MI
,
1294 X86MCInstLower
&MCIL
) {
1295 // We want to emit the following pattern:
1300 // # 9 bytes worth of noops
1302 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1303 // bytes with the following pattern:
1305 // mov %r10, <function id, 32-bit> // 6 bytes
1306 // call <relative offset, 32-bits> // 5 bytes
1308 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1309 OutStreamer
->EmitCodeAlignment(2);
1310 OutStreamer
->EmitLabel(CurSled
);
1312 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1313 // an operand (computed as an offset from the jmp instruction).
1314 // FIXME: Find another less hacky way do force the relative jump.
1315 OutStreamer
->EmitBytes("\xeb\x09");
1316 EmitNops(*OutStreamer
, 9, Subtarget
->is64Bit(), getSubtargetInfo());
1317 recordSled(CurSled
, MI
, SledKind::FUNCTION_ENTER
);
1320 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr
&MI
,
1321 X86MCInstLower
&MCIL
) {
1322 // Since PATCHABLE_RET takes the opcode of the return statement as an
1323 // argument, we use that to emit the correct form of the RET that we want.
1324 // i.e. when we see this:
1326 // PATCHABLE_RET X86::RET ...
1328 // We should emit the RET followed by sleds.
1332 // ret # or equivalent instruction
1333 // # 10 bytes worth of noops
1335 // This just makes sure that the alignment for the next instruction is 2.
1336 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1337 OutStreamer
->EmitCodeAlignment(2);
1338 OutStreamer
->EmitLabel(CurSled
);
1339 unsigned OpCode
= MI
.getOperand(0).getImm();
1341 Ret
.setOpcode(OpCode
);
1342 for (auto &MO
: make_range(MI
.operands_begin() + 1, MI
.operands_end()))
1343 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&MI
, MO
))
1344 Ret
.addOperand(MaybeOperand
.getValue());
1345 OutStreamer
->EmitInstruction(Ret
, getSubtargetInfo());
1346 EmitNops(*OutStreamer
, 10, Subtarget
->is64Bit(), getSubtargetInfo());
1347 recordSled(CurSled
, MI
, SledKind::FUNCTION_EXIT
);
1350 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr
&MI
,
1351 X86MCInstLower
&MCIL
) {
1352 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1353 // instruction so we lower that particular instruction and its operands.
1354 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1355 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1356 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1357 // tail call much like how we have it in PATCHABLE_RET.
1358 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1359 OutStreamer
->EmitCodeAlignment(2);
1360 OutStreamer
->EmitLabel(CurSled
);
1361 auto Target
= OutContext
.createTempSymbol();
1363 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1364 // an operand (computed as an offset from the jmp instruction).
1365 // FIXME: Find another less hacky way do force the relative jump.
1366 OutStreamer
->EmitBytes("\xeb\x09");
1367 EmitNops(*OutStreamer
, 9, Subtarget
->is64Bit(), getSubtargetInfo());
1368 OutStreamer
->EmitLabel(Target
);
1369 recordSled(CurSled
, MI
, SledKind::TAIL_CALL
);
1371 unsigned OpCode
= MI
.getOperand(0).getImm();
1373 TC
.setOpcode(OpCode
);
1375 // Before emitting the instruction, add a comment to indicate that this is
1376 // indeed a tail call.
1377 OutStreamer
->AddComment("TAILCALL");
1378 for (auto &MO
: make_range(MI
.operands_begin() + 1, MI
.operands_end()))
1379 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&MI
, MO
))
1380 TC
.addOperand(MaybeOperand
.getValue());
1381 OutStreamer
->EmitInstruction(TC
, getSubtargetInfo());
1384 // Returns instruction preceding MBBI in MachineFunction.
1385 // If MBBI is the first instruction of the first basic block, returns null.
1386 static MachineBasicBlock::const_iterator
1387 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI
) {
1388 const MachineBasicBlock
*MBB
= MBBI
->getParent();
1389 while (MBBI
== MBB
->begin()) {
1390 if (MBB
== &MBB
->getParent()->front())
1391 return MachineBasicBlock::const_iterator();
1392 MBB
= MBB
->getPrevNode();
1399 static const Constant
*getConstantFromPool(const MachineInstr
&MI
,
1400 const MachineOperand
&Op
) {
1401 if (!Op
.isCPI() || Op
.getOffset() != 0)
1404 ArrayRef
<MachineConstantPoolEntry
> Constants
=
1405 MI
.getParent()->getParent()->getConstantPool()->getConstants();
1406 const MachineConstantPoolEntry
&ConstantEntry
= Constants
[Op
.getIndex()];
1408 // Bail if this is a machine constant pool entry, we won't be able to dig out
1410 if (ConstantEntry
.isMachineConstantPoolEntry())
1413 const Constant
*C
= ConstantEntry
.Val
.ConstVal
;
1414 assert((!C
|| ConstantEntry
.getType() == C
->getType()) &&
1415 "Expected a constant of the same type!");
1419 static std::string
getShuffleComment(const MachineInstr
*MI
, unsigned SrcOp1Idx
,
1420 unsigned SrcOp2Idx
, ArrayRef
<int> Mask
) {
1421 std::string Comment
;
1423 // Compute the name for a register. This is really goofy because we have
1424 // multiple instruction printers that could (in theory) use different
1425 // names. Fortunately most people use the ATT style (outside of Windows)
1426 // and they actually agree on register naming here. Ultimately, this is
1427 // a comment, and so its OK if it isn't perfect.
1428 auto GetRegisterName
= [](unsigned RegNum
) -> StringRef
{
1429 return X86ATTInstPrinter::getRegisterName(RegNum
);
1432 const MachineOperand
&DstOp
= MI
->getOperand(0);
1433 const MachineOperand
&SrcOp1
= MI
->getOperand(SrcOp1Idx
);
1434 const MachineOperand
&SrcOp2
= MI
->getOperand(SrcOp2Idx
);
1436 StringRef DstName
= DstOp
.isReg() ? GetRegisterName(DstOp
.getReg()) : "mem";
1437 StringRef Src1Name
=
1438 SrcOp1
.isReg() ? GetRegisterName(SrcOp1
.getReg()) : "mem";
1439 StringRef Src2Name
=
1440 SrcOp2
.isReg() ? GetRegisterName(SrcOp2
.getReg()) : "mem";
1442 // One source operand, fix the mask to print all elements in one span.
1443 SmallVector
<int, 8> ShuffleMask(Mask
.begin(), Mask
.end());
1444 if (Src1Name
== Src2Name
)
1445 for (int i
= 0, e
= ShuffleMask
.size(); i
!= e
; ++i
)
1446 if (ShuffleMask
[i
] >= e
)
1447 ShuffleMask
[i
] -= e
;
1449 raw_string_ostream
CS(Comment
);
1452 // Handle AVX512 MASK/MASXZ write mask comments.
1454 // MASKZ: zmmX {%kY} {z}
1455 if (SrcOp1Idx
> 1) {
1456 assert((SrcOp1Idx
== 2 || SrcOp1Idx
== 3) && "Unexpected writemask");
1458 const MachineOperand
&WriteMaskOp
= MI
->getOperand(SrcOp1Idx
- 1);
1459 if (WriteMaskOp
.isReg()) {
1460 CS
<< " {%" << GetRegisterName(WriteMaskOp
.getReg()) << "}";
1462 if (SrcOp1Idx
== 2) {
1470 for (int i
= 0, e
= ShuffleMask
.size(); i
!= e
; ++i
) {
1473 if (ShuffleMask
[i
] == SM_SentinelZero
) {
1478 // Otherwise, it must come from src1 or src2. Print the span of elements
1479 // that comes from this src.
1480 bool isSrc1
= ShuffleMask
[i
] < (int)e
;
1481 CS
<< (isSrc1
? Src1Name
: Src2Name
) << '[';
1483 bool IsFirst
= true;
1484 while (i
!= e
&& ShuffleMask
[i
] != SM_SentinelZero
&&
1485 (ShuffleMask
[i
] < (int)e
) == isSrc1
) {
1490 if (ShuffleMask
[i
] == SM_SentinelUndef
)
1493 CS
<< ShuffleMask
[i
] % (int)e
;
1497 --i
; // For loop increments element #.
1504 static void printConstant(const APInt
&Val
, raw_ostream
&CS
) {
1505 if (Val
.getBitWidth() <= 64) {
1506 CS
<< Val
.getZExtValue();
1508 // print multi-word constant as (w0,w1)
1510 for (int i
= 0, N
= Val
.getNumWords(); i
< N
; ++i
) {
1513 CS
<< Val
.getRawData()[i
];
1519 static void printConstant(const APFloat
&Flt
, raw_ostream
&CS
) {
1520 SmallString
<32> Str
;
1521 // Force scientific notation to distinquish from integers.
1522 Flt
.toString(Str
, 0, 0);
1526 static void printConstant(const Constant
*COp
, raw_ostream
&CS
) {
1527 if (isa
<UndefValue
>(COp
)) {
1529 } else if (auto *CI
= dyn_cast
<ConstantInt
>(COp
)) {
1530 printConstant(CI
->getValue(), CS
);
1531 } else if (auto *CF
= dyn_cast
<ConstantFP
>(COp
)) {
1532 printConstant(CF
->getValueAPF(), CS
);
1538 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr
*MI
) {
1539 assert(MF
->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1540 assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1541 const X86RegisterInfo
*RI
=
1542 MF
->getSubtarget
<X86Subtarget
>().getRegisterInfo();
1544 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1546 X86TargetStreamer
*XTS
=
1547 static_cast<X86TargetStreamer
*>(OutStreamer
->getTargetStreamer());
1548 switch (MI
->getOpcode()) {
1549 case X86::SEH_PushReg
:
1550 XTS
->emitFPOPushReg(MI
->getOperand(0).getImm());
1552 case X86::SEH_StackAlloc
:
1553 XTS
->emitFPOStackAlloc(MI
->getOperand(0).getImm());
1555 case X86::SEH_StackAlign
:
1556 XTS
->emitFPOStackAlign(MI
->getOperand(0).getImm());
1558 case X86::SEH_SetFrame
:
1559 assert(MI
->getOperand(1).getImm() == 0 &&
1560 ".cv_fpo_setframe takes no offset");
1561 XTS
->emitFPOSetFrame(MI
->getOperand(0).getImm());
1563 case X86::SEH_EndPrologue
:
1564 XTS
->emitFPOEndPrologue();
1566 case X86::SEH_SaveReg
:
1567 case X86::SEH_SaveXMM
:
1568 case X86::SEH_PushFrame
:
1569 llvm_unreachable("SEH_ directive incompatible with FPO");
1572 llvm_unreachable("expected SEH_ instruction");
1577 // Otherwise, use the .seh_ directives for all other Windows platforms.
1578 switch (MI
->getOpcode()) {
1579 case X86::SEH_PushReg
:
1580 OutStreamer
->EmitWinCFIPushReg(
1581 RI
->getSEHRegNum(MI
->getOperand(0).getImm()));
1584 case X86::SEH_SaveReg
:
1585 OutStreamer
->EmitWinCFISaveReg(RI
->getSEHRegNum(MI
->getOperand(0).getImm()),
1586 MI
->getOperand(1).getImm());
1589 case X86::SEH_SaveXMM
:
1590 OutStreamer
->EmitWinCFISaveXMM(RI
->getSEHRegNum(MI
->getOperand(0).getImm()),
1591 MI
->getOperand(1).getImm());
1594 case X86::SEH_StackAlloc
:
1595 OutStreamer
->EmitWinCFIAllocStack(MI
->getOperand(0).getImm());
1598 case X86::SEH_SetFrame
:
1599 OutStreamer
->EmitWinCFISetFrame(
1600 RI
->getSEHRegNum(MI
->getOperand(0).getImm()),
1601 MI
->getOperand(1).getImm());
1604 case X86::SEH_PushFrame
:
1605 OutStreamer
->EmitWinCFIPushFrame(MI
->getOperand(0).getImm());
1608 case X86::SEH_EndPrologue
:
1609 OutStreamer
->EmitWinCFIEndProlog();
1613 llvm_unreachable("expected SEH_ instruction");
1617 static unsigned getRegisterWidth(const MCOperandInfo
&Info
) {
1618 if (Info
.RegClass
== X86::VR128RegClassID
||
1619 Info
.RegClass
== X86::VR128XRegClassID
)
1621 if (Info
.RegClass
== X86::VR256RegClassID
||
1622 Info
.RegClass
== X86::VR256XRegClassID
)
1624 if (Info
.RegClass
== X86::VR512RegClassID
)
1626 llvm_unreachable("Unknown register class!");
1629 void X86AsmPrinter::EmitInstruction(const MachineInstr
*MI
) {
1630 X86MCInstLower
MCInstLowering(*MF
, *this);
1631 const X86RegisterInfo
*RI
=
1632 MF
->getSubtarget
<X86Subtarget
>().getRegisterInfo();
1634 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
1635 // are compressed from EVEX encoding to VEX encoding.
1636 if (TM
.Options
.MCOptions
.ShowMCEncoding
) {
1637 if (MI
->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX
)
1638 OutStreamer
->AddComment("EVEX TO VEX Compression ", false);
1641 switch (MI
->getOpcode()) {
1642 case TargetOpcode::DBG_VALUE
:
1643 llvm_unreachable("Should be handled target independently");
1645 // Emit nothing here but a comment if we can.
1646 case X86::Int_MemBarrier
:
1647 OutStreamer
->emitRawComment("MEMBARRIER");
1650 case X86::EH_RETURN
:
1651 case X86::EH_RETURN64
: {
1652 // Lower these as normal, but add some comments.
1653 unsigned Reg
= MI
->getOperand(0).getReg();
1654 OutStreamer
->AddComment(StringRef("eh_return, addr: %") +
1655 X86ATTInstPrinter::getRegisterName(Reg
));
1658 case X86::CLEANUPRET
: {
1659 // Lower these as normal, but add some comments.
1660 OutStreamer
->AddComment("CLEANUPRET");
1664 case X86::CATCHRET
: {
1665 // Lower these as normal, but add some comments.
1666 OutStreamer
->AddComment("CATCHRET");
1673 case X86::TAILJMPd_CC
:
1674 case X86::TAILJMPr64
:
1675 case X86::TAILJMPm64
:
1676 case X86::TAILJMPd64
:
1677 case X86::TAILJMPd64_CC
:
1678 case X86::TAILJMPr64_REX
:
1679 case X86::TAILJMPm64_REX
:
1680 // Lower these as normal, but add some comments.
1681 OutStreamer
->AddComment("TAILCALL");
1684 case X86::TLS_addr32
:
1685 case X86::TLS_addr64
:
1686 case X86::TLS_base_addr32
:
1687 case X86::TLS_base_addr64
:
1688 return LowerTlsAddr(MCInstLowering
, *MI
);
1690 // Loading/storing mask pairs requires two kmov operations. The second one of these
1691 // needs a 2 byte displacement relative to the specified address (with 32 bit spill
1692 // size). The pairs of 1bit masks up to 16 bit masks all use the same spill size,
1693 // they all are stored using MASKPAIR16STORE, loaded using MASKPAIR16LOAD.
1695 // The displacement value might wrap around in theory, thus the asserts in both
1697 case X86::MASKPAIR16LOAD
: {
1698 int64_t Disp
= MI
->getOperand(1 + X86::AddrDisp
).getImm();
1699 assert(Disp
>= 0 && Disp
<= INT32_MAX
- 2 && "Unexpected displacement");
1700 const X86RegisterInfo
*RI
=
1701 MF
->getSubtarget
<X86Subtarget
>().getRegisterInfo();
1702 unsigned Reg
= MI
->getOperand(0).getReg();
1703 unsigned Reg0
= RI
->getSubReg(Reg
, X86::sub_mask_0
);
1704 unsigned Reg1
= RI
->getSubReg(Reg
, X86::sub_mask_1
);
1706 // Load the first mask register
1707 MCInstBuilder MIB
= MCInstBuilder(X86::KMOVWkm
);
1709 for (int i
= 0; i
< X86::AddrNumOperands
; ++i
) {
1710 auto Op
= MCInstLowering
.LowerMachineOperand(MI
, MI
->getOperand(1 + i
));
1711 MIB
.addOperand(Op
.getValue());
1713 EmitAndCountInstruction(MIB
);
1715 // Load the second mask register of the pair
1716 MIB
= MCInstBuilder(X86::KMOVWkm
);
1718 for (int i
= 0; i
< X86::AddrNumOperands
; ++i
) {
1719 if (i
== X86::AddrDisp
) {
1720 MIB
.addImm(Disp
+ 2);
1722 auto Op
= MCInstLowering
.LowerMachineOperand(MI
, MI
->getOperand(1 + i
));
1723 MIB
.addOperand(Op
.getValue());
1726 EmitAndCountInstruction(MIB
);
1730 case X86::MASKPAIR16STORE
: {
1731 int64_t Disp
= MI
->getOperand(X86::AddrDisp
).getImm();
1732 assert(Disp
>= 0 && Disp
<= INT32_MAX
- 2 && "Unexpected displacement");
1733 const X86RegisterInfo
*RI
=
1734 MF
->getSubtarget
<X86Subtarget
>().getRegisterInfo();
1735 unsigned Reg
= MI
->getOperand(X86::AddrNumOperands
).getReg();
1736 unsigned Reg0
= RI
->getSubReg(Reg
, X86::sub_mask_0
);
1737 unsigned Reg1
= RI
->getSubReg(Reg
, X86::sub_mask_1
);
1739 // Store the first mask register
1740 MCInstBuilder MIB
= MCInstBuilder(X86::KMOVWmk
);
1741 for (int i
= 0; i
< X86::AddrNumOperands
; ++i
)
1742 MIB
.addOperand(MCInstLowering
.LowerMachineOperand(MI
, MI
->getOperand(i
)).getValue());
1744 EmitAndCountInstruction(MIB
);
1746 // Store the second mask register of the pair
1747 MIB
= MCInstBuilder(X86::KMOVWmk
);
1748 for (int i
= 0; i
< X86::AddrNumOperands
; ++i
) {
1749 if (i
== X86::AddrDisp
) {
1750 MIB
.addImm(Disp
+ 2);
1752 auto Op
= MCInstLowering
.LowerMachineOperand(MI
, MI
->getOperand(0 + i
));
1753 MIB
.addOperand(Op
.getValue());
1757 EmitAndCountInstruction(MIB
);
1761 case X86::MOVPC32r
: {
1762 // This is a pseudo op for a two instruction sequence with a label, which
1769 MCSymbol
*PICBase
= MF
->getPICBaseSymbol();
1770 // FIXME: We would like an efficient form for this, so we don't have to do a
1771 // lot of extra uniquing.
1772 EmitAndCountInstruction(
1773 MCInstBuilder(X86::CALLpcrel32
)
1774 .addExpr(MCSymbolRefExpr::create(PICBase
, OutContext
)));
1776 const X86FrameLowering
*FrameLowering
=
1777 MF
->getSubtarget
<X86Subtarget
>().getFrameLowering();
1778 bool hasFP
= FrameLowering
->hasFP(*MF
);
1780 // TODO: This is needed only if we require precise CFA.
1781 bool HasActiveDwarfFrame
= OutStreamer
->getNumFrameInfos() &&
1782 !OutStreamer
->getDwarfFrameInfos().back().End
;
1784 int stackGrowth
= -RI
->getSlotSize();
1786 if (HasActiveDwarfFrame
&& !hasFP
) {
1787 OutStreamer
->EmitCFIAdjustCfaOffset(-stackGrowth
);
1791 OutStreamer
->EmitLabel(PICBase
);
1794 EmitAndCountInstruction(
1795 MCInstBuilder(X86::POP32r
).addReg(MI
->getOperand(0).getReg()));
1797 if (HasActiveDwarfFrame
&& !hasFP
) {
1798 OutStreamer
->EmitCFIAdjustCfaOffset(stackGrowth
);
1803 case X86::ADD32ri
: {
1804 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
1805 if (MI
->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS
)
1808 // Okay, we have something like:
1809 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
1811 // For this, we want to print something like:
1812 // MYGLOBAL + (. - PICBASE)
1813 // However, we can't generate a ".", so just emit a new label here and refer
1815 MCSymbol
*DotSym
= OutContext
.createTempSymbol();
1816 OutStreamer
->EmitLabel(DotSym
);
1818 // Now that we have emitted the label, lower the complex operand expression.
1819 MCSymbol
*OpSym
= MCInstLowering
.GetSymbolFromOperand(MI
->getOperand(2));
1821 const MCExpr
*DotExpr
= MCSymbolRefExpr::create(DotSym
, OutContext
);
1822 const MCExpr
*PICBase
=
1823 MCSymbolRefExpr::create(MF
->getPICBaseSymbol(), OutContext
);
1824 DotExpr
= MCBinaryExpr::createSub(DotExpr
, PICBase
, OutContext
);
1826 DotExpr
= MCBinaryExpr::createAdd(
1827 MCSymbolRefExpr::create(OpSym
, OutContext
), DotExpr
, OutContext
);
1829 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri
)
1830 .addReg(MI
->getOperand(0).getReg())
1831 .addReg(MI
->getOperand(1).getReg())
1835 case TargetOpcode::STATEPOINT
:
1836 return LowerSTATEPOINT(*MI
, MCInstLowering
);
1838 case TargetOpcode::FAULTING_OP
:
1839 return LowerFAULTING_OP(*MI
, MCInstLowering
);
1841 case TargetOpcode::FENTRY_CALL
:
1842 return LowerFENTRY_CALL(*MI
, MCInstLowering
);
1844 case TargetOpcode::PATCHABLE_OP
:
1845 return LowerPATCHABLE_OP(*MI
, MCInstLowering
);
1847 case TargetOpcode::STACKMAP
:
1848 return LowerSTACKMAP(*MI
);
1850 case TargetOpcode::PATCHPOINT
:
1851 return LowerPATCHPOINT(*MI
, MCInstLowering
);
1853 case TargetOpcode::PATCHABLE_FUNCTION_ENTER
:
1854 return LowerPATCHABLE_FUNCTION_ENTER(*MI
, MCInstLowering
);
1856 case TargetOpcode::PATCHABLE_RET
:
1857 return LowerPATCHABLE_RET(*MI
, MCInstLowering
);
1859 case TargetOpcode::PATCHABLE_TAIL_CALL
:
1860 return LowerPATCHABLE_TAIL_CALL(*MI
, MCInstLowering
);
1862 case TargetOpcode::PATCHABLE_EVENT_CALL
:
1863 return LowerPATCHABLE_EVENT_CALL(*MI
, MCInstLowering
);
1865 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
:
1866 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI
, MCInstLowering
);
1868 case X86::MORESTACK_RET
:
1869 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget
)));
1872 case X86::MORESTACK_RET_RESTORE_R10
:
1873 // Return, then restore R10.
1874 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget
)));
1875 EmitAndCountInstruction(
1876 MCInstBuilder(X86::MOV64rr
).addReg(X86::R10
).addReg(X86::RAX
));
1879 case X86::SEH_PushReg
:
1880 case X86::SEH_SaveReg
:
1881 case X86::SEH_SaveXMM
:
1882 case X86::SEH_StackAlloc
:
1883 case X86::SEH_StackAlign
:
1884 case X86::SEH_SetFrame
:
1885 case X86::SEH_PushFrame
:
1886 case X86::SEH_EndPrologue
:
1887 EmitSEHInstruction(MI
);
1890 case X86::SEH_Epilogue
: {
1891 assert(MF
->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1892 MachineBasicBlock::const_iterator
MBBI(MI
);
1893 // Check if preceded by a call and emit nop if so.
1894 for (MBBI
= PrevCrossBBInst(MBBI
);
1895 MBBI
!= MachineBasicBlock::const_iterator();
1896 MBBI
= PrevCrossBBInst(MBBI
)) {
1897 // Conservatively assume that pseudo instructions don't emit code and keep
1898 // looking for a call. We may emit an unnecessary nop in some cases.
1899 if (!MBBI
->isPseudo()) {
1901 EmitAndCountInstruction(MCInstBuilder(X86::NOOP
));
1908 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1909 // a constant shuffle mask. We won't be able to do this at the MC layer
1910 // because the mask isn't an immediate.
1912 case X86::VPSHUFBrm
:
1913 case X86::VPSHUFBYrm
:
1914 case X86::VPSHUFBZ128rm
:
1915 case X86::VPSHUFBZ128rmk
:
1916 case X86::VPSHUFBZ128rmkz
:
1917 case X86::VPSHUFBZ256rm
:
1918 case X86::VPSHUFBZ256rmk
:
1919 case X86::VPSHUFBZ256rmkz
:
1920 case X86::VPSHUFBZrm
:
1921 case X86::VPSHUFBZrmk
:
1922 case X86::VPSHUFBZrmkz
: {
1923 if (!OutStreamer
->isVerboseAsm())
1925 unsigned SrcIdx
, MaskIdx
;
1926 switch (MI
->getOpcode()) {
1927 default: llvm_unreachable("Invalid opcode");
1929 case X86::VPSHUFBrm
:
1930 case X86::VPSHUFBYrm
:
1931 case X86::VPSHUFBZ128rm
:
1932 case X86::VPSHUFBZ256rm
:
1933 case X86::VPSHUFBZrm
:
1934 SrcIdx
= 1; MaskIdx
= 5; break;
1935 case X86::VPSHUFBZ128rmkz
:
1936 case X86::VPSHUFBZ256rmkz
:
1937 case X86::VPSHUFBZrmkz
:
1938 SrcIdx
= 2; MaskIdx
= 6; break;
1939 case X86::VPSHUFBZ128rmk
:
1940 case X86::VPSHUFBZ256rmk
:
1941 case X86::VPSHUFBZrmk
:
1942 SrcIdx
= 3; MaskIdx
= 7; break;
1945 assert(MI
->getNumOperands() >= 6 &&
1946 "We should always have at least 6 operands!");
1948 const MachineOperand
&MaskOp
= MI
->getOperand(MaskIdx
);
1949 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
1950 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
1951 SmallVector
<int, 64> Mask
;
1952 DecodePSHUFBMask(C
, Width
, Mask
);
1954 OutStreamer
->AddComment(getShuffleComment(MI
, SrcIdx
, SrcIdx
, Mask
));
1959 case X86::VPERMILPSrm
:
1960 case X86::VPERMILPSYrm
:
1961 case X86::VPERMILPSZ128rm
:
1962 case X86::VPERMILPSZ128rmk
:
1963 case X86::VPERMILPSZ128rmkz
:
1964 case X86::VPERMILPSZ256rm
:
1965 case X86::VPERMILPSZ256rmk
:
1966 case X86::VPERMILPSZ256rmkz
:
1967 case X86::VPERMILPSZrm
:
1968 case X86::VPERMILPSZrmk
:
1969 case X86::VPERMILPSZrmkz
:
1970 case X86::VPERMILPDrm
:
1971 case X86::VPERMILPDYrm
:
1972 case X86::VPERMILPDZ128rm
:
1973 case X86::VPERMILPDZ128rmk
:
1974 case X86::VPERMILPDZ128rmkz
:
1975 case X86::VPERMILPDZ256rm
:
1976 case X86::VPERMILPDZ256rmk
:
1977 case X86::VPERMILPDZ256rmkz
:
1978 case X86::VPERMILPDZrm
:
1979 case X86::VPERMILPDZrmk
:
1980 case X86::VPERMILPDZrmkz
: {
1981 if (!OutStreamer
->isVerboseAsm())
1983 unsigned SrcIdx
, MaskIdx
;
1985 switch (MI
->getOpcode()) {
1986 default: llvm_unreachable("Invalid opcode");
1987 case X86::VPERMILPSrm
:
1988 case X86::VPERMILPSYrm
:
1989 case X86::VPERMILPSZ128rm
:
1990 case X86::VPERMILPSZ256rm
:
1991 case X86::VPERMILPSZrm
:
1992 SrcIdx
= 1; MaskIdx
= 5; ElSize
= 32; break;
1993 case X86::VPERMILPSZ128rmkz
:
1994 case X86::VPERMILPSZ256rmkz
:
1995 case X86::VPERMILPSZrmkz
:
1996 SrcIdx
= 2; MaskIdx
= 6; ElSize
= 32; break;
1997 case X86::VPERMILPSZ128rmk
:
1998 case X86::VPERMILPSZ256rmk
:
1999 case X86::VPERMILPSZrmk
:
2000 SrcIdx
= 3; MaskIdx
= 7; ElSize
= 32; break;
2001 case X86::VPERMILPDrm
:
2002 case X86::VPERMILPDYrm
:
2003 case X86::VPERMILPDZ128rm
:
2004 case X86::VPERMILPDZ256rm
:
2005 case X86::VPERMILPDZrm
:
2006 SrcIdx
= 1; MaskIdx
= 5; ElSize
= 64; break;
2007 case X86::VPERMILPDZ128rmkz
:
2008 case X86::VPERMILPDZ256rmkz
:
2009 case X86::VPERMILPDZrmkz
:
2010 SrcIdx
= 2; MaskIdx
= 6; ElSize
= 64; break;
2011 case X86::VPERMILPDZ128rmk
:
2012 case X86::VPERMILPDZ256rmk
:
2013 case X86::VPERMILPDZrmk
:
2014 SrcIdx
= 3; MaskIdx
= 7; ElSize
= 64; break;
2017 assert(MI
->getNumOperands() >= 6 &&
2018 "We should always have at least 6 operands!");
2020 const MachineOperand
&MaskOp
= MI
->getOperand(MaskIdx
);
2021 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2022 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2023 SmallVector
<int, 16> Mask
;
2024 DecodeVPERMILPMask(C
, ElSize
, Width
, Mask
);
2026 OutStreamer
->AddComment(getShuffleComment(MI
, SrcIdx
, SrcIdx
, Mask
));
2031 case X86::VPERMIL2PDrm
:
2032 case X86::VPERMIL2PSrm
:
2033 case X86::VPERMIL2PDYrm
:
2034 case X86::VPERMIL2PSYrm
: {
2035 if (!OutStreamer
->isVerboseAsm())
2037 assert(MI
->getNumOperands() >= 8 &&
2038 "We should always have at least 8 operands!");
2040 const MachineOperand
&CtrlOp
= MI
->getOperand(MI
->getNumOperands() - 1);
2041 if (!CtrlOp
.isImm())
2045 switch (MI
->getOpcode()) {
2046 default: llvm_unreachable("Invalid opcode");
2047 case X86::VPERMIL2PSrm
: case X86::VPERMIL2PSYrm
: ElSize
= 32; break;
2048 case X86::VPERMIL2PDrm
: case X86::VPERMIL2PDYrm
: ElSize
= 64; break;
2051 const MachineOperand
&MaskOp
= MI
->getOperand(6);
2052 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2053 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2054 SmallVector
<int, 16> Mask
;
2055 DecodeVPERMIL2PMask(C
, (unsigned)CtrlOp
.getImm(), ElSize
, Width
, Mask
);
2057 OutStreamer
->AddComment(getShuffleComment(MI
, 1, 2, Mask
));
2062 case X86::VPPERMrrm
: {
2063 if (!OutStreamer
->isVerboseAsm())
2065 assert(MI
->getNumOperands() >= 7 &&
2066 "We should always have at least 7 operands!");
2068 const MachineOperand
&MaskOp
= MI
->getOperand(6);
2069 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2070 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2071 SmallVector
<int, 16> Mask
;
2072 DecodeVPPERMMask(C
, Width
, Mask
);
2074 OutStreamer
->AddComment(getShuffleComment(MI
, 1, 2, Mask
));
2079 case X86::MMX_MOVQ64rm
: {
2080 if (!OutStreamer
->isVerboseAsm())
2082 if (MI
->getNumOperands() <= 4)
2084 if (auto *C
= getConstantFromPool(*MI
, MI
->getOperand(4))) {
2085 std::string Comment
;
2086 raw_string_ostream
CS(Comment
);
2087 const MachineOperand
&DstOp
= MI
->getOperand(0);
2088 CS
<< X86ATTInstPrinter::getRegisterName(DstOp
.getReg()) << " = ";
2089 if (auto *CF
= dyn_cast
<ConstantFP
>(C
)) {
2090 CS
<< "0x" << CF
->getValueAPF().bitcastToAPInt().toString(16, false);
2091 OutStreamer
->AddComment(CS
.str());
2097 #define MOV_CASE(Prefix, Suffix) \
2098 case X86::Prefix##MOVAPD##Suffix##rm: \
2099 case X86::Prefix##MOVAPS##Suffix##rm: \
2100 case X86::Prefix##MOVUPD##Suffix##rm: \
2101 case X86::Prefix##MOVUPS##Suffix##rm: \
2102 case X86::Prefix##MOVDQA##Suffix##rm: \
2103 case X86::Prefix##MOVDQU##Suffix##rm:
2105 #define MOV_AVX512_CASE(Suffix) \
2106 case X86::VMOVDQA64##Suffix##rm: \
2107 case X86::VMOVDQA32##Suffix##rm: \
2108 case X86::VMOVDQU64##Suffix##rm: \
2109 case X86::VMOVDQU32##Suffix##rm: \
2110 case X86::VMOVDQU16##Suffix##rm: \
2111 case X86::VMOVDQU8##Suffix##rm: \
2112 case X86::VMOVAPS##Suffix##rm: \
2113 case X86::VMOVAPD##Suffix##rm: \
2114 case X86::VMOVUPS##Suffix##rm: \
2115 case X86::VMOVUPD##Suffix##rm:
2117 #define CASE_ALL_MOV_RM() \
2118 MOV_CASE(, ) /* SSE */ \
2119 MOV_CASE(V, ) /* AVX-128 */ \
2120 MOV_CASE(V, Y) /* AVX-256 */ \
2121 MOV_AVX512_CASE(Z) \
2122 MOV_AVX512_CASE(Z256) \
2123 MOV_AVX512_CASE(Z128)
2125 // For loads from a constant pool to a vector register, print the constant
2128 case X86::VBROADCASTF128
:
2129 case X86::VBROADCASTI128
:
2130 case X86::VBROADCASTF32X4Z256rm
:
2131 case X86::VBROADCASTF32X4rm
:
2132 case X86::VBROADCASTF32X8rm
:
2133 case X86::VBROADCASTF64X2Z128rm
:
2134 case X86::VBROADCASTF64X2rm
:
2135 case X86::VBROADCASTF64X4rm
:
2136 case X86::VBROADCASTI32X4Z256rm
:
2137 case X86::VBROADCASTI32X4rm
:
2138 case X86::VBROADCASTI32X8rm
:
2139 case X86::VBROADCASTI64X2Z128rm
:
2140 case X86::VBROADCASTI64X2rm
:
2141 case X86::VBROADCASTI64X4rm
:
2142 if (!OutStreamer
->isVerboseAsm())
2144 if (MI
->getNumOperands() <= 4)
2146 if (auto *C
= getConstantFromPool(*MI
, MI
->getOperand(4))) {
2148 // Override NumLanes for the broadcast instructions.
2149 switch (MI
->getOpcode()) {
2150 case X86::VBROADCASTF128
: NumLanes
= 2; break;
2151 case X86::VBROADCASTI128
: NumLanes
= 2; break;
2152 case X86::VBROADCASTF32X4Z256rm
: NumLanes
= 2; break;
2153 case X86::VBROADCASTF32X4rm
: NumLanes
= 4; break;
2154 case X86::VBROADCASTF32X8rm
: NumLanes
= 2; break;
2155 case X86::VBROADCASTF64X2Z128rm
: NumLanes
= 2; break;
2156 case X86::VBROADCASTF64X2rm
: NumLanes
= 4; break;
2157 case X86::VBROADCASTF64X4rm
: NumLanes
= 2; break;
2158 case X86::VBROADCASTI32X4Z256rm
: NumLanes
= 2; break;
2159 case X86::VBROADCASTI32X4rm
: NumLanes
= 4; break;
2160 case X86::VBROADCASTI32X8rm
: NumLanes
= 2; break;
2161 case X86::VBROADCASTI64X2Z128rm
: NumLanes
= 2; break;
2162 case X86::VBROADCASTI64X2rm
: NumLanes
= 4; break;
2163 case X86::VBROADCASTI64X4rm
: NumLanes
= 2; break;
2166 std::string Comment
;
2167 raw_string_ostream
CS(Comment
);
2168 const MachineOperand
&DstOp
= MI
->getOperand(0);
2169 CS
<< X86ATTInstPrinter::getRegisterName(DstOp
.getReg()) << " = ";
2170 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(C
)) {
2172 for (int l
= 0; l
!= NumLanes
; ++l
) {
2173 for (int i
= 0, NumElements
= CDS
->getNumElements(); i
< NumElements
;
2175 if (i
!= 0 || l
!= 0)
2177 if (CDS
->getElementType()->isIntegerTy())
2178 printConstant(CDS
->getElementAsAPInt(i
), CS
);
2179 else if (CDS
->getElementType()->isHalfTy() ||
2180 CDS
->getElementType()->isFloatTy() ||
2181 CDS
->getElementType()->isDoubleTy())
2182 printConstant(CDS
->getElementAsAPFloat(i
), CS
);
2188 OutStreamer
->AddComment(CS
.str());
2189 } else if (auto *CV
= dyn_cast
<ConstantVector
>(C
)) {
2191 for (int l
= 0; l
!= NumLanes
; ++l
) {
2192 for (int i
= 0, NumOperands
= CV
->getNumOperands(); i
< NumOperands
;
2194 if (i
!= 0 || l
!= 0)
2196 printConstant(CV
->getOperand(i
), CS
);
2200 OutStreamer
->AddComment(CS
.str());
2204 case X86::MOVDDUPrm
:
2205 case X86::VMOVDDUPrm
:
2206 case X86::VMOVDDUPZ128rm
:
2207 case X86::VBROADCASTSSrm
:
2208 case X86::VBROADCASTSSYrm
:
2209 case X86::VBROADCASTSSZ128m
:
2210 case X86::VBROADCASTSSZ256m
:
2211 case X86::VBROADCASTSSZm
:
2212 case X86::VBROADCASTSDYrm
:
2213 case X86::VBROADCASTSDZ256m
:
2214 case X86::VBROADCASTSDZm
:
2215 case X86::VPBROADCASTBrm
:
2216 case X86::VPBROADCASTBYrm
:
2217 case X86::VPBROADCASTBZ128m
:
2218 case X86::VPBROADCASTBZ256m
:
2219 case X86::VPBROADCASTBZm
:
2220 case X86::VPBROADCASTDrm
:
2221 case X86::VPBROADCASTDYrm
:
2222 case X86::VPBROADCASTDZ128m
:
2223 case X86::VPBROADCASTDZ256m
:
2224 case X86::VPBROADCASTDZm
:
2225 case X86::VPBROADCASTQrm
:
2226 case X86::VPBROADCASTQYrm
:
2227 case X86::VPBROADCASTQZ128m
:
2228 case X86::VPBROADCASTQZ256m
:
2229 case X86::VPBROADCASTQZm
:
2230 case X86::VPBROADCASTWrm
:
2231 case X86::VPBROADCASTWYrm
:
2232 case X86::VPBROADCASTWZ128m
:
2233 case X86::VPBROADCASTWZ256m
:
2234 case X86::VPBROADCASTWZm
:
2235 if (!OutStreamer
->isVerboseAsm())
2237 if (MI
->getNumOperands() <= 4)
2239 if (auto *C
= getConstantFromPool(*MI
, MI
->getOperand(4))) {
2241 switch (MI
->getOpcode()) {
2242 default: llvm_unreachable("Invalid opcode");
2243 case X86::MOVDDUPrm
: NumElts
= 2; break;
2244 case X86::VMOVDDUPrm
: NumElts
= 2; break;
2245 case X86::VMOVDDUPZ128rm
: NumElts
= 2; break;
2246 case X86::VBROADCASTSSrm
: NumElts
= 4; break;
2247 case X86::VBROADCASTSSYrm
: NumElts
= 8; break;
2248 case X86::VBROADCASTSSZ128m
: NumElts
= 4; break;
2249 case X86::VBROADCASTSSZ256m
: NumElts
= 8; break;
2250 case X86::VBROADCASTSSZm
: NumElts
= 16; break;
2251 case X86::VBROADCASTSDYrm
: NumElts
= 4; break;
2252 case X86::VBROADCASTSDZ256m
: NumElts
= 4; break;
2253 case X86::VBROADCASTSDZm
: NumElts
= 8; break;
2254 case X86::VPBROADCASTBrm
: NumElts
= 16; break;
2255 case X86::VPBROADCASTBYrm
: NumElts
= 32; break;
2256 case X86::VPBROADCASTBZ128m
: NumElts
= 16; break;
2257 case X86::VPBROADCASTBZ256m
: NumElts
= 32; break;
2258 case X86::VPBROADCASTBZm
: NumElts
= 64; break;
2259 case X86::VPBROADCASTDrm
: NumElts
= 4; break;
2260 case X86::VPBROADCASTDYrm
: NumElts
= 8; break;
2261 case X86::VPBROADCASTDZ128m
: NumElts
= 4; break;
2262 case X86::VPBROADCASTDZ256m
: NumElts
= 8; break;
2263 case X86::VPBROADCASTDZm
: NumElts
= 16; break;
2264 case X86::VPBROADCASTQrm
: NumElts
= 2; break;
2265 case X86::VPBROADCASTQYrm
: NumElts
= 4; break;
2266 case X86::VPBROADCASTQZ128m
: NumElts
= 2; break;
2267 case X86::VPBROADCASTQZ256m
: NumElts
= 4; break;
2268 case X86::VPBROADCASTQZm
: NumElts
= 8; break;
2269 case X86::VPBROADCASTWrm
: NumElts
= 8; break;
2270 case X86::VPBROADCASTWYrm
: NumElts
= 16; break;
2271 case X86::VPBROADCASTWZ128m
: NumElts
= 8; break;
2272 case X86::VPBROADCASTWZ256m
: NumElts
= 16; break;
2273 case X86::VPBROADCASTWZm
: NumElts
= 32; break;
2276 std::string Comment
;
2277 raw_string_ostream
CS(Comment
);
2278 const MachineOperand
&DstOp
= MI
->getOperand(0);
2279 CS
<< X86ATTInstPrinter::getRegisterName(DstOp
.getReg()) << " = ";
2281 for (int i
= 0; i
!= NumElts
; ++i
) {
2284 printConstant(C
, CS
);
2287 OutStreamer
->AddComment(CS
.str());
2292 MCInstLowering
.Lower(MI
, TmpInst
);
2294 // Stackmap shadows cannot include branch targets, so we can count the bytes
2295 // in a call towards the shadow, but must ensure that the no thread returns
2296 // in to the stackmap shadow. The only way to achieve this is if the call
2297 // is at the end of the shadow.
2299 // Count then size of the call towards the shadow
2300 SMShadowTracker
.count(TmpInst
, getSubtargetInfo(), CodeEmitter
.get());
2301 // Then flush the shadow so that we fill with nops before the call, not
2303 SMShadowTracker
.emitShadowPadding(*OutStreamer
, getSubtargetInfo());
2304 // Then emit the call
2305 OutStreamer
->EmitInstruction(TmpInst
, getSubtargetInfo());
2309 EmitAndCountInstruction(TmpInst
);