[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / X86 / X86MCInstLower.cpp
blobb1fefaa84be40b7f933bf99c5297ff0dac4c6109
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86InstComments.h"
17 #include "MCTargetDesc/X86TargetStreamer.h"
18 #include "Utils/X86ShuffleDecode.h"
19 #include "X86AsmPrinter.h"
20 #include "X86RegisterInfo.h"
21 #include "X86ShuffleDecodeConstantPool.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/StackMaps.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCCodeEmitter.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCFixup.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCSectionELF.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/MCSymbolELF.h"
45 #include "llvm/Target/TargetLoweringObjectFile.h"
47 using namespace llvm;
49 namespace {
51 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
52 class X86MCInstLower {
53 MCContext &Ctx;
54 const MachineFunction &MF;
55 const TargetMachine &TM;
56 const MCAsmInfo &MAI;
57 X86AsmPrinter &AsmPrinter;
59 public:
60 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
62 Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
63 const MachineOperand &MO) const;
64 void Lower(const MachineInstr *MI, MCInst &OutMI) const;
66 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
67 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
69 private:
70 MachineModuleInfoMachO &getMachOMMI() const;
73 } // end anonymous namespace
75 // Emit a minimal sequence of nops spanning NumBytes bytes.
76 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
77 const MCSubtargetInfo &STI);
79 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
80 const MCSubtargetInfo &STI,
81 MCCodeEmitter *CodeEmitter) {
82 if (InShadow) {
83 SmallString<256> Code;
84 SmallVector<MCFixup, 4> Fixups;
85 raw_svector_ostream VecOS(Code);
86 CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
87 CurrentShadowSize += Code.size();
88 if (CurrentShadowSize >= RequiredShadowSize)
89 InShadow = false; // The shadow is big enough. Stop counting.
93 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
94 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
95 if (InShadow && CurrentShadowSize < RequiredShadowSize) {
96 InShadow = false;
97 EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
98 MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
102 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
103 OutStreamer->EmitInstruction(Inst, getSubtargetInfo());
104 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
107 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
108 X86AsmPrinter &asmprinter)
109 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
110 AsmPrinter(asmprinter) {}
112 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
113 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
116 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
117 /// operand to an MCSymbol.
118 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
119 const DataLayout &DL = MF.getDataLayout();
120 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
121 "Isn't a symbol reference");
123 MCSymbol *Sym = nullptr;
124 SmallString<128> Name;
125 StringRef Suffix;
127 switch (MO.getTargetFlags()) {
128 case X86II::MO_DLLIMPORT:
129 // Handle dllimport linkage.
130 Name += "__imp_";
131 break;
132 case X86II::MO_COFFSTUB:
133 Name += ".refptr.";
134 break;
135 case X86II::MO_DARWIN_NONLAZY:
136 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
137 Suffix = "$non_lazy_ptr";
138 break;
141 if (!Suffix.empty())
142 Name += DL.getPrivateGlobalPrefix();
144 if (MO.isGlobal()) {
145 const GlobalValue *GV = MO.getGlobal();
146 AsmPrinter.getNameWithPrefix(Name, GV);
147 } else if (MO.isSymbol()) {
148 Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
149 } else if (MO.isMBB()) {
150 assert(Suffix.empty());
151 Sym = MO.getMBB()->getSymbol();
154 Name += Suffix;
155 if (!Sym)
156 Sym = Ctx.getOrCreateSymbol(Name);
158 // If the target flags on the operand changes the name of the symbol, do that
159 // before we return the symbol.
160 switch (MO.getTargetFlags()) {
161 default:
162 break;
163 case X86II::MO_COFFSTUB: {
164 MachineModuleInfoCOFF &MMICOFF =
165 MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
166 MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
167 if (!StubSym.getPointer()) {
168 assert(MO.isGlobal() && "Extern symbol not handled yet");
169 StubSym = MachineModuleInfoImpl::StubValueTy(
170 AsmPrinter.getSymbol(MO.getGlobal()), true);
172 break;
174 case X86II::MO_DARWIN_NONLAZY:
175 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
176 MachineModuleInfoImpl::StubValueTy &StubSym =
177 getMachOMMI().getGVStubEntry(Sym);
178 if (!StubSym.getPointer()) {
179 assert(MO.isGlobal() && "Extern symbol not handled yet");
180 StubSym = MachineModuleInfoImpl::StubValueTy(
181 AsmPrinter.getSymbol(MO.getGlobal()),
182 !MO.getGlobal()->hasInternalLinkage());
184 break;
188 return Sym;
191 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
192 MCSymbol *Sym) const {
193 // FIXME: We would like an efficient form for this, so we don't have to do a
194 // lot of extra uniquing.
195 const MCExpr *Expr = nullptr;
196 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
198 switch (MO.getTargetFlags()) {
199 default:
200 llvm_unreachable("Unknown target flag on GV operand");
201 case X86II::MO_NO_FLAG: // No flag.
202 // These affect the name of the symbol, not any suffix.
203 case X86II::MO_DARWIN_NONLAZY:
204 case X86II::MO_DLLIMPORT:
205 case X86II::MO_COFFSTUB:
206 break;
208 case X86II::MO_TLVP:
209 RefKind = MCSymbolRefExpr::VK_TLVP;
210 break;
211 case X86II::MO_TLVP_PIC_BASE:
212 Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
213 // Subtract the pic base.
214 Expr = MCBinaryExpr::createSub(
215 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
216 break;
217 case X86II::MO_SECREL:
218 RefKind = MCSymbolRefExpr::VK_SECREL;
219 break;
220 case X86II::MO_TLSGD:
221 RefKind = MCSymbolRefExpr::VK_TLSGD;
222 break;
223 case X86II::MO_TLSLD:
224 RefKind = MCSymbolRefExpr::VK_TLSLD;
225 break;
226 case X86II::MO_TLSLDM:
227 RefKind = MCSymbolRefExpr::VK_TLSLDM;
228 break;
229 case X86II::MO_GOTTPOFF:
230 RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
231 break;
232 case X86II::MO_INDNTPOFF:
233 RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
234 break;
235 case X86II::MO_TPOFF:
236 RefKind = MCSymbolRefExpr::VK_TPOFF;
237 break;
238 case X86II::MO_DTPOFF:
239 RefKind = MCSymbolRefExpr::VK_DTPOFF;
240 break;
241 case X86II::MO_NTPOFF:
242 RefKind = MCSymbolRefExpr::VK_NTPOFF;
243 break;
244 case X86II::MO_GOTNTPOFF:
245 RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
246 break;
247 case X86II::MO_GOTPCREL:
248 RefKind = MCSymbolRefExpr::VK_GOTPCREL;
249 break;
250 case X86II::MO_GOT:
251 RefKind = MCSymbolRefExpr::VK_GOT;
252 break;
253 case X86II::MO_GOTOFF:
254 RefKind = MCSymbolRefExpr::VK_GOTOFF;
255 break;
256 case X86II::MO_PLT:
257 RefKind = MCSymbolRefExpr::VK_PLT;
258 break;
259 case X86II::MO_ABS8:
260 RefKind = MCSymbolRefExpr::VK_X86_ABS8;
261 break;
262 case X86II::MO_PIC_BASE_OFFSET:
263 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
264 Expr = MCSymbolRefExpr::create(Sym, Ctx);
265 // Subtract the pic base.
266 Expr = MCBinaryExpr::createSub(
267 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
268 if (MO.isJTI()) {
269 assert(MAI.doesSetDirectiveSuppressReloc());
270 // If .set directive is supported, use it to reduce the number of
271 // relocations the assembler will generate for differences between
272 // local labels. This is only safe when the symbols are in the same
273 // section so we are restricting it to jumptable references.
274 MCSymbol *Label = Ctx.createTempSymbol();
275 AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
276 Expr = MCSymbolRefExpr::create(Label, Ctx);
278 break;
281 if (!Expr)
282 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
284 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
285 Expr = MCBinaryExpr::createAdd(
286 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
287 return MCOperand::createExpr(Expr);
290 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
291 /// a short fixed-register form.
292 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
293 unsigned ImmOp = Inst.getNumOperands() - 1;
294 assert(Inst.getOperand(0).isReg() &&
295 (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
296 ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
297 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
298 Inst.getNumOperands() == 2) &&
299 "Unexpected instruction!");
301 // Check whether the destination register can be fixed.
302 unsigned Reg = Inst.getOperand(0).getReg();
303 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
304 return;
306 // If so, rewrite the instruction.
307 MCOperand Saved = Inst.getOperand(ImmOp);
308 Inst = MCInst();
309 Inst.setOpcode(Opcode);
310 Inst.addOperand(Saved);
313 /// If a movsx instruction has a shorter encoding for the used register
314 /// simplify the instruction to use it instead.
315 static void SimplifyMOVSX(MCInst &Inst) {
316 unsigned NewOpcode = 0;
317 unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
318 switch (Inst.getOpcode()) {
319 default:
320 llvm_unreachable("Unexpected instruction!");
321 case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
322 if (Op0 == X86::AX && Op1 == X86::AL)
323 NewOpcode = X86::CBW;
324 break;
325 case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
326 if (Op0 == X86::EAX && Op1 == X86::AX)
327 NewOpcode = X86::CWDE;
328 break;
329 case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
330 if (Op0 == X86::RAX && Op1 == X86::EAX)
331 NewOpcode = X86::CDQE;
332 break;
335 if (NewOpcode != 0) {
336 Inst = MCInst();
337 Inst.setOpcode(NewOpcode);
341 /// Simplify things like MOV32rm to MOV32o32a.
342 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
343 unsigned Opcode) {
344 // Don't make these simplifications in 64-bit mode; other assemblers don't
345 // perform them because they make the code larger.
346 if (Printer.getSubtarget().is64Bit())
347 return;
349 bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
350 unsigned AddrBase = IsStore;
351 unsigned RegOp = IsStore ? 0 : 5;
352 unsigned AddrOp = AddrBase + 3;
353 assert(
354 Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
355 Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
356 Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
357 Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
358 Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
359 (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
360 "Unexpected instruction!");
362 // Check whether the destination register can be fixed.
363 unsigned Reg = Inst.getOperand(RegOp).getReg();
364 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
365 return;
367 // Check whether this is an absolute address.
368 // FIXME: We know TLVP symbol refs aren't, but there should be a better way
369 // to do this here.
370 bool Absolute = true;
371 if (Inst.getOperand(AddrOp).isExpr()) {
372 const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
373 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
374 if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
375 Absolute = false;
378 if (Absolute &&
379 (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
380 Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
381 Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
382 return;
384 // If so, rewrite the instruction.
385 MCOperand Saved = Inst.getOperand(AddrOp);
386 MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
387 Inst = MCInst();
388 Inst.setOpcode(Opcode);
389 Inst.addOperand(Saved);
390 Inst.addOperand(Seg);
393 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
394 return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
397 Optional<MCOperand>
398 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
399 const MachineOperand &MO) const {
400 switch (MO.getType()) {
401 default:
402 MI->print(errs());
403 llvm_unreachable("unknown operand type");
404 case MachineOperand::MO_Register:
405 // Ignore all implicit register operands.
406 if (MO.isImplicit())
407 return None;
408 return MCOperand::createReg(MO.getReg());
409 case MachineOperand::MO_Immediate:
410 return MCOperand::createImm(MO.getImm());
411 case MachineOperand::MO_MachineBasicBlock:
412 case MachineOperand::MO_GlobalAddress:
413 case MachineOperand::MO_ExternalSymbol:
414 return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
415 case MachineOperand::MO_MCSymbol:
416 return LowerSymbolOperand(MO, MO.getMCSymbol());
417 case MachineOperand::MO_JumpTableIndex:
418 return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
419 case MachineOperand::MO_ConstantPoolIndex:
420 return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
421 case MachineOperand::MO_BlockAddress:
422 return LowerSymbolOperand(
423 MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
424 case MachineOperand::MO_RegisterMask:
425 // Ignore call clobbers.
426 return None;
430 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
431 OutMI.setOpcode(MI->getOpcode());
433 for (const MachineOperand &MO : MI->operands())
434 if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
435 OutMI.addOperand(MaybeMCOp.getValue());
437 // Handle a few special cases to eliminate operand modifiers.
438 switch (OutMI.getOpcode()) {
439 case X86::LEA64_32r:
440 case X86::LEA64r:
441 case X86::LEA16r:
442 case X86::LEA32r:
443 // LEA should have a segment register, but it must be empty.
444 assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
445 "Unexpected # of LEA operands");
446 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
447 "LEA has segment specified!");
448 break;
450 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
451 // if one of the registers is extended, but other isn't.
452 case X86::VMOVZPQILo2PQIrr:
453 case X86::VMOVAPDrr:
454 case X86::VMOVAPDYrr:
455 case X86::VMOVAPSrr:
456 case X86::VMOVAPSYrr:
457 case X86::VMOVDQArr:
458 case X86::VMOVDQAYrr:
459 case X86::VMOVDQUrr:
460 case X86::VMOVDQUYrr:
461 case X86::VMOVUPDrr:
462 case X86::VMOVUPDYrr:
463 case X86::VMOVUPSrr:
464 case X86::VMOVUPSYrr: {
465 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
466 X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
467 unsigned NewOpc;
468 switch (OutMI.getOpcode()) {
469 default: llvm_unreachable("Invalid opcode");
470 case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
471 case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
472 case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
473 case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
474 case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
475 case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
476 case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
477 case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
478 case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
479 case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
480 case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
481 case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
482 case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
484 OutMI.setOpcode(NewOpc);
486 break;
488 case X86::VMOVSDrr:
489 case X86::VMOVSSrr: {
490 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
491 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
492 unsigned NewOpc;
493 switch (OutMI.getOpcode()) {
494 default: llvm_unreachable("Invalid opcode");
495 case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
496 case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
498 OutMI.setOpcode(NewOpc);
500 break;
503 // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
504 // inputs modeled as normal uses instead of implicit uses. As such, truncate
505 // off all but the first operand (the callee). FIXME: Change isel.
506 case X86::TAILJMPr64:
507 case X86::TAILJMPr64_REX:
508 case X86::CALL64r:
509 case X86::CALL64pcrel32: {
510 unsigned Opcode = OutMI.getOpcode();
511 MCOperand Saved = OutMI.getOperand(0);
512 OutMI = MCInst();
513 OutMI.setOpcode(Opcode);
514 OutMI.addOperand(Saved);
515 break;
518 case X86::EH_RETURN:
519 case X86::EH_RETURN64: {
520 OutMI = MCInst();
521 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
522 break;
525 case X86::CLEANUPRET: {
526 // Replace CLEANUPRET with the appropriate RET.
527 OutMI = MCInst();
528 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
529 break;
532 case X86::CATCHRET: {
533 // Replace CATCHRET with the appropriate RET.
534 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
535 unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
536 OutMI = MCInst();
537 OutMI.setOpcode(getRetOpcode(Subtarget));
538 OutMI.addOperand(MCOperand::createReg(ReturnReg));
539 break;
542 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
543 // instruction.
545 unsigned Opcode;
546 case X86::TAILJMPr:
547 Opcode = X86::JMP32r;
548 goto SetTailJmpOpcode;
549 case X86::TAILJMPd:
550 case X86::TAILJMPd64:
551 Opcode = X86::JMP_1;
552 goto SetTailJmpOpcode;
554 SetTailJmpOpcode:
555 MCOperand Saved = OutMI.getOperand(0);
556 OutMI = MCInst();
557 OutMI.setOpcode(Opcode);
558 OutMI.addOperand(Saved);
559 break;
562 case X86::TAILJMPd_CC:
563 case X86::TAILJMPd64_CC: {
564 MCOperand Saved = OutMI.getOperand(0);
565 MCOperand Saved2 = OutMI.getOperand(1);
566 OutMI = MCInst();
567 OutMI.setOpcode(X86::JCC_1);
568 OutMI.addOperand(Saved);
569 OutMI.addOperand(Saved2);
570 break;
573 case X86::DEC16r:
574 case X86::DEC32r:
575 case X86::INC16r:
576 case X86::INC32r:
577 // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
578 if (!AsmPrinter.getSubtarget().is64Bit()) {
579 unsigned Opcode;
580 switch (OutMI.getOpcode()) {
581 default: llvm_unreachable("Invalid opcode");
582 case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
583 case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
584 case X86::INC16r: Opcode = X86::INC16r_alt; break;
585 case X86::INC32r: Opcode = X86::INC32r_alt; break;
587 OutMI.setOpcode(Opcode);
589 break;
591 // We don't currently select the correct instruction form for instructions
592 // which have a short %eax, etc. form. Handle this by custom lowering, for
593 // now.
595 // Note, we are currently not handling the following instructions:
596 // MOV64ao8, MOV64o8a
597 // XCHG16ar, XCHG32ar, XCHG64ar
598 case X86::MOV8mr_NOREX:
599 case X86::MOV8mr:
600 case X86::MOV8rm_NOREX:
601 case X86::MOV8rm:
602 case X86::MOV16mr:
603 case X86::MOV16rm:
604 case X86::MOV32mr:
605 case X86::MOV32rm: {
606 unsigned NewOpc;
607 switch (OutMI.getOpcode()) {
608 default: llvm_unreachable("Invalid opcode");
609 case X86::MOV8mr_NOREX:
610 case X86::MOV8mr: NewOpc = X86::MOV8o32a; break;
611 case X86::MOV8rm_NOREX:
612 case X86::MOV8rm: NewOpc = X86::MOV8ao32; break;
613 case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
614 case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
615 case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
616 case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
618 SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
619 break;
622 case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
623 case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
624 case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
625 case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
626 case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32:
627 case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
628 case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
629 case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
630 case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
631 unsigned NewOpc;
632 switch (OutMI.getOpcode()) {
633 default: llvm_unreachable("Invalid opcode");
634 case X86::ADC8ri: NewOpc = X86::ADC8i8; break;
635 case X86::ADC16ri: NewOpc = X86::ADC16i16; break;
636 case X86::ADC32ri: NewOpc = X86::ADC32i32; break;
637 case X86::ADC64ri32: NewOpc = X86::ADC64i32; break;
638 case X86::ADD8ri: NewOpc = X86::ADD8i8; break;
639 case X86::ADD16ri: NewOpc = X86::ADD16i16; break;
640 case X86::ADD32ri: NewOpc = X86::ADD32i32; break;
641 case X86::ADD64ri32: NewOpc = X86::ADD64i32; break;
642 case X86::AND8ri: NewOpc = X86::AND8i8; break;
643 case X86::AND16ri: NewOpc = X86::AND16i16; break;
644 case X86::AND32ri: NewOpc = X86::AND32i32; break;
645 case X86::AND64ri32: NewOpc = X86::AND64i32; break;
646 case X86::CMP8ri: NewOpc = X86::CMP8i8; break;
647 case X86::CMP16ri: NewOpc = X86::CMP16i16; break;
648 case X86::CMP32ri: NewOpc = X86::CMP32i32; break;
649 case X86::CMP64ri32: NewOpc = X86::CMP64i32; break;
650 case X86::OR8ri: NewOpc = X86::OR8i8; break;
651 case X86::OR16ri: NewOpc = X86::OR16i16; break;
652 case X86::OR32ri: NewOpc = X86::OR32i32; break;
653 case X86::OR64ri32: NewOpc = X86::OR64i32; break;
654 case X86::SBB8ri: NewOpc = X86::SBB8i8; break;
655 case X86::SBB16ri: NewOpc = X86::SBB16i16; break;
656 case X86::SBB32ri: NewOpc = X86::SBB32i32; break;
657 case X86::SBB64ri32: NewOpc = X86::SBB64i32; break;
658 case X86::SUB8ri: NewOpc = X86::SUB8i8; break;
659 case X86::SUB16ri: NewOpc = X86::SUB16i16; break;
660 case X86::SUB32ri: NewOpc = X86::SUB32i32; break;
661 case X86::SUB64ri32: NewOpc = X86::SUB64i32; break;
662 case X86::TEST8ri: NewOpc = X86::TEST8i8; break;
663 case X86::TEST16ri: NewOpc = X86::TEST16i16; break;
664 case X86::TEST32ri: NewOpc = X86::TEST32i32; break;
665 case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
666 case X86::XOR8ri: NewOpc = X86::XOR8i8; break;
667 case X86::XOR16ri: NewOpc = X86::XOR16i16; break;
668 case X86::XOR32ri: NewOpc = X86::XOR32i32; break;
669 case X86::XOR64ri32: NewOpc = X86::XOR64i32; break;
671 SimplifyShortImmForm(OutMI, NewOpc);
672 break;
675 // Try to shrink some forms of movsx.
676 case X86::MOVSX16rr8:
677 case X86::MOVSX32rr16:
678 case X86::MOVSX64rr32:
679 SimplifyMOVSX(OutMI);
680 break;
684 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
685 const MachineInstr &MI) {
686 bool Is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
687 MI.getOpcode() == X86::TLS_base_addr64;
688 MCContext &Ctx = OutStreamer->getContext();
690 MCSymbolRefExpr::VariantKind SRVK;
691 switch (MI.getOpcode()) {
692 case X86::TLS_addr32:
693 case X86::TLS_addr64:
694 SRVK = MCSymbolRefExpr::VK_TLSGD;
695 break;
696 case X86::TLS_base_addr32:
697 SRVK = MCSymbolRefExpr::VK_TLSLDM;
698 break;
699 case X86::TLS_base_addr64:
700 SRVK = MCSymbolRefExpr::VK_TLSLD;
701 break;
702 default:
703 llvm_unreachable("unexpected opcode");
706 const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
707 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
709 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
710 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
711 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
712 // only using GOT when GOTPCRELX is enabled.
713 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
714 bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
715 Ctx.getAsmInfo()->canRelaxRelocations();
717 if (Is64Bits) {
718 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
719 if (NeedsPadding)
720 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
721 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
722 .addReg(X86::RDI)
723 .addReg(X86::RIP)
724 .addImm(1)
725 .addReg(0)
726 .addExpr(Sym)
727 .addReg(0));
728 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
729 if (NeedsPadding) {
730 if (!UseGot)
731 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
732 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
733 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
735 if (UseGot) {
736 const MCExpr *Expr = MCSymbolRefExpr::create(
737 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
738 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
739 .addReg(X86::RIP)
740 .addImm(1)
741 .addReg(0)
742 .addExpr(Expr)
743 .addReg(0));
744 } else {
745 EmitAndCountInstruction(
746 MCInstBuilder(X86::CALL64pcrel32)
747 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
748 MCSymbolRefExpr::VK_PLT, Ctx)));
750 } else {
751 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
752 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
753 .addReg(X86::EAX)
754 .addReg(0)
755 .addImm(1)
756 .addReg(X86::EBX)
757 .addExpr(Sym)
758 .addReg(0));
759 } else {
760 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
761 .addReg(X86::EAX)
762 .addReg(X86::EBX)
763 .addImm(1)
764 .addReg(0)
765 .addExpr(Sym)
766 .addReg(0));
769 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
770 if (UseGot) {
771 const MCExpr *Expr =
772 MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
773 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
774 .addReg(X86::EBX)
775 .addImm(1)
776 .addReg(0)
777 .addExpr(Expr)
778 .addReg(0));
779 } else {
780 EmitAndCountInstruction(
781 MCInstBuilder(X86::CALLpcrel32)
782 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
783 MCSymbolRefExpr::VK_PLT, Ctx)));
788 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
789 /// bytes. Return the size of nop emitted.
790 static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
791 const MCSubtargetInfo &STI) {
792 // This works only for 64bit. For 32bit we have to do additional checking if
793 // the CPU supports multi-byte nops.
794 assert(Is64Bit && "EmitNops only supports X86-64");
796 unsigned NopSize;
797 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
798 IndexReg = Displacement = SegmentReg = 0;
799 BaseReg = X86::RAX;
800 ScaleVal = 1;
801 switch (NumBytes) {
802 case 0:
803 llvm_unreachable("Zero nops?");
804 break;
805 case 1:
806 NopSize = 1;
807 Opc = X86::NOOP;
808 break;
809 case 2:
810 NopSize = 2;
811 Opc = X86::XCHG16ar;
812 break;
813 case 3:
814 NopSize = 3;
815 Opc = X86::NOOPL;
816 break;
817 case 4:
818 NopSize = 4;
819 Opc = X86::NOOPL;
820 Displacement = 8;
821 break;
822 case 5:
823 NopSize = 5;
824 Opc = X86::NOOPL;
825 Displacement = 8;
826 IndexReg = X86::RAX;
827 break;
828 case 6:
829 NopSize = 6;
830 Opc = X86::NOOPW;
831 Displacement = 8;
832 IndexReg = X86::RAX;
833 break;
834 case 7:
835 NopSize = 7;
836 Opc = X86::NOOPL;
837 Displacement = 512;
838 break;
839 case 8:
840 NopSize = 8;
841 Opc = X86::NOOPL;
842 Displacement = 512;
843 IndexReg = X86::RAX;
844 break;
845 case 9:
846 NopSize = 9;
847 Opc = X86::NOOPW;
848 Displacement = 512;
849 IndexReg = X86::RAX;
850 break;
851 default:
852 NopSize = 10;
853 Opc = X86::NOOPW;
854 Displacement = 512;
855 IndexReg = X86::RAX;
856 SegmentReg = X86::CS;
857 break;
860 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
861 NopSize += NumPrefixes;
862 for (unsigned i = 0; i != NumPrefixes; ++i)
863 OS.EmitBytes("\x66");
865 switch (Opc) {
866 default: llvm_unreachable("Unexpected opcode");
867 case X86::NOOP:
868 OS.EmitInstruction(MCInstBuilder(Opc), STI);
869 break;
870 case X86::XCHG16ar:
871 OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI);
872 break;
873 case X86::NOOPL:
874 case X86::NOOPW:
875 OS.EmitInstruction(MCInstBuilder(Opc)
876 .addReg(BaseReg)
877 .addImm(ScaleVal)
878 .addReg(IndexReg)
879 .addImm(Displacement)
880 .addReg(SegmentReg),
881 STI);
882 break;
884 assert(NopSize <= NumBytes && "We overemitted?");
885 return NopSize;
888 /// Emit the optimal amount of multi-byte nops on X86.
889 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
890 const MCSubtargetInfo &STI) {
891 unsigned NopsToEmit = NumBytes;
892 (void)NopsToEmit;
893 while (NumBytes) {
894 NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
895 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
899 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
900 X86MCInstLower &MCIL) {
901 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
903 StatepointOpers SOpers(&MI);
904 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
905 EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
906 getSubtargetInfo());
907 } else {
908 // Lower call target and choose correct opcode
909 const MachineOperand &CallTarget = SOpers.getCallTarget();
910 MCOperand CallTargetMCOp;
911 unsigned CallOpcode;
912 switch (CallTarget.getType()) {
913 case MachineOperand::MO_GlobalAddress:
914 case MachineOperand::MO_ExternalSymbol:
915 CallTargetMCOp = MCIL.LowerSymbolOperand(
916 CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
917 CallOpcode = X86::CALL64pcrel32;
918 // Currently, we only support relative addressing with statepoints.
919 // Otherwise, we'll need a scratch register to hold the target
920 // address. You'll fail asserts during load & relocation if this
921 // symbol is to far away. (TODO: support non-relative addressing)
922 break;
923 case MachineOperand::MO_Immediate:
924 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
925 CallOpcode = X86::CALL64pcrel32;
926 // Currently, we only support relative addressing with statepoints.
927 // Otherwise, we'll need a scratch register to hold the target
928 // immediate. You'll fail asserts during load & relocation if this
929 // address is to far away. (TODO: support non-relative addressing)
930 break;
931 case MachineOperand::MO_Register:
932 // FIXME: Add retpoline support and remove this.
933 if (Subtarget->useRetpolineIndirectCalls())
934 report_fatal_error("Lowering register statepoints with retpoline not "
935 "yet implemented.");
936 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
937 CallOpcode = X86::CALL64r;
938 break;
939 default:
940 llvm_unreachable("Unsupported operand type in statepoint call target");
941 break;
944 // Emit call
945 MCInst CallInst;
946 CallInst.setOpcode(CallOpcode);
947 CallInst.addOperand(CallTargetMCOp);
948 OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
951 // Record our statepoint node in the same section used by STACKMAP
952 // and PATCHPOINT
953 SM.recordStatepoint(MI);
956 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
957 X86MCInstLower &MCIL) {
958 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
959 // <opcode>, <operands>
961 unsigned DefRegister = FaultingMI.getOperand(0).getReg();
962 FaultMaps::FaultKind FK =
963 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
964 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
965 unsigned Opcode = FaultingMI.getOperand(3).getImm();
966 unsigned OperandsBeginIdx = 4;
968 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
969 FM.recordFaultingOp(FK, HandlerLabel);
971 MCInst MI;
972 MI.setOpcode(Opcode);
974 if (DefRegister != X86::NoRegister)
975 MI.addOperand(MCOperand::createReg(DefRegister));
977 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
978 E = FaultingMI.operands_end();
979 I != E; ++I)
980 if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
981 MI.addOperand(MaybeOperand.getValue());
983 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
984 OutStreamer->EmitInstruction(MI, getSubtargetInfo());
987 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
988 X86MCInstLower &MCIL) {
989 bool Is64Bits = Subtarget->is64Bit();
990 MCContext &Ctx = OutStreamer->getContext();
991 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
992 const MCSymbolRefExpr *Op =
993 MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
995 EmitAndCountInstruction(
996 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
997 .addExpr(Op));
1000 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
1001 X86MCInstLower &MCIL) {
1002 // PATCHABLE_OP minsize, opcode, operands
1004 unsigned MinSize = MI.getOperand(0).getImm();
1005 unsigned Opcode = MI.getOperand(1).getImm();
1007 MCInst MCI;
1008 MCI.setOpcode(Opcode);
1009 for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
1010 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1011 MCI.addOperand(MaybeOperand.getValue());
1013 SmallString<256> Code;
1014 SmallVector<MCFixup, 4> Fixups;
1015 raw_svector_ostream VecOS(Code);
1016 CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
1018 if (Code.size() < MinSize) {
1019 if (MinSize == 2 && Opcode == X86::PUSH64r) {
1020 // This is an optimization that lets us get away without emitting a nop in
1021 // many cases.
1023 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1024 // bytes too, so the check on MinSize is important.
1025 MCI.setOpcode(X86::PUSH64rmr);
1026 } else {
1027 unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
1028 getSubtargetInfo());
1029 assert(NopSize == MinSize && "Could not implement MinSize!");
1030 (void)NopSize;
1034 OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
1037 // Lower a stackmap of the form:
1038 // <id>, <shadowBytes>, ...
1039 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1040 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1041 SM.recordStackMap(MI);
1042 unsigned NumShadowBytes = MI.getOperand(1).getImm();
1043 SMShadowTracker.reset(NumShadowBytes);
1046 // Lower a patchpoint of the form:
1047 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1048 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1049 X86MCInstLower &MCIL) {
1050 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1052 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1054 SM.recordPatchPoint(MI);
1056 PatchPointOpers opers(&MI);
1057 unsigned ScratchIdx = opers.getNextScratchIdx();
1058 unsigned EncodedBytes = 0;
1059 const MachineOperand &CalleeMO = opers.getCallTarget();
1061 // Check for null target. If target is non-null (i.e. is non-zero or is
1062 // symbolic) then emit a call.
1063 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1064 MCOperand CalleeMCOp;
1065 switch (CalleeMO.getType()) {
1066 default:
1067 /// FIXME: Add a verifier check for bad callee types.
1068 llvm_unreachable("Unrecognized callee operand type.");
1069 case MachineOperand::MO_Immediate:
1070 if (CalleeMO.getImm())
1071 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1072 break;
1073 case MachineOperand::MO_ExternalSymbol:
1074 case MachineOperand::MO_GlobalAddress:
1075 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1076 MCIL.GetSymbolFromOperand(CalleeMO));
1077 break;
1080 // Emit MOV to materialize the target address and the CALL to target.
1081 // This is encoded with 12-13 bytes, depending on which register is used.
1082 unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
1083 if (X86II::isX86_64ExtendedReg(ScratchReg))
1084 EncodedBytes = 13;
1085 else
1086 EncodedBytes = 12;
1088 EmitAndCountInstruction(
1089 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1090 // FIXME: Add retpoline support and remove this.
1091 if (Subtarget->useRetpolineIndirectCalls())
1092 report_fatal_error(
1093 "Lowering patchpoint with retpoline not yet implemented.");
1094 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1097 // Emit padding.
1098 unsigned NumBytes = opers.getNumPatchBytes();
1099 assert(NumBytes >= EncodedBytes &&
1100 "Patchpoint can't request size less than the length of a call.");
1102 EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
1103 getSubtargetInfo());
1106 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1107 X86MCInstLower &MCIL) {
1108 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1110 // We want to emit the following pattern, which follows the x86 calling
1111 // convention to prepare for the trampoline call to be patched in.
1113 // .p2align 1, ...
1114 // .Lxray_event_sled_N:
1115 // jmp +N // jump across the instrumentation sled
1116 // ... // set up arguments in register
1117 // callq __xray_CustomEvent@plt // force dependency to symbol
1118 // ...
1119 // <jump here>
1121 // After patching, it would look something like:
1123 // nopw (2-byte nop)
1124 // ...
1125 // callq __xrayCustomEvent // already lowered
1126 // ...
1128 // ---
1129 // First we emit the label and the jump.
1130 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1131 OutStreamer->AddComment("# XRay Custom Event Log");
1132 OutStreamer->EmitCodeAlignment(2);
1133 OutStreamer->EmitLabel(CurSled);
1135 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1136 // an operand (computed as an offset from the jmp instruction).
1137 // FIXME: Find another less hacky way do force the relative jump.
1138 OutStreamer->EmitBinaryData("\xeb\x0f");
1140 // The default C calling convention will place two arguments into %rcx and
1141 // %rdx -- so we only work with those.
1142 unsigned DestRegs[] = {X86::RDI, X86::RSI};
1143 bool UsedMask[] = {false, false};
1144 // Filled out in loop.
1145 unsigned SrcRegs[] = {0, 0};
1147 // Then we put the operands in the %rdi and %rsi registers. We spill the
1148 // values in the register before we clobber them, and mark them as used in
1149 // UsedMask. In case the arguments are already in the correct register, we use
1150 // emit nops appropriately sized to keep the sled the same size in every
1151 // situation.
1152 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1153 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1154 assert(Op->isReg() && "Only support arguments in registers");
1155 SrcRegs[I] = Op->getReg();
1156 if (SrcRegs[I] != DestRegs[I]) {
1157 UsedMask[I] = true;
1158 EmitAndCountInstruction(
1159 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1160 } else {
1161 EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1165 // Now that the register values are stashed, mov arguments into place.
1166 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1167 if (SrcRegs[I] != DestRegs[I])
1168 EmitAndCountInstruction(
1169 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1171 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1172 // name of the trampoline to be implemented by the XRay runtime.
1173 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1174 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1175 if (isPositionIndependent())
1176 TOp.setTargetFlags(X86II::MO_PLT);
1178 // Emit the call instruction.
1179 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1180 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1182 // Restore caller-saved and used registers.
1183 for (unsigned I = sizeof UsedMask; I-- > 0;)
1184 if (UsedMask[I])
1185 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1186 else
1187 EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1189 OutStreamer->AddComment("xray custom event end.");
1191 // Record the sled version. Older versions of this sled were spelled
1192 // differently, so we let the runtime handle the different offsets we're
1193 // using.
1194 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1);
1197 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1198 X86MCInstLower &MCIL) {
1199 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1201 // We want to emit the following pattern, which follows the x86 calling
1202 // convention to prepare for the trampoline call to be patched in.
1204 // .p2align 1, ...
1205 // .Lxray_event_sled_N:
1206 // jmp +N // jump across the instrumentation sled
1207 // ... // set up arguments in register
1208 // callq __xray_TypedEvent@plt // force dependency to symbol
1209 // ...
1210 // <jump here>
1212 // After patching, it would look something like:
1214 // nopw (2-byte nop)
1215 // ...
1216 // callq __xrayTypedEvent // already lowered
1217 // ...
1219 // ---
1220 // First we emit the label and the jump.
1221 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1222 OutStreamer->AddComment("# XRay Typed Event Log");
1223 OutStreamer->EmitCodeAlignment(2);
1224 OutStreamer->EmitLabel(CurSled);
1226 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1227 // an operand (computed as an offset from the jmp instruction).
1228 // FIXME: Find another less hacky way do force the relative jump.
1229 OutStreamer->EmitBinaryData("\xeb\x14");
1231 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1232 // so we'll work with those. Or we may be called via SystemV, in which case
1233 // we don't have to do any translation.
1234 unsigned DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1235 bool UsedMask[] = {false, false, false};
1237 // Will fill out src regs in the loop.
1238 unsigned SrcRegs[] = {0, 0, 0};
1240 // Then we put the operands in the SystemV registers. We spill the values in
1241 // the registers before we clobber them, and mark them as used in UsedMask.
1242 // In case the arguments are already in the correct register, we emit nops
1243 // appropriately sized to keep the sled the same size in every situation.
1244 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1245 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1246 // TODO: Is register only support adequate?
1247 assert(Op->isReg() && "Only supports arguments in registers");
1248 SrcRegs[I] = Op->getReg();
1249 if (SrcRegs[I] != DestRegs[I]) {
1250 UsedMask[I] = true;
1251 EmitAndCountInstruction(
1252 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1253 } else {
1254 EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1258 // In the above loop we only stash all of the destination registers or emit
1259 // nops if the arguments are already in the right place. Doing the actually
1260 // moving is postponed until after all the registers are stashed so nothing
1261 // is clobbers. We've already added nops to account for the size of mov and
1262 // push if the register is in the right place, so we only have to worry about
1263 // emitting movs.
1264 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1265 if (UsedMask[I])
1266 EmitAndCountInstruction(
1267 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1269 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1270 // name of the trampoline to be implemented by the XRay runtime.
1271 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1272 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1273 if (isPositionIndependent())
1274 TOp.setTargetFlags(X86II::MO_PLT);
1276 // Emit the call instruction.
1277 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1278 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1280 // Restore caller-saved and used registers.
1281 for (unsigned I = sizeof UsedMask; I-- > 0;)
1282 if (UsedMask[I])
1283 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1284 else
1285 EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1287 OutStreamer->AddComment("xray typed event end.");
1289 // Record the sled version.
1290 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0);
1293 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1294 X86MCInstLower &MCIL) {
1295 // We want to emit the following pattern:
1297 // .p2align 1, ...
1298 // .Lxray_sled_N:
1299 // jmp .tmpN
1300 // # 9 bytes worth of noops
1302 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1303 // bytes with the following pattern:
1305 // mov %r10, <function id, 32-bit> // 6 bytes
1306 // call <relative offset, 32-bits> // 5 bytes
1308 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1309 OutStreamer->EmitCodeAlignment(2);
1310 OutStreamer->EmitLabel(CurSled);
1312 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1313 // an operand (computed as an offset from the jmp instruction).
1314 // FIXME: Find another less hacky way do force the relative jump.
1315 OutStreamer->EmitBytes("\xeb\x09");
1316 EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1317 recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
1320 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1321 X86MCInstLower &MCIL) {
1322 // Since PATCHABLE_RET takes the opcode of the return statement as an
1323 // argument, we use that to emit the correct form of the RET that we want.
1324 // i.e. when we see this:
1326 // PATCHABLE_RET X86::RET ...
1328 // We should emit the RET followed by sleds.
1330 // .p2align 1, ...
1331 // .Lxray_sled_N:
1332 // ret # or equivalent instruction
1333 // # 10 bytes worth of noops
1335 // This just makes sure that the alignment for the next instruction is 2.
1336 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1337 OutStreamer->EmitCodeAlignment(2);
1338 OutStreamer->EmitLabel(CurSled);
1339 unsigned OpCode = MI.getOperand(0).getImm();
1340 MCInst Ret;
1341 Ret.setOpcode(OpCode);
1342 for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1343 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1344 Ret.addOperand(MaybeOperand.getValue());
1345 OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
1346 EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
1347 recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
1350 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1351 X86MCInstLower &MCIL) {
1352 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1353 // instruction so we lower that particular instruction and its operands.
1354 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1355 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1356 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1357 // tail call much like how we have it in PATCHABLE_RET.
1358 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1359 OutStreamer->EmitCodeAlignment(2);
1360 OutStreamer->EmitLabel(CurSled);
1361 auto Target = OutContext.createTempSymbol();
1363 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1364 // an operand (computed as an offset from the jmp instruction).
1365 // FIXME: Find another less hacky way do force the relative jump.
1366 OutStreamer->EmitBytes("\xeb\x09");
1367 EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1368 OutStreamer->EmitLabel(Target);
1369 recordSled(CurSled, MI, SledKind::TAIL_CALL);
1371 unsigned OpCode = MI.getOperand(0).getImm();
1372 MCInst TC;
1373 TC.setOpcode(OpCode);
1375 // Before emitting the instruction, add a comment to indicate that this is
1376 // indeed a tail call.
1377 OutStreamer->AddComment("TAILCALL");
1378 for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1379 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1380 TC.addOperand(MaybeOperand.getValue());
1381 OutStreamer->EmitInstruction(TC, getSubtargetInfo());
1384 // Returns instruction preceding MBBI in MachineFunction.
1385 // If MBBI is the first instruction of the first basic block, returns null.
1386 static MachineBasicBlock::const_iterator
1387 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1388 const MachineBasicBlock *MBB = MBBI->getParent();
1389 while (MBBI == MBB->begin()) {
1390 if (MBB == &MBB->getParent()->front())
1391 return MachineBasicBlock::const_iterator();
1392 MBB = MBB->getPrevNode();
1393 MBBI = MBB->end();
1395 --MBBI;
1396 return MBBI;
1399 static const Constant *getConstantFromPool(const MachineInstr &MI,
1400 const MachineOperand &Op) {
1401 if (!Op.isCPI() || Op.getOffset() != 0)
1402 return nullptr;
1404 ArrayRef<MachineConstantPoolEntry> Constants =
1405 MI.getParent()->getParent()->getConstantPool()->getConstants();
1406 const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
1408 // Bail if this is a machine constant pool entry, we won't be able to dig out
1409 // anything useful.
1410 if (ConstantEntry.isMachineConstantPoolEntry())
1411 return nullptr;
1413 const Constant *C = ConstantEntry.Val.ConstVal;
1414 assert((!C || ConstantEntry.getType() == C->getType()) &&
1415 "Expected a constant of the same type!");
1416 return C;
1419 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1420 unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1421 std::string Comment;
1423 // Compute the name for a register. This is really goofy because we have
1424 // multiple instruction printers that could (in theory) use different
1425 // names. Fortunately most people use the ATT style (outside of Windows)
1426 // and they actually agree on register naming here. Ultimately, this is
1427 // a comment, and so its OK if it isn't perfect.
1428 auto GetRegisterName = [](unsigned RegNum) -> StringRef {
1429 return X86ATTInstPrinter::getRegisterName(RegNum);
1432 const MachineOperand &DstOp = MI->getOperand(0);
1433 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1434 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1436 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1437 StringRef Src1Name =
1438 SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1439 StringRef Src2Name =
1440 SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1442 // One source operand, fix the mask to print all elements in one span.
1443 SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
1444 if (Src1Name == Src2Name)
1445 for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1446 if (ShuffleMask[i] >= e)
1447 ShuffleMask[i] -= e;
1449 raw_string_ostream CS(Comment);
1450 CS << DstName;
1452 // Handle AVX512 MASK/MASXZ write mask comments.
1453 // MASK: zmmX {%kY}
1454 // MASKZ: zmmX {%kY} {z}
1455 if (SrcOp1Idx > 1) {
1456 assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1458 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1459 if (WriteMaskOp.isReg()) {
1460 CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1462 if (SrcOp1Idx == 2) {
1463 CS << " {z}";
1468 CS << " = ";
1470 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1471 if (i != 0)
1472 CS << ",";
1473 if (ShuffleMask[i] == SM_SentinelZero) {
1474 CS << "zero";
1475 continue;
1478 // Otherwise, it must come from src1 or src2. Print the span of elements
1479 // that comes from this src.
1480 bool isSrc1 = ShuffleMask[i] < (int)e;
1481 CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1483 bool IsFirst = true;
1484 while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1485 (ShuffleMask[i] < (int)e) == isSrc1) {
1486 if (!IsFirst)
1487 CS << ',';
1488 else
1489 IsFirst = false;
1490 if (ShuffleMask[i] == SM_SentinelUndef)
1491 CS << "u";
1492 else
1493 CS << ShuffleMask[i] % (int)e;
1494 ++i;
1496 CS << ']';
1497 --i; // For loop increments element #.
1499 CS.flush();
1501 return Comment;
1504 static void printConstant(const APInt &Val, raw_ostream &CS) {
1505 if (Val.getBitWidth() <= 64) {
1506 CS << Val.getZExtValue();
1507 } else {
1508 // print multi-word constant as (w0,w1)
1509 CS << "(";
1510 for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1511 if (i > 0)
1512 CS << ",";
1513 CS << Val.getRawData()[i];
1515 CS << ")";
1519 static void printConstant(const APFloat &Flt, raw_ostream &CS) {
1520 SmallString<32> Str;
1521 // Force scientific notation to distinquish from integers.
1522 Flt.toString(Str, 0, 0);
1523 CS << Str;
1526 static void printConstant(const Constant *COp, raw_ostream &CS) {
1527 if (isa<UndefValue>(COp)) {
1528 CS << "u";
1529 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1530 printConstant(CI->getValue(), CS);
1531 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1532 printConstant(CF->getValueAPF(), CS);
1533 } else {
1534 CS << "?";
1538 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1539 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1540 assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1541 const X86RegisterInfo *RI =
1542 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1544 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1545 if (EmitFPOData) {
1546 X86TargetStreamer *XTS =
1547 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1548 switch (MI->getOpcode()) {
1549 case X86::SEH_PushReg:
1550 XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1551 break;
1552 case X86::SEH_StackAlloc:
1553 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1554 break;
1555 case X86::SEH_StackAlign:
1556 XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1557 break;
1558 case X86::SEH_SetFrame:
1559 assert(MI->getOperand(1).getImm() == 0 &&
1560 ".cv_fpo_setframe takes no offset");
1561 XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1562 break;
1563 case X86::SEH_EndPrologue:
1564 XTS->emitFPOEndPrologue();
1565 break;
1566 case X86::SEH_SaveReg:
1567 case X86::SEH_SaveXMM:
1568 case X86::SEH_PushFrame:
1569 llvm_unreachable("SEH_ directive incompatible with FPO");
1570 break;
1571 default:
1572 llvm_unreachable("expected SEH_ instruction");
1574 return;
1577 // Otherwise, use the .seh_ directives for all other Windows platforms.
1578 switch (MI->getOpcode()) {
1579 case X86::SEH_PushReg:
1580 OutStreamer->EmitWinCFIPushReg(
1581 RI->getSEHRegNum(MI->getOperand(0).getImm()));
1582 break;
1584 case X86::SEH_SaveReg:
1585 OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
1586 MI->getOperand(1).getImm());
1587 break;
1589 case X86::SEH_SaveXMM:
1590 OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
1591 MI->getOperand(1).getImm());
1592 break;
1594 case X86::SEH_StackAlloc:
1595 OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
1596 break;
1598 case X86::SEH_SetFrame:
1599 OutStreamer->EmitWinCFISetFrame(
1600 RI->getSEHRegNum(MI->getOperand(0).getImm()),
1601 MI->getOperand(1).getImm());
1602 break;
1604 case X86::SEH_PushFrame:
1605 OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
1606 break;
1608 case X86::SEH_EndPrologue:
1609 OutStreamer->EmitWinCFIEndProlog();
1610 break;
1612 default:
1613 llvm_unreachable("expected SEH_ instruction");
1617 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1618 if (Info.RegClass == X86::VR128RegClassID ||
1619 Info.RegClass == X86::VR128XRegClassID)
1620 return 128;
1621 if (Info.RegClass == X86::VR256RegClassID ||
1622 Info.RegClass == X86::VR256XRegClassID)
1623 return 256;
1624 if (Info.RegClass == X86::VR512RegClassID)
1625 return 512;
1626 llvm_unreachable("Unknown register class!");
1629 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
1630 X86MCInstLower MCInstLowering(*MF, *this);
1631 const X86RegisterInfo *RI =
1632 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1634 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
1635 // are compressed from EVEX encoding to VEX encoding.
1636 if (TM.Options.MCOptions.ShowMCEncoding) {
1637 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
1638 OutStreamer->AddComment("EVEX TO VEX Compression ", false);
1641 switch (MI->getOpcode()) {
1642 case TargetOpcode::DBG_VALUE:
1643 llvm_unreachable("Should be handled target independently");
1645 // Emit nothing here but a comment if we can.
1646 case X86::Int_MemBarrier:
1647 OutStreamer->emitRawComment("MEMBARRIER");
1648 return;
1650 case X86::EH_RETURN:
1651 case X86::EH_RETURN64: {
1652 // Lower these as normal, but add some comments.
1653 unsigned Reg = MI->getOperand(0).getReg();
1654 OutStreamer->AddComment(StringRef("eh_return, addr: %") +
1655 X86ATTInstPrinter::getRegisterName(Reg));
1656 break;
1658 case X86::CLEANUPRET: {
1659 // Lower these as normal, but add some comments.
1660 OutStreamer->AddComment("CLEANUPRET");
1661 break;
1664 case X86::CATCHRET: {
1665 // Lower these as normal, but add some comments.
1666 OutStreamer->AddComment("CATCHRET");
1667 break;
1670 case X86::TAILJMPr:
1671 case X86::TAILJMPm:
1672 case X86::TAILJMPd:
1673 case X86::TAILJMPd_CC:
1674 case X86::TAILJMPr64:
1675 case X86::TAILJMPm64:
1676 case X86::TAILJMPd64:
1677 case X86::TAILJMPd64_CC:
1678 case X86::TAILJMPr64_REX:
1679 case X86::TAILJMPm64_REX:
1680 // Lower these as normal, but add some comments.
1681 OutStreamer->AddComment("TAILCALL");
1682 break;
1684 case X86::TLS_addr32:
1685 case X86::TLS_addr64:
1686 case X86::TLS_base_addr32:
1687 case X86::TLS_base_addr64:
1688 return LowerTlsAddr(MCInstLowering, *MI);
1690 // Loading/storing mask pairs requires two kmov operations. The second one of these
1691 // needs a 2 byte displacement relative to the specified address (with 32 bit spill
1692 // size). The pairs of 1bit masks up to 16 bit masks all use the same spill size,
1693 // they all are stored using MASKPAIR16STORE, loaded using MASKPAIR16LOAD.
1695 // The displacement value might wrap around in theory, thus the asserts in both
1696 // cases.
1697 case X86::MASKPAIR16LOAD: {
1698 int64_t Disp = MI->getOperand(1 + X86::AddrDisp).getImm();
1699 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
1700 const X86RegisterInfo *RI =
1701 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1702 unsigned Reg = MI->getOperand(0).getReg();
1703 unsigned Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
1704 unsigned Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
1706 // Load the first mask register
1707 MCInstBuilder MIB = MCInstBuilder(X86::KMOVWkm);
1708 MIB.addReg(Reg0);
1709 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1710 auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
1711 MIB.addOperand(Op.getValue());
1713 EmitAndCountInstruction(MIB);
1715 // Load the second mask register of the pair
1716 MIB = MCInstBuilder(X86::KMOVWkm);
1717 MIB.addReg(Reg1);
1718 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1719 if (i == X86::AddrDisp) {
1720 MIB.addImm(Disp + 2);
1721 } else {
1722 auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
1723 MIB.addOperand(Op.getValue());
1726 EmitAndCountInstruction(MIB);
1727 return;
1730 case X86::MASKPAIR16STORE: {
1731 int64_t Disp = MI->getOperand(X86::AddrDisp).getImm();
1732 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
1733 const X86RegisterInfo *RI =
1734 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1735 unsigned Reg = MI->getOperand(X86::AddrNumOperands).getReg();
1736 unsigned Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
1737 unsigned Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
1739 // Store the first mask register
1740 MCInstBuilder MIB = MCInstBuilder(X86::KMOVWmk);
1741 for (int i = 0; i < X86::AddrNumOperands; ++i)
1742 MIB.addOperand(MCInstLowering.LowerMachineOperand(MI, MI->getOperand(i)).getValue());
1743 MIB.addReg(Reg0);
1744 EmitAndCountInstruction(MIB);
1746 // Store the second mask register of the pair
1747 MIB = MCInstBuilder(X86::KMOVWmk);
1748 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1749 if (i == X86::AddrDisp) {
1750 MIB.addImm(Disp + 2);
1751 } else {
1752 auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(0 + i));
1753 MIB.addOperand(Op.getValue());
1756 MIB.addReg(Reg1);
1757 EmitAndCountInstruction(MIB);
1758 return;
1761 case X86::MOVPC32r: {
1762 // This is a pseudo op for a two instruction sequence with a label, which
1763 // looks like:
1764 // call "L1$pb"
1765 // "L1$pb":
1766 // popl %esi
1768 // Emit the call.
1769 MCSymbol *PICBase = MF->getPICBaseSymbol();
1770 // FIXME: We would like an efficient form for this, so we don't have to do a
1771 // lot of extra uniquing.
1772 EmitAndCountInstruction(
1773 MCInstBuilder(X86::CALLpcrel32)
1774 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
1776 const X86FrameLowering *FrameLowering =
1777 MF->getSubtarget<X86Subtarget>().getFrameLowering();
1778 bool hasFP = FrameLowering->hasFP(*MF);
1780 // TODO: This is needed only if we require precise CFA.
1781 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
1782 !OutStreamer->getDwarfFrameInfos().back().End;
1784 int stackGrowth = -RI->getSlotSize();
1786 if (HasActiveDwarfFrame && !hasFP) {
1787 OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
1790 // Emit the label.
1791 OutStreamer->EmitLabel(PICBase);
1793 // popl $reg
1794 EmitAndCountInstruction(
1795 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
1797 if (HasActiveDwarfFrame && !hasFP) {
1798 OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
1800 return;
1803 case X86::ADD32ri: {
1804 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
1805 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
1806 break;
1808 // Okay, we have something like:
1809 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
1811 // For this, we want to print something like:
1812 // MYGLOBAL + (. - PICBASE)
1813 // However, we can't generate a ".", so just emit a new label here and refer
1814 // to it.
1815 MCSymbol *DotSym = OutContext.createTempSymbol();
1816 OutStreamer->EmitLabel(DotSym);
1818 // Now that we have emitted the label, lower the complex operand expression.
1819 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
1821 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
1822 const MCExpr *PICBase =
1823 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
1824 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
1826 DotExpr = MCBinaryExpr::createAdd(
1827 MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
1829 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
1830 .addReg(MI->getOperand(0).getReg())
1831 .addReg(MI->getOperand(1).getReg())
1832 .addExpr(DotExpr));
1833 return;
1835 case TargetOpcode::STATEPOINT:
1836 return LowerSTATEPOINT(*MI, MCInstLowering);
1838 case TargetOpcode::FAULTING_OP:
1839 return LowerFAULTING_OP(*MI, MCInstLowering);
1841 case TargetOpcode::FENTRY_CALL:
1842 return LowerFENTRY_CALL(*MI, MCInstLowering);
1844 case TargetOpcode::PATCHABLE_OP:
1845 return LowerPATCHABLE_OP(*MI, MCInstLowering);
1847 case TargetOpcode::STACKMAP:
1848 return LowerSTACKMAP(*MI);
1850 case TargetOpcode::PATCHPOINT:
1851 return LowerPATCHPOINT(*MI, MCInstLowering);
1853 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
1854 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
1856 case TargetOpcode::PATCHABLE_RET:
1857 return LowerPATCHABLE_RET(*MI, MCInstLowering);
1859 case TargetOpcode::PATCHABLE_TAIL_CALL:
1860 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
1862 case TargetOpcode::PATCHABLE_EVENT_CALL:
1863 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
1865 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
1866 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
1868 case X86::MORESTACK_RET:
1869 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
1870 return;
1872 case X86::MORESTACK_RET_RESTORE_R10:
1873 // Return, then restore R10.
1874 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
1875 EmitAndCountInstruction(
1876 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
1877 return;
1879 case X86::SEH_PushReg:
1880 case X86::SEH_SaveReg:
1881 case X86::SEH_SaveXMM:
1882 case X86::SEH_StackAlloc:
1883 case X86::SEH_StackAlign:
1884 case X86::SEH_SetFrame:
1885 case X86::SEH_PushFrame:
1886 case X86::SEH_EndPrologue:
1887 EmitSEHInstruction(MI);
1888 return;
1890 case X86::SEH_Epilogue: {
1891 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1892 MachineBasicBlock::const_iterator MBBI(MI);
1893 // Check if preceded by a call and emit nop if so.
1894 for (MBBI = PrevCrossBBInst(MBBI);
1895 MBBI != MachineBasicBlock::const_iterator();
1896 MBBI = PrevCrossBBInst(MBBI)) {
1897 // Conservatively assume that pseudo instructions don't emit code and keep
1898 // looking for a call. We may emit an unnecessary nop in some cases.
1899 if (!MBBI->isPseudo()) {
1900 if (MBBI->isCall())
1901 EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
1902 break;
1905 return;
1908 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1909 // a constant shuffle mask. We won't be able to do this at the MC layer
1910 // because the mask isn't an immediate.
1911 case X86::PSHUFBrm:
1912 case X86::VPSHUFBrm:
1913 case X86::VPSHUFBYrm:
1914 case X86::VPSHUFBZ128rm:
1915 case X86::VPSHUFBZ128rmk:
1916 case X86::VPSHUFBZ128rmkz:
1917 case X86::VPSHUFBZ256rm:
1918 case X86::VPSHUFBZ256rmk:
1919 case X86::VPSHUFBZ256rmkz:
1920 case X86::VPSHUFBZrm:
1921 case X86::VPSHUFBZrmk:
1922 case X86::VPSHUFBZrmkz: {
1923 if (!OutStreamer->isVerboseAsm())
1924 break;
1925 unsigned SrcIdx, MaskIdx;
1926 switch (MI->getOpcode()) {
1927 default: llvm_unreachable("Invalid opcode");
1928 case X86::PSHUFBrm:
1929 case X86::VPSHUFBrm:
1930 case X86::VPSHUFBYrm:
1931 case X86::VPSHUFBZ128rm:
1932 case X86::VPSHUFBZ256rm:
1933 case X86::VPSHUFBZrm:
1934 SrcIdx = 1; MaskIdx = 5; break;
1935 case X86::VPSHUFBZ128rmkz:
1936 case X86::VPSHUFBZ256rmkz:
1937 case X86::VPSHUFBZrmkz:
1938 SrcIdx = 2; MaskIdx = 6; break;
1939 case X86::VPSHUFBZ128rmk:
1940 case X86::VPSHUFBZ256rmk:
1941 case X86::VPSHUFBZrmk:
1942 SrcIdx = 3; MaskIdx = 7; break;
1945 assert(MI->getNumOperands() >= 6 &&
1946 "We should always have at least 6 operands!");
1948 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
1949 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1950 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
1951 SmallVector<int, 64> Mask;
1952 DecodePSHUFBMask(C, Width, Mask);
1953 if (!Mask.empty())
1954 OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1956 break;
1959 case X86::VPERMILPSrm:
1960 case X86::VPERMILPSYrm:
1961 case X86::VPERMILPSZ128rm:
1962 case X86::VPERMILPSZ128rmk:
1963 case X86::VPERMILPSZ128rmkz:
1964 case X86::VPERMILPSZ256rm:
1965 case X86::VPERMILPSZ256rmk:
1966 case X86::VPERMILPSZ256rmkz:
1967 case X86::VPERMILPSZrm:
1968 case X86::VPERMILPSZrmk:
1969 case X86::VPERMILPSZrmkz:
1970 case X86::VPERMILPDrm:
1971 case X86::VPERMILPDYrm:
1972 case X86::VPERMILPDZ128rm:
1973 case X86::VPERMILPDZ128rmk:
1974 case X86::VPERMILPDZ128rmkz:
1975 case X86::VPERMILPDZ256rm:
1976 case X86::VPERMILPDZ256rmk:
1977 case X86::VPERMILPDZ256rmkz:
1978 case X86::VPERMILPDZrm:
1979 case X86::VPERMILPDZrmk:
1980 case X86::VPERMILPDZrmkz: {
1981 if (!OutStreamer->isVerboseAsm())
1982 break;
1983 unsigned SrcIdx, MaskIdx;
1984 unsigned ElSize;
1985 switch (MI->getOpcode()) {
1986 default: llvm_unreachable("Invalid opcode");
1987 case X86::VPERMILPSrm:
1988 case X86::VPERMILPSYrm:
1989 case X86::VPERMILPSZ128rm:
1990 case X86::VPERMILPSZ256rm:
1991 case X86::VPERMILPSZrm:
1992 SrcIdx = 1; MaskIdx = 5; ElSize = 32; break;
1993 case X86::VPERMILPSZ128rmkz:
1994 case X86::VPERMILPSZ256rmkz:
1995 case X86::VPERMILPSZrmkz:
1996 SrcIdx = 2; MaskIdx = 6; ElSize = 32; break;
1997 case X86::VPERMILPSZ128rmk:
1998 case X86::VPERMILPSZ256rmk:
1999 case X86::VPERMILPSZrmk:
2000 SrcIdx = 3; MaskIdx = 7; ElSize = 32; break;
2001 case X86::VPERMILPDrm:
2002 case X86::VPERMILPDYrm:
2003 case X86::VPERMILPDZ128rm:
2004 case X86::VPERMILPDZ256rm:
2005 case X86::VPERMILPDZrm:
2006 SrcIdx = 1; MaskIdx = 5; ElSize = 64; break;
2007 case X86::VPERMILPDZ128rmkz:
2008 case X86::VPERMILPDZ256rmkz:
2009 case X86::VPERMILPDZrmkz:
2010 SrcIdx = 2; MaskIdx = 6; ElSize = 64; break;
2011 case X86::VPERMILPDZ128rmk:
2012 case X86::VPERMILPDZ256rmk:
2013 case X86::VPERMILPDZrmk:
2014 SrcIdx = 3; MaskIdx = 7; ElSize = 64; break;
2017 assert(MI->getNumOperands() >= 6 &&
2018 "We should always have at least 6 operands!");
2020 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2021 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2022 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2023 SmallVector<int, 16> Mask;
2024 DecodeVPERMILPMask(C, ElSize, Width, Mask);
2025 if (!Mask.empty())
2026 OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2028 break;
2031 case X86::VPERMIL2PDrm:
2032 case X86::VPERMIL2PSrm:
2033 case X86::VPERMIL2PDYrm:
2034 case X86::VPERMIL2PSYrm: {
2035 if (!OutStreamer->isVerboseAsm())
2036 break;
2037 assert(MI->getNumOperands() >= 8 &&
2038 "We should always have at least 8 operands!");
2040 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
2041 if (!CtrlOp.isImm())
2042 break;
2044 unsigned ElSize;
2045 switch (MI->getOpcode()) {
2046 default: llvm_unreachable("Invalid opcode");
2047 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
2048 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
2051 const MachineOperand &MaskOp = MI->getOperand(6);
2052 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2053 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2054 SmallVector<int, 16> Mask;
2055 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
2056 if (!Mask.empty())
2057 OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
2059 break;
2062 case X86::VPPERMrrm: {
2063 if (!OutStreamer->isVerboseAsm())
2064 break;
2065 assert(MI->getNumOperands() >= 7 &&
2066 "We should always have at least 7 operands!");
2068 const MachineOperand &MaskOp = MI->getOperand(6);
2069 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2070 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2071 SmallVector<int, 16> Mask;
2072 DecodeVPPERMMask(C, Width, Mask);
2073 if (!Mask.empty())
2074 OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
2076 break;
2079 case X86::MMX_MOVQ64rm: {
2080 if (!OutStreamer->isVerboseAsm())
2081 break;
2082 if (MI->getNumOperands() <= 4)
2083 break;
2084 if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2085 std::string Comment;
2086 raw_string_ostream CS(Comment);
2087 const MachineOperand &DstOp = MI->getOperand(0);
2088 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2089 if (auto *CF = dyn_cast<ConstantFP>(C)) {
2090 CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false);
2091 OutStreamer->AddComment(CS.str());
2094 break;
2097 #define MOV_CASE(Prefix, Suffix) \
2098 case X86::Prefix##MOVAPD##Suffix##rm: \
2099 case X86::Prefix##MOVAPS##Suffix##rm: \
2100 case X86::Prefix##MOVUPD##Suffix##rm: \
2101 case X86::Prefix##MOVUPS##Suffix##rm: \
2102 case X86::Prefix##MOVDQA##Suffix##rm: \
2103 case X86::Prefix##MOVDQU##Suffix##rm:
2105 #define MOV_AVX512_CASE(Suffix) \
2106 case X86::VMOVDQA64##Suffix##rm: \
2107 case X86::VMOVDQA32##Suffix##rm: \
2108 case X86::VMOVDQU64##Suffix##rm: \
2109 case X86::VMOVDQU32##Suffix##rm: \
2110 case X86::VMOVDQU16##Suffix##rm: \
2111 case X86::VMOVDQU8##Suffix##rm: \
2112 case X86::VMOVAPS##Suffix##rm: \
2113 case X86::VMOVAPD##Suffix##rm: \
2114 case X86::VMOVUPS##Suffix##rm: \
2115 case X86::VMOVUPD##Suffix##rm:
2117 #define CASE_ALL_MOV_RM() \
2118 MOV_CASE(, ) /* SSE */ \
2119 MOV_CASE(V, ) /* AVX-128 */ \
2120 MOV_CASE(V, Y) /* AVX-256 */ \
2121 MOV_AVX512_CASE(Z) \
2122 MOV_AVX512_CASE(Z256) \
2123 MOV_AVX512_CASE(Z128)
2125 // For loads from a constant pool to a vector register, print the constant
2126 // loaded.
2127 CASE_ALL_MOV_RM()
2128 case X86::VBROADCASTF128:
2129 case X86::VBROADCASTI128:
2130 case X86::VBROADCASTF32X4Z256rm:
2131 case X86::VBROADCASTF32X4rm:
2132 case X86::VBROADCASTF32X8rm:
2133 case X86::VBROADCASTF64X2Z128rm:
2134 case X86::VBROADCASTF64X2rm:
2135 case X86::VBROADCASTF64X4rm:
2136 case X86::VBROADCASTI32X4Z256rm:
2137 case X86::VBROADCASTI32X4rm:
2138 case X86::VBROADCASTI32X8rm:
2139 case X86::VBROADCASTI64X2Z128rm:
2140 case X86::VBROADCASTI64X2rm:
2141 case X86::VBROADCASTI64X4rm:
2142 if (!OutStreamer->isVerboseAsm())
2143 break;
2144 if (MI->getNumOperands() <= 4)
2145 break;
2146 if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2147 int NumLanes = 1;
2148 // Override NumLanes for the broadcast instructions.
2149 switch (MI->getOpcode()) {
2150 case X86::VBROADCASTF128: NumLanes = 2; break;
2151 case X86::VBROADCASTI128: NumLanes = 2; break;
2152 case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
2153 case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
2154 case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
2155 case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
2156 case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
2157 case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
2158 case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
2159 case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
2160 case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
2161 case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
2162 case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
2163 case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
2166 std::string Comment;
2167 raw_string_ostream CS(Comment);
2168 const MachineOperand &DstOp = MI->getOperand(0);
2169 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2170 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
2171 CS << "[";
2172 for (int l = 0; l != NumLanes; ++l) {
2173 for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
2174 ++i) {
2175 if (i != 0 || l != 0)
2176 CS << ",";
2177 if (CDS->getElementType()->isIntegerTy())
2178 printConstant(CDS->getElementAsAPInt(i), CS);
2179 else if (CDS->getElementType()->isHalfTy() ||
2180 CDS->getElementType()->isFloatTy() ||
2181 CDS->getElementType()->isDoubleTy())
2182 printConstant(CDS->getElementAsAPFloat(i), CS);
2183 else
2184 CS << "?";
2187 CS << "]";
2188 OutStreamer->AddComment(CS.str());
2189 } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
2190 CS << "<";
2191 for (int l = 0; l != NumLanes; ++l) {
2192 for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
2193 ++i) {
2194 if (i != 0 || l != 0)
2195 CS << ",";
2196 printConstant(CV->getOperand(i), CS);
2199 CS << ">";
2200 OutStreamer->AddComment(CS.str());
2203 break;
2204 case X86::MOVDDUPrm:
2205 case X86::VMOVDDUPrm:
2206 case X86::VMOVDDUPZ128rm:
2207 case X86::VBROADCASTSSrm:
2208 case X86::VBROADCASTSSYrm:
2209 case X86::VBROADCASTSSZ128m:
2210 case X86::VBROADCASTSSZ256m:
2211 case X86::VBROADCASTSSZm:
2212 case X86::VBROADCASTSDYrm:
2213 case X86::VBROADCASTSDZ256m:
2214 case X86::VBROADCASTSDZm:
2215 case X86::VPBROADCASTBrm:
2216 case X86::VPBROADCASTBYrm:
2217 case X86::VPBROADCASTBZ128m:
2218 case X86::VPBROADCASTBZ256m:
2219 case X86::VPBROADCASTBZm:
2220 case X86::VPBROADCASTDrm:
2221 case X86::VPBROADCASTDYrm:
2222 case X86::VPBROADCASTDZ128m:
2223 case X86::VPBROADCASTDZ256m:
2224 case X86::VPBROADCASTDZm:
2225 case X86::VPBROADCASTQrm:
2226 case X86::VPBROADCASTQYrm:
2227 case X86::VPBROADCASTQZ128m:
2228 case X86::VPBROADCASTQZ256m:
2229 case X86::VPBROADCASTQZm:
2230 case X86::VPBROADCASTWrm:
2231 case X86::VPBROADCASTWYrm:
2232 case X86::VPBROADCASTWZ128m:
2233 case X86::VPBROADCASTWZ256m:
2234 case X86::VPBROADCASTWZm:
2235 if (!OutStreamer->isVerboseAsm())
2236 break;
2237 if (MI->getNumOperands() <= 4)
2238 break;
2239 if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2240 int NumElts;
2241 switch (MI->getOpcode()) {
2242 default: llvm_unreachable("Invalid opcode");
2243 case X86::MOVDDUPrm: NumElts = 2; break;
2244 case X86::VMOVDDUPrm: NumElts = 2; break;
2245 case X86::VMOVDDUPZ128rm: NumElts = 2; break;
2246 case X86::VBROADCASTSSrm: NumElts = 4; break;
2247 case X86::VBROADCASTSSYrm: NumElts = 8; break;
2248 case X86::VBROADCASTSSZ128m: NumElts = 4; break;
2249 case X86::VBROADCASTSSZ256m: NumElts = 8; break;
2250 case X86::VBROADCASTSSZm: NumElts = 16; break;
2251 case X86::VBROADCASTSDYrm: NumElts = 4; break;
2252 case X86::VBROADCASTSDZ256m: NumElts = 4; break;
2253 case X86::VBROADCASTSDZm: NumElts = 8; break;
2254 case X86::VPBROADCASTBrm: NumElts = 16; break;
2255 case X86::VPBROADCASTBYrm: NumElts = 32; break;
2256 case X86::VPBROADCASTBZ128m: NumElts = 16; break;
2257 case X86::VPBROADCASTBZ256m: NumElts = 32; break;
2258 case X86::VPBROADCASTBZm: NumElts = 64; break;
2259 case X86::VPBROADCASTDrm: NumElts = 4; break;
2260 case X86::VPBROADCASTDYrm: NumElts = 8; break;
2261 case X86::VPBROADCASTDZ128m: NumElts = 4; break;
2262 case X86::VPBROADCASTDZ256m: NumElts = 8; break;
2263 case X86::VPBROADCASTDZm: NumElts = 16; break;
2264 case X86::VPBROADCASTQrm: NumElts = 2; break;
2265 case X86::VPBROADCASTQYrm: NumElts = 4; break;
2266 case X86::VPBROADCASTQZ128m: NumElts = 2; break;
2267 case X86::VPBROADCASTQZ256m: NumElts = 4; break;
2268 case X86::VPBROADCASTQZm: NumElts = 8; break;
2269 case X86::VPBROADCASTWrm: NumElts = 8; break;
2270 case X86::VPBROADCASTWYrm: NumElts = 16; break;
2271 case X86::VPBROADCASTWZ128m: NumElts = 8; break;
2272 case X86::VPBROADCASTWZ256m: NumElts = 16; break;
2273 case X86::VPBROADCASTWZm: NumElts = 32; break;
2276 std::string Comment;
2277 raw_string_ostream CS(Comment);
2278 const MachineOperand &DstOp = MI->getOperand(0);
2279 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2280 CS << "[";
2281 for (int i = 0; i != NumElts; ++i) {
2282 if (i != 0)
2283 CS << ",";
2284 printConstant(C, CS);
2286 CS << "]";
2287 OutStreamer->AddComment(CS.str());
2291 MCInst TmpInst;
2292 MCInstLowering.Lower(MI, TmpInst);
2294 // Stackmap shadows cannot include branch targets, so we can count the bytes
2295 // in a call towards the shadow, but must ensure that the no thread returns
2296 // in to the stackmap shadow. The only way to achieve this is if the call
2297 // is at the end of the shadow.
2298 if (MI->isCall()) {
2299 // Count then size of the call towards the shadow
2300 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2301 // Then flush the shadow so that we fill with nops before the call, not
2302 // after it.
2303 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2304 // Then emit the call
2305 OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
2306 return;
2309 EmitAndCountInstruction(TmpInst);