1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAG class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
81 SDVTList Res
= {VTs
, NumVTs
};
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode
*, SDNode
*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode
*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode
*) {}
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
92 #define DEBUG_TYPE "selectiondag"
94 static cl::opt
<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95 cl::Hidden
, cl::init(true),
96 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
98 static cl::opt
<int> MaxLdStGlue("ldstmemcpy-glue-max",
99 cl::desc("Number limit for gluing ld/st of memcpy."),
100 cl::Hidden
, cl::init(0));
102 static void NewSDValueDbgMsg(SDValue V
, StringRef Msg
, SelectionDAG
*G
) {
103 LLVM_DEBUG(dbgs() << Msg
; V
.getNode()->dump(G
););
106 //===----------------------------------------------------------------------===//
107 // ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
115 return getValueAPF().bitwiseIsEqual(V
);
118 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
119 const APFloat
& Val
) {
120 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
122 // convert modifies in place, so make a copy.
123 APFloat Val2
= APFloat(Val
);
125 (void) Val2
.convert(SelectionDAG::EVTToAPFloatSemantics(VT
),
126 APFloat::rmNearestTiesToEven
,
131 //===----------------------------------------------------------------------===//
133 //===----------------------------------------------------------------------===//
135 bool ISD::isConstantSplatVector(const SDNode
*N
, APInt
&SplatVal
) {
136 auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
);
141 unsigned SplatBitSize
;
143 unsigned EltSize
= N
->getValueType(0).getVectorElementType().getSizeInBits();
144 return BV
->isConstantSplat(SplatVal
, SplatUndef
, SplatBitSize
, HasUndefs
,
146 EltSize
== SplatBitSize
;
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
152 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
153 // Look through a bit convert.
154 while (N
->getOpcode() == ISD::BITCAST
)
155 N
= N
->getOperand(0).getNode();
157 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
159 unsigned i
= 0, e
= N
->getNumOperands();
161 // Skip over all of the undef values.
162 while (i
!= e
&& N
->getOperand(i
).isUndef())
165 // Do not accept an all-undef vector.
166 if (i
== e
) return false;
168 // Do not accept build_vectors that aren't all constants or which have non-~0
169 // elements. We have to be a bit careful here, as the type of the constant
170 // may not be the same as the type of the vector elements due to type
171 // legalization (the elements are promoted to a legal type for the target and
172 // a vector of a type may be legal when the base element type is not).
173 // We only want to check enough bits to cover the vector elements, because
174 // we care if the resultant vector is all ones, not whether the individual
176 SDValue NotZero
= N
->getOperand(i
);
177 unsigned EltSize
= N
->getValueType(0).getScalarSizeInBits();
178 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(NotZero
)) {
179 if (CN
->getAPIntValue().countTrailingOnes() < EltSize
)
181 } else if (ConstantFPSDNode
*CFPN
= dyn_cast
<ConstantFPSDNode
>(NotZero
)) {
182 if (CFPN
->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize
)
187 // Okay, we have at least one ~0 value, check to see if the rest match or are
188 // undefs. Even with the above element type twiddling, this should be OK, as
189 // the same type legalization should have applied to all the elements.
190 for (++i
; i
!= e
; ++i
)
191 if (N
->getOperand(i
) != NotZero
&& !N
->getOperand(i
).isUndef())
196 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
197 // Look through a bit convert.
198 while (N
->getOpcode() == ISD::BITCAST
)
199 N
= N
->getOperand(0).getNode();
201 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
203 bool IsAllUndef
= true;
204 for (const SDValue
&Op
: N
->op_values()) {
208 // Do not accept build_vectors that aren't all constants or which have non-0
209 // elements. We have to be a bit careful here, as the type of the constant
210 // may not be the same as the type of the vector elements due to type
211 // legalization (the elements are promoted to a legal type for the target
212 // and a vector of a type may be legal when the base element type is not).
213 // We only want to check enough bits to cover the vector elements, because
214 // we care if the resultant vector is all zeros, not whether the individual
216 unsigned EltSize
= N
->getValueType(0).getScalarSizeInBits();
217 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Op
)) {
218 if (CN
->getAPIntValue().countTrailingZeros() < EltSize
)
220 } else if (ConstantFPSDNode
*CFPN
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
221 if (CFPN
->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize
)
227 // Do not accept an all-undef vector.
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode
*N
) {
234 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
237 for (const SDValue
&Op
: N
->op_values()) {
240 if (!isa
<ConstantSDNode
>(Op
))
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode
*N
) {
247 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
250 for (const SDValue
&Op
: N
->op_values()) {
253 if (!isa
<ConstantFPSDNode
>(Op
))
259 bool ISD::allOperandsUndef(const SDNode
*N
) {
260 // Return false if the node has no operands.
261 // This is "logically inconsistent" with the definition of "all" but
262 // is probably the desired behavior.
263 if (N
->getNumOperands() == 0)
265 return all_of(N
->op_values(), [](SDValue Op
) { return Op
.isUndef(); });
268 bool ISD::matchUnaryPredicate(SDValue Op
,
269 std::function
<bool(ConstantSDNode
*)> Match
,
271 // FIXME: Add support for scalar UNDEF cases?
272 if (auto *Cst
= dyn_cast
<ConstantSDNode
>(Op
))
275 // FIXME: Add support for vector UNDEF cases?
276 if (ISD::BUILD_VECTOR
!= Op
.getOpcode())
279 EVT SVT
= Op
.getValueType().getScalarType();
280 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
!= e
; ++i
) {
281 if (AllowUndefs
&& Op
.getOperand(i
).isUndef()) {
287 auto *Cst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(i
));
288 if (!Cst
|| Cst
->getValueType(0) != SVT
|| !Match(Cst
))
294 bool ISD::matchBinaryPredicate(
295 SDValue LHS
, SDValue RHS
,
296 std::function
<bool(ConstantSDNode
*, ConstantSDNode
*)> Match
,
297 bool AllowUndefs
, bool AllowTypeMismatch
) {
298 if (!AllowTypeMismatch
&& LHS
.getValueType() != RHS
.getValueType())
301 // TODO: Add support for scalar UNDEF cases?
302 if (auto *LHSCst
= dyn_cast
<ConstantSDNode
>(LHS
))
303 if (auto *RHSCst
= dyn_cast
<ConstantSDNode
>(RHS
))
304 return Match(LHSCst
, RHSCst
);
306 // TODO: Add support for vector UNDEF cases?
307 if (ISD::BUILD_VECTOR
!= LHS
.getOpcode() ||
308 ISD::BUILD_VECTOR
!= RHS
.getOpcode())
311 EVT SVT
= LHS
.getValueType().getScalarType();
312 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
313 SDValue LHSOp
= LHS
.getOperand(i
);
314 SDValue RHSOp
= RHS
.getOperand(i
);
315 bool LHSUndef
= AllowUndefs
&& LHSOp
.isUndef();
316 bool RHSUndef
= AllowUndefs
&& RHSOp
.isUndef();
317 auto *LHSCst
= dyn_cast
<ConstantSDNode
>(LHSOp
);
318 auto *RHSCst
= dyn_cast
<ConstantSDNode
>(RHSOp
);
319 if ((!LHSCst
&& !LHSUndef
) || (!RHSCst
&& !RHSUndef
))
321 if (!AllowTypeMismatch
&& (LHSOp
.getValueType() != SVT
||
322 LHSOp
.getValueType() != RHSOp
.getValueType()))
324 if (!Match(LHSCst
, RHSCst
))
330 ISD::NodeType
ISD::getExtForLoadExtType(bool IsFP
, ISD::LoadExtType ExtType
) {
333 return IsFP
? ISD::FP_EXTEND
: ISD::ANY_EXTEND
;
335 return ISD::SIGN_EXTEND
;
337 return ISD::ZERO_EXTEND
;
342 llvm_unreachable("Invalid LoadExtType");
345 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
346 // To perform this operation, we just need to swap the L and G bits of the
348 unsigned OldL
= (Operation
>> 2) & 1;
349 unsigned OldG
= (Operation
>> 1) & 1;
350 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
351 (OldL
<< 1) | // New G bit
352 (OldG
<< 2)); // New L bit.
355 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
356 unsigned Operation
= Op
;
358 Operation
^= 7; // Flip L, G, E bits, but not U.
360 Operation
^= 15; // Flip all of the condition bits.
362 if (Operation
> ISD::SETTRUE2
)
363 Operation
&= ~8; // Don't let N and U bits get set.
365 return ISD::CondCode(Operation
);
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode
) {
373 default: llvm_unreachable("Illegal integer setcc operation!");
375 case ISD::SETNE
: return 0;
379 case ISD::SETGE
: return 1;
383 case ISD::SETUGE
: return 2;
387 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
389 if (IsInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
390 // Cannot fold a signed integer setcc with an unsigned integer setcc.
391 return ISD::SETCC_INVALID
;
393 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
395 // If the N and U bits get set, then the resultant comparison DOES suddenly
396 // care about orderedness, and it is true when ordered.
397 if (Op
> ISD::SETTRUE2
)
398 Op
&= ~16; // Clear the U bit if the N bit is set.
400 // Canonicalize illegal integer setcc's.
401 if (IsInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
404 return ISD::CondCode(Op
);
407 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
409 if (IsInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
410 // Cannot fold a signed setcc with an unsigned setcc.
411 return ISD::SETCC_INVALID
;
413 // Combine all of the condition bits.
414 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
416 // Canonicalize illegal integer setcc's.
420 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
421 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
422 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
423 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
424 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
431 //===----------------------------------------------------------------------===//
432 // SDNode Profile Support
433 //===----------------------------------------------------------------------===//
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
443 ID
.AddPointer(VTList
.VTs
);
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
448 ArrayRef
<SDValue
> Ops
) {
449 for (auto& Op
: Ops
) {
450 ID
.AddPointer(Op
.getNode());
451 ID
.AddInteger(Op
.getResNo());
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
457 ArrayRef
<SDUse
> Ops
) {
458 for (auto& Op
: Ops
) {
459 ID
.AddPointer(Op
.getNode());
460 ID
.AddInteger(Op
.getResNo());
464 static void AddNodeIDNode(FoldingSetNodeID
&ID
, unsigned short OpC
,
465 SDVTList VTList
, ArrayRef
<SDValue
> OpList
) {
466 AddNodeIDOpcode(ID
, OpC
);
467 AddNodeIDValueTypes(ID
, VTList
);
468 AddNodeIDOperands(ID
, OpList
);
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
473 switch (N
->getOpcode()) {
474 case ISD::TargetExternalSymbol
:
475 case ISD::ExternalSymbol
:
477 llvm_unreachable("Should only be used on nodes with operands");
478 default: break; // Normal nodes don't need extra info.
479 case ISD::TargetConstant
:
480 case ISD::Constant
: {
481 const ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
);
482 ID
.AddPointer(C
->getConstantIntValue());
483 ID
.AddBoolean(C
->isOpaque());
486 case ISD::TargetConstantFP
:
487 case ISD::ConstantFP
:
488 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
490 case ISD::TargetGlobalAddress
:
491 case ISD::GlobalAddress
:
492 case ISD::TargetGlobalTLSAddress
:
493 case ISD::GlobalTLSAddress
: {
494 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
495 ID
.AddPointer(GA
->getGlobal());
496 ID
.AddInteger(GA
->getOffset());
497 ID
.AddInteger(GA
->getTargetFlags());
500 case ISD::BasicBlock
:
501 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
504 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
506 case ISD::RegisterMask
:
507 ID
.AddPointer(cast
<RegisterMaskSDNode
>(N
)->getRegMask());
510 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
512 case ISD::FrameIndex
:
513 case ISD::TargetFrameIndex
:
514 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
516 case ISD::LIFETIME_START
:
517 case ISD::LIFETIME_END
:
518 if (cast
<LifetimeSDNode
>(N
)->hasOffset()) {
519 ID
.AddInteger(cast
<LifetimeSDNode
>(N
)->getSize());
520 ID
.AddInteger(cast
<LifetimeSDNode
>(N
)->getOffset());
524 case ISD::TargetJumpTable
:
525 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
526 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
528 case ISD::ConstantPool
:
529 case ISD::TargetConstantPool
: {
530 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
531 ID
.AddInteger(CP
->getAlignment());
532 ID
.AddInteger(CP
->getOffset());
533 if (CP
->isMachineConstantPoolEntry())
534 CP
->getMachineCPVal()->addSelectionDAGCSEId(ID
);
536 ID
.AddPointer(CP
->getConstVal());
537 ID
.AddInteger(CP
->getTargetFlags());
540 case ISD::TargetIndex
: {
541 const TargetIndexSDNode
*TI
= cast
<TargetIndexSDNode
>(N
);
542 ID
.AddInteger(TI
->getIndex());
543 ID
.AddInteger(TI
->getOffset());
544 ID
.AddInteger(TI
->getTargetFlags());
548 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
549 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
550 ID
.AddInteger(LD
->getRawSubclassData());
551 ID
.AddInteger(LD
->getPointerInfo().getAddrSpace());
555 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
556 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
557 ID
.AddInteger(ST
->getRawSubclassData());
558 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
562 const MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
563 ID
.AddInteger(MLD
->getMemoryVT().getRawBits());
564 ID
.AddInteger(MLD
->getRawSubclassData());
565 ID
.AddInteger(MLD
->getPointerInfo().getAddrSpace());
569 const MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
570 ID
.AddInteger(MST
->getMemoryVT().getRawBits());
571 ID
.AddInteger(MST
->getRawSubclassData());
572 ID
.AddInteger(MST
->getPointerInfo().getAddrSpace());
576 const MaskedGatherSDNode
*MG
= cast
<MaskedGatherSDNode
>(N
);
577 ID
.AddInteger(MG
->getMemoryVT().getRawBits());
578 ID
.AddInteger(MG
->getRawSubclassData());
579 ID
.AddInteger(MG
->getPointerInfo().getAddrSpace());
582 case ISD::MSCATTER
: {
583 const MaskedScatterSDNode
*MS
= cast
<MaskedScatterSDNode
>(N
);
584 ID
.AddInteger(MS
->getMemoryVT().getRawBits());
585 ID
.AddInteger(MS
->getRawSubclassData());
586 ID
.AddInteger(MS
->getPointerInfo().getAddrSpace());
589 case ISD::ATOMIC_CMP_SWAP
:
590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
591 case ISD::ATOMIC_SWAP
:
592 case ISD::ATOMIC_LOAD_ADD
:
593 case ISD::ATOMIC_LOAD_SUB
:
594 case ISD::ATOMIC_LOAD_AND
:
595 case ISD::ATOMIC_LOAD_CLR
:
596 case ISD::ATOMIC_LOAD_OR
:
597 case ISD::ATOMIC_LOAD_XOR
:
598 case ISD::ATOMIC_LOAD_NAND
:
599 case ISD::ATOMIC_LOAD_MIN
:
600 case ISD::ATOMIC_LOAD_MAX
:
601 case ISD::ATOMIC_LOAD_UMIN
:
602 case ISD::ATOMIC_LOAD_UMAX
:
603 case ISD::ATOMIC_LOAD
:
604 case ISD::ATOMIC_STORE
: {
605 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
606 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
607 ID
.AddInteger(AT
->getRawSubclassData());
608 ID
.AddInteger(AT
->getPointerInfo().getAddrSpace());
611 case ISD::PREFETCH
: {
612 const MemSDNode
*PF
= cast
<MemSDNode
>(N
);
613 ID
.AddInteger(PF
->getPointerInfo().getAddrSpace());
616 case ISD::VECTOR_SHUFFLE
: {
617 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
618 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
620 ID
.AddInteger(SVN
->getMaskElt(i
));
623 case ISD::TargetBlockAddress
:
624 case ISD::BlockAddress
: {
625 const BlockAddressSDNode
*BA
= cast
<BlockAddressSDNode
>(N
);
626 ID
.AddPointer(BA
->getBlockAddress());
627 ID
.AddInteger(BA
->getOffset());
628 ID
.AddInteger(BA
->getTargetFlags());
631 } // end switch (N->getOpcode())
633 // Target specific memory nodes could also have address spaces to check.
634 if (N
->isTargetMemoryOpcode())
635 ID
.AddInteger(cast
<MemSDNode
>(N
)->getPointerInfo().getAddrSpace());
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
640 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
641 AddNodeIDOpcode(ID
, N
->getOpcode());
642 // Add the return value info.
643 AddNodeIDValueTypes(ID
, N
->getVTList());
644 // Add the operand info.
645 AddNodeIDOperands(ID
, N
->ops());
647 // Handle SDNode leafs with special info.
648 AddNodeIDCustom(ID
, N
);
651 //===----------------------------------------------------------------------===//
652 // SelectionDAG Class
653 //===----------------------------------------------------------------------===//
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode
*N
) {
657 if (N
->getValueType(0) == MVT::Glue
)
658 return true; // Never CSE anything that produces a flag.
660 switch (N
->getOpcode()) {
662 case ISD::HANDLENODE
:
664 return true; // Never CSE these nodes.
667 // Check that remaining values produced are not flags.
668 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
669 if (N
->getValueType(i
) == MVT::Glue
)
670 return true; // Never CSE anything that produces a flag.
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
677 void SelectionDAG::RemoveDeadNodes() {
678 // Create a dummy node (which is not added to allnodes), that adds a reference
679 // to the root node, preventing it from being deleted.
680 HandleSDNode
Dummy(getRoot());
682 SmallVector
<SDNode
*, 128> DeadNodes
;
684 // Add all obviously-dead nodes to the DeadNodes worklist.
685 for (SDNode
&Node
: allnodes())
686 if (Node
.use_empty())
687 DeadNodes
.push_back(&Node
);
689 RemoveDeadNodes(DeadNodes
);
691 // If the root changed (e.g. it was a dead load, update the root).
692 setRoot(Dummy
.getValue());
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
) {
699 // Process the worklist, deleting the nodes and adding their uses to the
701 while (!DeadNodes
.empty()) {
702 SDNode
*N
= DeadNodes
.pop_back_val();
703 // Skip to next node if we've already managed to delete the node. This could
704 // happen if replacing a node causes a node previously added to the node to
706 if (N
->getOpcode() == ISD::DELETED_NODE
)
709 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
710 DUL
->NodeDeleted(N
, nullptr);
712 // Take the node out of the appropriate CSE map.
713 RemoveNodeFromCSEMaps(N
);
715 // Next, brutally remove the operand list. This is safe to do, as there are
716 // no cycles in the graph.
717 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
719 SDNode
*Operand
= Use
.getNode();
722 // Now that we removed this operand, see if there are no uses of it left.
723 if (Operand
->use_empty())
724 DeadNodes
.push_back(Operand
);
731 void SelectionDAG::RemoveDeadNode(SDNode
*N
){
732 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
734 // Create a dummy node that adds a reference to the root node, preventing
735 // it from being deleted. (This matters if the root is an operand of the
737 HandleSDNode
Dummy(getRoot());
739 RemoveDeadNodes(DeadNodes
);
742 void SelectionDAG::DeleteNode(SDNode
*N
) {
743 // First take this out of the appropriate CSE map.
744 RemoveNodeFromCSEMaps(N
);
746 // Finally, remove uses due to operands of this node, remove from the
747 // AllNodes list, and delete the node.
748 DeleteNodeNotInCSEMaps(N
);
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
752 assert(N
->getIterator() != AllNodes
.begin() &&
753 "Cannot delete the entry node!");
754 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
756 // Drop all of the operands and decrement used node's use counts.
762 void SDDbgInfo::erase(const SDNode
*Node
) {
763 DbgValMapType::iterator I
= DbgValMap
.find(Node
);
764 if (I
== DbgValMap
.end())
766 for (auto &Val
: I
->second
)
767 Val
->setIsInvalidated();
771 void SelectionDAG::DeallocateNode(SDNode
*N
) {
772 // If we have operands, deallocate them.
775 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
777 // Set the opcode to DELETED_NODE to help catch bugs when node
778 // memory is reallocated.
779 // FIXME: There are places in SDag that have grown a dependency on the opcode
780 // value in the released node.
781 __asan_unpoison_memory_region(&N
->NodeType
, sizeof(N
->NodeType
));
782 N
->NodeType
= ISD::DELETED_NODE
;
784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785 // them and forget about that node.
790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
791 static void VerifySDNode(SDNode
*N
) {
792 switch (N
->getOpcode()) {
795 case ISD::BUILD_PAIR
: {
796 EVT VT
= N
->getValueType(0);
797 assert(N
->getNumValues() == 1 && "Too many results!");
798 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
799 "Wrong return type!");
800 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
801 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
802 "Mismatched operand types!");
803 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
804 "Wrong operand type!");
805 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
806 "Wrong return type size");
809 case ISD::BUILD_VECTOR
: {
810 assert(N
->getNumValues() == 1 && "Too many results!");
811 assert(N
->getValueType(0).isVector() && "Wrong return type!");
812 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
813 "Wrong number of operands!");
814 EVT EltVT
= N
->getValueType(0).getVectorElementType();
815 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
) {
816 assert((I
->getValueType() == EltVT
||
817 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
818 EltVT
.bitsLE(I
->getValueType()))) &&
819 "Wrong operand type!");
820 assert(I
->getValueType() == N
->getOperand(0).getValueType() &&
821 "Operands must all have the same type");
829 /// Insert a newly allocated node into the DAG.
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode
*N
) {
834 AllNodes
.push_back(N
);
836 N
->PersistentId
= NextPersistentId
++;
839 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
840 DUL
->NodeInserted(N
);
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it. This is useful when we're about to delete or repurpose
845 /// the node. We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
849 switch (N
->getOpcode()) {
850 case ISD::HANDLENODE
: return false; // noop.
852 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
853 "Cond code doesn't exist!");
854 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != nullptr;
855 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = nullptr;
857 case ISD::ExternalSymbol
:
858 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
860 case ISD::TargetExternalSymbol
: {
861 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
862 Erased
= TargetExternalSymbols
.erase(std::pair
<std::string
, unsigned>(
863 ESN
->getSymbol(), ESN
->getTargetFlags()));
866 case ISD::MCSymbol
: {
867 auto *MCSN
= cast
<MCSymbolSDNode
>(N
);
868 Erased
= MCSymbols
.erase(MCSN
->getMCSymbol());
871 case ISD::VALUETYPE
: {
872 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
873 if (VT
.isExtended()) {
874 Erased
= ExtendedValueTypeNodes
.erase(VT
);
876 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != nullptr;
877 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = nullptr;
882 // Remove it from the CSE Map.
883 assert(N
->getOpcode() != ISD::DELETED_NODE
&& "DELETED_NODE in CSEMap!");
884 assert(N
->getOpcode() != ISD::EntryToken
&& "EntryToken in CSEMap!");
885 Erased
= CSEMap
.RemoveNode(N
);
889 // Verify that the node was actually in one of the CSE maps, unless it has a
890 // flag result (which cannot be CSE'd) or is one of the special cases that are
891 // not subject to CSE.
892 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Glue
&&
893 !N
->isMachineOpcode() && !doNotCSE(N
)) {
896 llvm_unreachable("Node is not in map!");
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
) {
908 // For node types that aren't CSE'd, just act as if no identical node
911 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
913 // If there was already an existing matching node, use ReplaceAllUsesWith
914 // to replace the dead one with the existing one. This can cause
915 // recursive merging of other unrelated nodes down the line.
916 ReplaceAllUsesWith(N
, Existing
);
918 // N is now dead. Inform the listeners and delete it.
919 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
920 DUL
->NodeDeleted(N
, Existing
);
921 DeleteNodeNotInCSEMaps(N
);
926 // If the node doesn't already exist, we updated it. Inform listeners.
927 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified. If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take. If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
940 SDValue Ops
[] = { Op
};
942 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
943 AddNodeIDCustom(ID
, N
);
944 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
946 Node
->intersectFlagsWith(N
->getFlags());
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified. If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take. If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
955 SDValue Op1
, SDValue Op2
,
960 SDValue Ops
[] = { Op1
, Op2
};
962 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
963 AddNodeIDCustom(ID
, N
);
964 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
966 Node
->intersectFlagsWith(N
->getFlags());
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified. If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take. If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
980 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
981 AddNodeIDCustom(ID
, N
);
982 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
984 Node
->intersectFlagsWith(N
->getFlags());
988 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
989 Type
*Ty
= VT
== MVT::iPTR
?
990 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991 VT
.getTypeForEVT(*getContext());
993 return getDataLayout().getABITypeAlignment(Ty
);
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine
&tm
, CodeGenOpt::Level OL
)
998 : TM(tm
), OptLevel(OL
),
999 EntryNode(ISD::EntryToken
, 0, DebugLoc(), getVTList(MVT::Other
)),
1000 Root(getEntryNode()) {
1001 InsertNode(&EntryNode
);
1002 DbgInfo
= new SDDbgInfo();
1005 void SelectionDAG::init(MachineFunction
&NewMF
,
1006 OptimizationRemarkEmitter
&NewORE
,
1007 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
1008 LegacyDivergenceAnalysis
* Divergence
) {
1010 SDAGISelPass
= PassPtr
;
1012 TLI
= getSubtarget().getTargetLowering();
1013 TSI
= getSubtarget().getSelectionDAGInfo();
1014 LibInfo
= LibraryInfo
;
1015 Context
= &MF
->getFunction().getContext();
1019 SelectionDAG::~SelectionDAG() {
1020 assert(!UpdateListeners
&& "Dangling registered DAGUpdateListeners");
1022 OperandRecycler
.clear(OperandAllocator
);
1026 void SelectionDAG::allnodes_clear() {
1027 assert(&*AllNodes
.begin() == &EntryNode
);
1028 AllNodes
.remove(AllNodes
.begin());
1029 while (!AllNodes
.empty())
1030 DeallocateNode(&AllNodes
.front());
1032 NextPersistentId
= 0;
1036 SDNode
*SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID
&ID
,
1038 SDNode
*N
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
1040 switch (N
->getOpcode()) {
1043 case ISD::ConstantFP
:
1044 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045 "debug location. Use another overload.");
1051 SDNode
*SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID
&ID
,
1052 const SDLoc
&DL
, void *&InsertPos
) {
1053 SDNode
*N
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
1055 switch (N
->getOpcode()) {
1057 case ISD::ConstantFP
:
1058 // Erase debug location from the node if the node is used at several
1059 // different places. Do not propagate one location to all uses as it
1060 // will cause a worse single stepping debugging experience.
1061 if (N
->getDebugLoc() != DL
.getDebugLoc())
1062 N
->setDebugLoc(DebugLoc());
1065 // When the node's point of use is located earlier in the instruction
1066 // sequence than its prior point of use, update its debug info to the
1067 // earlier location.
1068 if (DL
.getIROrder() && DL
.getIROrder() < N
->getIROrder())
1069 N
->setDebugLoc(DL
.getDebugLoc());
1076 void SelectionDAG::clear() {
1078 OperandRecycler
.clear(OperandAllocator
);
1079 OperandAllocator
.Reset();
1082 ExtendedValueTypeNodes
.clear();
1083 ExternalSymbols
.clear();
1084 TargetExternalSymbols
.clear();
1086 SDCallSiteDbgInfo
.clear();
1087 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
1088 static_cast<CondCodeSDNode
*>(nullptr));
1089 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
1090 static_cast<SDNode
*>(nullptr));
1092 EntryNode
.UseList
= nullptr;
1093 InsertNode(&EntryNode
);
1094 Root
= getEntryNode();
1098 SDValue
SelectionDAG::getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1099 return VT
.bitsGT(Op
.getValueType())
1100 ? getNode(ISD::FP_EXTEND
, DL
, VT
, Op
)
1101 : getNode(ISD::FP_ROUND
, DL
, VT
, Op
, getIntPtrConstant(0, DL
));
1104 SDValue
SelectionDAG::getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1105 return VT
.bitsGT(Op
.getValueType()) ?
1106 getNode(ISD::ANY_EXTEND
, DL
, VT
, Op
) :
1107 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1110 SDValue
SelectionDAG::getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1111 return VT
.bitsGT(Op
.getValueType()) ?
1112 getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
) :
1113 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1116 SDValue
SelectionDAG::getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1117 return VT
.bitsGT(Op
.getValueType()) ?
1118 getNode(ISD::ZERO_EXTEND
, DL
, VT
, Op
) :
1119 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1122 SDValue
SelectionDAG::getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
,
1124 if (VT
.bitsLE(Op
.getValueType()))
1125 return getNode(ISD::TRUNCATE
, SL
, VT
, Op
);
1127 TargetLowering::BooleanContent BType
= TLI
->getBooleanContents(OpVT
);
1128 return getNode(TLI
->getExtendForContent(BType
), SL
, VT
, Op
);
1131 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1132 assert(!VT
.isVector() &&
1133 "getZeroExtendInReg should use the vector element type instead of "
1134 "the vector type!");
1135 if (Op
.getValueType().getScalarType() == VT
) return Op
;
1136 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
1137 APInt Imm
= APInt::getLowBitsSet(BitWidth
,
1138 VT
.getSizeInBits());
1139 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
1140 getConstant(Imm
, DL
, Op
.getValueType()));
1143 SDValue
SelectionDAG::getPtrExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1144 // Only unsigned pointer semantics are supported right now. In the future this
1145 // might delegate to TLI to check pointer signedness.
1146 return getZExtOrTrunc(Op
, DL
, VT
);
1149 SDValue
SelectionDAG::getPtrExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1150 // Only unsigned pointer semantics are supported right now. In the future this
1151 // might delegate to TLI to check pointer signedness.
1152 return getZeroExtendInReg(Op
, DL
, VT
);
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue
SelectionDAG::getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
) {
1157 EVT EltVT
= VT
.getScalarType();
1159 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), DL
, VT
);
1160 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
1163 SDValue
SelectionDAG::getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
) {
1164 SDValue TrueValue
= getBoolConstant(true, DL
, VT
, VT
);
1165 return getNode(ISD::XOR
, DL
, VT
, Val
, TrueValue
);
1168 SDValue
SelectionDAG::getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
,
1171 return getConstant(0, DL
, VT
);
1173 switch (TLI
->getBooleanContents(OpVT
)) {
1174 case TargetLowering::ZeroOrOneBooleanContent
:
1175 case TargetLowering::UndefinedBooleanContent
:
1176 return getConstant(1, DL
, VT
);
1177 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
1178 return getAllOnesConstant(DL
, VT
);
1180 llvm_unreachable("Unexpected boolean content enum!");
1183 SDValue
SelectionDAG::getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
1184 bool isT
, bool isO
) {
1185 EVT EltVT
= VT
.getScalarType();
1186 assert((EltVT
.getSizeInBits() >= 64 ||
1187 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
1188 "getConstant with a uint64_t value that doesn't fit in the type!");
1189 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), DL
, VT
, isT
, isO
);
1192 SDValue
SelectionDAG::getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
1193 bool isT
, bool isO
) {
1194 return getConstant(*ConstantInt::get(*Context
, Val
), DL
, VT
, isT
, isO
);
1197 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, const SDLoc
&DL
,
1198 EVT VT
, bool isT
, bool isO
) {
1199 assert(VT
.isInteger() && "Cannot create FP integer constant!");
1201 EVT EltVT
= VT
.getScalarType();
1202 const ConstantInt
*Elt
= &Val
;
1204 // In some cases the vector type is legal but the element type is illegal and
1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1206 // inserted value (the type does not need to match the vector element type).
1207 // Any extra bits introduced will be truncated away.
1208 if (VT
.isVector() && TLI
->getTypeAction(*getContext(), EltVT
) ==
1209 TargetLowering::TypePromoteInteger
) {
1210 EltVT
= TLI
->getTypeToTransformTo(*getContext(), EltVT
);
1211 APInt NewVal
= Elt
->getValue().zextOrTrunc(EltVT
.getSizeInBits());
1212 Elt
= ConstantInt::get(*getContext(), NewVal
);
1214 // In other cases the element type is illegal and needs to be expanded, for
1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216 // the value into n parts and use a vector type with n-times the elements.
1217 // Then bitcast to the type requested.
1218 // Legalizing constants too early makes the DAGCombiner's job harder so we
1219 // only legalize if the DAG tells us we must produce legal types.
1220 else if (NewNodesMustHaveLegalTypes
&& VT
.isVector() &&
1221 TLI
->getTypeAction(*getContext(), EltVT
) ==
1222 TargetLowering::TypeExpandInteger
) {
1223 const APInt
&NewVal
= Elt
->getValue();
1224 EVT ViaEltVT
= TLI
->getTypeToTransformTo(*getContext(), EltVT
);
1225 unsigned ViaEltSizeInBits
= ViaEltVT
.getSizeInBits();
1226 unsigned ViaVecNumElts
= VT
.getSizeInBits() / ViaEltSizeInBits
;
1227 EVT ViaVecVT
= EVT::getVectorVT(*getContext(), ViaEltVT
, ViaVecNumElts
);
1229 // Check the temporary vector is the correct size. If this fails then
1230 // getTypeToTransformTo() probably returned a type whose size (in bits)
1231 // isn't a power-of-2 factor of the requested type size.
1232 assert(ViaVecVT
.getSizeInBits() == VT
.getSizeInBits());
1234 SmallVector
<SDValue
, 2> EltParts
;
1235 for (unsigned i
= 0; i
< ViaVecNumElts
/ VT
.getVectorNumElements(); ++i
) {
1236 EltParts
.push_back(getConstant(NewVal
.lshr(i
* ViaEltSizeInBits
)
1237 .zextOrTrunc(ViaEltSizeInBits
), DL
,
1238 ViaEltVT
, isT
, isO
));
1241 // EltParts is currently in little endian order. If we actually want
1242 // big-endian order then reverse it now.
1243 if (getDataLayout().isBigEndian())
1244 std::reverse(EltParts
.begin(), EltParts
.end());
1246 // The elements must be reversed when the element order is different
1247 // to the endianness of the elements (because the BITCAST is itself a
1248 // vector shuffle in this situation). However, we do not need any code to
1249 // perform this reversal because getConstant() is producing a vector
1251 // This situation occurs in MIPS MSA.
1253 SmallVector
<SDValue
, 8> Ops
;
1254 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
)
1255 Ops
.insert(Ops
.end(), EltParts
.begin(), EltParts
.end());
1257 SDValue V
= getNode(ISD::BITCAST
, DL
, VT
, getBuildVector(ViaVecVT
, DL
, Ops
));
1261 assert(Elt
->getBitWidth() == EltVT
.getSizeInBits() &&
1262 "APInt size does not match type size!");
1263 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
1264 FoldingSetNodeID ID
;
1265 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), None
);
1269 SDNode
*N
= nullptr;
1270 if ((N
= FindNodeOrInsertPos(ID
, DL
, IP
)))
1272 return SDValue(N
, 0);
1275 N
= newSDNode
<ConstantSDNode
>(isT
, isO
, Elt
, EltVT
);
1276 CSEMap
.InsertNode(N
, IP
);
1278 NewSDValueDbgMsg(SDValue(N
, 0), "Creating constant: ", this);
1281 SDValue
Result(N
, 0);
1283 Result
= getSplatBuildVector(VT
, DL
, Result
);
1288 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
1290 return getConstant(Val
, DL
, TLI
->getPointerTy(getDataLayout()), isTarget
);
1293 SDValue
SelectionDAG::getShiftAmountConstant(uint64_t Val
, EVT VT
,
1294 const SDLoc
&DL
, bool LegalTypes
) {
1295 EVT ShiftVT
= TLI
->getShiftAmountTy(VT
, getDataLayout(), LegalTypes
);
1296 return getConstant(Val
, DL
, ShiftVT
);
1299 SDValue
SelectionDAG::getConstantFP(const APFloat
&V
, const SDLoc
&DL
, EVT VT
,
1301 return getConstantFP(*ConstantFP::get(*getContext(), V
), DL
, VT
, isTarget
);
1304 SDValue
SelectionDAG::getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
,
1305 EVT VT
, bool isTarget
) {
1306 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
1308 EVT EltVT
= VT
.getScalarType();
1310 // Do the map lookup using the actual bit pattern for the floating point
1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312 // we don't have issues with SNANs.
1313 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
1314 FoldingSetNodeID ID
;
1315 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), None
);
1318 SDNode
*N
= nullptr;
1319 if ((N
= FindNodeOrInsertPos(ID
, DL
, IP
)))
1321 return SDValue(N
, 0);
1324 N
= newSDNode
<ConstantFPSDNode
>(isTarget
, &V
, EltVT
);
1325 CSEMap
.InsertNode(N
, IP
);
1329 SDValue
Result(N
, 0);
1331 Result
= getSplatBuildVector(VT
, DL
, Result
);
1332 NewSDValueDbgMsg(Result
, "Creating fp constant: ", this);
1336 SDValue
SelectionDAG::getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
1338 EVT EltVT
= VT
.getScalarType();
1339 if (EltVT
== MVT::f32
)
1340 return getConstantFP(APFloat((float)Val
), DL
, VT
, isTarget
);
1341 else if (EltVT
== MVT::f64
)
1342 return getConstantFP(APFloat(Val
), DL
, VT
, isTarget
);
1343 else if (EltVT
== MVT::f80
|| EltVT
== MVT::f128
|| EltVT
== MVT::ppcf128
||
1344 EltVT
== MVT::f16
) {
1346 APFloat APF
= APFloat(Val
);
1347 APF
.convert(EVTToAPFloatSemantics(EltVT
), APFloat::rmNearestTiesToEven
,
1349 return getConstantFP(APF
, DL
, VT
, isTarget
);
1351 llvm_unreachable("Unsupported type in getConstantFP");
1354 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
,
1355 EVT VT
, int64_t Offset
, bool isTargetGA
,
1356 unsigned TargetFlags
) {
1357 assert((TargetFlags
== 0 || isTargetGA
) &&
1358 "Cannot set target flags on target-independent globals");
1360 // Truncate (with sign-extension) the offset value to the pointer size.
1361 unsigned BitWidth
= getDataLayout().getPointerTypeSizeInBits(GV
->getType());
1363 Offset
= SignExtend64(Offset
, BitWidth
);
1366 if (GV
->isThreadLocal())
1367 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
1369 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
1371 FoldingSetNodeID ID
;
1372 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1374 ID
.AddInteger(Offset
);
1375 ID
.AddInteger(TargetFlags
);
1377 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
1378 return SDValue(E
, 0);
1380 auto *N
= newSDNode
<GlobalAddressSDNode
>(
1381 Opc
, DL
.getIROrder(), DL
.getDebugLoc(), GV
, VT
, Offset
, TargetFlags
);
1382 CSEMap
.InsertNode(N
, IP
);
1384 return SDValue(N
, 0);
1387 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1388 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1389 FoldingSetNodeID ID
;
1390 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1393 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1394 return SDValue(E
, 0);
1396 auto *N
= newSDNode
<FrameIndexSDNode
>(FI
, VT
, isTarget
);
1397 CSEMap
.InsertNode(N
, IP
);
1399 return SDValue(N
, 0);
1402 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1403 unsigned TargetFlags
) {
1404 assert((TargetFlags
== 0 || isTarget
) &&
1405 "Cannot set target flags on target-independent jump tables");
1406 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1407 FoldingSetNodeID ID
;
1408 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1410 ID
.AddInteger(TargetFlags
);
1412 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1413 return SDValue(E
, 0);
1415 auto *N
= newSDNode
<JumpTableSDNode
>(JTI
, VT
, isTarget
, TargetFlags
);
1416 CSEMap
.InsertNode(N
, IP
);
1418 return SDValue(N
, 0);
1421 SDValue
SelectionDAG::getConstantPool(const Constant
*C
, EVT VT
,
1422 unsigned Alignment
, int Offset
,
1424 unsigned TargetFlags
) {
1425 assert((TargetFlags
== 0 || isTarget
) &&
1426 "Cannot set target flags on target-independent globals");
1428 Alignment
= MF
->getFunction().hasOptSize()
1429 ? getDataLayout().getABITypeAlignment(C
->getType())
1430 : getDataLayout().getPrefTypeAlignment(C
->getType());
1431 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1432 FoldingSetNodeID ID
;
1433 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1434 ID
.AddInteger(Alignment
);
1435 ID
.AddInteger(Offset
);
1437 ID
.AddInteger(TargetFlags
);
1439 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1440 return SDValue(E
, 0);
1442 auto *N
= newSDNode
<ConstantPoolSDNode
>(isTarget
, C
, VT
, Offset
, Alignment
,
1444 CSEMap
.InsertNode(N
, IP
);
1446 return SDValue(N
, 0);
1449 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1450 unsigned Alignment
, int Offset
,
1452 unsigned TargetFlags
) {
1453 assert((TargetFlags
== 0 || isTarget
) &&
1454 "Cannot set target flags on target-independent globals");
1456 Alignment
= getDataLayout().getPrefTypeAlignment(C
->getType());
1457 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1458 FoldingSetNodeID ID
;
1459 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1460 ID
.AddInteger(Alignment
);
1461 ID
.AddInteger(Offset
);
1462 C
->addSelectionDAGCSEId(ID
);
1463 ID
.AddInteger(TargetFlags
);
1465 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1466 return SDValue(E
, 0);
1468 auto *N
= newSDNode
<ConstantPoolSDNode
>(isTarget
, C
, VT
, Offset
, Alignment
,
1470 CSEMap
.InsertNode(N
, IP
);
1472 return SDValue(N
, 0);
1475 SDValue
SelectionDAG::getTargetIndex(int Index
, EVT VT
, int64_t Offset
,
1476 unsigned TargetFlags
) {
1477 FoldingSetNodeID ID
;
1478 AddNodeIDNode(ID
, ISD::TargetIndex
, getVTList(VT
), None
);
1479 ID
.AddInteger(Index
);
1480 ID
.AddInteger(Offset
);
1481 ID
.AddInteger(TargetFlags
);
1483 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1484 return SDValue(E
, 0);
1486 auto *N
= newSDNode
<TargetIndexSDNode
>(Index
, VT
, Offset
, TargetFlags
);
1487 CSEMap
.InsertNode(N
, IP
);
1489 return SDValue(N
, 0);
1492 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1493 FoldingSetNodeID ID
;
1494 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), None
);
1497 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1498 return SDValue(E
, 0);
1500 auto *N
= newSDNode
<BasicBlockSDNode
>(MBB
);
1501 CSEMap
.InsertNode(N
, IP
);
1503 return SDValue(N
, 0);
1506 SDValue
SelectionDAG::getValueType(EVT VT
) {
1507 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1508 ValueTypeNodes
.size())
1509 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1511 SDNode
*&N
= VT
.isExtended() ?
1512 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1514 if (N
) return SDValue(N
, 0);
1515 N
= newSDNode
<VTSDNode
>(VT
);
1517 return SDValue(N
, 0);
1520 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1521 SDNode
*&N
= ExternalSymbols
[Sym
];
1522 if (N
) return SDValue(N
, 0);
1523 N
= newSDNode
<ExternalSymbolSDNode
>(false, Sym
, 0, VT
);
1525 return SDValue(N
, 0);
1528 SDValue
SelectionDAG::getMCSymbol(MCSymbol
*Sym
, EVT VT
) {
1529 SDNode
*&N
= MCSymbols
[Sym
];
1531 return SDValue(N
, 0);
1532 N
= newSDNode
<MCSymbolSDNode
>(Sym
, VT
);
1534 return SDValue(N
, 0);
1537 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1538 unsigned TargetFlags
) {
1540 TargetExternalSymbols
[std::pair
<std::string
, unsigned>(Sym
, TargetFlags
)];
1541 if (N
) return SDValue(N
, 0);
1542 N
= newSDNode
<ExternalSymbolSDNode
>(true, Sym
, TargetFlags
, VT
);
1544 return SDValue(N
, 0);
1547 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1548 if ((unsigned)Cond
>= CondCodeNodes
.size())
1549 CondCodeNodes
.resize(Cond
+1);
1551 if (!CondCodeNodes
[Cond
]) {
1552 auto *N
= newSDNode
<CondCodeSDNode
>(Cond
);
1553 CondCodeNodes
[Cond
] = N
;
1557 return SDValue(CondCodeNodes
[Cond
], 0);
1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1562 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, MutableArrayRef
<int> M
) {
1564 ShuffleVectorSDNode::commuteMask(M
);
1567 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
,
1568 SDValue N2
, ArrayRef
<int> Mask
) {
1569 assert(VT
.getVectorNumElements() == Mask
.size() &&
1570 "Must have the same number of vector elements as mask elements!");
1571 assert(VT
== N1
.getValueType() && VT
== N2
.getValueType() &&
1572 "Invalid VECTOR_SHUFFLE");
1574 // Canonicalize shuffle undef, undef -> undef
1575 if (N1
.isUndef() && N2
.isUndef())
1576 return getUNDEF(VT
);
1578 // Validate that all indices in Mask are within the range of the elements
1579 // input to the shuffle.
1580 int NElts
= Mask
.size();
1581 assert(llvm::all_of(Mask
,
1582 [&](int M
) { return M
< (NElts
* 2) && M
>= -1; }) &&
1583 "Index out of range");
1585 // Copy the mask so we can do any needed cleanup.
1586 SmallVector
<int, 8> MaskVec(Mask
.begin(), Mask
.end());
1588 // Canonicalize shuffle v, v -> v, undef
1591 for (int i
= 0; i
!= NElts
; ++i
)
1592 if (MaskVec
[i
] >= NElts
) MaskVec
[i
] -= NElts
;
1595 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1597 commuteShuffle(N1
, N2
, MaskVec
);
1599 if (TLI
->hasVectorBlend()) {
1600 // If shuffling a splat, try to blend the splat instead. We do this here so
1601 // that even when this arises during lowering we don't have to re-handle it.
1602 auto BlendSplat
= [&](BuildVectorSDNode
*BV
, int Offset
) {
1603 BitVector UndefElements
;
1604 SDValue Splat
= BV
->getSplatValue(&UndefElements
);
1608 for (int i
= 0; i
< NElts
; ++i
) {
1609 if (MaskVec
[i
] < Offset
|| MaskVec
[i
] >= (Offset
+ NElts
))
1612 // If this input comes from undef, mark it as such.
1613 if (UndefElements
[MaskVec
[i
] - Offset
]) {
1618 // If we can blend a non-undef lane, use that instead.
1619 if (!UndefElements
[i
])
1620 MaskVec
[i
] = i
+ Offset
;
1623 if (auto *N1BV
= dyn_cast
<BuildVectorSDNode
>(N1
))
1624 BlendSplat(N1BV
, 0);
1625 if (auto *N2BV
= dyn_cast
<BuildVectorSDNode
>(N2
))
1626 BlendSplat(N2BV
, NElts
);
1629 // Canonicalize all index into lhs, -> shuffle lhs, undef
1630 // Canonicalize all index into rhs, -> shuffle rhs, undef
1631 bool AllLHS
= true, AllRHS
= true;
1632 bool N2Undef
= N2
.isUndef();
1633 for (int i
= 0; i
!= NElts
; ++i
) {
1634 if (MaskVec
[i
] >= NElts
) {
1639 } else if (MaskVec
[i
] >= 0) {
1643 if (AllLHS
&& AllRHS
)
1644 return getUNDEF(VT
);
1645 if (AllLHS
&& !N2Undef
)
1649 commuteShuffle(N1
, N2
, MaskVec
);
1651 // Reset our undef status after accounting for the mask.
1652 N2Undef
= N2
.isUndef();
1653 // Re-check whether both sides ended up undef.
1654 if (N1
.isUndef() && N2Undef
)
1655 return getUNDEF(VT
);
1657 // If Identity shuffle return that node.
1658 bool Identity
= true, AllSame
= true;
1659 for (int i
= 0; i
!= NElts
; ++i
) {
1660 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != i
) Identity
= false;
1661 if (MaskVec
[i
] != MaskVec
[0]) AllSame
= false;
1663 if (Identity
&& NElts
)
1666 // Shuffling a constant splat doesn't change the result.
1670 // Look through any bitcasts. We check that these don't change the number
1671 // (and size) of elements and just changes their types.
1672 while (V
.getOpcode() == ISD::BITCAST
)
1673 V
= V
->getOperand(0);
1675 // A splat should always show up as a build vector node.
1676 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
1677 BitVector UndefElements
;
1678 SDValue Splat
= BV
->getSplatValue(&UndefElements
);
1679 // If this is a splat of an undef, shuffling it is also undef.
1680 if (Splat
&& Splat
.isUndef())
1681 return getUNDEF(VT
);
1684 V
.getValueType().getVectorNumElements() == VT
.getVectorNumElements();
1686 // We only have a splat which can skip shuffles if there is a splatted
1687 // value and no undef lanes rearranged by the shuffle.
1688 if (Splat
&& UndefElements
.none()) {
1689 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1690 // number of elements match or the value splatted is a zero constant.
1693 if (auto *C
= dyn_cast
<ConstantSDNode
>(Splat
))
1694 if (C
->isNullValue())
1698 // If the shuffle itself creates a splat, build the vector directly.
1699 if (AllSame
&& SameNumElts
) {
1700 EVT BuildVT
= BV
->getValueType(0);
1701 const SDValue
&Splatted
= BV
->getOperand(MaskVec
[0]);
1702 SDValue NewBV
= getSplatBuildVector(BuildVT
, dl
, Splatted
);
1704 // We may have jumped through bitcasts, so the type of the
1705 // BUILD_VECTOR may not match the type of the shuffle.
1707 NewBV
= getNode(ISD::BITCAST
, dl
, VT
, NewBV
);
1713 FoldingSetNodeID ID
;
1714 SDValue Ops
[2] = { N1
, N2
};
1715 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
);
1716 for (int i
= 0; i
!= NElts
; ++i
)
1717 ID
.AddInteger(MaskVec
[i
]);
1720 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
1721 return SDValue(E
, 0);
1723 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1724 // SDNode doesn't have access to it. This memory will be "leaked" when
1725 // the node is deallocated, but recovered when the NodeAllocator is released.
1726 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1727 llvm::copy(MaskVec
, MaskAlloc
);
1729 auto *N
= newSDNode
<ShuffleVectorSDNode
>(VT
, dl
.getIROrder(),
1730 dl
.getDebugLoc(), MaskAlloc
);
1731 createOperands(N
, Ops
);
1733 CSEMap
.InsertNode(N
, IP
);
1735 SDValue V
= SDValue(N
, 0);
1736 NewSDValueDbgMsg(V
, "Creating new node: ", this);
1740 SDValue
SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
) {
1741 EVT VT
= SV
.getValueType(0);
1742 SmallVector
<int, 8> MaskVec(SV
.getMask().begin(), SV
.getMask().end());
1743 ShuffleVectorSDNode::commuteMask(MaskVec
);
1745 SDValue Op0
= SV
.getOperand(0);
1746 SDValue Op1
= SV
.getOperand(1);
1747 return getVectorShuffle(VT
, SDLoc(&SV
), Op1
, Op0
, MaskVec
);
1750 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1751 FoldingSetNodeID ID
;
1752 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), None
);
1753 ID
.AddInteger(RegNo
);
1755 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1756 return SDValue(E
, 0);
1758 auto *N
= newSDNode
<RegisterSDNode
>(RegNo
, VT
);
1759 N
->SDNodeBits
.IsDivergent
= TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
);
1760 CSEMap
.InsertNode(N
, IP
);
1762 return SDValue(N
, 0);
1765 SDValue
SelectionDAG::getRegisterMask(const uint32_t *RegMask
) {
1766 FoldingSetNodeID ID
;
1767 AddNodeIDNode(ID
, ISD::RegisterMask
, getVTList(MVT::Untyped
), None
);
1768 ID
.AddPointer(RegMask
);
1770 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1771 return SDValue(E
, 0);
1773 auto *N
= newSDNode
<RegisterMaskSDNode
>(RegMask
);
1774 CSEMap
.InsertNode(N
, IP
);
1776 return SDValue(N
, 0);
1779 SDValue
SelectionDAG::getEHLabel(const SDLoc
&dl
, SDValue Root
,
1781 return getLabelNode(ISD::EH_LABEL
, dl
, Root
, Label
);
1784 SDValue
SelectionDAG::getLabelNode(unsigned Opcode
, const SDLoc
&dl
,
1785 SDValue Root
, MCSymbol
*Label
) {
1786 FoldingSetNodeID ID
;
1787 SDValue Ops
[] = { Root
};
1788 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), Ops
);
1789 ID
.AddPointer(Label
);
1791 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1792 return SDValue(E
, 0);
1795 newSDNode
<LabelSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(), Label
);
1796 createOperands(N
, Ops
);
1798 CSEMap
.InsertNode(N
, IP
);
1800 return SDValue(N
, 0);
1803 SDValue
SelectionDAG::getBlockAddress(const BlockAddress
*BA
, EVT VT
,
1804 int64_t Offset
, bool isTarget
,
1805 unsigned TargetFlags
) {
1806 unsigned Opc
= isTarget
? ISD::TargetBlockAddress
: ISD::BlockAddress
;
1808 FoldingSetNodeID ID
;
1809 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1811 ID
.AddInteger(Offset
);
1812 ID
.AddInteger(TargetFlags
);
1814 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1815 return SDValue(E
, 0);
1817 auto *N
= newSDNode
<BlockAddressSDNode
>(Opc
, VT
, BA
, Offset
, TargetFlags
);
1818 CSEMap
.InsertNode(N
, IP
);
1820 return SDValue(N
, 0);
1823 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1824 assert((!V
|| V
->getType()->isPointerTy()) &&
1825 "SrcValue is not a pointer?");
1827 FoldingSetNodeID ID
;
1828 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), None
);
1832 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1833 return SDValue(E
, 0);
1835 auto *N
= newSDNode
<SrcValueSDNode
>(V
);
1836 CSEMap
.InsertNode(N
, IP
);
1838 return SDValue(N
, 0);
1841 SDValue
SelectionDAG::getMDNode(const MDNode
*MD
) {
1842 FoldingSetNodeID ID
;
1843 AddNodeIDNode(ID
, ISD::MDNODE_SDNODE
, getVTList(MVT::Other
), None
);
1847 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1848 return SDValue(E
, 0);
1850 auto *N
= newSDNode
<MDNodeSDNode
>(MD
);
1851 CSEMap
.InsertNode(N
, IP
);
1853 return SDValue(N
, 0);
1856 SDValue
SelectionDAG::getBitcast(EVT VT
, SDValue V
) {
1857 if (VT
== V
.getValueType())
1860 return getNode(ISD::BITCAST
, SDLoc(V
), VT
, V
);
1863 SDValue
SelectionDAG::getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
,
1864 unsigned SrcAS
, unsigned DestAS
) {
1865 SDValue Ops
[] = {Ptr
};
1866 FoldingSetNodeID ID
;
1867 AddNodeIDNode(ID
, ISD::ADDRSPACECAST
, getVTList(VT
), Ops
);
1868 ID
.AddInteger(SrcAS
);
1869 ID
.AddInteger(DestAS
);
1872 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
1873 return SDValue(E
, 0);
1875 auto *N
= newSDNode
<AddrSpaceCastSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
1877 createOperands(N
, Ops
);
1879 CSEMap
.InsertNode(N
, IP
);
1881 return SDValue(N
, 0);
1884 /// getShiftAmountOperand - Return the specified value casted to
1885 /// the target's desired shift amount type.
1886 SDValue
SelectionDAG::getShiftAmountOperand(EVT LHSTy
, SDValue Op
) {
1887 EVT OpTy
= Op
.getValueType();
1888 EVT ShTy
= TLI
->getShiftAmountTy(LHSTy
, getDataLayout());
1889 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1891 return getZExtOrTrunc(Op
, SDLoc(Op
), ShTy
);
1894 SDValue
SelectionDAG::expandVAArg(SDNode
*Node
) {
1896 const TargetLowering
&TLI
= getTargetLoweringInfo();
1897 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
1898 EVT VT
= Node
->getValueType(0);
1899 SDValue Tmp1
= Node
->getOperand(0);
1900 SDValue Tmp2
= Node
->getOperand(1);
1901 const llvm::MaybeAlign
MA(Node
->getConstantOperandVal(3));
1903 SDValue VAListLoad
= getLoad(TLI
.getPointerTy(getDataLayout()), dl
, Tmp1
,
1904 Tmp2
, MachinePointerInfo(V
));
1905 SDValue VAList
= VAListLoad
;
1907 if (MA
&& *MA
> TLI
.getMinStackArgumentAlignment()) {
1908 VAList
= getNode(ISD::ADD
, dl
, VAList
.getValueType(), VAList
,
1909 getConstant(MA
->value() - 1, dl
, VAList
.getValueType()));
1912 getNode(ISD::AND
, dl
, VAList
.getValueType(), VAList
,
1913 getConstant(-(int64_t)MA
->value(), dl
, VAList
.getValueType()));
1916 // Increment the pointer, VAList, to the next vaarg
1917 Tmp1
= getNode(ISD::ADD
, dl
, VAList
.getValueType(), VAList
,
1918 getConstant(getDataLayout().getTypeAllocSize(
1919 VT
.getTypeForEVT(*getContext())),
1920 dl
, VAList
.getValueType()));
1921 // Store the incremented VAList to the legalized pointer
1923 getStore(VAListLoad
.getValue(1), dl
, Tmp1
, Tmp2
, MachinePointerInfo(V
));
1924 // Load the actual argument out of the pointer VAList
1925 return getLoad(VT
, dl
, Tmp1
, VAList
, MachinePointerInfo());
1928 SDValue
SelectionDAG::expandVACopy(SDNode
*Node
) {
1930 const TargetLowering
&TLI
= getTargetLoweringInfo();
1931 // This defaults to loading a pointer from the input and storing it to the
1932 // output, returning the chain.
1933 const Value
*VD
= cast
<SrcValueSDNode
>(Node
->getOperand(3))->getValue();
1934 const Value
*VS
= cast
<SrcValueSDNode
>(Node
->getOperand(4))->getValue();
1936 getLoad(TLI
.getPointerTy(getDataLayout()), dl
, Node
->getOperand(0),
1937 Node
->getOperand(2), MachinePointerInfo(VS
));
1938 return getStore(Tmp1
.getValue(1), dl
, Tmp1
, Node
->getOperand(1),
1939 MachinePointerInfo(VD
));
1942 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1943 MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
1944 unsigned ByteSize
= VT
.getStoreSize();
1945 Type
*Ty
= VT
.getTypeForEVT(*getContext());
1946 unsigned StackAlign
=
1947 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty
), minAlign
);
1949 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
1950 return getFrameIndex(FrameIdx
, TLI
->getFrameIndexTy(getDataLayout()));
1953 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1954 unsigned Bytes
= std::max(VT1
.getStoreSize(), VT2
.getStoreSize());
1955 Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1956 Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1957 const DataLayout
&DL
= getDataLayout();
1959 std::max(DL
.getPrefTypeAlignment(Ty1
), DL
.getPrefTypeAlignment(Ty2
));
1961 MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
1962 int FrameIdx
= MFI
.CreateStackObject(Bytes
, Align
, false);
1963 return getFrameIndex(FrameIdx
, TLI
->getFrameIndexTy(getDataLayout()));
1966 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
,
1967 ISD::CondCode Cond
, const SDLoc
&dl
) {
1968 EVT OpVT
= N1
.getValueType();
1970 // These setcc operations always fold.
1974 case ISD::SETFALSE2
: return getBoolConstant(false, dl
, VT
, OpVT
);
1976 case ISD::SETTRUE2
: return getBoolConstant(true, dl
, VT
, OpVT
);
1988 assert(!OpVT
.isInteger() && "Illegal setcc for integer!");
1992 if (OpVT
.isInteger()) {
1993 // For EQ and NE, we can always pick a value for the undef to make the
1994 // predicate pass or fail, so we can return undef.
1995 // Matches behavior in llvm::ConstantFoldCompareInstruction.
1996 // icmp eq/ne X, undef -> undef.
1997 if ((N1
.isUndef() || N2
.isUndef()) &&
1998 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
))
1999 return getUNDEF(VT
);
2001 // If both operands are undef, we can return undef for int comparison.
2002 // icmp undef, undef -> undef.
2003 if (N1
.isUndef() && N2
.isUndef())
2004 return getUNDEF(VT
);
2006 // icmp X, X -> true/false
2007 // icmp X, undef -> true/false because undef could be X.
2009 return getBoolConstant(ISD::isTrueWhenEqual(Cond
), dl
, VT
, OpVT
);
2012 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
)) {
2013 const APInt
&C2
= N2C
->getAPIntValue();
2014 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2015 const APInt
&C1
= N1C
->getAPIntValue();
2018 default: llvm_unreachable("Unknown integer setcc!");
2019 case ISD::SETEQ
: return getBoolConstant(C1
== C2
, dl
, VT
, OpVT
);
2020 case ISD::SETNE
: return getBoolConstant(C1
!= C2
, dl
, VT
, OpVT
);
2021 case ISD::SETULT
: return getBoolConstant(C1
.ult(C2
), dl
, VT
, OpVT
);
2022 case ISD::SETUGT
: return getBoolConstant(C1
.ugt(C2
), dl
, VT
, OpVT
);
2023 case ISD::SETULE
: return getBoolConstant(C1
.ule(C2
), dl
, VT
, OpVT
);
2024 case ISD::SETUGE
: return getBoolConstant(C1
.uge(C2
), dl
, VT
, OpVT
);
2025 case ISD::SETLT
: return getBoolConstant(C1
.slt(C2
), dl
, VT
, OpVT
);
2026 case ISD::SETGT
: return getBoolConstant(C1
.sgt(C2
), dl
, VT
, OpVT
);
2027 case ISD::SETLE
: return getBoolConstant(C1
.sle(C2
), dl
, VT
, OpVT
);
2028 case ISD::SETGE
: return getBoolConstant(C1
.sge(C2
), dl
, VT
, OpVT
);
2033 auto *N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2034 auto *N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
2036 if (N1CFP
&& N2CFP
) {
2037 APFloat::cmpResult R
= N1CFP
->getValueAPF().compare(N2CFP
->getValueAPF());
2040 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
2041 return getUNDEF(VT
);
2043 case ISD::SETOEQ
: return getBoolConstant(R
==APFloat::cmpEqual
, dl
, VT
,
2045 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
2046 return getUNDEF(VT
);
2048 case ISD::SETONE
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2049 R
==APFloat::cmpLessThan
, dl
, VT
,
2051 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
2052 return getUNDEF(VT
);
2054 case ISD::SETOLT
: return getBoolConstant(R
==APFloat::cmpLessThan
, dl
, VT
,
2056 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
2057 return getUNDEF(VT
);
2059 case ISD::SETOGT
: return getBoolConstant(R
==APFloat::cmpGreaterThan
, dl
,
2061 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
2062 return getUNDEF(VT
);
2064 case ISD::SETOLE
: return getBoolConstant(R
==APFloat::cmpLessThan
||
2065 R
==APFloat::cmpEqual
, dl
, VT
,
2067 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
2068 return getUNDEF(VT
);
2070 case ISD::SETOGE
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2071 R
==APFloat::cmpEqual
, dl
, VT
, OpVT
);
2072 case ISD::SETO
: return getBoolConstant(R
!=APFloat::cmpUnordered
, dl
, VT
,
2074 case ISD::SETUO
: return getBoolConstant(R
==APFloat::cmpUnordered
, dl
, VT
,
2076 case ISD::SETUEQ
: return getBoolConstant(R
==APFloat::cmpUnordered
||
2077 R
==APFloat::cmpEqual
, dl
, VT
,
2079 case ISD::SETUNE
: return getBoolConstant(R
!=APFloat::cmpEqual
, dl
, VT
,
2081 case ISD::SETULT
: return getBoolConstant(R
==APFloat::cmpUnordered
||
2082 R
==APFloat::cmpLessThan
, dl
, VT
,
2084 case ISD::SETUGT
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2085 R
==APFloat::cmpUnordered
, dl
, VT
,
2087 case ISD::SETULE
: return getBoolConstant(R
!=APFloat::cmpGreaterThan
, dl
,
2089 case ISD::SETUGE
: return getBoolConstant(R
!=APFloat::cmpLessThan
, dl
, VT
,
2092 } else if (N1CFP
&& OpVT
.isSimple() && !N2
.isUndef()) {
2093 // Ensure that the constant occurs on the RHS.
2094 ISD::CondCode SwappedCond
= ISD::getSetCCSwappedOperands(Cond
);
2095 if (!TLI
->isCondCodeLegal(SwappedCond
, OpVT
.getSimpleVT()))
2097 return getSetCC(dl
, VT
, N2
, N1
, SwappedCond
);
2098 } else if ((N2CFP
&& N2CFP
->getValueAPF().isNaN()) ||
2099 (OpVT
.isFloatingPoint() && (N1
.isUndef() || N2
.isUndef()))) {
2100 // If an operand is known to be a nan (or undef that could be a nan), we can
2102 // Choosing NaN for the undef will always make unordered comparison succeed
2103 // and ordered comparison fails.
2104 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2105 switch (ISD::getUnorderedFlavor(Cond
)) {
2107 llvm_unreachable("Unknown flavor!");
2108 case 0: // Known false.
2109 return getBoolConstant(false, dl
, VT
, OpVT
);
2110 case 1: // Known true.
2111 return getBoolConstant(true, dl
, VT
, OpVT
);
2112 case 2: // Undefined.
2113 return getUNDEF(VT
);
2117 // Could not fold it.
2121 /// See if the specified operand can be simplified with the knowledge that only
2122 /// the bits specified by DemandedBits are used.
2123 /// TODO: really we should be making this into the DAG equivalent of
2124 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2125 SDValue
SelectionDAG::GetDemandedBits(SDValue V
, const APInt
&DemandedBits
) {
2126 EVT VT
= V
.getValueType();
2127 APInt DemandedElts
= VT
.isVector()
2128 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
2130 return GetDemandedBits(V
, DemandedBits
, DemandedElts
);
2133 /// See if the specified operand can be simplified with the knowledge that only
2134 /// the bits specified by DemandedBits are used in the elements specified by
2136 /// TODO: really we should be making this into the DAG equivalent of
2137 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2138 SDValue
SelectionDAG::GetDemandedBits(SDValue V
, const APInt
&DemandedBits
,
2139 const APInt
&DemandedElts
) {
2140 switch (V
.getOpcode()) {
2143 case ISD::Constant
: {
2144 auto *CV
= cast
<ConstantSDNode
>(V
.getNode());
2145 assert(CV
&& "Const value should be ConstSDNode.");
2146 const APInt
&CVal
= CV
->getAPIntValue();
2147 APInt NewVal
= CVal
& DemandedBits
;
2149 return getConstant(NewVal
, SDLoc(V
), V
.getValueType());
2154 case ISD::SIGN_EXTEND_INREG
:
2155 return TLI
->SimplifyMultipleUseDemandedBits(V
, DemandedBits
, DemandedElts
,
2158 // Only look at single-use SRLs.
2159 if (!V
.getNode()->hasOneUse())
2161 if (auto *RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
2162 // See if we can recursively simplify the LHS.
2163 unsigned Amt
= RHSC
->getZExtValue();
2165 // Watch out for shift count overflow though.
2166 if (Amt
>= DemandedBits
.getBitWidth())
2168 APInt SrcDemandedBits
= DemandedBits
<< Amt
;
2169 if (SDValue SimplifyLHS
=
2170 GetDemandedBits(V
.getOperand(0), SrcDemandedBits
))
2171 return getNode(ISD::SRL
, SDLoc(V
), V
.getValueType(), SimplifyLHS
,
2176 // X & -1 -> X (ignoring bits which aren't demanded).
2177 // Also handle the case where masked out bits in X are known to be zero.
2178 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(V
.getOperand(1))) {
2179 const APInt
&AndVal
= RHSC
->getAPIntValue();
2180 if (DemandedBits
.isSubsetOf(AndVal
) ||
2181 DemandedBits
.isSubsetOf(computeKnownBits(V
.getOperand(0)).Zero
|
2183 return V
.getOperand(0);
2187 case ISD::ANY_EXTEND
: {
2188 SDValue Src
= V
.getOperand(0);
2189 unsigned SrcBitWidth
= Src
.getScalarValueSizeInBits();
2190 // Being conservative here - only peek through if we only demand bits in the
2191 // non-extended source (even though the extended bits are technically
2193 if (DemandedBits
.getActiveBits() > SrcBitWidth
)
2195 APInt SrcDemandedBits
= DemandedBits
.trunc(SrcBitWidth
);
2196 if (SDValue DemandedSrc
= GetDemandedBits(Src
, SrcDemandedBits
))
2197 return getNode(ISD::ANY_EXTEND
, SDLoc(V
), V
.getValueType(), DemandedSrc
);
2204 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2205 /// use this predicate to simplify operations downstream.
2206 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
2207 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2208 return MaskedValueIsZero(Op
, APInt::getSignMask(BitWidth
), Depth
);
2211 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2212 /// this predicate to simplify operations downstream. Mask is known to be zero
2213 /// for bits that V cannot have.
2214 bool SelectionDAG::MaskedValueIsZero(SDValue V
, const APInt
&Mask
,
2215 unsigned Depth
) const {
2216 EVT VT
= V
.getValueType();
2217 APInt DemandedElts
= VT
.isVector()
2218 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
2220 return MaskedValueIsZero(V
, Mask
, DemandedElts
, Depth
);
2223 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2224 /// DemandedElts. We use this predicate to simplify operations downstream.
2225 /// Mask is known to be zero for bits that V cannot have.
2226 bool SelectionDAG::MaskedValueIsZero(SDValue V
, const APInt
&Mask
,
2227 const APInt
&DemandedElts
,
2228 unsigned Depth
) const {
2229 return Mask
.isSubsetOf(computeKnownBits(V
, DemandedElts
, Depth
).Zero
);
2232 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2233 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V
, const APInt
&Mask
,
2234 unsigned Depth
) const {
2235 return Mask
.isSubsetOf(computeKnownBits(V
, Depth
).One
);
2238 /// isSplatValue - Return true if the vector V has the same value
2239 /// across all DemandedElts.
2240 bool SelectionDAG::isSplatValue(SDValue V
, const APInt
&DemandedElts
,
2243 return false; // No demanded elts, better to assume we don't know anything.
2245 EVT VT
= V
.getValueType();
2246 assert(VT
.isVector() && "Vector type expected");
2248 unsigned NumElts
= VT
.getVectorNumElements();
2249 assert(NumElts
== DemandedElts
.getBitWidth() && "Vector size mismatch");
2250 UndefElts
= APInt::getNullValue(NumElts
);
2252 switch (V
.getOpcode()) {
2253 case ISD::BUILD_VECTOR
: {
2255 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2256 SDValue Op
= V
.getOperand(i
);
2258 UndefElts
.setBit(i
);
2261 if (!DemandedElts
[i
])
2263 if (Scl
&& Scl
!= Op
)
2269 case ISD::VECTOR_SHUFFLE
: {
2270 // Check if this is a shuffle node doing a splat.
2271 // TODO: Do we need to handle shuffle(splat, undef, mask)?
2272 int SplatIndex
= -1;
2273 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(V
)->getMask();
2274 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
2277 UndefElts
.setBit(i
);
2280 if (!DemandedElts
[i
])
2282 if (0 <= SplatIndex
&& SplatIndex
!= M
)
2288 case ISD::EXTRACT_SUBVECTOR
: {
2289 SDValue Src
= V
.getOperand(0);
2290 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1));
2291 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2292 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2293 // Offset the demanded elts by the subvector index.
2294 uint64_t Idx
= SubIdx
->getZExtValue();
2296 APInt DemandedSrc
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2297 if (isSplatValue(Src
, DemandedSrc
, UndefSrcElts
)) {
2298 UndefElts
= UndefSrcElts
.extractBits(NumElts
, Idx
);
2307 APInt UndefLHS
, UndefRHS
;
2308 SDValue LHS
= V
.getOperand(0);
2309 SDValue RHS
= V
.getOperand(1);
2310 if (isSplatValue(LHS
, DemandedElts
, UndefLHS
) &&
2311 isSplatValue(RHS
, DemandedElts
, UndefRHS
)) {
2312 UndefElts
= UndefLHS
| UndefRHS
;
2322 /// Helper wrapper to main isSplatValue function.
2323 bool SelectionDAG::isSplatValue(SDValue V
, bool AllowUndefs
) {
2324 EVT VT
= V
.getValueType();
2325 assert(VT
.isVector() && "Vector type expected");
2326 unsigned NumElts
= VT
.getVectorNumElements();
2329 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
2330 return isSplatValue(V
, DemandedElts
, UndefElts
) &&
2331 (AllowUndefs
|| !UndefElts
);
2334 SDValue
SelectionDAG::getSplatSourceVector(SDValue V
, int &SplatIdx
) {
2335 V
= peekThroughExtractSubvectors(V
);
2337 EVT VT
= V
.getValueType();
2338 unsigned Opcode
= V
.getOpcode();
2342 APInt DemandedElts
= APInt::getAllOnesValue(VT
.getVectorNumElements());
2343 if (isSplatValue(V
, DemandedElts
, UndefElts
)) {
2344 // Handle case where all demanded elements are UNDEF.
2345 if (DemandedElts
.isSubsetOf(UndefElts
)) {
2347 return getUNDEF(VT
);
2349 SplatIdx
= (UndefElts
& DemandedElts
).countTrailingOnes();
2354 case ISD::VECTOR_SHUFFLE
: {
2355 // Check if this is a shuffle node doing a splat.
2356 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2357 // getTargetVShiftNode currently struggles without the splat source.
2358 auto *SVN
= cast
<ShuffleVectorSDNode
>(V
);
2359 if (!SVN
->isSplat())
2361 int Idx
= SVN
->getSplatIndex();
2362 int NumElts
= V
.getValueType().getVectorNumElements();
2363 SplatIdx
= Idx
% NumElts
;
2364 return V
.getOperand(Idx
/ NumElts
);
2371 SDValue
SelectionDAG::getSplatValue(SDValue V
) {
2373 if (SDValue SrcVector
= getSplatSourceVector(V
, SplatIdx
))
2374 return getNode(ISD::EXTRACT_VECTOR_ELT
, SDLoc(V
),
2375 SrcVector
.getValueType().getScalarType(), SrcVector
,
2376 getIntPtrConstant(SplatIdx
, SDLoc(V
)));
2380 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2381 /// is less than the element bit-width of the shift node, return it.
2382 static const APInt
*getValidShiftAmountConstant(SDValue V
) {
2383 if (ConstantSDNode
*SA
= isConstOrConstSplat(V
.getOperand(1))) {
2384 // Shifting more than the bitwidth is not valid.
2385 const APInt
&ShAmt
= SA
->getAPIntValue();
2386 if (ShAmt
.ult(V
.getScalarValueSizeInBits()))
2392 /// Determine which bits of Op are known to be either zero or one and return
2393 /// them in Known. For vectors, the known bits are those that are shared by
2394 /// every vector element.
2395 KnownBits
SelectionDAG::computeKnownBits(SDValue Op
, unsigned Depth
) const {
2396 EVT VT
= Op
.getValueType();
2397 APInt DemandedElts
= VT
.isVector()
2398 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
2400 return computeKnownBits(Op
, DemandedElts
, Depth
);
2403 /// Determine which bits of Op are known to be either zero or one and return
2404 /// them in Known. The DemandedElts argument allows us to only collect the known
2405 /// bits that are shared by the requested vector elements.
2406 KnownBits
SelectionDAG::computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
2407 unsigned Depth
) const {
2408 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2410 KnownBits
Known(BitWidth
); // Don't know anything.
2412 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
2413 // We know all of the bits for a constant!
2414 Known
.One
= C
->getAPIntValue();
2415 Known
.Zero
= ~Known
.One
;
2418 if (auto *C
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
2419 // We know all of the bits for a constant fp!
2420 Known
.One
= C
->getValueAPF().bitcastToAPInt();
2421 Known
.Zero
= ~Known
.One
;
2426 return Known
; // Limit search depth.
2429 unsigned NumElts
= DemandedElts
.getBitWidth();
2430 assert((!Op
.getValueType().isVector() ||
2431 NumElts
== Op
.getValueType().getVectorNumElements()) &&
2432 "Unexpected vector size");
2435 return Known
; // No demanded elts, better to assume we don't know anything.
2437 unsigned Opcode
= Op
.getOpcode();
2439 case ISD::BUILD_VECTOR
:
2440 // Collect the known bits that are shared by every demanded vector element.
2441 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2442 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
!= e
; ++i
) {
2443 if (!DemandedElts
[i
])
2446 SDValue SrcOp
= Op
.getOperand(i
);
2447 Known2
= computeKnownBits(SrcOp
, Depth
+ 1);
2449 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2450 if (SrcOp
.getValueSizeInBits() != BitWidth
) {
2451 assert(SrcOp
.getValueSizeInBits() > BitWidth
&&
2452 "Expected BUILD_VECTOR implicit truncation");
2453 Known2
= Known2
.trunc(BitWidth
);
2456 // Known bits are the values that are shared by every demanded element.
2457 Known
.One
&= Known2
.One
;
2458 Known
.Zero
&= Known2
.Zero
;
2460 // If we don't know any bits, early out.
2461 if (Known
.isUnknown())
2465 case ISD::VECTOR_SHUFFLE
: {
2466 // Collect the known bits that are shared by every vector element referenced
2468 APInt
DemandedLHS(NumElts
, 0), DemandedRHS(NumElts
, 0);
2469 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2470 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
);
2471 assert(NumElts
== SVN
->getMask().size() && "Unexpected vector size");
2472 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2473 if (!DemandedElts
[i
])
2476 int M
= SVN
->getMaskElt(i
);
2478 // For UNDEF elements, we don't know anything about the common state of
2479 // the shuffle result.
2481 DemandedLHS
.clearAllBits();
2482 DemandedRHS
.clearAllBits();
2486 if ((unsigned)M
< NumElts
)
2487 DemandedLHS
.setBit((unsigned)M
% NumElts
);
2489 DemandedRHS
.setBit((unsigned)M
% NumElts
);
2491 // Known bits are the values that are shared by every demanded element.
2492 if (!!DemandedLHS
) {
2493 SDValue LHS
= Op
.getOperand(0);
2494 Known2
= computeKnownBits(LHS
, DemandedLHS
, Depth
+ 1);
2495 Known
.One
&= Known2
.One
;
2496 Known
.Zero
&= Known2
.Zero
;
2498 // If we don't know any bits, early out.
2499 if (Known
.isUnknown())
2501 if (!!DemandedRHS
) {
2502 SDValue RHS
= Op
.getOperand(1);
2503 Known2
= computeKnownBits(RHS
, DemandedRHS
, Depth
+ 1);
2504 Known
.One
&= Known2
.One
;
2505 Known
.Zero
&= Known2
.Zero
;
2509 case ISD::CONCAT_VECTORS
: {
2510 // Split DemandedElts and test each of the demanded subvectors.
2511 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2512 EVT SubVectorVT
= Op
.getOperand(0).getValueType();
2513 unsigned NumSubVectorElts
= SubVectorVT
.getVectorNumElements();
2514 unsigned NumSubVectors
= Op
.getNumOperands();
2515 for (unsigned i
= 0; i
!= NumSubVectors
; ++i
) {
2516 APInt DemandedSub
= DemandedElts
.lshr(i
* NumSubVectorElts
);
2517 DemandedSub
= DemandedSub
.trunc(NumSubVectorElts
);
2518 if (!!DemandedSub
) {
2519 SDValue Sub
= Op
.getOperand(i
);
2520 Known2
= computeKnownBits(Sub
, DemandedSub
, Depth
+ 1);
2521 Known
.One
&= Known2
.One
;
2522 Known
.Zero
&= Known2
.Zero
;
2524 // If we don't know any bits, early out.
2525 if (Known
.isUnknown())
2530 case ISD::INSERT_SUBVECTOR
: {
2531 // If we know the element index, demand any elements from the subvector and
2532 // the remainder from the src its inserted into, otherwise demand them all.
2533 SDValue Src
= Op
.getOperand(0);
2534 SDValue Sub
= Op
.getOperand(1);
2535 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
2536 unsigned NumSubElts
= Sub
.getValueType().getVectorNumElements();
2537 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumElts
- NumSubElts
)) {
2538 Known
.One
.setAllBits();
2539 Known
.Zero
.setAllBits();
2540 uint64_t Idx
= SubIdx
->getZExtValue();
2541 APInt DemandedSubElts
= DemandedElts
.extractBits(NumSubElts
, Idx
);
2542 if (!!DemandedSubElts
) {
2543 Known
= computeKnownBits(Sub
, DemandedSubElts
, Depth
+ 1);
2544 if (Known
.isUnknown())
2545 break; // early-out.
2547 APInt SubMask
= APInt::getBitsSet(NumElts
, Idx
, Idx
+ NumSubElts
);
2548 APInt DemandedSrcElts
= DemandedElts
& ~SubMask
;
2549 if (!!DemandedSrcElts
) {
2550 Known2
= computeKnownBits(Src
, DemandedSrcElts
, Depth
+ 1);
2551 Known
.One
&= Known2
.One
;
2552 Known
.Zero
&= Known2
.Zero
;
2555 Known
= computeKnownBits(Sub
, Depth
+ 1);
2556 if (Known
.isUnknown())
2557 break; // early-out.
2558 Known2
= computeKnownBits(Src
, Depth
+ 1);
2559 Known
.One
&= Known2
.One
;
2560 Known
.Zero
&= Known2
.Zero
;
2564 case ISD::EXTRACT_SUBVECTOR
: {
2565 // If we know the element index, just demand that subvector elements,
2566 // otherwise demand them all.
2567 SDValue Src
= Op
.getOperand(0);
2568 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2569 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2570 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2571 // Offset the demanded elts by the subvector index.
2572 uint64_t Idx
= SubIdx
->getZExtValue();
2573 APInt DemandedSrc
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2574 Known
= computeKnownBits(Src
, DemandedSrc
, Depth
+ 1);
2576 Known
= computeKnownBits(Src
, Depth
+ 1);
2580 case ISD::SCALAR_TO_VECTOR
: {
2581 // We know about scalar_to_vector as much as we know about it source,
2582 // which becomes the first element of otherwise unknown vector.
2583 if (DemandedElts
!= 1)
2586 SDValue N0
= Op
.getOperand(0);
2587 Known
= computeKnownBits(N0
, Depth
+ 1);
2588 if (N0
.getValueSizeInBits() != BitWidth
)
2589 Known
= Known
.trunc(BitWidth
);
2593 case ISD::BITCAST
: {
2594 SDValue N0
= Op
.getOperand(0);
2595 EVT SubVT
= N0
.getValueType();
2596 unsigned SubBitWidth
= SubVT
.getScalarSizeInBits();
2598 // Ignore bitcasts from unsupported types.
2599 if (!(SubVT
.isInteger() || SubVT
.isFloatingPoint()))
2602 // Fast handling of 'identity' bitcasts.
2603 if (BitWidth
== SubBitWidth
) {
2604 Known
= computeKnownBits(N0
, DemandedElts
, Depth
+ 1);
2608 bool IsLE
= getDataLayout().isLittleEndian();
2610 // Bitcast 'small element' vector to 'large element' scalar/vector.
2611 if ((BitWidth
% SubBitWidth
) == 0) {
2612 assert(N0
.getValueType().isVector() && "Expected bitcast from vector");
2614 // Collect known bits for the (larger) output by collecting the known
2615 // bits from each set of sub elements and shift these into place.
2616 // We need to separately call computeKnownBits for each set of
2617 // sub elements as the knownbits for each is likely to be different.
2618 unsigned SubScale
= BitWidth
/ SubBitWidth
;
2619 APInt
SubDemandedElts(NumElts
* SubScale
, 0);
2620 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2621 if (DemandedElts
[i
])
2622 SubDemandedElts
.setBit(i
* SubScale
);
2624 for (unsigned i
= 0; i
!= SubScale
; ++i
) {
2625 Known2
= computeKnownBits(N0
, SubDemandedElts
.shl(i
),
2627 unsigned Shifts
= IsLE
? i
: SubScale
- 1 - i
;
2628 Known
.One
|= Known2
.One
.zext(BitWidth
).shl(SubBitWidth
* Shifts
);
2629 Known
.Zero
|= Known2
.Zero
.zext(BitWidth
).shl(SubBitWidth
* Shifts
);
2633 // Bitcast 'large element' scalar/vector to 'small element' vector.
2634 if ((SubBitWidth
% BitWidth
) == 0) {
2635 assert(Op
.getValueType().isVector() && "Expected bitcast to vector");
2637 // Collect known bits for the (smaller) output by collecting the known
2638 // bits from the overlapping larger input elements and extracting the
2639 // sub sections we actually care about.
2640 unsigned SubScale
= SubBitWidth
/ BitWidth
;
2641 APInt
SubDemandedElts(NumElts
/ SubScale
, 0);
2642 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2643 if (DemandedElts
[i
])
2644 SubDemandedElts
.setBit(i
/ SubScale
);
2646 Known2
= computeKnownBits(N0
, SubDemandedElts
, Depth
+ 1);
2648 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2649 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2650 if (DemandedElts
[i
]) {
2651 unsigned Shifts
= IsLE
? i
: NumElts
- 1 - i
;
2652 unsigned Offset
= (Shifts
% SubScale
) * BitWidth
;
2653 Known
.One
&= Known2
.One
.lshr(Offset
).trunc(BitWidth
);
2654 Known
.Zero
&= Known2
.Zero
.lshr(Offset
).trunc(BitWidth
);
2655 // If we don't know any bits, early out.
2656 if (Known
.isUnknown())
2663 // If either the LHS or the RHS are Zero, the result is zero.
2664 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2665 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2667 // Output known-1 bits are only known if set in both the LHS & RHS.
2668 Known
.One
&= Known2
.One
;
2669 // Output known-0 are known to be clear if zero in either the LHS | RHS.
2670 Known
.Zero
|= Known2
.Zero
;
2673 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2674 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2676 // Output known-0 bits are only known if clear in both the LHS & RHS.
2677 Known
.Zero
&= Known2
.Zero
;
2678 // Output known-1 are known to be set if set in either the LHS | RHS.
2679 Known
.One
|= Known2
.One
;
2682 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2683 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2685 // Output known-0 bits are known if clear or set in both the LHS & RHS.
2686 APInt KnownZeroOut
= (Known
.Zero
& Known2
.Zero
) | (Known
.One
& Known2
.One
);
2687 // Output known-1 are known to be set if set in only one of the LHS, RHS.
2688 Known
.One
= (Known
.Zero
& Known2
.One
) | (Known
.One
& Known2
.Zero
);
2689 Known
.Zero
= KnownZeroOut
;
2693 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2694 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2696 // If low bits are zero in either operand, output low known-0 bits.
2697 // Also compute a conservative estimate for high known-0 bits.
2698 // More trickiness is possible, but this is sufficient for the
2699 // interesting case of alignment computation.
2700 unsigned TrailZ
= Known
.countMinTrailingZeros() +
2701 Known2
.countMinTrailingZeros();
2702 unsigned LeadZ
= std::max(Known
.countMinLeadingZeros() +
2703 Known2
.countMinLeadingZeros(),
2704 BitWidth
) - BitWidth
;
2707 Known
.Zero
.setLowBits(std::min(TrailZ
, BitWidth
));
2708 Known
.Zero
.setHighBits(std::min(LeadZ
, BitWidth
));
2712 // For the purposes of computing leading zeros we can conservatively
2713 // treat a udiv as a logical right shift by the power of 2 known to
2714 // be less than the denominator.
2715 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2716 unsigned LeadZ
= Known2
.countMinLeadingZeros();
2718 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2719 unsigned RHSMaxLeadingZeros
= Known2
.countMaxLeadingZeros();
2720 if (RHSMaxLeadingZeros
!= BitWidth
)
2721 LeadZ
= std::min(BitWidth
, LeadZ
+ BitWidth
- RHSMaxLeadingZeros
- 1);
2723 Known
.Zero
.setHighBits(LeadZ
);
2728 Known
= computeKnownBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
2729 // If we don't know any bits, early out.
2730 if (Known
.isUnknown())
2732 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
2734 // Only known if known in both the LHS and RHS.
2735 Known
.One
&= Known2
.One
;
2736 Known
.Zero
&= Known2
.Zero
;
2738 case ISD::SELECT_CC
:
2739 Known
= computeKnownBits(Op
.getOperand(3), DemandedElts
, Depth
+1);
2740 // If we don't know any bits, early out.
2741 if (Known
.isUnknown())
2743 Known2
= computeKnownBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
2745 // Only known if known in both the LHS and RHS.
2746 Known
.One
&= Known2
.One
;
2747 Known
.Zero
&= Known2
.Zero
;
2751 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
2752 if (Op
.getResNo() != 1)
2754 // The boolean result conforms to getBooleanContents.
2755 // If we know the result of a setcc has the top bits zero, use this info.
2756 // We know that we have an integer-based boolean since these operations
2757 // are only available for integer.
2758 if (TLI
->getBooleanContents(Op
.getValueType().isVector(), false) ==
2759 TargetLowering::ZeroOrOneBooleanContent
&&
2761 Known
.Zero
.setBitsFrom(1);
2764 // If we know the result of a setcc has the top bits zero, use this info.
2765 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
2766 TargetLowering::ZeroOrOneBooleanContent
&&
2768 Known
.Zero
.setBitsFrom(1);
2771 if (const APInt
*ShAmt
= getValidShiftAmountConstant(Op
)) {
2772 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2773 unsigned Shift
= ShAmt
->getZExtValue();
2774 Known
.Zero
<<= Shift
;
2775 Known
.One
<<= Shift
;
2776 // Low bits are known zero.
2777 Known
.Zero
.setLowBits(Shift
);
2781 if (const APInt
*ShAmt
= getValidShiftAmountConstant(Op
)) {
2782 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2783 unsigned Shift
= ShAmt
->getZExtValue();
2784 Known
.Zero
.lshrInPlace(Shift
);
2785 Known
.One
.lshrInPlace(Shift
);
2786 // High bits are known zero.
2787 Known
.Zero
.setHighBits(Shift
);
2788 } else if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(1))) {
2789 // If the shift amount is a vector of constants see if we can bound
2790 // the number of upper zero bits.
2791 unsigned ShiftAmountMin
= BitWidth
;
2792 for (unsigned i
= 0; i
!= BV
->getNumOperands(); ++i
) {
2793 if (auto *C
= dyn_cast
<ConstantSDNode
>(BV
->getOperand(i
))) {
2794 const APInt
&ShAmt
= C
->getAPIntValue();
2795 if (ShAmt
.ult(BitWidth
)) {
2796 ShiftAmountMin
= std::min
<unsigned>(ShiftAmountMin
,
2797 ShAmt
.getZExtValue());
2801 // Don't know anything.
2806 Known
.Zero
.setHighBits(ShiftAmountMin
);
2810 if (const APInt
*ShAmt
= getValidShiftAmountConstant(Op
)) {
2811 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2812 unsigned Shift
= ShAmt
->getZExtValue();
2813 // Sign extend known zero/one bit (else is unknown).
2814 Known
.Zero
.ashrInPlace(Shift
);
2815 Known
.One
.ashrInPlace(Shift
);
2820 if (ConstantSDNode
*C
= isConstOrConstSplat(Op
.getOperand(2), DemandedElts
)) {
2821 unsigned Amt
= C
->getAPIntValue().urem(BitWidth
);
2823 // For fshl, 0-shift returns the 1st arg.
2824 // For fshr, 0-shift returns the 2nd arg.
2826 Known
= computeKnownBits(Op
.getOperand(Opcode
== ISD::FSHL
? 0 : 1),
2827 DemandedElts
, Depth
+ 1);
2831 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2832 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2833 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2834 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2835 if (Opcode
== ISD::FSHL
) {
2838 Known2
.One
.lshrInPlace(BitWidth
- Amt
);
2839 Known2
.Zero
.lshrInPlace(BitWidth
- Amt
);
2841 Known
.One
<<= BitWidth
- Amt
;
2842 Known
.Zero
<<= BitWidth
- Amt
;
2843 Known2
.One
.lshrInPlace(Amt
);
2844 Known2
.Zero
.lshrInPlace(Amt
);
2846 Known
.One
|= Known2
.One
;
2847 Known
.Zero
|= Known2
.Zero
;
2850 case ISD::SIGN_EXTEND_INREG
: {
2851 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2852 unsigned EBits
= EVT
.getScalarSizeInBits();
2854 // Sign extension. Compute the demanded bits in the result that are not
2855 // present in the input.
2856 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
);
2858 APInt InSignMask
= APInt::getSignMask(EBits
);
2859 APInt InputDemandedBits
= APInt::getLowBitsSet(BitWidth
, EBits
);
2861 // If the sign extended bits are demanded, we know that the sign
2863 InSignMask
= InSignMask
.zext(BitWidth
);
2864 if (NewBits
.getBoolValue())
2865 InputDemandedBits
|= InSignMask
;
2867 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2868 Known
.One
&= InputDemandedBits
;
2869 Known
.Zero
&= InputDemandedBits
;
2871 // If the sign bit of the input is known set or clear, then we know the
2872 // top bits of the result.
2873 if (Known
.Zero
.intersects(InSignMask
)) { // Input sign bit known clear
2874 Known
.Zero
|= NewBits
;
2875 Known
.One
&= ~NewBits
;
2876 } else if (Known
.One
.intersects(InSignMask
)) { // Input sign bit known set
2877 Known
.One
|= NewBits
;
2878 Known
.Zero
&= ~NewBits
;
2879 } else { // Input sign bit unknown
2880 Known
.Zero
&= ~NewBits
;
2881 Known
.One
&= ~NewBits
;
2886 case ISD::CTTZ_ZERO_UNDEF
: {
2887 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2888 // If we have a known 1, its position is our upper bound.
2889 unsigned PossibleTZ
= Known2
.countMaxTrailingZeros();
2890 unsigned LowBits
= Log2_32(PossibleTZ
) + 1;
2891 Known
.Zero
.setBitsFrom(LowBits
);
2895 case ISD::CTLZ_ZERO_UNDEF
: {
2896 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2897 // If we have a known 1, its position is our upper bound.
2898 unsigned PossibleLZ
= Known2
.countMaxLeadingZeros();
2899 unsigned LowBits
= Log2_32(PossibleLZ
) + 1;
2900 Known
.Zero
.setBitsFrom(LowBits
);
2904 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2905 // If we know some of the bits are zero, they can't be one.
2906 unsigned PossibleOnes
= Known2
.countMaxPopulation();
2907 Known
.Zero
.setBitsFrom(Log2_32(PossibleOnes
) + 1);
2911 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2912 const Constant
*Cst
= TLI
->getTargetConstantFromLoad(LD
);
2913 if (ISD::isNON_EXTLoad(LD
) && Cst
) {
2914 // Determine any common known bits from the loaded constant pool value.
2915 Type
*CstTy
= Cst
->getType();
2916 if ((NumElts
* BitWidth
) == CstTy
->getPrimitiveSizeInBits()) {
2917 // If its a vector splat, then we can (quickly) reuse the scalar path.
2918 // NOTE: We assume all elements match and none are UNDEF.
2919 if (CstTy
->isVectorTy()) {
2920 if (const Constant
*Splat
= Cst
->getSplatValue()) {
2922 CstTy
= Cst
->getType();
2925 // TODO - do we need to handle different bitwidths?
2926 if (CstTy
->isVectorTy() && BitWidth
== CstTy
->getScalarSizeInBits()) {
2927 // Iterate across all vector elements finding common known bits.
2928 Known
.One
.setAllBits();
2929 Known
.Zero
.setAllBits();
2930 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2931 if (!DemandedElts
[i
])
2933 if (Constant
*Elt
= Cst
->getAggregateElement(i
)) {
2934 if (auto *CInt
= dyn_cast
<ConstantInt
>(Elt
)) {
2935 const APInt
&Value
= CInt
->getValue();
2937 Known
.Zero
&= ~Value
;
2940 if (auto *CFP
= dyn_cast
<ConstantFP
>(Elt
)) {
2941 APInt Value
= CFP
->getValueAPF().bitcastToAPInt();
2943 Known
.Zero
&= ~Value
;
2947 Known
.One
.clearAllBits();
2948 Known
.Zero
.clearAllBits();
2951 } else if (BitWidth
== CstTy
->getPrimitiveSizeInBits()) {
2952 if (auto *CInt
= dyn_cast
<ConstantInt
>(Cst
)) {
2953 const APInt
&Value
= CInt
->getValue();
2955 Known
.Zero
= ~Value
;
2956 } else if (auto *CFP
= dyn_cast
<ConstantFP
>(Cst
)) {
2957 APInt Value
= CFP
->getValueAPF().bitcastToAPInt();
2959 Known
.Zero
= ~Value
;
2963 } else if (ISD::isZEXTLoad(Op
.getNode()) && Op
.getResNo() == 0) {
2964 // If this is a ZEXTLoad and we are looking at the loaded value.
2965 EVT VT
= LD
->getMemoryVT();
2966 unsigned MemBits
= VT
.getScalarSizeInBits();
2967 Known
.Zero
.setBitsFrom(MemBits
);
2968 } else if (const MDNode
*Ranges
= LD
->getRanges()) {
2969 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
)
2970 computeKnownBitsFromRangeMetadata(*Ranges
, Known
);
2974 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2975 EVT InVT
= Op
.getOperand(0).getValueType();
2976 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
2977 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
2978 Known
= Known
.zext(BitWidth
, true /* ExtendedBitsAreKnownZero */);
2981 case ISD::ZERO_EXTEND
: {
2982 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2983 Known
= Known
.zext(BitWidth
, true /* ExtendedBitsAreKnownZero */);
2986 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
2987 EVT InVT
= Op
.getOperand(0).getValueType();
2988 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
2989 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
2990 // If the sign bit is known to be zero or one, then sext will extend
2991 // it to the top bits, else it will just zext.
2992 Known
= Known
.sext(BitWidth
);
2995 case ISD::SIGN_EXTEND
: {
2996 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2997 // If the sign bit is known to be zero or one, then sext will extend
2998 // it to the top bits, else it will just zext.
2999 Known
= Known
.sext(BitWidth
);
3002 case ISD::ANY_EXTEND
: {
3003 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3004 Known
= Known
.zext(BitWidth
, false /* ExtendedBitsAreKnownZero */);
3007 case ISD::TRUNCATE
: {
3008 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3009 Known
= Known
.trunc(BitWidth
);
3012 case ISD::AssertZext
: {
3013 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
3014 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
3015 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3016 Known
.Zero
|= (~InMask
);
3017 Known
.One
&= (~Known
.Zero
);
3021 // All bits are zero except the low bit.
3022 Known
.Zero
.setBitsFrom(1);
3026 if (Op
.getResNo() == 1) {
3027 // If we know the result of a setcc has the top bits zero, use this info.
3028 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
3029 TargetLowering::ZeroOrOneBooleanContent
&&
3031 Known
.Zero
.setBitsFrom(1);
3037 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3038 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3039 Known
= KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3046 if (Op
.getResNo() == 1) {
3047 // If we know the result of a setcc has the top bits zero, use this info.
3048 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
3049 TargetLowering::ZeroOrOneBooleanContent
&&
3051 Known
.Zero
.setBitsFrom(1);
3058 assert(Op
.getResNo() == 0 && "We only compute knownbits for the sum here.");
3060 // With ADDE and ADDCARRY, a carry bit may be added in.
3062 if (Opcode
== ISD::ADDE
)
3063 // Can't track carry from glue, set carry to unknown.
3065 else if (Opcode
== ISD::ADDCARRY
)
3066 // TODO: Compute known bits for the carry operand. Not sure if it is worth
3067 // the trouble (how often will we find a known carry bit). And I haven't
3068 // tested this very much yet, but something like this might work:
3069 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3070 // Carry = Carry.zextOrTrunc(1, false);
3075 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3076 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3077 Known
= KnownBits::computeForAddCarry(Known
, Known2
, Carry
);
3081 if (ConstantSDNode
*Rem
= isConstOrConstSplat(Op
.getOperand(1))) {
3082 const APInt
&RA
= Rem
->getAPIntValue().abs();
3083 if (RA
.isPowerOf2()) {
3084 APInt LowBits
= RA
- 1;
3085 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3087 // The low bits of the first operand are unchanged by the srem.
3088 Known
.Zero
= Known2
.Zero
& LowBits
;
3089 Known
.One
= Known2
.One
& LowBits
;
3091 // If the first operand is non-negative or has all low bits zero, then
3092 // the upper bits are all zero.
3093 if (Known2
.isNonNegative() || LowBits
.isSubsetOf(Known2
.Zero
))
3094 Known
.Zero
|= ~LowBits
;
3096 // If the first operand is negative and not all low bits are zero, then
3097 // the upper bits are all one.
3098 if (Known2
.isNegative() && LowBits
.intersects(Known2
.One
))
3099 Known
.One
|= ~LowBits
;
3100 assert((Known
.Zero
& Known
.One
) == 0&&"Bits known to be one AND zero?");
3105 if (ConstantSDNode
*Rem
= isConstOrConstSplat(Op
.getOperand(1))) {
3106 const APInt
&RA
= Rem
->getAPIntValue();
3107 if (RA
.isPowerOf2()) {
3108 APInt LowBits
= (RA
- 1);
3109 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3111 // The upper bits are all zero, the lower ones are unchanged.
3112 Known
.Zero
= Known2
.Zero
| ~LowBits
;
3113 Known
.One
= Known2
.One
& LowBits
;
3118 // Since the result is less than or equal to either operand, any leading
3119 // zero bits in either operand must also exist in the result.
3120 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3121 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3124 std::max(Known
.countMinLeadingZeros(), Known2
.countMinLeadingZeros());
3126 Known
.Zero
.setHighBits(Leaders
);
3129 case ISD::EXTRACT_ELEMENT
: {
3130 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3131 const unsigned Index
= Op
.getConstantOperandVal(1);
3132 const unsigned EltBitWidth
= Op
.getValueSizeInBits();
3134 // Remove low part of known bits mask
3135 Known
.Zero
= Known
.Zero
.getHiBits(Known
.getBitWidth() - Index
* EltBitWidth
);
3136 Known
.One
= Known
.One
.getHiBits(Known
.getBitWidth() - Index
* EltBitWidth
);
3138 // Remove high part of known bit mask
3139 Known
= Known
.trunc(EltBitWidth
);
3142 case ISD::EXTRACT_VECTOR_ELT
: {
3143 SDValue InVec
= Op
.getOperand(0);
3144 SDValue EltNo
= Op
.getOperand(1);
3145 EVT VecVT
= InVec
.getValueType();
3146 const unsigned EltBitWidth
= VecVT
.getScalarSizeInBits();
3147 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
3148 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3149 // anything about the extended bits.
3150 if (BitWidth
> EltBitWidth
)
3151 Known
= Known
.trunc(EltBitWidth
);
3152 ConstantSDNode
*ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3153 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().ult(NumSrcElts
)) {
3154 // If we know the element index, just demand that vector element.
3155 unsigned Idx
= ConstEltNo
->getZExtValue();
3156 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
3157 Known
= computeKnownBits(InVec
, DemandedElt
, Depth
+ 1);
3159 // Unknown element index, so ignore DemandedElts and demand them all.
3160 Known
= computeKnownBits(InVec
, Depth
+ 1);
3162 if (BitWidth
> EltBitWidth
)
3163 Known
= Known
.zext(BitWidth
, false /* => any extend */);
3166 case ISD::INSERT_VECTOR_ELT
: {
3167 SDValue InVec
= Op
.getOperand(0);
3168 SDValue InVal
= Op
.getOperand(1);
3169 SDValue EltNo
= Op
.getOperand(2);
3171 ConstantSDNode
*CEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3172 if (CEltNo
&& CEltNo
->getAPIntValue().ult(NumElts
)) {
3173 // If we know the element index, split the demand between the
3174 // source vector and the inserted element.
3175 Known
.Zero
= Known
.One
= APInt::getAllOnesValue(BitWidth
);
3176 unsigned EltIdx
= CEltNo
->getZExtValue();
3178 // If we demand the inserted element then add its common known bits.
3179 if (DemandedElts
[EltIdx
]) {
3180 Known2
= computeKnownBits(InVal
, Depth
+ 1);
3181 Known
.One
&= Known2
.One
.zextOrTrunc(Known
.One
.getBitWidth());
3182 Known
.Zero
&= Known2
.Zero
.zextOrTrunc(Known
.Zero
.getBitWidth());
3185 // If we demand the source vector then add its common known bits, ensuring
3186 // that we don't demand the inserted element.
3187 APInt VectorElts
= DemandedElts
& ~(APInt::getOneBitSet(NumElts
, EltIdx
));
3189 Known2
= computeKnownBits(InVec
, VectorElts
, Depth
+ 1);
3190 Known
.One
&= Known2
.One
;
3191 Known
.Zero
&= Known2
.Zero
;
3194 // Unknown element index, so ignore DemandedElts and demand them all.
3195 Known
= computeKnownBits(InVec
, Depth
+ 1);
3196 Known2
= computeKnownBits(InVal
, Depth
+ 1);
3197 Known
.One
&= Known2
.One
.zextOrTrunc(Known
.One
.getBitWidth());
3198 Known
.Zero
&= Known2
.Zero
.zextOrTrunc(Known
.Zero
.getBitWidth());
3202 case ISD::BITREVERSE
: {
3203 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3204 Known
.Zero
= Known2
.Zero
.reverseBits();
3205 Known
.One
= Known2
.One
.reverseBits();
3209 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3210 Known
.Zero
= Known2
.Zero
.byteSwap();
3211 Known
.One
= Known2
.One
.byteSwap();
3215 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3217 // If the source's MSB is zero then we know the rest of the bits already.
3218 if (Known2
.isNonNegative()) {
3219 Known
.Zero
= Known2
.Zero
;
3220 Known
.One
= Known2
.One
;
3224 // We only know that the absolute values's MSB will be zero iff there is
3225 // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3226 Known2
.One
.clearSignBit();
3227 if (Known2
.One
.getBoolValue()) {
3228 Known
.Zero
= APInt::getSignMask(BitWidth
);
3234 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3235 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3237 // UMIN - we know that the result will have the maximum of the
3238 // known zero leading bits of the inputs.
3239 unsigned LeadZero
= Known
.countMinLeadingZeros();
3240 LeadZero
= std::max(LeadZero
, Known2
.countMinLeadingZeros());
3242 Known
.Zero
&= Known2
.Zero
;
3243 Known
.One
&= Known2
.One
;
3244 Known
.Zero
.setHighBits(LeadZero
);
3248 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3249 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3251 // UMAX - we know that the result will have the maximum of the
3252 // known one leading bits of the inputs.
3253 unsigned LeadOne
= Known
.countMinLeadingOnes();
3254 LeadOne
= std::max(LeadOne
, Known2
.countMinLeadingOnes());
3256 Known
.Zero
&= Known2
.Zero
;
3257 Known
.One
&= Known2
.One
;
3258 Known
.One
.setHighBits(LeadOne
);
3263 // If we have a clamp pattern, we know that the number of sign bits will be
3264 // the minimum of the clamp min/max range.
3265 bool IsMax
= (Opcode
== ISD::SMAX
);
3266 ConstantSDNode
*CstLow
= nullptr, *CstHigh
= nullptr;
3267 if ((CstLow
= isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)))
3268 if (Op
.getOperand(0).getOpcode() == (IsMax
? ISD::SMIN
: ISD::SMAX
))
3270 isConstOrConstSplat(Op
.getOperand(0).getOperand(1), DemandedElts
);
3271 if (CstLow
&& CstHigh
) {
3273 std::swap(CstLow
, CstHigh
);
3275 const APInt
&ValueLow
= CstLow
->getAPIntValue();
3276 const APInt
&ValueHigh
= CstHigh
->getAPIntValue();
3277 if (ValueLow
.sle(ValueHigh
)) {
3278 unsigned LowSignBits
= ValueLow
.getNumSignBits();
3279 unsigned HighSignBits
= ValueHigh
.getNumSignBits();
3280 unsigned MinSignBits
= std::min(LowSignBits
, HighSignBits
);
3281 if (ValueLow
.isNegative() && ValueHigh
.isNegative()) {
3282 Known
.One
.setHighBits(MinSignBits
);
3285 if (ValueLow
.isNonNegative() && ValueHigh
.isNonNegative()) {
3286 Known
.Zero
.setHighBits(MinSignBits
);
3292 // Fallback - just get the shared known bits of the operands.
3293 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3294 if (Known
.isUnknown()) break; // Early-out
3295 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3296 Known
.Zero
&= Known2
.Zero
;
3297 Known
.One
&= Known2
.One
;
3300 case ISD::FrameIndex
:
3301 case ISD::TargetFrameIndex
:
3302 TLI
->computeKnownBitsForFrameIndex(Op
, Known
, DemandedElts
, *this, Depth
);
3306 if (Opcode
< ISD::BUILTIN_OP_END
)
3309 case ISD::INTRINSIC_WO_CHAIN
:
3310 case ISD::INTRINSIC_W_CHAIN
:
3311 case ISD::INTRINSIC_VOID
:
3312 // Allow the target to implement this method for its nodes.
3313 TLI
->computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, *this, Depth
);
3317 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
3321 SelectionDAG::OverflowKind
SelectionDAG::computeOverflowKind(SDValue N0
,
3323 // X + 0 never overflow
3324 if (isNullConstant(N1
))
3327 KnownBits N1Known
= computeKnownBits(N1
);
3328 if (N1Known
.Zero
.getBoolValue()) {
3329 KnownBits N0Known
= computeKnownBits(N0
);
3332 (void)(~N0Known
.Zero
).uadd_ov(~N1Known
.Zero
, overflow
);
3337 // mulhi + 1 never overflow
3338 if (N0
.getOpcode() == ISD::UMUL_LOHI
&& N0
.getResNo() == 1 &&
3339 (~N1Known
.Zero
& 0x01) == ~N1Known
.Zero
)
3342 if (N1
.getOpcode() == ISD::UMUL_LOHI
&& N1
.getResNo() == 1) {
3343 KnownBits N0Known
= computeKnownBits(N0
);
3345 if ((~N0Known
.Zero
& 0x01) == ~N0Known
.Zero
)
3349 return OFK_Sometime
;
3352 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val
) const {
3353 EVT OpVT
= Val
.getValueType();
3354 unsigned BitWidth
= OpVT
.getScalarSizeInBits();
3356 // Is the constant a known power of 2?
3357 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Val
))
3358 return Const
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2();
3360 // A left-shift of a constant one will have exactly one bit set because
3361 // shifting the bit off the end is undefined.
3362 if (Val
.getOpcode() == ISD::SHL
) {
3363 auto *C
= isConstOrConstSplat(Val
.getOperand(0));
3364 if (C
&& C
->getAPIntValue() == 1)
3368 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3370 if (Val
.getOpcode() == ISD::SRL
) {
3371 auto *C
= isConstOrConstSplat(Val
.getOperand(0));
3372 if (C
&& C
->getAPIntValue().isSignMask())
3376 // Are all operands of a build vector constant powers of two?
3377 if (Val
.getOpcode() == ISD::BUILD_VECTOR
)
3378 if (llvm::all_of(Val
->ops(), [BitWidth
](SDValue E
) {
3379 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(E
))
3380 return C
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2();
3385 // More could be done here, though the above checks are enough
3386 // to handle some common cases.
3388 // Fall back to computeKnownBits to catch other known cases.
3389 KnownBits Known
= computeKnownBits(Val
);
3390 return (Known
.countMaxPopulation() == 1) && (Known
.countMinPopulation() == 1);
3393 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const {
3394 EVT VT
= Op
.getValueType();
3395 APInt DemandedElts
= VT
.isVector()
3396 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
3398 return ComputeNumSignBits(Op
, DemandedElts
, Depth
);
3401 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
3402 unsigned Depth
) const {
3403 EVT VT
= Op
.getValueType();
3404 assert((VT
.isInteger() || VT
.isFloatingPoint()) && "Invalid VT!");
3405 unsigned VTBits
= VT
.getScalarSizeInBits();
3406 unsigned NumElts
= DemandedElts
.getBitWidth();
3408 unsigned FirstAnswer
= 1;
3410 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3411 const APInt
&Val
= C
->getAPIntValue();
3412 return Val
.getNumSignBits();
3416 return 1; // Limit search depth.
3419 return 1; // No demanded elts, better to assume we don't know anything.
3421 unsigned Opcode
= Op
.getOpcode();
3424 case ISD::AssertSext
:
3425 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
3426 return VTBits
-Tmp
+1;
3427 case ISD::AssertZext
:
3428 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
3431 case ISD::BUILD_VECTOR
:
3433 for (unsigned i
= 0, e
= Op
.getNumOperands(); (i
< e
) && (Tmp
> 1); ++i
) {
3434 if (!DemandedElts
[i
])
3437 SDValue SrcOp
= Op
.getOperand(i
);
3438 Tmp2
= ComputeNumSignBits(Op
.getOperand(i
), Depth
+ 1);
3440 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3441 if (SrcOp
.getValueSizeInBits() != VTBits
) {
3442 assert(SrcOp
.getValueSizeInBits() > VTBits
&&
3443 "Expected BUILD_VECTOR implicit truncation");
3444 unsigned ExtraBits
= SrcOp
.getValueSizeInBits() - VTBits
;
3445 Tmp2
= (Tmp2
> ExtraBits
? Tmp2
- ExtraBits
: 1);
3447 Tmp
= std::min(Tmp
, Tmp2
);
3451 case ISD::VECTOR_SHUFFLE
: {
3452 // Collect the minimum number of sign bits that are shared by every vector
3453 // element referenced by the shuffle.
3454 APInt
DemandedLHS(NumElts
, 0), DemandedRHS(NumElts
, 0);
3455 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
);
3456 assert(NumElts
== SVN
->getMask().size() && "Unexpected vector size");
3457 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3458 int M
= SVN
->getMaskElt(i
);
3459 if (!DemandedElts
[i
])
3461 // For UNDEF elements, we don't know anything about the common state of
3462 // the shuffle result.
3465 if ((unsigned)M
< NumElts
)
3466 DemandedLHS
.setBit((unsigned)M
% NumElts
);
3468 DemandedRHS
.setBit((unsigned)M
% NumElts
);
3470 Tmp
= std::numeric_limits
<unsigned>::max();
3472 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedLHS
, Depth
+ 1);
3473 if (!!DemandedRHS
) {
3474 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedRHS
, Depth
+ 1);
3475 Tmp
= std::min(Tmp
, Tmp2
);
3477 // If we don't know anything, early out and try computeKnownBits fall-back.
3480 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3484 case ISD::BITCAST
: {
3485 SDValue N0
= Op
.getOperand(0);
3486 EVT SrcVT
= N0
.getValueType();
3487 unsigned SrcBits
= SrcVT
.getScalarSizeInBits();
3489 // Ignore bitcasts from unsupported types..
3490 if (!(SrcVT
.isInteger() || SrcVT
.isFloatingPoint()))
3493 // Fast handling of 'identity' bitcasts.
3494 if (VTBits
== SrcBits
)
3495 return ComputeNumSignBits(N0
, DemandedElts
, Depth
+ 1);
3497 bool IsLE
= getDataLayout().isLittleEndian();
3499 // Bitcast 'large element' scalar/vector to 'small element' vector.
3500 if ((SrcBits
% VTBits
) == 0) {
3501 assert(VT
.isVector() && "Expected bitcast to vector");
3503 unsigned Scale
= SrcBits
/ VTBits
;
3504 APInt
SrcDemandedElts(NumElts
/ Scale
, 0);
3505 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3506 if (DemandedElts
[i
])
3507 SrcDemandedElts
.setBit(i
/ Scale
);
3509 // Fast case - sign splat can be simply split across the small elements.
3510 Tmp
= ComputeNumSignBits(N0
, SrcDemandedElts
, Depth
+ 1);
3514 // Slow case - determine how far the sign extends into each sub-element.
3516 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3517 if (DemandedElts
[i
]) {
3518 unsigned SubOffset
= i
% Scale
;
3519 SubOffset
= (IsLE
? ((Scale
- 1) - SubOffset
) : SubOffset
);
3520 SubOffset
= SubOffset
* VTBits
;
3521 if (Tmp
<= SubOffset
)
3523 Tmp2
= std::min(Tmp2
, Tmp
- SubOffset
);
3530 case ISD::SIGN_EXTEND
:
3531 Tmp
= VTBits
- Op
.getOperand(0).getScalarValueSizeInBits();
3532 return ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1) + Tmp
;
3533 case ISD::SIGN_EXTEND_INREG
:
3534 // Max of the input and what this extends.
3535 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarSizeInBits();
3537 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3538 return std::max(Tmp
, Tmp2
);
3539 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
3540 SDValue Src
= Op
.getOperand(0);
3541 EVT SrcVT
= Src
.getValueType();
3542 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(SrcVT
.getVectorNumElements());
3543 Tmp
= VTBits
- SrcVT
.getScalarSizeInBits();
3544 return ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+1) + Tmp
;
3548 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3549 // SRA X, C -> adds C sign bits.
3550 if (ConstantSDNode
*C
=
3551 isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)) {
3552 APInt ShiftVal
= C
->getAPIntValue();
3554 Tmp
= ShiftVal
.uge(VTBits
) ? VTBits
: ShiftVal
.getZExtValue();
3558 if (ConstantSDNode
*C
=
3559 isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)) {
3560 // shl destroys sign bits.
3561 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3562 if (C
->getAPIntValue().uge(VTBits
) || // Bad shift.
3563 C
->getAPIntValue().uge(Tmp
)) break; // Shifted all sign bits out.
3564 return Tmp
- C
->getZExtValue();
3569 case ISD::XOR
: // NOT is handled here.
3570 // Logical binary ops preserve the number of sign bits at the worst.
3571 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3573 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3574 FirstAnswer
= std::min(Tmp
, Tmp2
);
3575 // We computed what we know about the sign bits as our first
3576 // answer. Now proceed to the generic code that uses
3577 // computeKnownBits, and pick whichever answer is better.
3583 Tmp
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3584 if (Tmp
== 1) return 1; // Early out.
3585 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3586 return std::min(Tmp
, Tmp2
);
3587 case ISD::SELECT_CC
:
3588 Tmp
= ComputeNumSignBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3589 if (Tmp
== 1) return 1; // Early out.
3590 Tmp2
= ComputeNumSignBits(Op
.getOperand(3), DemandedElts
, Depth
+1);
3591 return std::min(Tmp
, Tmp2
);
3595 // If we have a clamp pattern, we know that the number of sign bits will be
3596 // the minimum of the clamp min/max range.
3597 bool IsMax
= (Opcode
== ISD::SMAX
);
3598 ConstantSDNode
*CstLow
= nullptr, *CstHigh
= nullptr;
3599 if ((CstLow
= isConstOrConstSplat(Op
.getOperand(1), DemandedElts
)))
3600 if (Op
.getOperand(0).getOpcode() == (IsMax
? ISD::SMIN
: ISD::SMAX
))
3602 isConstOrConstSplat(Op
.getOperand(0).getOperand(1), DemandedElts
);
3603 if (CstLow
&& CstHigh
) {
3605 std::swap(CstLow
, CstHigh
);
3606 if (CstLow
->getAPIntValue().sle(CstHigh
->getAPIntValue())) {
3607 Tmp
= CstLow
->getAPIntValue().getNumSignBits();
3608 Tmp2
= CstHigh
->getAPIntValue().getNumSignBits();
3609 return std::min(Tmp
, Tmp2
);
3613 // Fallback - just get the minimum number of sign bits of the operands.
3614 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3616 return 1; // Early out.
3617 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
3618 return std::min(Tmp
, Tmp2
);
3622 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3624 return 1; // Early out.
3625 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
3626 return std::min(Tmp
, Tmp2
);
3633 if (Op
.getResNo() != 1)
3635 // The boolean result conforms to getBooleanContents. Fall through.
3636 // If setcc returns 0/-1, all bits are sign bits.
3637 // We know that we have an integer-based boolean since these operations
3638 // are only available for integer.
3639 if (TLI
->getBooleanContents(VT
.isVector(), false) ==
3640 TargetLowering::ZeroOrNegativeOneBooleanContent
)
3644 // If setcc returns 0/-1, all bits are sign bits.
3645 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
3646 TargetLowering::ZeroOrNegativeOneBooleanContent
)
3651 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
3652 unsigned RotAmt
= C
->getAPIntValue().urem(VTBits
);
3654 // Handle rotate right by N like a rotate left by 32-N.
3655 if (Opcode
== ISD::ROTR
)
3656 RotAmt
= (VTBits
- RotAmt
) % VTBits
;
3658 // If we aren't rotating out all of the known-in sign bits, return the
3659 // number that are left. This handles rotl(sext(x), 1) for example.
3660 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3661 if (Tmp
> (RotAmt
+ 1)) return (Tmp
- RotAmt
);
3666 // Add can have at most one carry bit. Thus we know that the output
3667 // is, at worst, one more bit than the inputs.
3668 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3669 if (Tmp
== 1) return 1; // Early out.
3671 // Special case decrementing a value (ADD X, -1):
3672 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
3673 if (CRHS
->isAllOnesValue()) {
3674 KnownBits Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3676 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3678 if ((Known
.Zero
| 1).isAllOnesValue())
3681 // If we are subtracting one from a positive number, there is no carry
3682 // out of the result.
3683 if (Known
.isNonNegative())
3687 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
3688 if (Tmp2
== 1) return 1;
3689 return std::min(Tmp
, Tmp2
)-1;
3692 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
3693 if (Tmp2
== 1) return 1;
3696 if (ConstantSDNode
*CLHS
= isConstOrConstSplat(Op
.getOperand(0)))
3697 if (CLHS
->isNullValue()) {
3698 KnownBits Known
= computeKnownBits(Op
.getOperand(1), Depth
+1);
3699 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3701 if ((Known
.Zero
| 1).isAllOnesValue())
3704 // If the input is known to be positive (the sign bit is known clear),
3705 // the output of the NEG has the same number of sign bits as the input.
3706 if (Known
.isNonNegative())
3709 // Otherwise, we treat this like a SUB.
3712 // Sub can have at most one carry bit. Thus we know that the output
3713 // is, at worst, one more bit than the inputs.
3714 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3715 if (Tmp
== 1) return 1; // Early out.
3716 return std::min(Tmp
, Tmp2
)-1;
3718 // The output of the Mul can be at most twice the valid bits in the inputs.
3719 unsigned SignBitsOp0
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3720 if (SignBitsOp0
== 1)
3722 unsigned SignBitsOp1
= ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
3723 if (SignBitsOp1
== 1)
3725 unsigned OutValidBits
=
3726 (VTBits
- SignBitsOp0
+ 1) + (VTBits
- SignBitsOp1
+ 1);
3727 return OutValidBits
> VTBits
? 1 : VTBits
- OutValidBits
+ 1;
3729 case ISD::TRUNCATE
: {
3730 // Check if the sign bits of source go down as far as the truncated value.
3731 unsigned NumSrcBits
= Op
.getOperand(0).getScalarValueSizeInBits();
3732 unsigned NumSrcSignBits
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3733 if (NumSrcSignBits
> (NumSrcBits
- VTBits
))
3734 return NumSrcSignBits
- (NumSrcBits
- VTBits
);
3737 case ISD::EXTRACT_ELEMENT
: {
3738 const int KnownSign
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3739 const int BitWidth
= Op
.getValueSizeInBits();
3740 const int Items
= Op
.getOperand(0).getValueSizeInBits() / BitWidth
;
3742 // Get reverse index (starting from 1), Op1 value indexes elements from
3743 // little end. Sign starts at big end.
3744 const int rIndex
= Items
- 1 - Op
.getConstantOperandVal(1);
3746 // If the sign portion ends in our element the subtraction gives correct
3747 // result. Otherwise it gives either negative or > bitwidth result
3748 return std::max(std::min(KnownSign
- rIndex
* BitWidth
, BitWidth
), 0);
3750 case ISD::INSERT_VECTOR_ELT
: {
3751 SDValue InVec
= Op
.getOperand(0);
3752 SDValue InVal
= Op
.getOperand(1);
3753 SDValue EltNo
= Op
.getOperand(2);
3755 ConstantSDNode
*CEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3756 if (CEltNo
&& CEltNo
->getAPIntValue().ult(NumElts
)) {
3757 // If we know the element index, split the demand between the
3758 // source vector and the inserted element.
3759 unsigned EltIdx
= CEltNo
->getZExtValue();
3761 // If we demand the inserted element then get its sign bits.
3762 Tmp
= std::numeric_limits
<unsigned>::max();
3763 if (DemandedElts
[EltIdx
]) {
3764 // TODO - handle implicit truncation of inserted elements.
3765 if (InVal
.getScalarValueSizeInBits() != VTBits
)
3767 Tmp
= ComputeNumSignBits(InVal
, Depth
+ 1);
3770 // If we demand the source vector then get its sign bits, and determine
3772 APInt VectorElts
= DemandedElts
;
3773 VectorElts
.clearBit(EltIdx
);
3775 Tmp2
= ComputeNumSignBits(InVec
, VectorElts
, Depth
+ 1);
3776 Tmp
= std::min(Tmp
, Tmp2
);
3779 // Unknown element index, so ignore DemandedElts and demand them all.
3780 Tmp
= ComputeNumSignBits(InVec
, Depth
+ 1);
3781 Tmp2
= ComputeNumSignBits(InVal
, Depth
+ 1);
3782 Tmp
= std::min(Tmp
, Tmp2
);
3784 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3787 case ISD::EXTRACT_VECTOR_ELT
: {
3788 SDValue InVec
= Op
.getOperand(0);
3789 SDValue EltNo
= Op
.getOperand(1);
3790 EVT VecVT
= InVec
.getValueType();
3791 const unsigned BitWidth
= Op
.getValueSizeInBits();
3792 const unsigned EltBitWidth
= Op
.getOperand(0).getScalarValueSizeInBits();
3793 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
3795 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3796 // anything about sign bits. But if the sizes match we can derive knowledge
3797 // about sign bits from the vector operand.
3798 if (BitWidth
!= EltBitWidth
)
3801 // If we know the element index, just demand that vector element, else for
3802 // an unknown element index, ignore DemandedElts and demand them all.
3803 APInt DemandedSrcElts
= APInt::getAllOnesValue(NumSrcElts
);
3804 ConstantSDNode
*ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3805 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().ult(NumSrcElts
))
3807 APInt::getOneBitSet(NumSrcElts
, ConstEltNo
->getZExtValue());
3809 return ComputeNumSignBits(InVec
, DemandedSrcElts
, Depth
+ 1);
3811 case ISD::EXTRACT_SUBVECTOR
: {
3812 // If we know the element index, just demand that subvector elements,
3813 // otherwise demand them all.
3814 SDValue Src
= Op
.getOperand(0);
3815 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
3816 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
3817 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
3818 // Offset the demanded elts by the subvector index.
3819 uint64_t Idx
= SubIdx
->getZExtValue();
3820 APInt DemandedSrc
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
3821 return ComputeNumSignBits(Src
, DemandedSrc
, Depth
+ 1);
3823 return ComputeNumSignBits(Src
, Depth
+ 1);
3825 case ISD::CONCAT_VECTORS
: {
3826 // Determine the minimum number of sign bits across all demanded
3827 // elts of the input vectors. Early out if the result is already 1.
3828 Tmp
= std::numeric_limits
<unsigned>::max();
3829 EVT SubVectorVT
= Op
.getOperand(0).getValueType();
3830 unsigned NumSubVectorElts
= SubVectorVT
.getVectorNumElements();
3831 unsigned NumSubVectors
= Op
.getNumOperands();
3832 for (unsigned i
= 0; (i
< NumSubVectors
) && (Tmp
> 1); ++i
) {
3833 APInt DemandedSub
= DemandedElts
.lshr(i
* NumSubVectorElts
);
3834 DemandedSub
= DemandedSub
.trunc(NumSubVectorElts
);
3837 Tmp2
= ComputeNumSignBits(Op
.getOperand(i
), DemandedSub
, Depth
+ 1);
3838 Tmp
= std::min(Tmp
, Tmp2
);
3840 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3843 case ISD::INSERT_SUBVECTOR
: {
3844 // If we know the element index, demand any elements from the subvector and
3845 // the remainder from the src its inserted into, otherwise demand them all.
3846 SDValue Src
= Op
.getOperand(0);
3847 SDValue Sub
= Op
.getOperand(1);
3848 auto *SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
3849 unsigned NumSubElts
= Sub
.getValueType().getVectorNumElements();
3850 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumElts
- NumSubElts
)) {
3851 Tmp
= std::numeric_limits
<unsigned>::max();
3852 uint64_t Idx
= SubIdx
->getZExtValue();
3853 APInt DemandedSubElts
= DemandedElts
.extractBits(NumSubElts
, Idx
);
3854 if (!!DemandedSubElts
) {
3855 Tmp
= ComputeNumSignBits(Sub
, DemandedSubElts
, Depth
+ 1);
3856 if (Tmp
== 1) return 1; // early-out
3858 APInt SubMask
= APInt::getBitsSet(NumElts
, Idx
, Idx
+ NumSubElts
);
3859 APInt DemandedSrcElts
= DemandedElts
& ~SubMask
;
3860 if (!!DemandedSrcElts
) {
3861 Tmp2
= ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+ 1);
3862 Tmp
= std::min(Tmp
, Tmp2
);
3864 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3868 // Not able to determine the index so just assume worst case.
3869 Tmp
= ComputeNumSignBits(Sub
, Depth
+ 1);
3870 if (Tmp
== 1) return 1; // early-out
3871 Tmp2
= ComputeNumSignBits(Src
, Depth
+ 1);
3872 Tmp
= std::min(Tmp
, Tmp2
);
3873 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3878 // If we are looking at the loaded value of the SDNode.
3879 if (Op
.getResNo() == 0) {
3880 // Handle LOADX separately here. EXTLOAD case will fallthrough.
3881 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
)) {
3882 unsigned ExtType
= LD
->getExtensionType();
3885 case ISD::SEXTLOAD
: // e.g. i16->i32 = '17' bits known.
3886 Tmp
= LD
->getMemoryVT().getScalarSizeInBits();
3887 return VTBits
- Tmp
+ 1;
3888 case ISD::ZEXTLOAD
: // e.g. i16->i32 = '16' bits known.
3889 Tmp
= LD
->getMemoryVT().getScalarSizeInBits();
3890 return VTBits
- Tmp
;
3891 case ISD::NON_EXTLOAD
:
3892 if (const Constant
*Cst
= TLI
->getTargetConstantFromLoad(LD
)) {
3893 // We only need to handle vectors - computeKnownBits should handle
3895 Type
*CstTy
= Cst
->getType();
3896 if (CstTy
->isVectorTy() &&
3897 (NumElts
* VTBits
) == CstTy
->getPrimitiveSizeInBits()) {
3899 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3900 if (!DemandedElts
[i
])
3902 if (Constant
*Elt
= Cst
->getAggregateElement(i
)) {
3903 if (auto *CInt
= dyn_cast
<ConstantInt
>(Elt
)) {
3904 const APInt
&Value
= CInt
->getValue();
3905 Tmp
= std::min(Tmp
, Value
.getNumSignBits());
3908 if (auto *CFP
= dyn_cast
<ConstantFP
>(Elt
)) {
3909 APInt Value
= CFP
->getValueAPF().bitcastToAPInt();
3910 Tmp
= std::min(Tmp
, Value
.getNumSignBits());
3914 // Unknown type. Conservatively assume no bits match sign bit.
3925 // Allow the target to implement this method for its nodes.
3926 if (Opcode
>= ISD::BUILTIN_OP_END
||
3927 Opcode
== ISD::INTRINSIC_WO_CHAIN
||
3928 Opcode
== ISD::INTRINSIC_W_CHAIN
||
3929 Opcode
== ISD::INTRINSIC_VOID
) {
3931 TLI
->ComputeNumSignBitsForTargetNode(Op
, DemandedElts
, *this, Depth
);
3933 FirstAnswer
= std::max(FirstAnswer
, NumBits
);
3936 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3937 // use this information.
3938 KnownBits Known
= computeKnownBits(Op
, DemandedElts
, Depth
);
3941 if (Known
.isNonNegative()) { // sign bit is 0
3943 } else if (Known
.isNegative()) { // sign bit is 1;
3950 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
3951 // the number of identical bits in the top of the input value.
3953 Mask
<<= Mask
.getBitWidth()-VTBits
;
3954 // Return # leading zeros. We use 'min' here in case Val was zero before
3955 // shifting. We don't want to return '64' as for an i32 "0".
3956 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
3959 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op
) const {
3960 if ((Op
.getOpcode() != ISD::ADD
&& Op
.getOpcode() != ISD::OR
) ||
3961 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
3964 if (Op
.getOpcode() == ISD::OR
&&
3965 !MaskedValueIsZero(Op
.getOperand(0), Op
.getConstantOperandAPInt(1)))
3971 bool SelectionDAG::isKnownNeverNaN(SDValue Op
, bool SNaN
, unsigned Depth
) const {
3972 // If we're told that NaNs won't happen, assume they won't.
3973 if (getTarget().Options
.NoNaNsFPMath
|| Op
->getFlags().hasNoNaNs())
3977 return false; // Limit search depth.
3979 // TODO: Handle vectors.
3980 // If the value is a constant, we can obviously see if it is a NaN or not.
3981 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
3982 return !C
->getValueAPF().isNaN() ||
3983 (SNaN
&& !C
->getValueAPF().isSignaling());
3986 unsigned Opcode
= Op
.getOpcode();
3997 // TODO: Need isKnownNeverInfinity
4000 case ISD::FCANONICALIZE
:
4008 case ISD::FNEARBYINT
: {
4011 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4015 case ISD::FCOPYSIGN
: {
4016 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4019 return isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4020 isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4021 case ISD::FP_EXTEND
:
4022 case ISD::FP_ROUND
: {
4025 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4027 case ISD::SINT_TO_FP
:
4028 case ISD::UINT_TO_FP
:
4034 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4035 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4036 isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4038 case ISD::FSQRT
: // Need is known positive
4046 // TODO: Refine on operand
4050 case ISD::FMAXNUM
: {
4051 // Only one needs to be known not-nan, since it will be returned if the
4052 // other ends up being one.
4053 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) ||
4054 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4056 case ISD::FMINNUM_IEEE
:
4057 case ISD::FMAXNUM_IEEE
: {
4060 // This can return a NaN if either operand is an sNaN, or if both operands
4062 return (isKnownNeverNaN(Op
.getOperand(0), false, Depth
+ 1) &&
4063 isKnownNeverSNaN(Op
.getOperand(1), Depth
+ 1)) ||
4064 (isKnownNeverNaN(Op
.getOperand(1), false, Depth
+ 1) &&
4065 isKnownNeverSNaN(Op
.getOperand(0), Depth
+ 1));
4068 case ISD::FMAXIMUM
: {
4069 // TODO: Does this quiet or return the origina NaN as-is?
4070 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4071 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4073 case ISD::EXTRACT_VECTOR_ELT
: {
4074 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4077 if (Opcode
>= ISD::BUILTIN_OP_END
||
4078 Opcode
== ISD::INTRINSIC_WO_CHAIN
||
4079 Opcode
== ISD::INTRINSIC_W_CHAIN
||
4080 Opcode
== ISD::INTRINSIC_VOID
) {
4081 return TLI
->isKnownNeverNaNForTargetNode(Op
, *this, SNaN
, Depth
);
4088 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op
) const {
4089 assert(Op
.getValueType().isFloatingPoint() &&
4090 "Floating point type expected");
4092 // If the value is a constant, we can obviously see if it is a zero or not.
4093 // TODO: Add BuildVector support.
4094 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
4095 return !C
->isZero();
4099 bool SelectionDAG::isKnownNeverZero(SDValue Op
) const {
4100 assert(!Op
.getValueType().isFloatingPoint() &&
4101 "Floating point types unsupported - use isKnownNeverZeroFloat");
4103 // If the value is a constant, we can obviously see if it is a zero or not.
4104 if (ISD::matchUnaryPredicate(
4105 Op
, [](ConstantSDNode
*C
) { return !C
->isNullValue(); }))
4108 // TODO: Recognize more cases here.
4109 switch (Op
.getOpcode()) {
4112 if (isKnownNeverZero(Op
.getOperand(1)) ||
4113 isKnownNeverZero(Op
.getOperand(0)))
4121 bool SelectionDAG::isEqualTo(SDValue A
, SDValue B
) const {
4122 // Check the obvious case.
4123 if (A
== B
) return true;
4125 // For for negative and positive zero.
4126 if (const ConstantFPSDNode
*CA
= dyn_cast
<ConstantFPSDNode
>(A
))
4127 if (const ConstantFPSDNode
*CB
= dyn_cast
<ConstantFPSDNode
>(B
))
4128 if (CA
->isZero() && CB
->isZero()) return true;
4130 // Otherwise they may not be equal.
4134 // FIXME: unify with llvm::haveNoCommonBitsSet.
4135 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4136 bool SelectionDAG::haveNoCommonBitsSet(SDValue A
, SDValue B
) const {
4137 assert(A
.getValueType() == B
.getValueType() &&
4138 "Values must have the same type");
4139 return (computeKnownBits(A
).Zero
| computeKnownBits(B
).Zero
).isAllOnesValue();
4142 static SDValue
FoldBUILD_VECTOR(const SDLoc
&DL
, EVT VT
,
4143 ArrayRef
<SDValue
> Ops
,
4144 SelectionDAG
&DAG
) {
4145 int NumOps
= Ops
.size();
4146 assert(NumOps
!= 0 && "Can't build an empty vector!");
4147 assert(VT
.getVectorNumElements() == (unsigned)NumOps
&&
4148 "Incorrect element count in BUILD_VECTOR!");
4150 // BUILD_VECTOR of UNDEFs is UNDEF.
4151 if (llvm::all_of(Ops
, [](SDValue Op
) { return Op
.isUndef(); }))
4152 return DAG
.getUNDEF(VT
);
4154 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4155 SDValue IdentitySrc
;
4156 bool IsIdentity
= true;
4157 for (int i
= 0; i
!= NumOps
; ++i
) {
4158 if (Ops
[i
].getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
4159 Ops
[i
].getOperand(0).getValueType() != VT
||
4160 (IdentitySrc
&& Ops
[i
].getOperand(0) != IdentitySrc
) ||
4161 !isa
<ConstantSDNode
>(Ops
[i
].getOperand(1)) ||
4162 cast
<ConstantSDNode
>(Ops
[i
].getOperand(1))->getAPIntValue() != i
) {
4166 IdentitySrc
= Ops
[i
].getOperand(0);
4174 /// Try to simplify vector concatenation to an input value, undef, or build
4176 static SDValue
foldCONCAT_VECTORS(const SDLoc
&DL
, EVT VT
,
4177 ArrayRef
<SDValue
> Ops
,
4178 SelectionDAG
&DAG
) {
4179 assert(!Ops
.empty() && "Can't concatenate an empty list of vectors!");
4180 assert(llvm::all_of(Ops
,
4182 return Ops
[0].getValueType() == Op
.getValueType();
4184 "Concatenation of vectors with inconsistent value types!");
4185 assert((Ops
.size() * Ops
[0].getValueType().getVectorNumElements()) ==
4186 VT
.getVectorNumElements() &&
4187 "Incorrect element count in vector concatenation!");
4189 if (Ops
.size() == 1)
4192 // Concat of UNDEFs is UNDEF.
4193 if (llvm::all_of(Ops
, [](SDValue Op
) { return Op
.isUndef(); }))
4194 return DAG
.getUNDEF(VT
);
4196 // Scan the operands and look for extract operations from a single source
4197 // that correspond to insertion at the same location via this concatenation:
4198 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4199 SDValue IdentitySrc
;
4200 bool IsIdentity
= true;
4201 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
4202 SDValue Op
= Ops
[i
];
4203 unsigned IdentityIndex
= i
* Op
.getValueType().getVectorNumElements();
4204 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
||
4205 Op
.getOperand(0).getValueType() != VT
||
4206 (IdentitySrc
&& Op
.getOperand(0) != IdentitySrc
) ||
4207 !isa
<ConstantSDNode
>(Op
.getOperand(1)) ||
4208 Op
.getConstantOperandVal(1) != IdentityIndex
) {
4212 assert((!IdentitySrc
|| IdentitySrc
== Op
.getOperand(0)) &&
4213 "Unexpected identity source vector for concat of extracts");
4214 IdentitySrc
= Op
.getOperand(0);
4217 assert(IdentitySrc
&& "Failed to set source vector of extracts");
4221 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4222 // simplified to one big BUILD_VECTOR.
4223 // FIXME: Add support for SCALAR_TO_VECTOR as well.
4224 EVT SVT
= VT
.getScalarType();
4225 SmallVector
<SDValue
, 16> Elts
;
4226 for (SDValue Op
: Ops
) {
4227 EVT OpVT
= Op
.getValueType();
4229 Elts
.append(OpVT
.getVectorNumElements(), DAG
.getUNDEF(SVT
));
4230 else if (Op
.getOpcode() == ISD::BUILD_VECTOR
)
4231 Elts
.append(Op
->op_begin(), Op
->op_end());
4236 // BUILD_VECTOR requires all inputs to be of the same type, find the
4237 // maximum type and extend them all.
4238 for (SDValue Op
: Elts
)
4239 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
4241 if (SVT
.bitsGT(VT
.getScalarType()))
4242 for (SDValue
&Op
: Elts
)
4243 Op
= DAG
.getTargetLoweringInfo().isZExtFree(Op
.getValueType(), SVT
)
4244 ? DAG
.getZExtOrTrunc(Op
, DL
, SVT
)
4245 : DAG
.getSExtOrTrunc(Op
, DL
, SVT
);
4247 SDValue V
= DAG
.getBuildVector(VT
, DL
, Elts
);
4248 NewSDValueDbgMsg(V
, "New node fold concat vectors: ", &DAG
);
4252 /// Gets or creates the specified node.
4253 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
) {
4254 FoldingSetNodeID ID
;
4255 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), None
);
4257 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
4258 return SDValue(E
, 0);
4260 auto *N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(),
4262 CSEMap
.InsertNode(N
, IP
);
4265 SDValue V
= SDValue(N
, 0);
4266 NewSDValueDbgMsg(V
, "Creating new node: ", this);
4270 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
4271 SDValue Operand
, const SDNodeFlags Flags
) {
4272 // Constant fold unary operations with an integer constant operand. Even
4273 // opaque constant will be folded, because the folding of unary operations
4274 // doesn't create new constants with different values. Nevertheless, the
4275 // opaque flag is preserved during folding to prevent future folding with
4277 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
)) {
4278 const APInt
&Val
= C
->getAPIntValue();
4281 case ISD::SIGN_EXTEND
:
4282 return getConstant(Val
.sextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4283 C
->isTargetOpcode(), C
->isOpaque());
4288 case ISD::ANY_EXTEND
:
4289 case ISD::ZERO_EXTEND
:
4290 return getConstant(Val
.zextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4291 C
->isTargetOpcode(), C
->isOpaque());
4292 case ISD::UINT_TO_FP
:
4293 case ISD::SINT_TO_FP
: {
4294 APFloat
apf(EVTToAPFloatSemantics(VT
),
4295 APInt::getNullValue(VT
.getSizeInBits()));
4296 (void)apf
.convertFromAPInt(Val
,
4297 Opcode
==ISD::SINT_TO_FP
,
4298 APFloat::rmNearestTiesToEven
);
4299 return getConstantFP(apf
, DL
, VT
);
4302 if (VT
== MVT::f16
&& C
->getValueType(0) == MVT::i16
)
4303 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val
), DL
, VT
);
4304 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
4305 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val
), DL
, VT
);
4306 if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
4307 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val
), DL
, VT
);
4308 if (VT
== MVT::f128
&& C
->getValueType(0) == MVT::i128
)
4309 return getConstantFP(APFloat(APFloat::IEEEquad(), Val
), DL
, VT
);
4312 return getConstant(Val
.abs(), DL
, VT
, C
->isTargetOpcode(),
4314 case ISD::BITREVERSE
:
4315 return getConstant(Val
.reverseBits(), DL
, VT
, C
->isTargetOpcode(),
4318 return getConstant(Val
.byteSwap(), DL
, VT
, C
->isTargetOpcode(),
4321 return getConstant(Val
.countPopulation(), DL
, VT
, C
->isTargetOpcode(),
4324 case ISD::CTLZ_ZERO_UNDEF
:
4325 return getConstant(Val
.countLeadingZeros(), DL
, VT
, C
->isTargetOpcode(),
4328 case ISD::CTTZ_ZERO_UNDEF
:
4329 return getConstant(Val
.countTrailingZeros(), DL
, VT
, C
->isTargetOpcode(),
4331 case ISD::FP16_TO_FP
: {
4333 APFloat
FPV(APFloat::IEEEhalf(),
4334 (Val
.getBitWidth() == 16) ? Val
: Val
.trunc(16));
4336 // This can return overflow, underflow, or inexact; we don't care.
4337 // FIXME need to be more flexible about rounding mode.
4338 (void)FPV
.convert(EVTToAPFloatSemantics(VT
),
4339 APFloat::rmNearestTiesToEven
, &Ignored
);
4340 return getConstantFP(FPV
, DL
, VT
);
4345 // Constant fold unary operations with a floating point constant operand.
4346 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
)) {
4347 APFloat V
= C
->getValueAPF(); // make copy
4351 return getConstantFP(V
, DL
, VT
);
4354 return getConstantFP(V
, DL
, VT
);
4356 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardPositive
);
4357 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4358 return getConstantFP(V
, DL
, VT
);
4362 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardZero
);
4363 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4364 return getConstantFP(V
, DL
, VT
);
4368 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardNegative
);
4369 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4370 return getConstantFP(V
, DL
, VT
);
4373 case ISD::FP_EXTEND
: {
4375 // This can return overflow, underflow, or inexact; we don't care.
4376 // FIXME need to be more flexible about rounding mode.
4377 (void)V
.convert(EVTToAPFloatSemantics(VT
),
4378 APFloat::rmNearestTiesToEven
, &ignored
);
4379 return getConstantFP(V
, DL
, VT
);
4381 case ISD::FP_TO_SINT
:
4382 case ISD::FP_TO_UINT
: {
4384 APSInt
IntVal(VT
.getSizeInBits(), Opcode
== ISD::FP_TO_UINT
);
4385 // FIXME need to be more flexible about rounding mode.
4386 APFloat::opStatus s
=
4387 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
);
4388 if (s
== APFloat::opInvalidOp
) // inexact is OK, in fact usual
4390 return getConstant(IntVal
, DL
, VT
);
4393 if (VT
== MVT::i16
&& C
->getValueType(0) == MVT::f16
)
4394 return getConstant((uint16_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4395 else if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
4396 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4397 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
4398 return getConstant(V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4400 case ISD::FP_TO_FP16
: {
4402 // This can return overflow, underflow, or inexact; we don't care.
4403 // FIXME need to be more flexible about rounding mode.
4404 (void)V
.convert(APFloat::IEEEhalf(),
4405 APFloat::rmNearestTiesToEven
, &Ignored
);
4406 return getConstant(V
.bitcastToAPInt(), DL
, VT
);
4411 // Constant fold unary operations with a vector integer or float operand.
4412 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(Operand
)) {
4413 if (BV
->isConstant()) {
4416 // FIXME: Entirely reasonable to perform folding of other unary
4417 // operations here as the need arises.
4424 case ISD::FP_EXTEND
:
4425 case ISD::FP_TO_SINT
:
4426 case ISD::FP_TO_UINT
:
4428 case ISD::ANY_EXTEND
:
4429 case ISD::ZERO_EXTEND
:
4430 case ISD::SIGN_EXTEND
:
4431 case ISD::UINT_TO_FP
:
4432 case ISD::SINT_TO_FP
:
4434 case ISD::BITREVERSE
:
4437 case ISD::CTLZ_ZERO_UNDEF
:
4439 case ISD::CTTZ_ZERO_UNDEF
:
4441 SDValue Ops
= { Operand
};
4442 if (SDValue Fold
= FoldConstantVectorArithmetic(Opcode
, DL
, VT
, Ops
))
4449 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
4451 case ISD::TokenFactor
:
4452 case ISD::MERGE_VALUES
:
4453 case ISD::CONCAT_VECTORS
:
4454 return Operand
; // Factor, merge or concat of one node? No need.
4455 case ISD::BUILD_VECTOR
: {
4456 // Attempt to simplify BUILD_VECTOR.
4457 SDValue Ops
[] = {Operand
};
4458 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
4462 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
4463 case ISD::FP_EXTEND
:
4464 assert(VT
.isFloatingPoint() &&
4465 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
4466 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
4467 assert((!VT
.isVector() ||
4468 VT
.getVectorNumElements() ==
4469 Operand
.getValueType().getVectorNumElements()) &&
4470 "Vector element count mismatch!");
4471 assert(Operand
.getValueType().bitsLT(VT
) &&
4472 "Invalid fpext node, dst < src!");
4473 if (Operand
.isUndef())
4474 return getUNDEF(VT
);
4476 case ISD::FP_TO_SINT
:
4477 case ISD::FP_TO_UINT
:
4478 if (Operand
.isUndef())
4479 return getUNDEF(VT
);
4481 case ISD::SINT_TO_FP
:
4482 case ISD::UINT_TO_FP
:
4483 // [us]itofp(undef) = 0, because the result value is bounded.
4484 if (Operand
.isUndef())
4485 return getConstantFP(0.0, DL
, VT
);
4487 case ISD::SIGN_EXTEND
:
4488 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4489 "Invalid SIGN_EXTEND!");
4490 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
4491 "SIGN_EXTEND result type type should be vector iff the operand "
4493 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
4494 assert((!VT
.isVector() ||
4495 VT
.getVectorNumElements() ==
4496 Operand
.getValueType().getVectorNumElements()) &&
4497 "Vector element count mismatch!");
4498 assert(Operand
.getValueType().bitsLT(VT
) &&
4499 "Invalid sext node, dst < src!");
4500 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
4501 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
4502 else if (OpOpcode
== ISD::UNDEF
)
4503 // sext(undef) = 0, because the top bits will all be the same.
4504 return getConstant(0, DL
, VT
);
4506 case ISD::ZERO_EXTEND
:
4507 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4508 "Invalid ZERO_EXTEND!");
4509 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
4510 "ZERO_EXTEND result type type should be vector iff the operand "
4512 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
4513 assert((!VT
.isVector() ||
4514 VT
.getVectorNumElements() ==
4515 Operand
.getValueType().getVectorNumElements()) &&
4516 "Vector element count mismatch!");
4517 assert(Operand
.getValueType().bitsLT(VT
) &&
4518 "Invalid zext node, dst < src!");
4519 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
4520 return getNode(ISD::ZERO_EXTEND
, DL
, VT
, Operand
.getOperand(0));
4521 else if (OpOpcode
== ISD::UNDEF
)
4522 // zext(undef) = 0, because the top bits will be zero.
4523 return getConstant(0, DL
, VT
);
4525 case ISD::ANY_EXTEND
:
4526 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4527 "Invalid ANY_EXTEND!");
4528 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
4529 "ANY_EXTEND result type type should be vector iff the operand "
4531 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
4532 assert((!VT
.isVector() ||
4533 VT
.getVectorNumElements() ==
4534 Operand
.getValueType().getVectorNumElements()) &&
4535 "Vector element count mismatch!");
4536 assert(Operand
.getValueType().bitsLT(VT
) &&
4537 "Invalid anyext node, dst < src!");
4539 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
4540 OpOpcode
== ISD::ANY_EXTEND
)
4541 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
4542 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
4543 else if (OpOpcode
== ISD::UNDEF
)
4544 return getUNDEF(VT
);
4546 // (ext (trunc x)) -> x
4547 if (OpOpcode
== ISD::TRUNCATE
) {
4548 SDValue OpOp
= Operand
.getOperand(0);
4549 if (OpOp
.getValueType() == VT
) {
4550 transferDbgValues(Operand
, OpOp
);
4556 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4557 "Invalid TRUNCATE!");
4558 assert(VT
.isVector() == Operand
.getValueType().isVector() &&
4559 "TRUNCATE result type type should be vector iff the operand "
4561 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
4562 assert((!VT
.isVector() ||
4563 VT
.getVectorNumElements() ==
4564 Operand
.getValueType().getVectorNumElements()) &&
4565 "Vector element count mismatch!");
4566 assert(Operand
.getValueType().bitsGT(VT
) &&
4567 "Invalid truncate node, src < dst!");
4568 if (OpOpcode
== ISD::TRUNCATE
)
4569 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getOperand(0));
4570 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
4571 OpOpcode
== ISD::ANY_EXTEND
) {
4572 // If the source is smaller than the dest, we still need an extend.
4573 if (Operand
.getOperand(0).getValueType().getScalarType()
4574 .bitsLT(VT
.getScalarType()))
4575 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
4576 if (Operand
.getOperand(0).getValueType().bitsGT(VT
))
4577 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getOperand(0));
4578 return Operand
.getOperand(0);
4580 if (OpOpcode
== ISD::UNDEF
)
4581 return getUNDEF(VT
);
4583 case ISD::ANY_EXTEND_VECTOR_INREG
:
4584 case ISD::ZERO_EXTEND_VECTOR_INREG
:
4585 case ISD::SIGN_EXTEND_VECTOR_INREG
:
4586 assert(VT
.isVector() && "This DAG node is restricted to vector types.");
4587 assert(Operand
.getValueType().bitsLE(VT
) &&
4588 "The input must be the same size or smaller than the result.");
4589 assert(VT
.getVectorNumElements() <
4590 Operand
.getValueType().getVectorNumElements() &&
4591 "The destination vector type must have fewer lanes than the input.");
4594 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
4596 if (OpOpcode
== ISD::UNDEF
)
4597 return getUNDEF(VT
);
4600 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
4602 assert((VT
.getScalarSizeInBits() % 16 == 0) &&
4603 "BSWAP types must be a multiple of 16 bits!");
4604 if (OpOpcode
== ISD::UNDEF
)
4605 return getUNDEF(VT
);
4607 case ISD::BITREVERSE
:
4608 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
4609 "Invalid BITREVERSE!");
4610 if (OpOpcode
== ISD::UNDEF
)
4611 return getUNDEF(VT
);
4614 // Basic sanity checking.
4615 assert(VT
.getSizeInBits() == Operand
.getValueSizeInBits() &&
4616 "Cannot BITCAST between types of different sizes!");
4617 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
4618 if (OpOpcode
== ISD::BITCAST
) // bitconv(bitconv(x)) -> bitconv(x)
4619 return getNode(ISD::BITCAST
, DL
, VT
, Operand
.getOperand(0));
4620 if (OpOpcode
== ISD::UNDEF
)
4621 return getUNDEF(VT
);
4623 case ISD::SCALAR_TO_VECTOR
:
4624 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
4625 (VT
.getVectorElementType() == Operand
.getValueType() ||
4626 (VT
.getVectorElementType().isInteger() &&
4627 Operand
.getValueType().isInteger() &&
4628 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
4629 "Illegal SCALAR_TO_VECTOR node!");
4630 if (OpOpcode
== ISD::UNDEF
)
4631 return getUNDEF(VT
);
4632 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4633 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
4634 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
4635 Operand
.getConstantOperandVal(1) == 0 &&
4636 Operand
.getOperand(0).getValueType() == VT
)
4637 return Operand
.getOperand(0);
4640 // Negation of an unknown bag of bits is still completely undefined.
4641 if (OpOpcode
== ISD::UNDEF
)
4642 return getUNDEF(VT
);
4644 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4645 if ((getTarget().Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) &&
4646 OpOpcode
== ISD::FSUB
)
4647 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getOperand(1),
4648 Operand
.getOperand(0), Flags
);
4649 if (OpOpcode
== ISD::FNEG
) // --X -> X
4650 return Operand
.getOperand(0);
4653 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
4654 return getNode(ISD::FABS
, DL
, VT
, Operand
.getOperand(0));
4659 SDVTList VTs
= getVTList(VT
);
4660 SDValue Ops
[] = {Operand
};
4661 if (VT
!= MVT::Glue
) { // Don't CSE flag producing nodes
4662 FoldingSetNodeID ID
;
4663 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
4665 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
4666 E
->intersectFlagsWith(Flags
);
4667 return SDValue(E
, 0);
4670 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
4672 createOperands(N
, Ops
);
4673 CSEMap
.InsertNode(N
, IP
);
4675 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
4676 createOperands(N
, Ops
);
4680 SDValue V
= SDValue(N
, 0);
4681 NewSDValueDbgMsg(V
, "Creating new node: ", this);
4685 static std::pair
<APInt
, bool> FoldValue(unsigned Opcode
, const APInt
&C1
,
4688 case ISD::ADD
: return std::make_pair(C1
+ C2
, true);
4689 case ISD::SUB
: return std::make_pair(C1
- C2
, true);
4690 case ISD::MUL
: return std::make_pair(C1
* C2
, true);
4691 case ISD::AND
: return std::make_pair(C1
& C2
, true);
4692 case ISD::OR
: return std::make_pair(C1
| C2
, true);
4693 case ISD::XOR
: return std::make_pair(C1
^ C2
, true);
4694 case ISD::SHL
: return std::make_pair(C1
<< C2
, true);
4695 case ISD::SRL
: return std::make_pair(C1
.lshr(C2
), true);
4696 case ISD::SRA
: return std::make_pair(C1
.ashr(C2
), true);
4697 case ISD::ROTL
: return std::make_pair(C1
.rotl(C2
), true);
4698 case ISD::ROTR
: return std::make_pair(C1
.rotr(C2
), true);
4699 case ISD::SMIN
: return std::make_pair(C1
.sle(C2
) ? C1
: C2
, true);
4700 case ISD::SMAX
: return std::make_pair(C1
.sge(C2
) ? C1
: C2
, true);
4701 case ISD::UMIN
: return std::make_pair(C1
.ule(C2
) ? C1
: C2
, true);
4702 case ISD::UMAX
: return std::make_pair(C1
.uge(C2
) ? C1
: C2
, true);
4703 case ISD::SADDSAT
: return std::make_pair(C1
.sadd_sat(C2
), true);
4704 case ISD::UADDSAT
: return std::make_pair(C1
.uadd_sat(C2
), true);
4705 case ISD::SSUBSAT
: return std::make_pair(C1
.ssub_sat(C2
), true);
4706 case ISD::USUBSAT
: return std::make_pair(C1
.usub_sat(C2
), true);
4708 if (!C2
.getBoolValue())
4710 return std::make_pair(C1
.udiv(C2
), true);
4712 if (!C2
.getBoolValue())
4714 return std::make_pair(C1
.urem(C2
), true);
4716 if (!C2
.getBoolValue())
4718 return std::make_pair(C1
.sdiv(C2
), true);
4720 if (!C2
.getBoolValue())
4722 return std::make_pair(C1
.srem(C2
), true);
4724 return std::make_pair(APInt(1, 0), false);
4727 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
,
4728 EVT VT
, const ConstantSDNode
*C1
,
4729 const ConstantSDNode
*C2
) {
4730 if (C1
->isOpaque() || C2
->isOpaque())
4733 std::pair
<APInt
, bool> Folded
= FoldValue(Opcode
, C1
->getAPIntValue(),
4734 C2
->getAPIntValue());
4737 return getConstant(Folded
.first
, DL
, VT
);
4740 SDValue
SelectionDAG::FoldSymbolOffset(unsigned Opcode
, EVT VT
,
4741 const GlobalAddressSDNode
*GA
,
4743 if (GA
->getOpcode() != ISD::GlobalAddress
)
4745 if (!TLI
->isOffsetFoldingLegal(GA
))
4747 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
4750 int64_t Offset
= C2
->getSExtValue();
4752 case ISD::ADD
: break;
4753 case ISD::SUB
: Offset
= -uint64_t(Offset
); break;
4754 default: return SDValue();
4756 return getGlobalAddress(GA
->getGlobal(), SDLoc(C2
), VT
,
4757 GA
->getOffset() + uint64_t(Offset
));
4760 bool SelectionDAG::isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
) {
4766 // If a divisor is zero/undef or any element of a divisor vector is
4767 // zero/undef, the whole op is undef.
4768 assert(Ops
.size() == 2 && "Div/rem should have 2 operands");
4769 SDValue Divisor
= Ops
[1];
4770 if (Divisor
.isUndef() || isNullConstant(Divisor
))
4773 return ISD::isBuildVectorOfConstantSDNodes(Divisor
.getNode()) &&
4774 llvm::any_of(Divisor
->op_values(),
4775 [](SDValue V
) { return V
.isUndef() ||
4776 isNullConstant(V
); });
4777 // TODO: Handle signed overflow.
4779 // TODO: Handle oversized shifts.
4785 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
,
4786 EVT VT
, SDNode
*N1
, SDNode
*N2
) {
4787 // If the opcode is a target-specific ISD node, there's nothing we can
4788 // do here and the operand rules may not line up with the below, so
4790 if (Opcode
>= ISD::BUILTIN_OP_END
)
4793 if (isUndef(Opcode
, {SDValue(N1
, 0), SDValue(N2
, 0)}))
4794 return getUNDEF(VT
);
4796 // Handle the case of two scalars.
4797 if (auto *C1
= dyn_cast
<ConstantSDNode
>(N1
)) {
4798 if (auto *C2
= dyn_cast
<ConstantSDNode
>(N2
)) {
4799 SDValue Folded
= FoldConstantArithmetic(Opcode
, DL
, VT
, C1
, C2
);
4800 assert((!Folded
|| !VT
.isVector()) &&
4801 "Can't fold vectors ops with scalar operands");
4806 // fold (add Sym, c) -> Sym+c
4807 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N1
))
4808 return FoldSymbolOffset(Opcode
, VT
, GA
, N2
);
4809 if (TLI
->isCommutativeBinOp(Opcode
))
4810 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N2
))
4811 return FoldSymbolOffset(Opcode
, VT
, GA
, N1
);
4813 // For vectors, extract each constant element and fold them individually.
4814 // Either input may be an undef value.
4815 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
4816 if (!BV1
&& !N1
->isUndef())
4818 auto *BV2
= dyn_cast
<BuildVectorSDNode
>(N2
);
4819 if (!BV2
&& !N2
->isUndef())
4821 // If both operands are undef, that's handled the same way as scalars.
4825 assert((!BV1
|| !BV2
|| BV1
->getNumOperands() == BV2
->getNumOperands()) &&
4826 "Vector binop with different number of elements in operands?");
4828 EVT SVT
= VT
.getScalarType();
4830 if (NewNodesMustHaveLegalTypes
&& LegalSVT
.isInteger()) {
4831 LegalSVT
= TLI
->getTypeToTransformTo(*getContext(), LegalSVT
);
4832 if (LegalSVT
.bitsLT(SVT
))
4835 SmallVector
<SDValue
, 4> Outputs
;
4836 unsigned NumOps
= BV1
? BV1
->getNumOperands() : BV2
->getNumOperands();
4837 for (unsigned I
= 0; I
!= NumOps
; ++I
) {
4838 SDValue V1
= BV1
? BV1
->getOperand(I
) : getUNDEF(SVT
);
4839 SDValue V2
= BV2
? BV2
->getOperand(I
) : getUNDEF(SVT
);
4840 if (SVT
.isInteger()) {
4841 if (V1
->getValueType(0).bitsGT(SVT
))
4842 V1
= getNode(ISD::TRUNCATE
, DL
, SVT
, V1
);
4843 if (V2
->getValueType(0).bitsGT(SVT
))
4844 V2
= getNode(ISD::TRUNCATE
, DL
, SVT
, V2
);
4847 if (V1
->getValueType(0) != SVT
|| V2
->getValueType(0) != SVT
)
4850 // Fold one vector element.
4851 SDValue ScalarResult
= getNode(Opcode
, DL
, SVT
, V1
, V2
);
4852 if (LegalSVT
!= SVT
)
4853 ScalarResult
= getNode(ISD::SIGN_EXTEND
, DL
, LegalSVT
, ScalarResult
);
4855 // Scalar folding only succeeded if the result is a constant or UNDEF.
4856 if (!ScalarResult
.isUndef() && ScalarResult
.getOpcode() != ISD::Constant
&&
4857 ScalarResult
.getOpcode() != ISD::ConstantFP
)
4859 Outputs
.push_back(ScalarResult
);
4862 assert(VT
.getVectorNumElements() == Outputs
.size() &&
4863 "Vector size mismatch!");
4865 // We may have a vector type but a scalar result. Create a splat.
4866 Outputs
.resize(VT
.getVectorNumElements(), Outputs
.back());
4868 // Build a big vector out of the scalar elements we generated.
4869 return getBuildVector(VT
, SDLoc(), Outputs
);
4872 // TODO: Merge with FoldConstantArithmetic
4873 SDValue
SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode
,
4874 const SDLoc
&DL
, EVT VT
,
4875 ArrayRef
<SDValue
> Ops
,
4876 const SDNodeFlags Flags
) {
4877 // If the opcode is a target-specific ISD node, there's nothing we can
4878 // do here and the operand rules may not line up with the below, so
4880 if (Opcode
>= ISD::BUILTIN_OP_END
)
4883 if (isUndef(Opcode
, Ops
))
4884 return getUNDEF(VT
);
4886 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4890 unsigned NumElts
= VT
.getVectorNumElements();
4892 auto IsScalarOrSameVectorSize
= [&](const SDValue
&Op
) {
4893 return !Op
.getValueType().isVector() ||
4894 Op
.getValueType().getVectorNumElements() == NumElts
;
4897 auto IsConstantBuildVectorOrUndef
= [&](const SDValue
&Op
) {
4898 BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(Op
);
4899 return (Op
.isUndef()) || (Op
.getOpcode() == ISD::CONDCODE
) ||
4900 (BV
&& BV
->isConstant());
4903 // All operands must be vector types with the same number of elements as
4904 // the result type and must be either UNDEF or a build vector of constant
4905 // or UNDEF scalars.
4906 if (!llvm::all_of(Ops
, IsConstantBuildVectorOrUndef
) ||
4907 !llvm::all_of(Ops
, IsScalarOrSameVectorSize
))
4910 // If we are comparing vectors, then the result needs to be a i1 boolean
4911 // that is then sign-extended back to the legal result type.
4912 EVT SVT
= (Opcode
== ISD::SETCC
? MVT::i1
: VT
.getScalarType());
4914 // Find legal integer scalar type for constant promotion and
4915 // ensure that its scalar size is at least as large as source.
4916 EVT LegalSVT
= VT
.getScalarType();
4917 if (NewNodesMustHaveLegalTypes
&& LegalSVT
.isInteger()) {
4918 LegalSVT
= TLI
->getTypeToTransformTo(*getContext(), LegalSVT
);
4919 if (LegalSVT
.bitsLT(VT
.getScalarType()))
4923 // Constant fold each scalar lane separately.
4924 SmallVector
<SDValue
, 4> ScalarResults
;
4925 for (unsigned i
= 0; i
!= NumElts
; i
++) {
4926 SmallVector
<SDValue
, 4> ScalarOps
;
4927 for (SDValue Op
: Ops
) {
4928 EVT InSVT
= Op
.getValueType().getScalarType();
4929 BuildVectorSDNode
*InBV
= dyn_cast
<BuildVectorSDNode
>(Op
);
4931 // We've checked that this is UNDEF or a constant of some kind.
4933 ScalarOps
.push_back(getUNDEF(InSVT
));
4935 ScalarOps
.push_back(Op
);
4939 SDValue ScalarOp
= InBV
->getOperand(i
);
4940 EVT ScalarVT
= ScalarOp
.getValueType();
4942 // Build vector (integer) scalar operands may need implicit
4943 // truncation - do this before constant folding.
4944 if (ScalarVT
.isInteger() && ScalarVT
.bitsGT(InSVT
))
4945 ScalarOp
= getNode(ISD::TRUNCATE
, DL
, InSVT
, ScalarOp
);
4947 ScalarOps
.push_back(ScalarOp
);
4950 // Constant fold the scalar operands.
4951 SDValue ScalarResult
= getNode(Opcode
, DL
, SVT
, ScalarOps
, Flags
);
4953 // Legalize the (integer) scalar constant if necessary.
4954 if (LegalSVT
!= SVT
)
4955 ScalarResult
= getNode(ISD::SIGN_EXTEND
, DL
, LegalSVT
, ScalarResult
);
4957 // Scalar folding only succeeded if the result is a constant or UNDEF.
4958 if (!ScalarResult
.isUndef() && ScalarResult
.getOpcode() != ISD::Constant
&&
4959 ScalarResult
.getOpcode() != ISD::ConstantFP
)
4961 ScalarResults
.push_back(ScalarResult
);
4964 SDValue V
= getBuildVector(VT
, DL
, ScalarResults
);
4965 NewSDValueDbgMsg(V
, "New node fold constant vector: ", this);
4969 SDValue
SelectionDAG::foldConstantFPMath(unsigned Opcode
, const SDLoc
&DL
,
4970 EVT VT
, SDValue N1
, SDValue N2
) {
4971 // TODO: We don't do any constant folding for strict FP opcodes here, but we
4972 // should. That will require dealing with a potentially non-default
4973 // rounding mode, checking the "opStatus" return value from the APFloat
4974 // math calculations, and possibly other variations.
4975 auto *N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
4976 auto *N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
4977 if (N1CFP
&& N2CFP
) {
4978 APFloat C1
= N1CFP
->getValueAPF(), C2
= N2CFP
->getValueAPF();
4981 C1
.add(C2
, APFloat::rmNearestTiesToEven
);
4982 return getConstantFP(C1
, DL
, VT
);
4984 C1
.subtract(C2
, APFloat::rmNearestTiesToEven
);
4985 return getConstantFP(C1
, DL
, VT
);
4987 C1
.multiply(C2
, APFloat::rmNearestTiesToEven
);
4988 return getConstantFP(C1
, DL
, VT
);
4990 C1
.divide(C2
, APFloat::rmNearestTiesToEven
);
4991 return getConstantFP(C1
, DL
, VT
);
4994 return getConstantFP(C1
, DL
, VT
);
4995 case ISD::FCOPYSIGN
:
4997 return getConstantFP(C1
, DL
, VT
);
5001 if (N1CFP
&& Opcode
== ISD::FP_ROUND
) {
5002 APFloat C1
= N1CFP
->getValueAPF(); // make copy
5004 // This can return overflow, underflow, or inexact; we don't care.
5005 // FIXME need to be more flexible about rounding mode.
5006 (void) C1
.convert(EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
5008 return getConstantFP(C1
, DL
, VT
);
5017 // If both operands are undef, the result is undef. If 1 operand is undef,
5018 // the result is NaN. This should match the behavior of the IR optimizer.
5019 if (N1
.isUndef() && N2
.isUndef())
5020 return getUNDEF(VT
);
5021 if (N1
.isUndef() || N2
.isUndef())
5022 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT
)), DL
, VT
);
5027 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5028 SDValue N1
, SDValue N2
, const SDNodeFlags Flags
) {
5029 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
5030 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
5031 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
5032 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
5034 // Canonicalize constant to RHS if commutative.
5035 if (TLI
->isCommutativeBinOp(Opcode
)) {
5037 std::swap(N1C
, N2C
);
5039 } else if (N1CFP
&& !N2CFP
) {
5040 std::swap(N1CFP
, N2CFP
);
5047 case ISD::TokenFactor
:
5048 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
5049 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
5050 // Fold trivial token factors.
5051 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
5052 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
5053 if (N1
== N2
) return N1
;
5055 case ISD::BUILD_VECTOR
: {
5056 // Attempt to simplify BUILD_VECTOR.
5057 SDValue Ops
[] = {N1
, N2
};
5058 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
5062 case ISD::CONCAT_VECTORS
: {
5063 SDValue Ops
[] = {N1
, N2
};
5064 if (SDValue V
= foldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
5069 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5070 assert(N1
.getValueType() == N2
.getValueType() &&
5071 N1
.getValueType() == VT
&& "Binary operator types must match!");
5072 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
5073 // worth handling here.
5074 if (N2C
&& N2C
->isNullValue())
5076 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
5083 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5084 assert(N1
.getValueType() == N2
.getValueType() &&
5085 N1
.getValueType() == VT
&& "Binary operator types must match!");
5086 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
5087 // it's worth handling here.
5088 if (N2C
&& N2C
->isNullValue())
5106 assert(VT
.isInteger() && "This operator does not apply to FP types!");
5107 assert(N1
.getValueType() == N2
.getValueType() &&
5108 N1
.getValueType() == VT
&& "Binary operator types must match!");
5115 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
5116 assert(N1
.getValueType() == N2
.getValueType() &&
5117 N1
.getValueType() == VT
&& "Binary operator types must match!");
5118 if (SDValue V
= simplifyFPBinop(Opcode
, N1
, N2
))
5121 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
5122 assert(N1
.getValueType() == VT
&&
5123 N1
.getValueType().isFloatingPoint() &&
5124 N2
.getValueType().isFloatingPoint() &&
5125 "Invalid FCOPYSIGN!");
5130 if (SDValue V
= simplifyShift(N1
, N2
))
5135 assert(VT
== N1
.getValueType() &&
5136 "Shift operators return type must be the same as their first arg");
5137 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
5138 "Shifts only work on integers");
5139 assert((!VT
.isVector() || VT
== N2
.getValueType()) &&
5140 "Vector shift amounts must be in the same as their first arg");
5141 // Verify that the shift amount VT is big enough to hold valid shift
5142 // amounts. This catches things like trying to shift an i1024 value by an
5143 // i8, which is easy to fall into in generic code that uses
5144 // TLI.getShiftAmount().
5145 assert(N2
.getValueSizeInBits() >= Log2_32_Ceil(N1
.getValueSizeInBits()) &&
5146 "Invalid use of small shift amount with oversized value!");
5148 // Always fold shifts of i1 values so the code generator doesn't need to
5149 // handle them. Since we know the size of the shift has to be less than the
5150 // size of the value, the shift/rotate count is guaranteed to be zero.
5153 if (N2C
&& N2C
->isNullValue())
5157 assert(VT
.isFloatingPoint() &&
5158 N1
.getValueType().isFloatingPoint() &&
5159 VT
.bitsLE(N1
.getValueType()) &&
5160 N2C
&& (N2C
->getZExtValue() == 0 || N2C
->getZExtValue() == 1) &&
5161 "Invalid FP_ROUND!");
5162 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
5164 case ISD::AssertSext
:
5165 case ISD::AssertZext
: {
5166 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
5167 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
5168 assert(VT
.isInteger() && EVT
.isInteger() &&
5169 "Cannot *_EXTEND_INREG FP types");
5170 assert(!EVT
.isVector() &&
5171 "AssertSExt/AssertZExt type should be the vector element type "
5172 "rather than the vector type!");
5173 assert(EVT
.bitsLE(VT
.getScalarType()) && "Not extending!");
5174 if (VT
.getScalarType() == EVT
) return N1
; // noop assertion.
5177 case ISD::SIGN_EXTEND_INREG
: {
5178 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
5179 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
5180 assert(VT
.isInteger() && EVT
.isInteger() &&
5181 "Cannot *_EXTEND_INREG FP types");
5182 assert(EVT
.isVector() == VT
.isVector() &&
5183 "SIGN_EXTEND_INREG type should be vector iff the operand "
5185 assert((!EVT
.isVector() ||
5186 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
5187 "Vector element counts must match in SIGN_EXTEND_INREG");
5188 assert(EVT
.bitsLE(VT
) && "Not extending!");
5189 if (EVT
== VT
) return N1
; // Not actually extending
5191 auto SignExtendInReg
= [&](APInt Val
, llvm::EVT ConstantVT
) {
5192 unsigned FromBits
= EVT
.getScalarSizeInBits();
5193 Val
<<= Val
.getBitWidth() - FromBits
;
5194 Val
.ashrInPlace(Val
.getBitWidth() - FromBits
);
5195 return getConstant(Val
, DL
, ConstantVT
);
5199 const APInt
&Val
= N1C
->getAPIntValue();
5200 return SignExtendInReg(Val
, VT
);
5202 if (ISD::isBuildVectorOfConstantSDNodes(N1
.getNode())) {
5203 SmallVector
<SDValue
, 8> Ops
;
5204 llvm::EVT OpVT
= N1
.getOperand(0).getValueType();
5205 for (int i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
5206 SDValue Op
= N1
.getOperand(i
);
5208 Ops
.push_back(getUNDEF(OpVT
));
5211 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Op
);
5212 APInt Val
= C
->getAPIntValue();
5213 Ops
.push_back(SignExtendInReg(Val
, OpVT
));
5215 return getBuildVector(VT
, DL
, Ops
);
5219 case ISD::EXTRACT_VECTOR_ELT
:
5220 assert(VT
.getSizeInBits() >= N1
.getValueType().getScalarSizeInBits() &&
5221 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5222 element type of the vector.");
5224 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5226 return getUNDEF(VT
);
5228 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5229 if (N2C
&& N2C
->getAPIntValue().uge(N1
.getValueType().getVectorNumElements()))
5230 return getUNDEF(VT
);
5232 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5233 // expanding copies of large vectors from registers.
5235 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
5236 N1
.getNumOperands() > 0) {
5238 N1
.getOperand(0).getValueType().getVectorNumElements();
5239 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
5240 N1
.getOperand(N2C
->getZExtValue() / Factor
),
5241 getConstant(N2C
->getZExtValue() % Factor
, DL
,
5242 N2
.getValueType()));
5245 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5246 // expanding large vector constants.
5247 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
5248 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
5250 if (VT
!= Elt
.getValueType())
5251 // If the vector element type is not legal, the BUILD_VECTOR operands
5252 // are promoted and implicitly truncated, and the result implicitly
5253 // extended. Make that explicit here.
5254 Elt
= getAnyExtOrTrunc(Elt
, DL
, VT
);
5259 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5260 // operations are lowered to scalars.
5261 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
5262 // If the indices are the same, return the inserted element else
5263 // if the indices are known different, extract the element from
5264 // the original vector.
5265 SDValue N1Op2
= N1
.getOperand(2);
5266 ConstantSDNode
*N1Op2C
= dyn_cast
<ConstantSDNode
>(N1Op2
);
5268 if (N1Op2C
&& N2C
) {
5269 if (N1Op2C
->getZExtValue() == N2C
->getZExtValue()) {
5270 if (VT
== N1
.getOperand(1).getValueType())
5271 return N1
.getOperand(1);
5273 return getSExtOrTrunc(N1
.getOperand(1), DL
, VT
);
5276 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
5280 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5281 // when vector types are scalarized and v1iX is legal.
5282 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5283 if (N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
5284 N1
.getValueType().getVectorNumElements() == 1) {
5285 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0),
5289 case ISD::EXTRACT_ELEMENT
:
5290 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5291 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
5292 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
5293 N1
.getValueType() != VT
&&
5294 "Wrong types for EXTRACT_ELEMENT!");
5296 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5297 // 64-bit integers into 32-bit parts. Instead of building the extract of
5298 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5299 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
5300 return N1
.getOperand(N2C
->getZExtValue());
5302 // EXTRACT_ELEMENT of a constant int is also very common.
5304 unsigned ElementSize
= VT
.getSizeInBits();
5305 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
5306 APInt ShiftedVal
= N1C
->getAPIntValue().lshr(Shift
);
5307 return getConstant(ShiftedVal
.trunc(ElementSize
), DL
, VT
);
5310 case ISD::EXTRACT_SUBVECTOR
:
5311 if (VT
.isSimple() && N1
.getValueType().isSimple()) {
5312 assert(VT
.isVector() && N1
.getValueType().isVector() &&
5313 "Extract subvector VTs must be a vectors!");
5314 assert(VT
.getVectorElementType() ==
5315 N1
.getValueType().getVectorElementType() &&
5316 "Extract subvector VTs must have the same element type!");
5317 assert(VT
.getSimpleVT() <= N1
.getSimpleValueType() &&
5318 "Extract subvector must be from larger vector to smaller vector!");
5321 assert((VT
.getVectorNumElements() + N2C
->getZExtValue()
5322 <= N1
.getValueType().getVectorNumElements())
5323 && "Extract subvector overflow!");
5326 // Trivial extraction.
5327 if (VT
.getSimpleVT() == N1
.getSimpleValueType())
5330 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5332 return getUNDEF(VT
);
5334 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5335 // the concat have the same type as the extract.
5336 if (N2C
&& N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
5337 N1
.getNumOperands() > 0 &&
5338 VT
== N1
.getOperand(0).getValueType()) {
5339 unsigned Factor
= VT
.getVectorNumElements();
5340 return N1
.getOperand(N2C
->getZExtValue() / Factor
);
5343 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5344 // during shuffle legalization.
5345 if (N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N2
== N1
.getOperand(2) &&
5346 VT
== N1
.getOperand(1).getValueType())
5347 return N1
.getOperand(1);
5352 // Perform trivial constant folding.
5354 FoldConstantArithmetic(Opcode
, DL
, VT
, N1
.getNode(), N2
.getNode()))
5357 if (SDValue V
= foldConstantFPMath(Opcode
, DL
, VT
, N1
, N2
))
5360 // Canonicalize an UNDEF to the RHS, even over a constant.
5362 if (TLI
->isCommutativeBinOp(Opcode
)) {
5366 case ISD::SIGN_EXTEND_INREG
:
5368 return getUNDEF(VT
); // fold op(undef, arg2) -> undef
5375 return getConstant(0, DL
, VT
); // fold op(undef, arg2) -> 0
5380 // Fold a bunch of operators when the RHS is undef.
5385 // Handle undef ^ undef -> 0 special case. This is a common
5387 return getConstant(0, DL
, VT
);
5395 return getUNDEF(VT
); // fold op(arg1, undef) -> undef
5400 return getConstant(0, DL
, VT
); // fold op(arg1, undef) -> 0
5404 return getAllOnesConstant(DL
, VT
);
5408 // Memoize this node if possible.
5410 SDVTList VTs
= getVTList(VT
);
5411 SDValue Ops
[] = {N1
, N2
};
5412 if (VT
!= MVT::Glue
) {
5413 FoldingSetNodeID ID
;
5414 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
5416 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
5417 E
->intersectFlagsWith(Flags
);
5418 return SDValue(E
, 0);
5421 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5423 createOperands(N
, Ops
);
5424 CSEMap
.InsertNode(N
, IP
);
5426 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5427 createOperands(N
, Ops
);
5431 SDValue V
= SDValue(N
, 0);
5432 NewSDValueDbgMsg(V
, "Creating new node: ", this);
5436 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5437 SDValue N1
, SDValue N2
, SDValue N3
,
5438 const SDNodeFlags Flags
) {
5439 // Perform various simplifications.
5442 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
5443 assert(N1
.getValueType() == VT
&& N2
.getValueType() == VT
&&
5444 N3
.getValueType() == VT
&& "FMA types must match!");
5445 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
5446 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
5447 ConstantFPSDNode
*N3CFP
= dyn_cast
<ConstantFPSDNode
>(N3
);
5448 if (N1CFP
&& N2CFP
&& N3CFP
) {
5449 APFloat V1
= N1CFP
->getValueAPF();
5450 const APFloat
&V2
= N2CFP
->getValueAPF();
5451 const APFloat
&V3
= N3CFP
->getValueAPF();
5452 V1
.fusedMultiplyAdd(V2
, V3
, APFloat::rmNearestTiesToEven
);
5453 return getConstantFP(V1
, DL
, VT
);
5457 case ISD::BUILD_VECTOR
: {
5458 // Attempt to simplify BUILD_VECTOR.
5459 SDValue Ops
[] = {N1
, N2
, N3
};
5460 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
5464 case ISD::CONCAT_VECTORS
: {
5465 SDValue Ops
[] = {N1
, N2
, N3
};
5466 if (SDValue V
= foldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
5471 assert(VT
.isInteger() && "SETCC result type must be an integer!");
5472 assert(N1
.getValueType() == N2
.getValueType() &&
5473 "SETCC operands must have the same type!");
5474 assert(VT
.isVector() == N1
.getValueType().isVector() &&
5475 "SETCC type should be vector iff the operand type is vector!");
5476 assert((!VT
.isVector() ||
5477 VT
.getVectorNumElements() == N1
.getValueType().getVectorNumElements()) &&
5478 "SETCC vector element counts must match!");
5479 // Use FoldSetCC to simplify SETCC's.
5480 if (SDValue V
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
))
5482 // Vector constant folding.
5483 SDValue Ops
[] = {N1
, N2
, N3
};
5484 if (SDValue V
= FoldConstantVectorArithmetic(Opcode
, DL
, VT
, Ops
)) {
5485 NewSDValueDbgMsg(V
, "New node vector constant folding: ", this);
5492 if (SDValue V
= simplifySelect(N1
, N2
, N3
))
5495 case ISD::VECTOR_SHUFFLE
:
5496 llvm_unreachable("should use getVectorShuffle constructor!");
5497 case ISD::INSERT_VECTOR_ELT
: {
5498 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
);
5499 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5500 if (N3C
&& N3C
->getZExtValue() >= N1
.getValueType().getVectorNumElements())
5501 return getUNDEF(VT
);
5504 case ISD::INSERT_SUBVECTOR
: {
5505 // Inserting undef into undef is still undef.
5506 if (N1
.isUndef() && N2
.isUndef())
5507 return getUNDEF(VT
);
5509 if (VT
.isSimple() && N1
.getValueType().isSimple()
5510 && N2
.getValueType().isSimple()) {
5511 assert(VT
.isVector() && N1
.getValueType().isVector() &&
5512 N2
.getValueType().isVector() &&
5513 "Insert subvector VTs must be a vectors");
5514 assert(VT
== N1
.getValueType() &&
5515 "Dest and insert subvector source types must match!");
5516 assert(N2
.getSimpleValueType() <= N1
.getSimpleValueType() &&
5517 "Insert subvector must be from smaller vector to larger vector!");
5518 if (isa
<ConstantSDNode
>(Index
)) {
5519 assert((N2
.getValueType().getVectorNumElements() +
5520 cast
<ConstantSDNode
>(Index
)->getZExtValue()
5521 <= VT
.getVectorNumElements())
5522 && "Insert subvector overflow!");
5525 // Trivial insertion.
5526 if (VT
.getSimpleVT() == N2
.getSimpleValueType())
5529 // If this is an insert of an extracted vector into an undef vector, we
5530 // can just use the input to the extract.
5531 if (N1
.isUndef() && N2
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
5532 N2
.getOperand(1) == N3
&& N2
.getOperand(0).getValueType() == VT
)
5533 return N2
.getOperand(0);
5538 // Fold bit_convert nodes from a type to themselves.
5539 if (N1
.getValueType() == VT
)
5544 // Memoize node if it doesn't produce a flag.
5546 SDVTList VTs
= getVTList(VT
);
5547 SDValue Ops
[] = {N1
, N2
, N3
};
5548 if (VT
!= MVT::Glue
) {
5549 FoldingSetNodeID ID
;
5550 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
5552 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
5553 E
->intersectFlagsWith(Flags
);
5554 return SDValue(E
, 0);
5557 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5559 createOperands(N
, Ops
);
5560 CSEMap
.InsertNode(N
, IP
);
5562 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5563 createOperands(N
, Ops
);
5567 SDValue V
= SDValue(N
, 0);
5568 NewSDValueDbgMsg(V
, "Creating new node: ", this);
5572 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5573 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
) {
5574 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
5575 return getNode(Opcode
, DL
, VT
, Ops
);
5578 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5579 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
,
5581 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
5582 return getNode(Opcode
, DL
, VT
, Ops
);
5585 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5586 /// the incoming stack arguments to be loaded from the stack.
5587 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
5588 SmallVector
<SDValue
, 8> ArgChains
;
5590 // Include the original chain at the beginning of the list. When this is
5591 // used by target LowerCall hooks, this helps legalize find the
5592 // CALLSEQ_BEGIN node.
5593 ArgChains
.push_back(Chain
);
5595 // Add a chain value for each stack argument.
5596 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
5597 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
5598 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
5599 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
5600 if (FI
->getIndex() < 0)
5601 ArgChains
.push_back(SDValue(L
, 1));
5603 // Build a tokenfactor for all the chains.
5604 return getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
5607 /// getMemsetValue - Vectorized representation of the memset value
5609 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
5611 assert(!Value
.isUndef());
5613 unsigned NumBits
= VT
.getScalarSizeInBits();
5614 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
5615 assert(C
->getAPIntValue().getBitWidth() == 8);
5616 APInt Val
= APInt::getSplat(NumBits
, C
->getAPIntValue());
5617 if (VT
.isInteger()) {
5618 bool IsOpaque
= VT
.getSizeInBits() > 64 ||
5619 !DAG
.getTargetLoweringInfo().isLegalStoreImmediate(C
->getSExtValue());
5620 return DAG
.getConstant(Val
, dl
, VT
, false, IsOpaque
);
5622 return DAG
.getConstantFP(APFloat(DAG
.EVTToAPFloatSemantics(VT
), Val
), dl
,
5626 assert(Value
.getValueType() == MVT::i8
&& "memset with non-byte fill value?");
5627 EVT IntVT
= VT
.getScalarType();
5628 if (!IntVT
.isInteger())
5629 IntVT
= EVT::getIntegerVT(*DAG
.getContext(), IntVT
.getSizeInBits());
5631 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, IntVT
, Value
);
5633 // Use a multiplication with 0x010101... to extend the input to the
5635 APInt Magic
= APInt::getSplat(NumBits
, APInt(8, 0x01));
5636 Value
= DAG
.getNode(ISD::MUL
, dl
, IntVT
, Value
,
5637 DAG
.getConstant(Magic
, dl
, IntVT
));
5640 if (VT
!= Value
.getValueType() && !VT
.isInteger())
5641 Value
= DAG
.getBitcast(VT
.getScalarType(), Value
);
5642 if (VT
!= Value
.getValueType())
5643 Value
= DAG
.getSplatBuildVector(VT
, dl
, Value
);
5648 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5649 /// used when a memcpy is turned into a memset when the source is a constant
5651 static SDValue
getMemsetStringVal(EVT VT
, const SDLoc
&dl
, SelectionDAG
&DAG
,
5652 const TargetLowering
&TLI
,
5653 const ConstantDataArraySlice
&Slice
) {
5654 // Handle vector with all elements zero.
5655 if (Slice
.Array
== nullptr) {
5657 return DAG
.getConstant(0, dl
, VT
);
5658 else if (VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
)
5659 return DAG
.getConstantFP(0.0, dl
, VT
);
5660 else if (VT
.isVector()) {
5661 unsigned NumElts
= VT
.getVectorNumElements();
5662 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
5663 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
5664 DAG
.getConstant(0, dl
,
5665 EVT::getVectorVT(*DAG
.getContext(),
5668 llvm_unreachable("Expected type!");
5671 assert(!VT
.isVector() && "Can't handle vector type here!");
5672 unsigned NumVTBits
= VT
.getSizeInBits();
5673 unsigned NumVTBytes
= NumVTBits
/ 8;
5674 unsigned NumBytes
= std::min(NumVTBytes
, unsigned(Slice
.Length
));
5676 APInt
Val(NumVTBits
, 0);
5677 if (DAG
.getDataLayout().isLittleEndian()) {
5678 for (unsigned i
= 0; i
!= NumBytes
; ++i
)
5679 Val
|= (uint64_t)(unsigned char)Slice
[i
] << i
*8;
5681 for (unsigned i
= 0; i
!= NumBytes
; ++i
)
5682 Val
|= (uint64_t)(unsigned char)Slice
[i
] << (NumVTBytes
-i
-1)*8;
5685 // If the "cost" of materializing the integer immediate is less than the cost
5686 // of a load, then it is cost effective to turn the load into the immediate.
5687 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
5688 if (TLI
.shouldConvertConstantLoadToIntImm(Val
, Ty
))
5689 return DAG
.getConstant(Val
, dl
, VT
);
5690 return SDValue(nullptr, 0);
5693 SDValue
SelectionDAG::getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
5695 EVT VT
= Base
.getValueType();
5696 return getNode(ISD::ADD
, DL
, VT
, Base
, getConstant(Offset
, DL
, VT
));
5699 /// Returns true if memcpy source is constant data.
5700 static bool isMemSrcFromConstant(SDValue Src
, ConstantDataArraySlice
&Slice
) {
5701 uint64_t SrcDelta
= 0;
5702 GlobalAddressSDNode
*G
= nullptr;
5703 if (Src
.getOpcode() == ISD::GlobalAddress
)
5704 G
= cast
<GlobalAddressSDNode
>(Src
);
5705 else if (Src
.getOpcode() == ISD::ADD
&&
5706 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
5707 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
5708 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
5709 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
5714 return getConstantDataArrayInfo(G
->getGlobal(), Slice
, 8,
5715 SrcDelta
+ G
->getOffset());
5718 static bool shouldLowerMemFuncForSize(const MachineFunction
&MF
) {
5719 // On Darwin, -Os means optimize for size without hurting performance, so
5720 // only really optimize for size when -Oz (MinSize) is used.
5721 if (MF
.getTarget().getTargetTriple().isOSDarwin())
5722 return MF
.getFunction().hasMinSize();
5723 return MF
.getFunction().hasOptSize();
5726 static void chainLoadsAndStoresForMemcpy(SelectionDAG
&DAG
, const SDLoc
&dl
,
5727 SmallVector
<SDValue
, 32> &OutChains
, unsigned From
,
5728 unsigned To
, SmallVector
<SDValue
, 16> &OutLoadChains
,
5729 SmallVector
<SDValue
, 16> &OutStoreChains
) {
5730 assert(OutLoadChains
.size() && "Missing loads in memcpy inlining");
5731 assert(OutStoreChains
.size() && "Missing stores in memcpy inlining");
5732 SmallVector
<SDValue
, 16> GluedLoadChains
;
5733 for (unsigned i
= From
; i
< To
; ++i
) {
5734 OutChains
.push_back(OutLoadChains
[i
]);
5735 GluedLoadChains
.push_back(OutLoadChains
[i
]);
5738 // Chain for all loads.
5739 SDValue LoadToken
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5742 for (unsigned i
= From
; i
< To
; ++i
) {
5743 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(OutStoreChains
[i
]);
5744 SDValue NewStore
= DAG
.getTruncStore(LoadToken
, dl
, ST
->getValue(),
5745 ST
->getBasePtr(), ST
->getMemoryVT(),
5746 ST
->getMemOperand());
5747 OutChains
.push_back(NewStore
);
5751 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
5752 SDValue Chain
, SDValue Dst
, SDValue Src
,
5753 uint64_t Size
, unsigned Align
,
5754 bool isVol
, bool AlwaysInline
,
5755 MachinePointerInfo DstPtrInfo
,
5756 MachinePointerInfo SrcPtrInfo
) {
5757 // Turn a memcpy of undef to nop.
5758 // FIXME: We need to honor volatile even is Src is undef.
5762 // Expand memcpy to a series of load and store ops if the size operand falls
5763 // below a certain threshold.
5764 // TODO: In the AlwaysInline case, if the size is big then generate a loop
5765 // rather than maybe a humongous number of loads and stores.
5766 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5767 const DataLayout
&DL
= DAG
.getDataLayout();
5768 LLVMContext
&C
= *DAG
.getContext();
5769 std::vector
<EVT
> MemOps
;
5770 bool DstAlignCanChange
= false;
5771 MachineFunction
&MF
= DAG
.getMachineFunction();
5772 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5773 bool OptSize
= shouldLowerMemFuncForSize(MF
);
5774 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
5775 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
5776 DstAlignCanChange
= true;
5777 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
5778 if (Align
> SrcAlign
)
5780 ConstantDataArraySlice Slice
;
5781 bool CopyFromConstant
= isMemSrcFromConstant(Src
, Slice
);
5782 bool isZeroConstant
= CopyFromConstant
&& Slice
.Array
== nullptr;
5783 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemcpy(OptSize
);
5785 if (!TLI
.findOptimalMemOpLowering(
5786 MemOps
, Limit
, Size
, (DstAlignCanChange
? 0 : Align
),
5787 (isZeroConstant
? 0 : SrcAlign
), /*IsMemset=*/false,
5788 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant
,
5789 /*AllowOverlap=*/!isVol
, DstPtrInfo
.getAddrSpace(),
5790 SrcPtrInfo
.getAddrSpace(), MF
.getFunction().getAttributes()))
5793 if (DstAlignCanChange
) {
5794 Type
*Ty
= MemOps
[0].getTypeForEVT(C
);
5795 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(Ty
);
5797 // Don't promote to an alignment that would require dynamic stack
5799 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
5800 if (!TRI
->needsStackRealignment(MF
))
5801 while (NewAlign
> Align
&&
5802 DL
.exceedsNaturalStackAlignment(llvm::Align(NewAlign
)))
5805 if (NewAlign
> Align
) {
5806 // Give the stack frame object a larger alignment if needed.
5807 if (MFI
.getObjectAlignment(FI
->getIndex()) < NewAlign
)
5808 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
5813 MachineMemOperand::Flags MMOFlags
=
5814 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
;
5815 SmallVector
<SDValue
, 16> OutLoadChains
;
5816 SmallVector
<SDValue
, 16> OutStoreChains
;
5817 SmallVector
<SDValue
, 32> OutChains
;
5818 unsigned NumMemOps
= MemOps
.size();
5819 uint64_t SrcOff
= 0, DstOff
= 0;
5820 for (unsigned i
= 0; i
!= NumMemOps
; ++i
) {
5822 unsigned VTSize
= VT
.getSizeInBits() / 8;
5823 SDValue Value
, Store
;
5825 if (VTSize
> Size
) {
5826 // Issuing an unaligned load / store pair that overlaps with the previous
5827 // pair. Adjust the offset accordingly.
5828 assert(i
== NumMemOps
-1 && i
!= 0);
5829 SrcOff
-= VTSize
- Size
;
5830 DstOff
-= VTSize
- Size
;
5833 if (CopyFromConstant
&&
5834 (isZeroConstant
|| (VT
.isInteger() && !VT
.isVector()))) {
5835 // It's unlikely a store of a vector immediate can be done in a single
5836 // instruction. It would require a load from a constantpool first.
5837 // We only handle zero vectors here.
5838 // FIXME: Handle other cases where store of vector immediate is done in
5839 // a single instruction.
5840 ConstantDataArraySlice SubSlice
;
5841 if (SrcOff
< Slice
.Length
) {
5843 SubSlice
.move(SrcOff
);
5845 // This is an out-of-bounds access and hence UB. Pretend we read zero.
5846 SubSlice
.Array
= nullptr;
5847 SubSlice
.Offset
= 0;
5848 SubSlice
.Length
= VTSize
;
5850 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, SubSlice
);
5851 if (Value
.getNode()) {
5852 Store
= DAG
.getStore(Chain
, dl
, Value
,
5853 DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
5854 DstPtrInfo
.getWithOffset(DstOff
), Align
,
5856 OutChains
.push_back(Store
);
5860 if (!Store
.getNode()) {
5861 // The type might not be legal for the target. This should only happen
5862 // if the type is smaller than a legal type, as on PPC, so the right
5863 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
5864 // to Load/Store if NVT==VT.
5865 // FIXME does the case above also need this?
5866 EVT NVT
= TLI
.getTypeToTransformTo(C
, VT
);
5867 assert(NVT
.bitsGE(VT
));
5869 bool isDereferenceable
=
5870 SrcPtrInfo
.getWithOffset(SrcOff
).isDereferenceable(VTSize
, C
, DL
);
5871 MachineMemOperand::Flags SrcMMOFlags
= MMOFlags
;
5872 if (isDereferenceable
)
5873 SrcMMOFlags
|= MachineMemOperand::MODereferenceable
;
5875 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Chain
,
5876 DAG
.getMemBasePlusOffset(Src
, SrcOff
, dl
),
5877 SrcPtrInfo
.getWithOffset(SrcOff
), VT
,
5878 MinAlign(SrcAlign
, SrcOff
), SrcMMOFlags
);
5879 OutLoadChains
.push_back(Value
.getValue(1));
5881 Store
= DAG
.getTruncStore(
5882 Chain
, dl
, Value
, DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
5883 DstPtrInfo
.getWithOffset(DstOff
), VT
, Align
, MMOFlags
);
5884 OutStoreChains
.push_back(Store
);
5891 unsigned GluedLdStLimit
= MaxLdStGlue
== 0 ?
5892 TLI
.getMaxGluedStoresPerMemcpy() : MaxLdStGlue
;
5893 unsigned NumLdStInMemcpy
= OutStoreChains
.size();
5895 if (NumLdStInMemcpy
) {
5896 // It may be that memcpy might be converted to memset if it's memcpy
5897 // of constants. In such a case, we won't have loads and stores, but
5898 // just stores. In the absence of loads, there is nothing to gang up.
5899 if ((GluedLdStLimit
<= 1) || !EnableMemCpyDAGOpt
) {
5900 // If target does not care, just leave as it.
5901 for (unsigned i
= 0; i
< NumLdStInMemcpy
; ++i
) {
5902 OutChains
.push_back(OutLoadChains
[i
]);
5903 OutChains
.push_back(OutStoreChains
[i
]);
5906 // Ld/St less than/equal limit set by target.
5907 if (NumLdStInMemcpy
<= GluedLdStLimit
) {
5908 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, 0,
5909 NumLdStInMemcpy
, OutLoadChains
,
5912 unsigned NumberLdChain
= NumLdStInMemcpy
/ GluedLdStLimit
;
5913 unsigned RemainingLdStInMemcpy
= NumLdStInMemcpy
% GluedLdStLimit
;
5914 unsigned GlueIter
= 0;
5916 for (unsigned cnt
= 0; cnt
< NumberLdChain
; ++cnt
) {
5917 unsigned IndexFrom
= NumLdStInMemcpy
- GlueIter
- GluedLdStLimit
;
5918 unsigned IndexTo
= NumLdStInMemcpy
- GlueIter
;
5920 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, IndexFrom
, IndexTo
,
5921 OutLoadChains
, OutStoreChains
);
5922 GlueIter
+= GluedLdStLimit
;
5926 if (RemainingLdStInMemcpy
) {
5927 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, 0,
5928 RemainingLdStInMemcpy
, OutLoadChains
,
5934 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
5937 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
5938 SDValue Chain
, SDValue Dst
, SDValue Src
,
5939 uint64_t Size
, unsigned Align
,
5940 bool isVol
, bool AlwaysInline
,
5941 MachinePointerInfo DstPtrInfo
,
5942 MachinePointerInfo SrcPtrInfo
) {
5943 // Turn a memmove of undef to nop.
5944 // FIXME: We need to honor volatile even is Src is undef.
5948 // Expand memmove to a series of load and store ops if the size operand falls
5949 // below a certain threshold.
5950 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5951 const DataLayout
&DL
= DAG
.getDataLayout();
5952 LLVMContext
&C
= *DAG
.getContext();
5953 std::vector
<EVT
> MemOps
;
5954 bool DstAlignCanChange
= false;
5955 MachineFunction
&MF
= DAG
.getMachineFunction();
5956 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5957 bool OptSize
= shouldLowerMemFuncForSize(MF
);
5958 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
5959 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
5960 DstAlignCanChange
= true;
5961 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
5962 if (Align
> SrcAlign
)
5964 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemmove(OptSize
);
5965 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5966 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5968 bool AllowOverlap
= false;
5969 if (!TLI
.findOptimalMemOpLowering(
5970 MemOps
, Limit
, Size
, (DstAlignCanChange
? 0 : Align
), SrcAlign
,
5971 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5972 AllowOverlap
, DstPtrInfo
.getAddrSpace(), SrcPtrInfo
.getAddrSpace(),
5973 MF
.getFunction().getAttributes()))
5976 if (DstAlignCanChange
) {
5977 Type
*Ty
= MemOps
[0].getTypeForEVT(C
);
5978 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(Ty
);
5979 if (NewAlign
> Align
) {
5980 // Give the stack frame object a larger alignment if needed.
5981 if (MFI
.getObjectAlignment(FI
->getIndex()) < NewAlign
)
5982 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
5987 MachineMemOperand::Flags MMOFlags
=
5988 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
;
5989 uint64_t SrcOff
= 0, DstOff
= 0;
5990 SmallVector
<SDValue
, 8> LoadValues
;
5991 SmallVector
<SDValue
, 8> LoadChains
;
5992 SmallVector
<SDValue
, 8> OutChains
;
5993 unsigned NumMemOps
= MemOps
.size();
5994 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
5996 unsigned VTSize
= VT
.getSizeInBits() / 8;
5999 bool isDereferenceable
=
6000 SrcPtrInfo
.getWithOffset(SrcOff
).isDereferenceable(VTSize
, C
, DL
);
6001 MachineMemOperand::Flags SrcMMOFlags
= MMOFlags
;
6002 if (isDereferenceable
)
6003 SrcMMOFlags
|= MachineMemOperand::MODereferenceable
;
6006 DAG
.getLoad(VT
, dl
, Chain
, DAG
.getMemBasePlusOffset(Src
, SrcOff
, dl
),
6007 SrcPtrInfo
.getWithOffset(SrcOff
), SrcAlign
, SrcMMOFlags
);
6008 LoadValues
.push_back(Value
);
6009 LoadChains
.push_back(Value
.getValue(1));
6012 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
6014 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
6016 unsigned VTSize
= VT
.getSizeInBits() / 8;
6019 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
6020 DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
6021 DstPtrInfo
.getWithOffset(DstOff
), Align
, MMOFlags
);
6022 OutChains
.push_back(Store
);
6026 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
6029 /// Lower the call to 'memset' intrinsic function into a series of store
6032 /// \param DAG Selection DAG where lowered code is placed.
6033 /// \param dl Link to corresponding IR location.
6034 /// \param Chain Control flow dependency.
6035 /// \param Dst Pointer to destination memory location.
6036 /// \param Src Value of byte to write into the memory.
6037 /// \param Size Number of bytes to write.
6038 /// \param Align Alignment of the destination in bytes.
6039 /// \param isVol True if destination is volatile.
6040 /// \param DstPtrInfo IR information on the memory pointer.
6041 /// \returns New head in the control flow, if lowering was successful, empty
6042 /// SDValue otherwise.
6044 /// The function tries to replace 'llvm.memset' intrinsic with several store
6045 /// operations and value calculation code. This is usually profitable for small
6047 static SDValue
getMemsetStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
6048 SDValue Chain
, SDValue Dst
, SDValue Src
,
6049 uint64_t Size
, unsigned Align
, bool isVol
,
6050 MachinePointerInfo DstPtrInfo
) {
6051 // Turn a memset of undef to nop.
6052 // FIXME: We need to honor volatile even is Src is undef.
6056 // Expand memset to a series of load/store ops if the size operand
6057 // falls below a certain threshold.
6058 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6059 std::vector
<EVT
> MemOps
;
6060 bool DstAlignCanChange
= false;
6061 MachineFunction
&MF
= DAG
.getMachineFunction();
6062 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6063 bool OptSize
= shouldLowerMemFuncForSize(MF
);
6064 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
6065 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
6066 DstAlignCanChange
= true;
6068 isa
<ConstantSDNode
>(Src
) && cast
<ConstantSDNode
>(Src
)->isNullValue();
6069 if (!TLI
.findOptimalMemOpLowering(
6070 MemOps
, TLI
.getMaxStoresPerMemset(OptSize
), Size
,
6071 (DstAlignCanChange
? 0 : Align
), 0, /*IsMemset=*/true,
6072 /*ZeroMemset=*/IsZeroVal
, /*MemcpyStrSrc=*/false,
6073 /*AllowOverlap=*/!isVol
, DstPtrInfo
.getAddrSpace(), ~0u,
6074 MF
.getFunction().getAttributes()))
6077 if (DstAlignCanChange
) {
6078 Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
6079 unsigned NewAlign
= (unsigned)DAG
.getDataLayout().getABITypeAlignment(Ty
);
6080 if (NewAlign
> Align
) {
6081 // Give the stack frame object a larger alignment if needed.
6082 if (MFI
.getObjectAlignment(FI
->getIndex()) < NewAlign
)
6083 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
6088 SmallVector
<SDValue
, 8> OutChains
;
6089 uint64_t DstOff
= 0;
6090 unsigned NumMemOps
= MemOps
.size();
6092 // Find the largest store and generate the bit pattern for it.
6093 EVT LargestVT
= MemOps
[0];
6094 for (unsigned i
= 1; i
< NumMemOps
; i
++)
6095 if (MemOps
[i
].bitsGT(LargestVT
))
6096 LargestVT
= MemOps
[i
];
6097 SDValue MemSetValue
= getMemsetValue(Src
, LargestVT
, DAG
, dl
);
6099 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
6101 unsigned VTSize
= VT
.getSizeInBits() / 8;
6102 if (VTSize
> Size
) {
6103 // Issuing an unaligned load / store pair that overlaps with the previous
6104 // pair. Adjust the offset accordingly.
6105 assert(i
== NumMemOps
-1 && i
!= 0);
6106 DstOff
-= VTSize
- Size
;
6109 // If this store is smaller than the largest store see whether we can get
6110 // the smaller value for free with a truncate.
6111 SDValue Value
= MemSetValue
;
6112 if (VT
.bitsLT(LargestVT
)) {
6113 if (!LargestVT
.isVector() && !VT
.isVector() &&
6114 TLI
.isTruncateFree(LargestVT
, VT
))
6115 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, MemSetValue
);
6117 Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
6119 assert(Value
.getValueType() == VT
&& "Value with wrong type.");
6120 SDValue Store
= DAG
.getStore(
6121 Chain
, dl
, Value
, DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
6122 DstPtrInfo
.getWithOffset(DstOff
), Align
,
6123 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
);
6124 OutChains
.push_back(Store
);
6125 DstOff
+= VT
.getSizeInBits() / 8;
6129 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
6132 static void checkAddrSpaceIsValidForLibcall(const TargetLowering
*TLI
,
6134 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6135 // pointer operands can be losslessly bitcasted to pointers of address space 0
6136 if (AS
!= 0 && !TLI
->isNoopAddrSpaceCast(AS
, 0)) {
6137 report_fatal_error("cannot lower memory intrinsic in address space " +
6142 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6143 SDValue Src
, SDValue Size
, unsigned Align
,
6144 bool isVol
, bool AlwaysInline
, bool isTailCall
,
6145 MachinePointerInfo DstPtrInfo
,
6146 MachinePointerInfo SrcPtrInfo
) {
6147 assert(Align
&& "The SDAG layer expects explicit alignment and reserves 0");
6149 // Check to see if we should lower the memcpy to loads and stores first.
6150 // For cases within the target-specified limits, this is the best choice.
6151 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6153 // Memcpy with size zero? Just return the original chain.
6154 if (ConstantSize
->isNullValue())
6157 SDValue Result
= getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6158 ConstantSize
->getZExtValue(),Align
,
6159 isVol
, false, DstPtrInfo
, SrcPtrInfo
);
6160 if (Result
.getNode())
6164 // Then check to see if we should lower the memcpy with target-specific
6165 // code. If the target chooses to do this, this is the next best.
6167 SDValue Result
= TSI
->EmitTargetCodeForMemcpy(
6168 *this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
, AlwaysInline
,
6169 DstPtrInfo
, SrcPtrInfo
);
6170 if (Result
.getNode())
6174 // If we really need inline code and the target declined to provide it,
6175 // use a (potentially long) sequence of loads and stores.
6177 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
6178 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6179 ConstantSize
->getZExtValue(), Align
, isVol
,
6180 true, DstPtrInfo
, SrcPtrInfo
);
6183 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6184 checkAddrSpaceIsValidForLibcall(TLI
, SrcPtrInfo
.getAddrSpace());
6186 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6187 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6188 // respect volatile, so they may do things like read or write memory
6189 // beyond the given memory regions. But fixing this isn't easy, and most
6190 // people don't care.
6192 // Emit a library call.
6193 TargetLowering::ArgListTy Args
;
6194 TargetLowering::ArgListEntry Entry
;
6195 Entry
.Ty
= Type::getInt8PtrTy(*getContext());
6196 Entry
.Node
= Dst
; Args
.push_back(Entry
);
6197 Entry
.Node
= Src
; Args
.push_back(Entry
);
6199 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6200 Entry
.Node
= Size
; Args
.push_back(Entry
);
6201 // FIXME: pass in SDLoc
6202 TargetLowering::CallLoweringInfo
CLI(*this);
6205 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMCPY
),
6206 Dst
.getValueType().getTypeForEVT(*getContext()),
6207 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMCPY
),
6208 TLI
->getPointerTy(getDataLayout())),
6211 .setTailCall(isTailCall
);
6213 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6214 return CallResult
.second
;
6217 SDValue
SelectionDAG::getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
,
6218 SDValue Dst
, unsigned DstAlign
,
6219 SDValue Src
, unsigned SrcAlign
,
6220 SDValue Size
, Type
*SizeTy
,
6221 unsigned ElemSz
, bool isTailCall
,
6222 MachinePointerInfo DstPtrInfo
,
6223 MachinePointerInfo SrcPtrInfo
) {
6224 // Emit a library call.
6225 TargetLowering::ArgListTy Args
;
6226 TargetLowering::ArgListEntry Entry
;
6227 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6229 Args
.push_back(Entry
);
6232 Args
.push_back(Entry
);
6236 Args
.push_back(Entry
);
6238 RTLIB::Libcall LibraryCall
=
6239 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6240 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6241 report_fatal_error("Unsupported element size");
6243 TargetLowering::CallLoweringInfo
CLI(*this);
6246 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6247 Type::getVoidTy(*getContext()),
6248 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6249 TLI
->getPointerTy(getDataLayout())),
6252 .setTailCall(isTailCall
);
6254 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6255 return CallResult
.second
;
6258 SDValue
SelectionDAG::getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6259 SDValue Src
, SDValue Size
, unsigned Align
,
6260 bool isVol
, bool isTailCall
,
6261 MachinePointerInfo DstPtrInfo
,
6262 MachinePointerInfo SrcPtrInfo
) {
6263 assert(Align
&& "The SDAG layer expects explicit alignment and reserves 0");
6265 // Check to see if we should lower the memmove to loads and stores first.
6266 // For cases within the target-specified limits, this is the best choice.
6267 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6269 // Memmove with size zero? Just return the original chain.
6270 if (ConstantSize
->isNullValue())
6274 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6275 ConstantSize
->getZExtValue(), Align
, isVol
,
6276 false, DstPtrInfo
, SrcPtrInfo
);
6277 if (Result
.getNode())
6281 // Then check to see if we should lower the memmove with target-specific
6282 // code. If the target chooses to do this, this is the next best.
6284 SDValue Result
= TSI
->EmitTargetCodeForMemmove(
6285 *this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
, DstPtrInfo
, SrcPtrInfo
);
6286 if (Result
.getNode())
6290 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6291 checkAddrSpaceIsValidForLibcall(TLI
, SrcPtrInfo
.getAddrSpace());
6293 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6294 // not be safe. See memcpy above for more details.
6296 // Emit a library call.
6297 TargetLowering::ArgListTy Args
;
6298 TargetLowering::ArgListEntry Entry
;
6299 Entry
.Ty
= Type::getInt8PtrTy(*getContext());
6300 Entry
.Node
= Dst
; Args
.push_back(Entry
);
6301 Entry
.Node
= Src
; Args
.push_back(Entry
);
6303 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6304 Entry
.Node
= Size
; Args
.push_back(Entry
);
6305 // FIXME: pass in SDLoc
6306 TargetLowering::CallLoweringInfo
CLI(*this);
6309 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMMOVE
),
6310 Dst
.getValueType().getTypeForEVT(*getContext()),
6311 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMMOVE
),
6312 TLI
->getPointerTy(getDataLayout())),
6315 .setTailCall(isTailCall
);
6317 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6318 return CallResult
.second
;
6321 SDValue
SelectionDAG::getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
,
6322 SDValue Dst
, unsigned DstAlign
,
6323 SDValue Src
, unsigned SrcAlign
,
6324 SDValue Size
, Type
*SizeTy
,
6325 unsigned ElemSz
, bool isTailCall
,
6326 MachinePointerInfo DstPtrInfo
,
6327 MachinePointerInfo SrcPtrInfo
) {
6328 // Emit a library call.
6329 TargetLowering::ArgListTy Args
;
6330 TargetLowering::ArgListEntry Entry
;
6331 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6333 Args
.push_back(Entry
);
6336 Args
.push_back(Entry
);
6340 Args
.push_back(Entry
);
6342 RTLIB::Libcall LibraryCall
=
6343 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6344 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6345 report_fatal_error("Unsupported element size");
6347 TargetLowering::CallLoweringInfo
CLI(*this);
6350 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6351 Type::getVoidTy(*getContext()),
6352 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6353 TLI
->getPointerTy(getDataLayout())),
6356 .setTailCall(isTailCall
);
6358 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6359 return CallResult
.second
;
6362 SDValue
SelectionDAG::getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6363 SDValue Src
, SDValue Size
, unsigned Align
,
6364 bool isVol
, bool isTailCall
,
6365 MachinePointerInfo DstPtrInfo
) {
6366 assert(Align
&& "The SDAG layer expects explicit alignment and reserves 0");
6368 // Check to see if we should lower the memset to stores first.
6369 // For cases within the target-specified limits, this is the best choice.
6370 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6372 // Memset with size zero? Just return the original chain.
6373 if (ConstantSize
->isNullValue())
6377 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
6378 Align
, isVol
, DstPtrInfo
);
6380 if (Result
.getNode())
6384 // Then check to see if we should lower the memset with target-specific
6385 // code. If the target chooses to do this, this is the next best.
6387 SDValue Result
= TSI
->EmitTargetCodeForMemset(
6388 *this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
, DstPtrInfo
);
6389 if (Result
.getNode())
6393 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6395 // Emit a library call.
6396 TargetLowering::ArgListTy Args
;
6397 TargetLowering::ArgListEntry Entry
;
6398 Entry
.Node
= Dst
; Entry
.Ty
= Type::getInt8PtrTy(*getContext());
6399 Args
.push_back(Entry
);
6401 Entry
.Ty
= Src
.getValueType().getTypeForEVT(*getContext());
6402 Args
.push_back(Entry
);
6404 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6405 Args
.push_back(Entry
);
6407 // FIXME: pass in SDLoc
6408 TargetLowering::CallLoweringInfo
CLI(*this);
6411 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMSET
),
6412 Dst
.getValueType().getTypeForEVT(*getContext()),
6413 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMSET
),
6414 TLI
->getPointerTy(getDataLayout())),
6417 .setTailCall(isTailCall
);
6419 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6420 return CallResult
.second
;
6423 SDValue
SelectionDAG::getAtomicMemset(SDValue Chain
, const SDLoc
&dl
,
6424 SDValue Dst
, unsigned DstAlign
,
6425 SDValue Value
, SDValue Size
, Type
*SizeTy
,
6426 unsigned ElemSz
, bool isTailCall
,
6427 MachinePointerInfo DstPtrInfo
) {
6428 // Emit a library call.
6429 TargetLowering::ArgListTy Args
;
6430 TargetLowering::ArgListEntry Entry
;
6431 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6433 Args
.push_back(Entry
);
6435 Entry
.Ty
= Type::getInt8Ty(*getContext());
6437 Args
.push_back(Entry
);
6441 Args
.push_back(Entry
);
6443 RTLIB::Libcall LibraryCall
=
6444 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6445 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6446 report_fatal_error("Unsupported element size");
6448 TargetLowering::CallLoweringInfo
CLI(*this);
6451 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6452 Type::getVoidTy(*getContext()),
6453 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6454 TLI
->getPointerTy(getDataLayout())),
6457 .setTailCall(isTailCall
);
6459 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6460 return CallResult
.second
;
6463 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
6464 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
6465 MachineMemOperand
*MMO
) {
6466 FoldingSetNodeID ID
;
6467 ID
.AddInteger(MemVT
.getRawBits());
6468 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
6469 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6471 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6472 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
6473 return SDValue(E
, 0);
6476 auto *N
= newSDNode
<AtomicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
6477 VTList
, MemVT
, MMO
);
6478 createOperands(N
, Ops
);
6480 CSEMap
.InsertNode(N
, IP
);
6482 return SDValue(N
, 0);
6485 SDValue
SelectionDAG::getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
,
6486 EVT MemVT
, SDVTList VTs
, SDValue Chain
,
6487 SDValue Ptr
, SDValue Cmp
, SDValue Swp
,
6488 MachineMemOperand
*MMO
) {
6489 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
||
6490 Opcode
== ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
);
6491 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
6493 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
6494 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
6497 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
6498 SDValue Chain
, SDValue Ptr
, SDValue Val
,
6499 MachineMemOperand
*MMO
) {
6500 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
6501 Opcode
== ISD::ATOMIC_LOAD_SUB
||
6502 Opcode
== ISD::ATOMIC_LOAD_AND
||
6503 Opcode
== ISD::ATOMIC_LOAD_CLR
||
6504 Opcode
== ISD::ATOMIC_LOAD_OR
||
6505 Opcode
== ISD::ATOMIC_LOAD_XOR
||
6506 Opcode
== ISD::ATOMIC_LOAD_NAND
||
6507 Opcode
== ISD::ATOMIC_LOAD_MIN
||
6508 Opcode
== ISD::ATOMIC_LOAD_MAX
||
6509 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
6510 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
6511 Opcode
== ISD::ATOMIC_LOAD_FADD
||
6512 Opcode
== ISD::ATOMIC_LOAD_FSUB
||
6513 Opcode
== ISD::ATOMIC_SWAP
||
6514 Opcode
== ISD::ATOMIC_STORE
) &&
6515 "Invalid Atomic Op");
6517 EVT VT
= Val
.getValueType();
6519 SDVTList VTs
= Opcode
== ISD::ATOMIC_STORE
? getVTList(MVT::Other
) :
6520 getVTList(VT
, MVT::Other
);
6521 SDValue Ops
[] = {Chain
, Ptr
, Val
};
6522 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
6525 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
6526 EVT VT
, SDValue Chain
, SDValue Ptr
,
6527 MachineMemOperand
*MMO
) {
6528 assert(Opcode
== ISD::ATOMIC_LOAD
&& "Invalid Atomic Op");
6530 SDVTList VTs
= getVTList(VT
, MVT::Other
);
6531 SDValue Ops
[] = {Chain
, Ptr
};
6532 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
6535 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6536 SDValue
SelectionDAG::getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
) {
6537 if (Ops
.size() == 1)
6540 SmallVector
<EVT
, 4> VTs
;
6541 VTs
.reserve(Ops
.size());
6542 for (unsigned i
= 0; i
< Ops
.size(); ++i
)
6543 VTs
.push_back(Ops
[i
].getValueType());
6544 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(VTs
), Ops
);
6547 SDValue
SelectionDAG::getMemIntrinsicNode(
6548 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
6549 EVT MemVT
, MachinePointerInfo PtrInfo
, unsigned Align
,
6550 MachineMemOperand::Flags Flags
, unsigned Size
, const AAMDNodes
&AAInfo
) {
6551 if (Align
== 0) // Ensure that codegen never sees alignment 0
6552 Align
= getEVTAlignment(MemVT
);
6555 Size
= MemVT
.getStoreSize();
6557 MachineFunction
&MF
= getMachineFunction();
6558 MachineMemOperand
*MMO
=
6559 MF
.getMachineMemOperand(PtrInfo
, Flags
, Size
, Align
, AAInfo
);
6561 return getMemIntrinsicNode(Opcode
, dl
, VTList
, Ops
, MemVT
, MMO
);
6564 SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
,
6566 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
6567 MachineMemOperand
*MMO
) {
6568 assert((Opcode
== ISD::INTRINSIC_VOID
||
6569 Opcode
== ISD::INTRINSIC_W_CHAIN
||
6570 Opcode
== ISD::PREFETCH
||
6571 Opcode
== ISD::LIFETIME_START
||
6572 Opcode
== ISD::LIFETIME_END
||
6573 ((int)Opcode
<= std::numeric_limits
<int>::max() &&
6574 (int)Opcode
>= ISD::FIRST_TARGET_MEMORY_OPCODE
)) &&
6575 "Opcode is not a memory-accessing opcode!");
6577 // Memoize the node unless it returns a flag.
6578 MemIntrinsicSDNode
*N
;
6579 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
6580 FoldingSetNodeID ID
;
6581 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
6582 ID
.AddInteger(getSyntheticNodeSubclassData
<MemIntrinsicSDNode
>(
6583 Opcode
, dl
.getIROrder(), VTList
, MemVT
, MMO
));
6584 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6586 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6587 cast
<MemIntrinsicSDNode
>(E
)->refineAlignment(MMO
);
6588 return SDValue(E
, 0);
6591 N
= newSDNode
<MemIntrinsicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
6592 VTList
, MemVT
, MMO
);
6593 createOperands(N
, Ops
);
6595 CSEMap
.InsertNode(N
, IP
);
6597 N
= newSDNode
<MemIntrinsicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
6598 VTList
, MemVT
, MMO
);
6599 createOperands(N
, Ops
);
6603 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6607 SDValue
SelectionDAG::getLifetimeNode(bool IsStart
, const SDLoc
&dl
,
6608 SDValue Chain
, int FrameIndex
,
6609 int64_t Size
, int64_t Offset
) {
6610 const unsigned Opcode
= IsStart
? ISD::LIFETIME_START
: ISD::LIFETIME_END
;
6611 const auto VTs
= getVTList(MVT::Other
);
6614 getFrameIndex(FrameIndex
,
6615 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6618 FoldingSetNodeID ID
;
6619 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
6620 ID
.AddInteger(FrameIndex
);
6621 ID
.AddInteger(Size
);
6622 ID
.AddInteger(Offset
);
6624 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
6625 return SDValue(E
, 0);
6627 LifetimeSDNode
*N
= newSDNode
<LifetimeSDNode
>(
6628 Opcode
, dl
.getIROrder(), dl
.getDebugLoc(), VTs
, Size
, Offset
);
6629 createOperands(N
, Ops
);
6630 CSEMap
.InsertNode(N
, IP
);
6633 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6637 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6638 /// MachinePointerInfo record from it. This is particularly useful because the
6639 /// code generator has many cases where it doesn't bother passing in a
6640 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6641 static MachinePointerInfo
InferPointerInfo(const MachinePointerInfo
&Info
,
6642 SelectionDAG
&DAG
, SDValue Ptr
,
6643 int64_t Offset
= 0) {
6644 // If this is FI+Offset, we can model it.
6645 if (const FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
))
6646 return MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
6647 FI
->getIndex(), Offset
);
6649 // If this is (FI+Offset1)+Offset2, we can model it.
6650 if (Ptr
.getOpcode() != ISD::ADD
||
6651 !isa
<ConstantSDNode
>(Ptr
.getOperand(1)) ||
6652 !isa
<FrameIndexSDNode
>(Ptr
.getOperand(0)))
6655 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
6656 return MachinePointerInfo::getFixedStack(
6657 DAG
.getMachineFunction(), FI
,
6658 Offset
+ cast
<ConstantSDNode
>(Ptr
.getOperand(1))->getSExtValue());
6661 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6662 /// MachinePointerInfo record from it. This is particularly useful because the
6663 /// code generator has many cases where it doesn't bother passing in a
6664 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6665 static MachinePointerInfo
InferPointerInfo(const MachinePointerInfo
&Info
,
6666 SelectionDAG
&DAG
, SDValue Ptr
,
6668 // If the 'Offset' value isn't a constant, we can't handle this.
6669 if (ConstantSDNode
*OffsetNode
= dyn_cast
<ConstantSDNode
>(OffsetOp
))
6670 return InferPointerInfo(Info
, DAG
, Ptr
, OffsetNode
->getSExtValue());
6671 if (OffsetOp
.isUndef())
6672 return InferPointerInfo(Info
, DAG
, Ptr
);
6676 SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
6677 EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6678 SDValue Ptr
, SDValue Offset
,
6679 MachinePointerInfo PtrInfo
, EVT MemVT
,
6681 MachineMemOperand::Flags MMOFlags
,
6682 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
) {
6683 assert(Chain
.getValueType() == MVT::Other
&&
6684 "Invalid chain type");
6685 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
6686 Alignment
= getEVTAlignment(MemVT
);
6688 MMOFlags
|= MachineMemOperand::MOLoad
;
6689 assert((MMOFlags
& MachineMemOperand::MOStore
) == 0);
6690 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6692 if (PtrInfo
.V
.isNull())
6693 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
, Offset
);
6695 MachineFunction
&MF
= getMachineFunction();
6696 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
6697 PtrInfo
, MMOFlags
, MemVT
.getStoreSize(), Alignment
, AAInfo
, Ranges
);
6698 return getLoad(AM
, ExtType
, VT
, dl
, Chain
, Ptr
, Offset
, MemVT
, MMO
);
6701 SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
6702 EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6703 SDValue Ptr
, SDValue Offset
, EVT MemVT
,
6704 MachineMemOperand
*MMO
) {
6706 ExtType
= ISD::NON_EXTLOAD
;
6707 } else if (ExtType
== ISD::NON_EXTLOAD
) {
6708 assert(VT
== MemVT
&& "Non-extending load from different memory type!");
6711 assert(MemVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
6712 "Should only be an extending load, not truncating!");
6713 assert(VT
.isInteger() == MemVT
.isInteger() &&
6714 "Cannot convert from FP to Int or Int -> FP!");
6715 assert(VT
.isVector() == MemVT
.isVector() &&
6716 "Cannot use an ext load to convert to or from a vector!");
6717 assert((!VT
.isVector() ||
6718 VT
.getVectorNumElements() == MemVT
.getVectorNumElements()) &&
6719 "Cannot use an ext load to change the number of vector elements!");
6722 bool Indexed
= AM
!= ISD::UNINDEXED
;
6723 assert((Indexed
|| Offset
.isUndef()) && "Unindexed load with an offset!");
6725 SDVTList VTs
= Indexed
?
6726 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
6727 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
6728 FoldingSetNodeID ID
;
6729 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
);
6730 ID
.AddInteger(MemVT
.getRawBits());
6731 ID
.AddInteger(getSyntheticNodeSubclassData
<LoadSDNode
>(
6732 dl
.getIROrder(), VTs
, AM
, ExtType
, MemVT
, MMO
));
6733 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6735 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6736 cast
<LoadSDNode
>(E
)->refineAlignment(MMO
);
6737 return SDValue(E
, 0);
6739 auto *N
= newSDNode
<LoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
6740 ExtType
, MemVT
, MMO
);
6741 createOperands(N
, Ops
);
6743 CSEMap
.InsertNode(N
, IP
);
6746 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6750 SDValue
SelectionDAG::getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6751 SDValue Ptr
, MachinePointerInfo PtrInfo
,
6753 MachineMemOperand::Flags MMOFlags
,
6754 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
) {
6755 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6756 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
6757 PtrInfo
, VT
, Alignment
, MMOFlags
, AAInfo
, Ranges
);
6760 SDValue
SelectionDAG::getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6761 SDValue Ptr
, MachineMemOperand
*MMO
) {
6762 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6763 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
6767 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
6768 EVT VT
, SDValue Chain
, SDValue Ptr
,
6769 MachinePointerInfo PtrInfo
, EVT MemVT
,
6771 MachineMemOperand::Flags MMOFlags
,
6772 const AAMDNodes
&AAInfo
) {
6773 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6774 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
, PtrInfo
,
6775 MemVT
, Alignment
, MMOFlags
, AAInfo
);
6778 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
6779 EVT VT
, SDValue Chain
, SDValue Ptr
, EVT MemVT
,
6780 MachineMemOperand
*MMO
) {
6781 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6782 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
,
6786 SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
,
6787 SDValue Base
, SDValue Offset
,
6788 ISD::MemIndexedMode AM
) {
6789 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
6790 assert(LD
->getOffset().isUndef() && "Load is already a indexed load!");
6791 // Don't propagate the invariant or dereferenceable flags.
6793 LD
->getMemOperand()->getFlags() &
6794 ~(MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
6795 return getLoad(AM
, LD
->getExtensionType(), OrigLoad
.getValueType(), dl
,
6796 LD
->getChain(), Base
, Offset
, LD
->getPointerInfo(),
6797 LD
->getMemoryVT(), LD
->getAlignment(), MMOFlags
,
6801 SDValue
SelectionDAG::getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6802 SDValue Ptr
, MachinePointerInfo PtrInfo
,
6804 MachineMemOperand::Flags MMOFlags
,
6805 const AAMDNodes
&AAInfo
) {
6806 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
6807 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
6808 Alignment
= getEVTAlignment(Val
.getValueType());
6810 MMOFlags
|= MachineMemOperand::MOStore
;
6811 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
6813 if (PtrInfo
.V
.isNull())
6814 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
6816 MachineFunction
&MF
= getMachineFunction();
6817 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
6818 PtrInfo
, MMOFlags
, Val
.getValueType().getStoreSize(), Alignment
, AAInfo
);
6819 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
6822 SDValue
SelectionDAG::getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6823 SDValue Ptr
, MachineMemOperand
*MMO
) {
6824 assert(Chain
.getValueType() == MVT::Other
&&
6825 "Invalid chain type");
6826 EVT VT
= Val
.getValueType();
6827 SDVTList VTs
= getVTList(MVT::Other
);
6828 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6829 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
6830 FoldingSetNodeID ID
;
6831 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
6832 ID
.AddInteger(VT
.getRawBits());
6833 ID
.AddInteger(getSyntheticNodeSubclassData
<StoreSDNode
>(
6834 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, false, VT
, MMO
));
6835 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6837 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6838 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
6839 return SDValue(E
, 0);
6841 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6842 ISD::UNINDEXED
, false, VT
, MMO
);
6843 createOperands(N
, Ops
);
6845 CSEMap
.InsertNode(N
, IP
);
6848 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6852 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6853 SDValue Ptr
, MachinePointerInfo PtrInfo
,
6854 EVT SVT
, unsigned Alignment
,
6855 MachineMemOperand::Flags MMOFlags
,
6856 const AAMDNodes
&AAInfo
) {
6857 assert(Chain
.getValueType() == MVT::Other
&&
6858 "Invalid chain type");
6859 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
6860 Alignment
= getEVTAlignment(SVT
);
6862 MMOFlags
|= MachineMemOperand::MOStore
;
6863 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
6865 if (PtrInfo
.V
.isNull())
6866 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
6868 MachineFunction
&MF
= getMachineFunction();
6869 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
6870 PtrInfo
, MMOFlags
, SVT
.getStoreSize(), Alignment
, AAInfo
);
6871 return getTruncStore(Chain
, dl
, Val
, Ptr
, SVT
, MMO
);
6874 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6875 SDValue Ptr
, EVT SVT
,
6876 MachineMemOperand
*MMO
) {
6877 EVT VT
= Val
.getValueType();
6879 assert(Chain
.getValueType() == MVT::Other
&&
6880 "Invalid chain type");
6882 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
6884 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
6885 "Should only be a truncating store, not extending!");
6886 assert(VT
.isInteger() == SVT
.isInteger() &&
6887 "Can't do FP-INT conversion!");
6888 assert(VT
.isVector() == SVT
.isVector() &&
6889 "Cannot use trunc store to convert to or from a vector!");
6890 assert((!VT
.isVector() ||
6891 VT
.getVectorNumElements() == SVT
.getVectorNumElements()) &&
6892 "Cannot use trunc store to change the number of vector elements!");
6894 SDVTList VTs
= getVTList(MVT::Other
);
6895 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6896 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
6897 FoldingSetNodeID ID
;
6898 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
6899 ID
.AddInteger(SVT
.getRawBits());
6900 ID
.AddInteger(getSyntheticNodeSubclassData
<StoreSDNode
>(
6901 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, true, SVT
, MMO
));
6902 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6904 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6905 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
6906 return SDValue(E
, 0);
6908 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6909 ISD::UNINDEXED
, true, SVT
, MMO
);
6910 createOperands(N
, Ops
);
6912 CSEMap
.InsertNode(N
, IP
);
6915 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6919 SDValue
SelectionDAG::getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
,
6920 SDValue Base
, SDValue Offset
,
6921 ISD::MemIndexedMode AM
) {
6922 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
6923 assert(ST
->getOffset().isUndef() && "Store is already a indexed store!");
6924 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
6925 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
6926 FoldingSetNodeID ID
;
6927 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
6928 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
6929 ID
.AddInteger(ST
->getRawSubclassData());
6930 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
6932 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
6933 return SDValue(E
, 0);
6935 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
6936 ST
->isTruncatingStore(), ST
->getMemoryVT(),
6937 ST
->getMemOperand());
6938 createOperands(N
, Ops
);
6940 CSEMap
.InsertNode(N
, IP
);
6943 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6947 SDValue
SelectionDAG::getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6948 SDValue Ptr
, SDValue Mask
, SDValue PassThru
,
6949 EVT MemVT
, MachineMemOperand
*MMO
,
6950 ISD::LoadExtType ExtTy
, bool isExpanding
) {
6951 SDVTList VTs
= getVTList(VT
, MVT::Other
);
6952 SDValue Ops
[] = { Chain
, Ptr
, Mask
, PassThru
};
6953 FoldingSetNodeID ID
;
6954 AddNodeIDNode(ID
, ISD::MLOAD
, VTs
, Ops
);
6955 ID
.AddInteger(MemVT
.getRawBits());
6956 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedLoadSDNode
>(
6957 dl
.getIROrder(), VTs
, ExtTy
, isExpanding
, MemVT
, MMO
));
6958 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6960 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6961 cast
<MaskedLoadSDNode
>(E
)->refineAlignment(MMO
);
6962 return SDValue(E
, 0);
6964 auto *N
= newSDNode
<MaskedLoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6965 ExtTy
, isExpanding
, MemVT
, MMO
);
6966 createOperands(N
, Ops
);
6968 CSEMap
.InsertNode(N
, IP
);
6971 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6975 SDValue
SelectionDAG::getMaskedStore(SDValue Chain
, const SDLoc
&dl
,
6976 SDValue Val
, SDValue Ptr
, SDValue Mask
,
6977 EVT MemVT
, MachineMemOperand
*MMO
,
6978 bool IsTruncating
, bool IsCompressing
) {
6979 assert(Chain
.getValueType() == MVT::Other
&&
6980 "Invalid chain type");
6981 SDVTList VTs
= getVTList(MVT::Other
);
6982 SDValue Ops
[] = { Chain
, Val
, Ptr
, Mask
};
6983 FoldingSetNodeID ID
;
6984 AddNodeIDNode(ID
, ISD::MSTORE
, VTs
, Ops
);
6985 ID
.AddInteger(MemVT
.getRawBits());
6986 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedStoreSDNode
>(
6987 dl
.getIROrder(), VTs
, IsTruncating
, IsCompressing
, MemVT
, MMO
));
6988 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6990 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6991 cast
<MaskedStoreSDNode
>(E
)->refineAlignment(MMO
);
6992 return SDValue(E
, 0);
6994 auto *N
= newSDNode
<MaskedStoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6995 IsTruncating
, IsCompressing
, MemVT
, MMO
);
6996 createOperands(N
, Ops
);
6998 CSEMap
.InsertNode(N
, IP
);
7001 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7005 SDValue
SelectionDAG::getMaskedGather(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
7006 ArrayRef
<SDValue
> Ops
,
7007 MachineMemOperand
*MMO
,
7008 ISD::MemIndexType IndexType
) {
7009 assert(Ops
.size() == 6 && "Incompatible number of operands");
7011 FoldingSetNodeID ID
;
7012 AddNodeIDNode(ID
, ISD::MGATHER
, VTs
, Ops
);
7013 ID
.AddInteger(VT
.getRawBits());
7014 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedGatherSDNode
>(
7015 dl
.getIROrder(), VTs
, VT
, MMO
, IndexType
));
7016 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7018 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7019 cast
<MaskedGatherSDNode
>(E
)->refineAlignment(MMO
);
7020 return SDValue(E
, 0);
7023 auto *N
= newSDNode
<MaskedGatherSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
7024 VTs
, VT
, MMO
, IndexType
);
7025 createOperands(N
, Ops
);
7027 assert(N
->getPassThru().getValueType() == N
->getValueType(0) &&
7028 "Incompatible type of the PassThru value in MaskedGatherSDNode");
7029 assert(N
->getMask().getValueType().getVectorNumElements() ==
7030 N
->getValueType(0).getVectorNumElements() &&
7031 "Vector width mismatch between mask and data");
7032 assert(N
->getIndex().getValueType().getVectorNumElements() >=
7033 N
->getValueType(0).getVectorNumElements() &&
7034 "Vector width mismatch between index and data");
7035 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
7036 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
7037 "Scale should be a constant power of 2");
7039 CSEMap
.InsertNode(N
, IP
);
7042 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7046 SDValue
SelectionDAG::getMaskedScatter(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
7047 ArrayRef
<SDValue
> Ops
,
7048 MachineMemOperand
*MMO
,
7049 ISD::MemIndexType IndexType
) {
7050 assert(Ops
.size() == 6 && "Incompatible number of operands");
7052 FoldingSetNodeID ID
;
7053 AddNodeIDNode(ID
, ISD::MSCATTER
, VTs
, Ops
);
7054 ID
.AddInteger(VT
.getRawBits());
7055 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedScatterSDNode
>(
7056 dl
.getIROrder(), VTs
, VT
, MMO
, IndexType
));
7057 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
7059 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
7060 cast
<MaskedScatterSDNode
>(E
)->refineAlignment(MMO
);
7061 return SDValue(E
, 0);
7063 auto *N
= newSDNode
<MaskedScatterSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
7064 VTs
, VT
, MMO
, IndexType
);
7065 createOperands(N
, Ops
);
7067 assert(N
->getMask().getValueType().getVectorNumElements() ==
7068 N
->getValue().getValueType().getVectorNumElements() &&
7069 "Vector width mismatch between mask and data");
7070 assert(N
->getIndex().getValueType().getVectorNumElements() >=
7071 N
->getValue().getValueType().getVectorNumElements() &&
7072 "Vector width mismatch between index and data");
7073 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
7074 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
7075 "Scale should be a constant power of 2");
7077 CSEMap
.InsertNode(N
, IP
);
7080 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7084 SDValue
SelectionDAG::simplifySelect(SDValue Cond
, SDValue T
, SDValue F
) {
7085 // select undef, T, F --> T (if T is a constant), otherwise F
7086 // select, ?, undef, F --> F
7087 // select, ?, T, undef --> T
7089 return isConstantValueOfAnyType(T
) ? T
: F
;
7095 // select true, T, F --> T
7096 // select false, T, F --> F
7097 if (auto *CondC
= dyn_cast
<ConstantSDNode
>(Cond
))
7098 return CondC
->isNullValue() ? F
: T
;
7100 // TODO: This should simplify VSELECT with constant condition using something
7101 // like this (but check boolean contents to be complete?):
7102 // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7104 // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7107 // select ?, T, T --> T
7114 SDValue
SelectionDAG::simplifyShift(SDValue X
, SDValue Y
) {
7115 // shift undef, Y --> 0 (can always assume that the undef value is 0)
7117 return getConstant(0, SDLoc(X
.getNode()), X
.getValueType());
7118 // shift X, undef --> undef (because it may shift by the bitwidth)
7120 return getUNDEF(X
.getValueType());
7124 if (isNullOrNullSplat(X
) || isNullOrNullSplat(Y
))
7127 // shift X, C >= bitwidth(X) --> undef
7128 // All vector elements must be too big (or undef) to avoid partial undefs.
7129 auto isShiftTooBig
= [X
](ConstantSDNode
*Val
) {
7130 return !Val
|| Val
->getAPIntValue().uge(X
.getScalarValueSizeInBits());
7132 if (ISD::matchUnaryPredicate(Y
, isShiftTooBig
, true))
7133 return getUNDEF(X
.getValueType());
7138 // TODO: Use fast-math-flags to enable more simplifications.
7139 SDValue
SelectionDAG::simplifyFPBinop(unsigned Opcode
, SDValue X
, SDValue Y
) {
7140 ConstantFPSDNode
*YC
= isConstOrConstSplatFP(Y
, /* AllowUndefs */ true);
7145 if (Opcode
== ISD::FADD
)
7146 if (YC
->getValueAPF().isNegZero())
7150 if (Opcode
== ISD::FSUB
)
7151 if (YC
->getValueAPF().isPosZero())
7156 if (Opcode
== ISD::FMUL
|| Opcode
== ISD::FDIV
)
7157 if (YC
->getValueAPF().isExactlyValue(1.0))
7163 SDValue
SelectionDAG::getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7164 SDValue Ptr
, SDValue SV
, unsigned Align
) {
7165 SDValue Ops
[] = { Chain
, Ptr
, SV
, getTargetConstant(Align
, dl
, MVT::i32
) };
7166 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
);
7169 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
7170 ArrayRef
<SDUse
> Ops
) {
7171 switch (Ops
.size()) {
7172 case 0: return getNode(Opcode
, DL
, VT
);
7173 case 1: return getNode(Opcode
, DL
, VT
, static_cast<const SDValue
>(Ops
[0]));
7174 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
7175 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
7179 // Copy from an SDUse array into an SDValue array for use with
7180 // the regular getNode logic.
7181 SmallVector
<SDValue
, 8> NewOps(Ops
.begin(), Ops
.end());
7182 return getNode(Opcode
, DL
, VT
, NewOps
);
7185 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
7186 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
) {
7187 unsigned NumOps
= Ops
.size();
7189 case 0: return getNode(Opcode
, DL
, VT
);
7190 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0], Flags
);
7191 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Flags
);
7192 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2], Flags
);
7198 case ISD::BUILD_VECTOR
:
7199 // Attempt to simplify BUILD_VECTOR.
7200 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
7203 case ISD::CONCAT_VECTORS
:
7204 if (SDValue V
= foldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
7207 case ISD::SELECT_CC
:
7208 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
7209 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
7210 "LHS and RHS of condition must have same type!");
7211 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
7212 "True and False arms of SelectCC must have same type!");
7213 assert(Ops
[2].getValueType() == VT
&&
7214 "select_cc node must be of same type as true and false value!");
7217 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
7218 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
7219 "LHS/RHS of comparison should match types!");
7225 SDVTList VTs
= getVTList(VT
);
7227 if (VT
!= MVT::Glue
) {
7228 FoldingSetNodeID ID
;
7229 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
7232 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
7233 return SDValue(E
, 0);
7235 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
7236 createOperands(N
, Ops
);
7238 CSEMap
.InsertNode(N
, IP
);
7240 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
7241 createOperands(N
, Ops
);
7246 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7250 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
,
7251 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
) {
7252 return getNode(Opcode
, DL
, getVTList(ResultTys
), Ops
);
7255 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7256 ArrayRef
<SDValue
> Ops
) {
7257 if (VTList
.NumVTs
== 1)
7258 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
);
7262 // FIXME: figure out how to safely handle things like
7263 // int foo(int x) { return 1 << (x & 255); }
7264 // int bar() { return foo(256); }
7265 case ISD::SRA_PARTS
:
7266 case ISD::SRL_PARTS
:
7267 case ISD::SHL_PARTS
:
7268 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
7269 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
7270 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
7271 else if (N3
.getOpcode() == ISD::AND
)
7272 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
7273 // If the and is only masking out bits that cannot effect the shift,
7274 // eliminate the and.
7275 unsigned NumBits
= VT
.getScalarSizeInBits()*2;
7276 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
7277 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
7283 // Memoize the node unless it returns a flag.
7285 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
7286 FoldingSetNodeID ID
;
7287 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
7289 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
7290 return SDValue(E
, 0);
7292 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTList
);
7293 createOperands(N
, Ops
);
7294 CSEMap
.InsertNode(N
, IP
);
7296 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTList
);
7297 createOperands(N
, Ops
);
7301 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7305 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
,
7307 return getNode(Opcode
, DL
, VTList
, None
);
7310 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7312 SDValue Ops
[] = { N1
};
7313 return getNode(Opcode
, DL
, VTList
, Ops
);
7316 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7317 SDValue N1
, SDValue N2
) {
7318 SDValue Ops
[] = { N1
, N2
};
7319 return getNode(Opcode
, DL
, VTList
, Ops
);
7322 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7323 SDValue N1
, SDValue N2
, SDValue N3
) {
7324 SDValue Ops
[] = { N1
, N2
, N3
};
7325 return getNode(Opcode
, DL
, VTList
, Ops
);
7328 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7329 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
) {
7330 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
7331 return getNode(Opcode
, DL
, VTList
, Ops
);
7334 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7335 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
,
7337 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
7338 return getNode(Opcode
, DL
, VTList
, Ops
);
7341 SDVTList
SelectionDAG::getVTList(EVT VT
) {
7342 return makeVTList(SDNode::getValueTypeList(VT
), 1);
7345 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
7346 FoldingSetNodeID ID
;
7348 ID
.AddInteger(VT1
.getRawBits());
7349 ID
.AddInteger(VT2
.getRawBits());
7352 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7354 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
7357 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 2);
7358 VTListMap
.InsertNode(Result
, IP
);
7360 return Result
->getSDVTList();
7363 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
7364 FoldingSetNodeID ID
;
7366 ID
.AddInteger(VT1
.getRawBits());
7367 ID
.AddInteger(VT2
.getRawBits());
7368 ID
.AddInteger(VT3
.getRawBits());
7371 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7373 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
7377 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 3);
7378 VTListMap
.InsertNode(Result
, IP
);
7380 return Result
->getSDVTList();
7383 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
7384 FoldingSetNodeID ID
;
7386 ID
.AddInteger(VT1
.getRawBits());
7387 ID
.AddInteger(VT2
.getRawBits());
7388 ID
.AddInteger(VT3
.getRawBits());
7389 ID
.AddInteger(VT4
.getRawBits());
7392 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7394 EVT
*Array
= Allocator
.Allocate
<EVT
>(4);
7399 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 4);
7400 VTListMap
.InsertNode(Result
, IP
);
7402 return Result
->getSDVTList();
7405 SDVTList
SelectionDAG::getVTList(ArrayRef
<EVT
> VTs
) {
7406 unsigned NumVTs
= VTs
.size();
7407 FoldingSetNodeID ID
;
7408 ID
.AddInteger(NumVTs
);
7409 for (unsigned index
= 0; index
< NumVTs
; index
++) {
7410 ID
.AddInteger(VTs
[index
].getRawBits());
7414 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7416 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
7417 llvm::copy(VTs
, Array
);
7418 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, NumVTs
);
7419 VTListMap
.InsertNode(Result
, IP
);
7421 return Result
->getSDVTList();
7425 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7426 /// specified operands. If the resultant node already exists in the DAG,
7427 /// this does not modify the specified node, instead it returns the node that
7428 /// already exists. If the resultant node does not exist in the DAG, the
7429 /// input node is returned. As a degenerate case, if you specify the same
7430 /// input operands as the node already has, the input node is returned.
7431 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op
) {
7432 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
7434 // Check to see if there is no change.
7435 if (Op
== N
->getOperand(0)) return N
;
7437 // See if the modified node already exists.
7438 void *InsertPos
= nullptr;
7439 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
7442 // Nope it doesn't. Remove the node from its current place in the maps.
7444 if (!RemoveNodeFromCSEMaps(N
))
7445 InsertPos
= nullptr;
7447 // Now we update the operands.
7448 N
->OperandList
[0].set(Op
);
7450 updateDivergence(N
);
7451 // If this gets put into a CSE map, add it.
7452 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
7456 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
) {
7457 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
7459 // Check to see if there is no change.
7460 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
7461 return N
; // No operands changed, just return the input node.
7463 // See if the modified node already exists.
7464 void *InsertPos
= nullptr;
7465 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
7468 // Nope it doesn't. Remove the node from its current place in the maps.
7470 if (!RemoveNodeFromCSEMaps(N
))
7471 InsertPos
= nullptr;
7473 // Now we update the operands.
7474 if (N
->OperandList
[0] != Op1
)
7475 N
->OperandList
[0].set(Op1
);
7476 if (N
->OperandList
[1] != Op2
)
7477 N
->OperandList
[1].set(Op2
);
7479 updateDivergence(N
);
7480 // If this gets put into a CSE map, add it.
7481 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
7485 SDNode
*SelectionDAG::
7486 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
7487 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7488 return UpdateNodeOperands(N
, Ops
);
7491 SDNode
*SelectionDAG::
7492 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
7493 SDValue Op3
, SDValue Op4
) {
7494 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
7495 return UpdateNodeOperands(N
, Ops
);
7498 SDNode
*SelectionDAG::
7499 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
7500 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
7501 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
7502 return UpdateNodeOperands(N
, Ops
);
7505 SDNode
*SelectionDAG::
7506 UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
) {
7507 unsigned NumOps
= Ops
.size();
7508 assert(N
->getNumOperands() == NumOps
&&
7509 "Update with wrong number of operands");
7511 // If no operands changed just return the input node.
7512 if (std::equal(Ops
.begin(), Ops
.end(), N
->op_begin()))
7515 // See if the modified node already exists.
7516 void *InsertPos
= nullptr;
7517 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, InsertPos
))
7520 // Nope it doesn't. Remove the node from its current place in the maps.
7522 if (!RemoveNodeFromCSEMaps(N
))
7523 InsertPos
= nullptr;
7525 // Now we update the operands.
7526 for (unsigned i
= 0; i
!= NumOps
; ++i
)
7527 if (N
->OperandList
[i
] != Ops
[i
])
7528 N
->OperandList
[i
].set(Ops
[i
]);
7530 updateDivergence(N
);
7531 // If this gets put into a CSE map, add it.
7532 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
7536 /// DropOperands - Release the operands and set this node to have
7538 void SDNode::DropOperands() {
7539 // Unlike the code in MorphNodeTo that does this, we don't need to
7540 // watch for dead nodes here.
7541 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
7547 void SelectionDAG::setNodeMemRefs(MachineSDNode
*N
,
7548 ArrayRef
<MachineMemOperand
*> NewMemRefs
) {
7549 if (NewMemRefs
.empty()) {
7554 // Check if we can avoid allocating by storing a single reference directly.
7555 if (NewMemRefs
.size() == 1) {
7556 N
->MemRefs
= NewMemRefs
[0];
7561 MachineMemOperand
**MemRefsBuffer
=
7562 Allocator
.template Allocate
<MachineMemOperand
*>(NewMemRefs
.size());
7563 llvm::copy(NewMemRefs
, MemRefsBuffer
);
7564 N
->MemRefs
= MemRefsBuffer
;
7565 N
->NumMemRefs
= static_cast<int>(NewMemRefs
.size());
7568 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7571 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7573 SDVTList VTs
= getVTList(VT
);
7574 return SelectNodeTo(N
, MachineOpc
, VTs
, None
);
7577 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7578 EVT VT
, SDValue Op1
) {
7579 SDVTList VTs
= getVTList(VT
);
7580 SDValue Ops
[] = { Op1
};
7581 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7584 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7585 EVT VT
, SDValue Op1
,
7587 SDVTList VTs
= getVTList(VT
);
7588 SDValue Ops
[] = { Op1
, Op2
};
7589 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7592 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7593 EVT VT
, SDValue Op1
,
7594 SDValue Op2
, SDValue Op3
) {
7595 SDVTList VTs
= getVTList(VT
);
7596 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7597 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7600 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7601 EVT VT
, ArrayRef
<SDValue
> Ops
) {
7602 SDVTList VTs
= getVTList(VT
);
7603 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7606 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7607 EVT VT1
, EVT VT2
, ArrayRef
<SDValue
> Ops
) {
7608 SDVTList VTs
= getVTList(VT1
, VT2
);
7609 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7612 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7614 SDVTList VTs
= getVTList(VT1
, VT2
);
7615 return SelectNodeTo(N
, MachineOpc
, VTs
, None
);
7618 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7619 EVT VT1
, EVT VT2
, EVT VT3
,
7620 ArrayRef
<SDValue
> Ops
) {
7621 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7622 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7625 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7627 SDValue Op1
, SDValue Op2
) {
7628 SDVTList VTs
= getVTList(VT1
, VT2
);
7629 SDValue Ops
[] = { Op1
, Op2
};
7630 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7633 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7634 SDVTList VTs
,ArrayRef
<SDValue
> Ops
) {
7635 SDNode
*New
= MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
);
7636 // Reset the NodeID to -1.
7639 ReplaceAllUsesWith(N
, New
);
7645 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7646 /// the line number information on the merged node since it is not possible to
7647 /// preserve the information that operation is associated with multiple lines.
7648 /// This will make the debugger working better at -O0, were there is a higher
7649 /// probability having other instructions associated with that line.
7651 /// For IROrder, we keep the smaller of the two
7652 SDNode
*SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&OLoc
) {
7653 DebugLoc NLoc
= N
->getDebugLoc();
7654 if (NLoc
&& OptLevel
== CodeGenOpt::None
&& OLoc
.getDebugLoc() != NLoc
) {
7655 N
->setDebugLoc(DebugLoc());
7657 unsigned Order
= std::min(N
->getIROrder(), OLoc
.getIROrder());
7658 N
->setIROrder(Order
);
7662 /// MorphNodeTo - This *mutates* the specified node to have the specified
7663 /// return type, opcode, and operands.
7665 /// Note that MorphNodeTo returns the resultant node. If there is already a
7666 /// node of the specified opcode and operands, it returns that node instead of
7667 /// the current one. Note that the SDLoc need not be the same.
7669 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7670 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7671 /// node, and because it doesn't require CSE recalculation for any of
7672 /// the node's users.
7674 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7675 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7676 /// the legalizer which maintain worklists that would need to be updated when
7677 /// deleting things.
7678 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
7679 SDVTList VTs
, ArrayRef
<SDValue
> Ops
) {
7680 // If an identical node already exists, use it.
7682 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
) {
7683 FoldingSetNodeID ID
;
7684 AddNodeIDNode(ID
, Opc
, VTs
, Ops
);
7685 if (SDNode
*ON
= FindNodeOrInsertPos(ID
, SDLoc(N
), IP
))
7686 return UpdateSDLocOnMergeSDNode(ON
, SDLoc(N
));
7689 if (!RemoveNodeFromCSEMaps(N
))
7692 // Start the morphing.
7694 N
->ValueList
= VTs
.VTs
;
7695 N
->NumValues
= VTs
.NumVTs
;
7697 // Clear the operands list, updating used nodes to remove this from their
7698 // use list. Keep track of any operands that become dead as a result.
7699 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
7700 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
7702 SDNode
*Used
= Use
.getNode();
7704 if (Used
->use_empty())
7705 DeadNodeSet
.insert(Used
);
7708 // For MachineNode, initialize the memory references information.
7709 if (MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(N
))
7712 // Swap for an appropriately sized array from the recycler.
7714 createOperands(N
, Ops
);
7716 // Delete any nodes that are still dead after adding the uses for the
7718 if (!DeadNodeSet
.empty()) {
7719 SmallVector
<SDNode
*, 16> DeadNodes
;
7720 for (SDNode
*N
: DeadNodeSet
)
7722 DeadNodes
.push_back(N
);
7723 RemoveDeadNodes(DeadNodes
);
7727 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
7731 SDNode
* SelectionDAG::mutateStrictFPToFP(SDNode
*Node
) {
7732 unsigned OrigOpc
= Node
->getOpcode();
7736 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7737 case ISD::STRICT_FADD
: NewOpc
= ISD::FADD
; break;
7738 case ISD::STRICT_FSUB
: NewOpc
= ISD::FSUB
; break;
7739 case ISD::STRICT_FMUL
: NewOpc
= ISD::FMUL
; break;
7740 case ISD::STRICT_FDIV
: NewOpc
= ISD::FDIV
; break;
7741 case ISD::STRICT_FREM
: NewOpc
= ISD::FREM
; break;
7742 case ISD::STRICT_FMA
: NewOpc
= ISD::FMA
; break;
7743 case ISD::STRICT_FSQRT
: NewOpc
= ISD::FSQRT
; break;
7744 case ISD::STRICT_FPOW
: NewOpc
= ISD::FPOW
; break;
7745 case ISD::STRICT_FPOWI
: NewOpc
= ISD::FPOWI
; break;
7746 case ISD::STRICT_FSIN
: NewOpc
= ISD::FSIN
; break;
7747 case ISD::STRICT_FCOS
: NewOpc
= ISD::FCOS
; break;
7748 case ISD::STRICT_FEXP
: NewOpc
= ISD::FEXP
; break;
7749 case ISD::STRICT_FEXP2
: NewOpc
= ISD::FEXP2
; break;
7750 case ISD::STRICT_FLOG
: NewOpc
= ISD::FLOG
; break;
7751 case ISD::STRICT_FLOG10
: NewOpc
= ISD::FLOG10
; break;
7752 case ISD::STRICT_FLOG2
: NewOpc
= ISD::FLOG2
; break;
7753 case ISD::STRICT_FRINT
: NewOpc
= ISD::FRINT
; break;
7754 case ISD::STRICT_FNEARBYINT
: NewOpc
= ISD::FNEARBYINT
; break;
7755 case ISD::STRICT_FMAXNUM
: NewOpc
= ISD::FMAXNUM
; break;
7756 case ISD::STRICT_FMINNUM
: NewOpc
= ISD::FMINNUM
; break;
7757 case ISD::STRICT_FCEIL
: NewOpc
= ISD::FCEIL
; break;
7758 case ISD::STRICT_FFLOOR
: NewOpc
= ISD::FFLOOR
; break;
7759 case ISD::STRICT_FROUND
: NewOpc
= ISD::FROUND
; break;
7760 case ISD::STRICT_FTRUNC
: NewOpc
= ISD::FTRUNC
; break;
7761 case ISD::STRICT_FP_ROUND
: NewOpc
= ISD::FP_ROUND
; break;
7762 case ISD::STRICT_FP_EXTEND
: NewOpc
= ISD::FP_EXTEND
; break;
7763 case ISD::STRICT_FP_TO_SINT
: NewOpc
= ISD::FP_TO_SINT
; break;
7764 case ISD::STRICT_FP_TO_UINT
: NewOpc
= ISD::FP_TO_UINT
; break;
7767 assert(Node
->getNumValues() == 2 && "Unexpected number of results!");
7769 // We're taking this node out of the chain, so we need to re-link things.
7770 SDValue InputChain
= Node
->getOperand(0);
7771 SDValue OutputChain
= SDValue(Node
, 1);
7772 ReplaceAllUsesOfValueWith(OutputChain
, InputChain
);
7774 SmallVector
<SDValue
, 3> Ops
;
7775 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
)
7776 Ops
.push_back(Node
->getOperand(i
));
7778 SDVTList VTs
= getVTList(Node
->getValueType(0));
7779 SDNode
*Res
= MorphNodeTo(Node
, NewOpc
, VTs
, Ops
);
7781 // MorphNodeTo can operate in two ways: if an existing node with the
7782 // specified operands exists, it can just return it. Otherwise, it
7783 // updates the node in place to have the requested operands.
7785 // If we updated the node in place, reset the node ID. To the isel,
7786 // this should be just like a newly allocated machine node.
7789 ReplaceAllUsesWith(Node
, Res
);
7790 RemoveDeadNode(Node
);
7796 /// getMachineNode - These are used for target selectors to create a new node
7797 /// with specified return type(s), MachineInstr opcode, and operands.
7799 /// Note that getMachineNode returns the resultant node. If there is already a
7800 /// node of the specified opcode and operands, it returns that node instead of
7801 /// the current one.
7802 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7804 SDVTList VTs
= getVTList(VT
);
7805 return getMachineNode(Opcode
, dl
, VTs
, None
);
7808 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7809 EVT VT
, SDValue Op1
) {
7810 SDVTList VTs
= getVTList(VT
);
7811 SDValue Ops
[] = { Op1
};
7812 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7815 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7816 EVT VT
, SDValue Op1
, SDValue Op2
) {
7817 SDVTList VTs
= getVTList(VT
);
7818 SDValue Ops
[] = { Op1
, Op2
};
7819 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7822 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7823 EVT VT
, SDValue Op1
, SDValue Op2
,
7825 SDVTList VTs
= getVTList(VT
);
7826 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7827 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7830 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7831 EVT VT
, ArrayRef
<SDValue
> Ops
) {
7832 SDVTList VTs
= getVTList(VT
);
7833 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7836 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7837 EVT VT1
, EVT VT2
, SDValue Op1
,
7839 SDVTList VTs
= getVTList(VT1
, VT2
);
7840 SDValue Ops
[] = { Op1
, Op2
};
7841 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7844 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7845 EVT VT1
, EVT VT2
, SDValue Op1
,
7846 SDValue Op2
, SDValue Op3
) {
7847 SDVTList VTs
= getVTList(VT1
, VT2
);
7848 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7849 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7852 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7854 ArrayRef
<SDValue
> Ops
) {
7855 SDVTList VTs
= getVTList(VT1
, VT2
);
7856 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7859 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7860 EVT VT1
, EVT VT2
, EVT VT3
,
7861 SDValue Op1
, SDValue Op2
) {
7862 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7863 SDValue Ops
[] = { Op1
, Op2
};
7864 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7867 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7868 EVT VT1
, EVT VT2
, EVT VT3
,
7869 SDValue Op1
, SDValue Op2
,
7871 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7872 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7873 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7876 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7877 EVT VT1
, EVT VT2
, EVT VT3
,
7878 ArrayRef
<SDValue
> Ops
) {
7879 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7880 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7883 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7884 ArrayRef
<EVT
> ResultTys
,
7885 ArrayRef
<SDValue
> Ops
) {
7886 SDVTList VTs
= getVTList(ResultTys
);
7887 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7890 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&DL
,
7892 ArrayRef
<SDValue
> Ops
) {
7893 bool DoCSE
= VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
;
7898 FoldingSetNodeID ID
;
7899 AddNodeIDNode(ID
, ~Opcode
, VTs
, Ops
);
7901 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
7902 return cast
<MachineSDNode
>(UpdateSDLocOnMergeSDNode(E
, DL
));
7906 // Allocate a new MachineSDNode.
7907 N
= newSDNode
<MachineSDNode
>(~Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
7908 createOperands(N
, Ops
);
7911 CSEMap
.InsertNode(N
, IP
);
7914 NewSDValueDbgMsg(SDValue(N
, 0), "Creating new machine node: ", this);
7918 /// getTargetExtractSubreg - A convenience function for creating
7919 /// TargetOpcode::EXTRACT_SUBREG nodes.
7920 SDValue
SelectionDAG::getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
7922 SDValue SRIdxVal
= getTargetConstant(SRIdx
, DL
, MVT::i32
);
7923 SDNode
*Subreg
= getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
,
7924 VT
, Operand
, SRIdxVal
);
7925 return SDValue(Subreg
, 0);
7928 /// getTargetInsertSubreg - A convenience function for creating
7929 /// TargetOpcode::INSERT_SUBREG nodes.
7930 SDValue
SelectionDAG::getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
7931 SDValue Operand
, SDValue Subreg
) {
7932 SDValue SRIdxVal
= getTargetConstant(SRIdx
, DL
, MVT::i32
);
7933 SDNode
*Result
= getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
,
7934 VT
, Operand
, Subreg
, SRIdxVal
);
7935 return SDValue(Result
, 0);
7938 /// getNodeIfExists - Get the specified node if it's already available, or
7939 /// else return NULL.
7940 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
7941 ArrayRef
<SDValue
> Ops
,
7942 const SDNodeFlags Flags
) {
7943 if (VTList
.VTs
[VTList
.NumVTs
- 1] != MVT::Glue
) {
7944 FoldingSetNodeID ID
;
7945 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
7947 if (SDNode
*E
= FindNodeOrInsertPos(ID
, SDLoc(), IP
)) {
7948 E
->intersectFlagsWith(Flags
);
7955 /// getDbgValue - Creates a SDDbgValue node.
7958 SDDbgValue
*SelectionDAG::getDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
7959 SDNode
*N
, unsigned R
, bool IsIndirect
,
7960 const DebugLoc
&DL
, unsigned O
) {
7961 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7962 "Expected inlined-at fields to agree");
7963 return new (DbgInfo
->getAlloc())
7964 SDDbgValue(Var
, Expr
, N
, R
, IsIndirect
, DL
, O
);
7968 SDDbgValue
*SelectionDAG::getConstantDbgValue(DIVariable
*Var
,
7971 const DebugLoc
&DL
, unsigned O
) {
7972 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7973 "Expected inlined-at fields to agree");
7974 return new (DbgInfo
->getAlloc()) SDDbgValue(Var
, Expr
, C
, DL
, O
);
7978 SDDbgValue
*SelectionDAG::getFrameIndexDbgValue(DIVariable
*Var
,
7979 DIExpression
*Expr
, unsigned FI
,
7983 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7984 "Expected inlined-at fields to agree");
7985 return new (DbgInfo
->getAlloc())
7986 SDDbgValue(Var
, Expr
, FI
, IsIndirect
, DL
, O
, SDDbgValue::FRAMEIX
);
7990 SDDbgValue
*SelectionDAG::getVRegDbgValue(DIVariable
*Var
,
7992 unsigned VReg
, bool IsIndirect
,
7993 const DebugLoc
&DL
, unsigned O
) {
7994 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7995 "Expected inlined-at fields to agree");
7996 return new (DbgInfo
->getAlloc())
7997 SDDbgValue(Var
, Expr
, VReg
, IsIndirect
, DL
, O
, SDDbgValue::VREG
);
8000 void SelectionDAG::transferDbgValues(SDValue From
, SDValue To
,
8001 unsigned OffsetInBits
, unsigned SizeInBits
,
8002 bool InvalidateDbg
) {
8003 SDNode
*FromNode
= From
.getNode();
8004 SDNode
*ToNode
= To
.getNode();
8005 assert(FromNode
&& ToNode
&& "Can't modify dbg values");
8008 // TODO: assert(From != To && "Redundant dbg value transfer");
8009 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8010 if (From
== To
|| FromNode
== ToNode
)
8013 if (!FromNode
->getHasDebugValue())
8016 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
8017 for (SDDbgValue
*Dbg
: GetDbgValues(FromNode
)) {
8018 if (Dbg
->getKind() != SDDbgValue::SDNODE
|| Dbg
->isInvalidated())
8021 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8023 // Just transfer the dbg value attached to From.
8024 if (Dbg
->getResNo() != From
.getResNo())
8027 DIVariable
*Var
= Dbg
->getVariable();
8028 auto *Expr
= Dbg
->getExpression();
8029 // If a fragment is requested, update the expression.
8031 // When splitting a larger (e.g., sign-extended) value whose
8032 // lower bits are described with an SDDbgValue, do not attempt
8033 // to transfer the SDDbgValue to the upper bits.
8034 if (auto FI
= Expr
->getFragmentInfo())
8035 if (OffsetInBits
+ SizeInBits
> FI
->SizeInBits
)
8037 auto Fragment
= DIExpression::createFragmentExpression(Expr
, OffsetInBits
,
8043 // Clone the SDDbgValue and move it to To.
8045 getDbgValue(Var
, Expr
, ToNode
, To
.getResNo(), Dbg
->isIndirect(),
8046 Dbg
->getDebugLoc(), Dbg
->getOrder());
8047 ClonedDVs
.push_back(Clone
);
8049 if (InvalidateDbg
) {
8050 // Invalidate value and indicate the SDDbgValue should not be emitted.
8051 Dbg
->setIsInvalidated();
8052 Dbg
->setIsEmitted();
8056 for (SDDbgValue
*Dbg
: ClonedDVs
)
8057 AddDbgValue(Dbg
, ToNode
, false);
8060 void SelectionDAG::salvageDebugInfo(SDNode
&N
) {
8061 if (!N
.getHasDebugValue())
8064 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
8065 for (auto DV
: GetDbgValues(&N
)) {
8066 if (DV
->isInvalidated())
8068 switch (N
.getOpcode()) {
8072 SDValue N0
= N
.getOperand(0);
8073 SDValue N1
= N
.getOperand(1);
8074 if (!isConstantIntBuildVectorOrConstantInt(N0
) &&
8075 isConstantIntBuildVectorOrConstantInt(N1
)) {
8076 uint64_t Offset
= N
.getConstantOperandVal(1);
8077 // Rewrite an ADD constant node into a DIExpression. Since we are
8078 // performing arithmetic to compute the variable's *value* in the
8079 // DIExpression, we need to mark the expression with a
8080 // DW_OP_stack_value.
8081 auto *DIExpr
= DV
->getExpression();
8083 DIExpression::prepend(DIExpr
, DIExpression::StackValue
, Offset
);
8085 getDbgValue(DV
->getVariable(), DIExpr
, N0
.getNode(), N0
.getResNo(),
8086 DV
->isIndirect(), DV
->getDebugLoc(), DV
->getOrder());
8087 ClonedDVs
.push_back(Clone
);
8088 DV
->setIsInvalidated();
8090 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8091 N0
.getNode()->dumprFull(this);
8092 dbgs() << " into " << *DIExpr
<< '\n');
8097 for (SDDbgValue
*Dbg
: ClonedDVs
)
8098 AddDbgValue(Dbg
, Dbg
->getSDNode(), false);
8101 /// Creates a SDDbgLabel node.
8102 SDDbgLabel
*SelectionDAG::getDbgLabel(DILabel
*Label
,
8103 const DebugLoc
&DL
, unsigned O
) {
8104 assert(cast
<DILabel
>(Label
)->isValidLocationForIntrinsic(DL
) &&
8105 "Expected inlined-at fields to agree");
8106 return new (DbgInfo
->getAlloc()) SDDbgLabel(Label
, DL
, O
);
8111 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8112 /// pointed to by a use iterator is deleted, increment the use iterator
8113 /// so that it doesn't dangle.
8115 class RAUWUpdateListener
: public SelectionDAG::DAGUpdateListener
{
8116 SDNode::use_iterator
&UI
;
8117 SDNode::use_iterator
&UE
;
8119 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
8120 // Increment the iterator as needed.
8121 while (UI
!= UE
&& N
== *UI
)
8126 RAUWUpdateListener(SelectionDAG
&d
,
8127 SDNode::use_iterator
&ui
,
8128 SDNode::use_iterator
&ue
)
8129 : SelectionDAG::DAGUpdateListener(d
), UI(ui
), UE(ue
) {}
8132 } // end anonymous namespace
8134 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8135 /// This can cause recursive merging of nodes in the DAG.
8137 /// This version assumes From has a single result value.
8139 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
) {
8140 SDNode
*From
= FromN
.getNode();
8141 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
8142 "Cannot replace with this method!");
8143 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
8145 // Preserve Debug Values
8146 transferDbgValues(FromN
, To
);
8148 // Iterate over all the existing uses of From. New uses will be added
8149 // to the beginning of the use list, which we avoid visiting.
8150 // This specifically avoids visiting uses of From that arise while the
8151 // replacement is happening, because any such uses would be the result
8152 // of CSE: If an existing node looks like From after one of its operands
8153 // is replaced by To, we don't want to replace of all its users with To
8154 // too. See PR3018 for more info.
8155 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
8156 RAUWUpdateListener
Listener(*this, UI
, UE
);
8160 // This node is about to morph, remove its old self from the CSE maps.
8161 RemoveNodeFromCSEMaps(User
);
8163 // A user can appear in a use list multiple times, and when this
8164 // happens the uses are usually next to each other in the list.
8165 // To help reduce the number of CSE recomputations, process all
8166 // the uses of this user that we can find this way.
8168 SDUse
&Use
= UI
.getUse();
8171 if (To
->isDivergent() != From
->isDivergent())
8172 updateDivergence(User
);
8173 } while (UI
!= UE
&& *UI
== User
);
8174 // Now that we have modified User, add it back to the CSE maps. If it
8175 // already exists there, recursively merge the results together.
8176 AddModifiedNodeToCSEMaps(User
);
8179 // If we just RAUW'd the root, take note.
8180 if (FromN
== getRoot())
8184 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8185 /// This can cause recursive merging of nodes in the DAG.
8187 /// This version assumes that for each value of From, there is a
8188 /// corresponding value in To in the same position with the same type.
8190 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
) {
8192 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
8193 assert((!From
->hasAnyUseOfValue(i
) ||
8194 From
->getValueType(i
) == To
->getValueType(i
)) &&
8195 "Cannot use this version of ReplaceAllUsesWith!");
8198 // Handle the trivial case.
8202 // Preserve Debug Info. Only do this if there's a use.
8203 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
8204 if (From
->hasAnyUseOfValue(i
)) {
8205 assert((i
< To
->getNumValues()) && "Invalid To location");
8206 transferDbgValues(SDValue(From
, i
), SDValue(To
, i
));
8209 // Iterate over just the existing users of From. See the comments in
8210 // the ReplaceAllUsesWith above.
8211 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
8212 RAUWUpdateListener
Listener(*this, UI
, UE
);
8216 // This node is about to morph, remove its old self from the CSE maps.
8217 RemoveNodeFromCSEMaps(User
);
8219 // A user can appear in a use list multiple times, and when this
8220 // happens the uses are usually next to each other in the list.
8221 // To help reduce the number of CSE recomputations, process all
8222 // the uses of this user that we can find this way.
8224 SDUse
&Use
= UI
.getUse();
8227 if (To
->isDivergent() != From
->isDivergent())
8228 updateDivergence(User
);
8229 } while (UI
!= UE
&& *UI
== User
);
8231 // Now that we have modified User, add it back to the CSE maps. If it
8232 // already exists there, recursively merge the results together.
8233 AddModifiedNodeToCSEMaps(User
);
8236 // If we just RAUW'd the root, take note.
8237 if (From
== getRoot().getNode())
8238 setRoot(SDValue(To
, getRoot().getResNo()));
8241 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8242 /// This can cause recursive merging of nodes in the DAG.
8244 /// This version can replace From with any result values. To must match the
8245 /// number and types of values returned by From.
8246 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
) {
8247 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
8248 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0]);
8250 // Preserve Debug Info.
8251 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
8252 transferDbgValues(SDValue(From
, i
), To
[i
]);
8254 // Iterate over just the existing users of From. See the comments in
8255 // the ReplaceAllUsesWith above.
8256 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
8257 RAUWUpdateListener
Listener(*this, UI
, UE
);
8261 // This node is about to morph, remove its old self from the CSE maps.
8262 RemoveNodeFromCSEMaps(User
);
8264 // A user can appear in a use list multiple times, and when this happens the
8265 // uses are usually next to each other in the list. To help reduce the
8266 // number of CSE and divergence recomputations, process all the uses of this
8267 // user that we can find this way.
8268 bool To_IsDivergent
= false;
8270 SDUse
&Use
= UI
.getUse();
8271 const SDValue
&ToOp
= To
[Use
.getResNo()];
8274 To_IsDivergent
|= ToOp
->isDivergent();
8275 } while (UI
!= UE
&& *UI
== User
);
8277 if (To_IsDivergent
!= From
->isDivergent())
8278 updateDivergence(User
);
8280 // Now that we have modified User, add it back to the CSE maps. If it
8281 // already exists there, recursively merge the results together.
8282 AddModifiedNodeToCSEMaps(User
);
8285 // If we just RAUW'd the root, take note.
8286 if (From
== getRoot().getNode())
8287 setRoot(SDValue(To
[getRoot().getResNo()]));
8290 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8291 /// uses of other values produced by From.getNode() alone. The Deleted
8292 /// vector is handled the same way as for ReplaceAllUsesWith.
8293 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
){
8294 // Handle the really simple, really trivial case efficiently.
8295 if (From
== To
) return;
8297 // Handle the simple, trivial, case efficiently.
8298 if (From
.getNode()->getNumValues() == 1) {
8299 ReplaceAllUsesWith(From
, To
);
8303 // Preserve Debug Info.
8304 transferDbgValues(From
, To
);
8306 // Iterate over just the existing users of From. See the comments in
8307 // the ReplaceAllUsesWith above.
8308 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
8309 UE
= From
.getNode()->use_end();
8310 RAUWUpdateListener
Listener(*this, UI
, UE
);
8313 bool UserRemovedFromCSEMaps
= false;
8315 // A user can appear in a use list multiple times, and when this
8316 // happens the uses are usually next to each other in the list.
8317 // To help reduce the number of CSE recomputations, process all
8318 // the uses of this user that we can find this way.
8320 SDUse
&Use
= UI
.getUse();
8322 // Skip uses of different values from the same node.
8323 if (Use
.getResNo() != From
.getResNo()) {
8328 // If this node hasn't been modified yet, it's still in the CSE maps,
8329 // so remove its old self from the CSE maps.
8330 if (!UserRemovedFromCSEMaps
) {
8331 RemoveNodeFromCSEMaps(User
);
8332 UserRemovedFromCSEMaps
= true;
8337 if (To
->isDivergent() != From
->isDivergent())
8338 updateDivergence(User
);
8339 } while (UI
!= UE
&& *UI
== User
);
8340 // We are iterating over all uses of the From node, so if a use
8341 // doesn't use the specific value, no changes are made.
8342 if (!UserRemovedFromCSEMaps
)
8345 // Now that we have modified User, add it back to the CSE maps. If it
8346 // already exists there, recursively merge the results together.
8347 AddModifiedNodeToCSEMaps(User
);
8350 // If we just RAUW'd the root, take note.
8351 if (From
== getRoot())
8357 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8358 /// to record information about a use.
8365 /// operator< - Sort Memos by User.
8366 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
8367 return (intptr_t)L
.User
< (intptr_t)R
.User
;
8370 } // end anonymous namespace
8372 void SelectionDAG::updateDivergence(SDNode
* N
)
8374 if (TLI
->isSDNodeAlwaysUniform(N
))
8376 bool IsDivergent
= TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
);
8377 for (auto &Op
: N
->ops()) {
8378 if (Op
.Val
.getValueType() != MVT::Other
)
8379 IsDivergent
|= Op
.getNode()->isDivergent();
8381 if (N
->SDNodeBits
.IsDivergent
!= IsDivergent
) {
8382 N
->SDNodeBits
.IsDivergent
= IsDivergent
;
8383 for (auto U
: N
->uses()) {
8384 updateDivergence(U
);
8389 void SelectionDAG::CreateTopologicalOrder(std::vector
<SDNode
*> &Order
) {
8390 DenseMap
<SDNode
*, unsigned> Degree
;
8391 Order
.reserve(AllNodes
.size());
8392 for (auto &N
: allnodes()) {
8393 unsigned NOps
= N
.getNumOperands();
8396 Order
.push_back(&N
);
8398 for (size_t I
= 0; I
!= Order
.size(); ++I
) {
8399 SDNode
*N
= Order
[I
];
8400 for (auto U
: N
->uses()) {
8401 unsigned &UnsortedOps
= Degree
[U
];
8402 if (0 == --UnsortedOps
)
8409 void SelectionDAG::VerifyDAGDiverence() {
8410 std::vector
<SDNode
*> TopoOrder
;
8411 CreateTopologicalOrder(TopoOrder
);
8412 const TargetLowering
&TLI
= getTargetLoweringInfo();
8413 DenseMap
<const SDNode
*, bool> DivergenceMap
;
8414 for (auto &N
: allnodes()) {
8415 DivergenceMap
[&N
] = false;
8417 for (auto N
: TopoOrder
) {
8418 bool IsDivergent
= DivergenceMap
[N
];
8419 bool IsSDNodeDivergent
= TLI
.isSDNodeSourceOfDivergence(N
, FLI
, DA
);
8420 for (auto &Op
: N
->ops()) {
8421 if (Op
.Val
.getValueType() != MVT::Other
)
8422 IsSDNodeDivergent
|= DivergenceMap
[Op
.getNode()];
8424 if (!IsDivergent
&& IsSDNodeDivergent
&& !TLI
.isSDNodeAlwaysUniform(N
)) {
8425 DivergenceMap
[N
] = true;
8428 for (auto &N
: allnodes()) {
8430 assert(DivergenceMap
[&N
] == N
.isDivergent() &&
8431 "Divergence bit inconsistency detected\n");
8436 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8437 /// uses of other values produced by From.getNode() alone. The same value
8438 /// may appear in both the From and To list. The Deleted vector is
8439 /// handled the same way as for ReplaceAllUsesWith.
8440 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
8443 // Handle the simple, trivial case efficiently.
8445 return ReplaceAllUsesOfValueWith(*From
, *To
);
8447 transferDbgValues(*From
, *To
);
8449 // Read up all the uses and make records of them. This helps
8450 // processing new uses that are introduced during the
8451 // replacement process.
8452 SmallVector
<UseMemo
, 4> Uses
;
8453 for (unsigned i
= 0; i
!= Num
; ++i
) {
8454 unsigned FromResNo
= From
[i
].getResNo();
8455 SDNode
*FromNode
= From
[i
].getNode();
8456 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
8457 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
8458 SDUse
&Use
= UI
.getUse();
8459 if (Use
.getResNo() == FromResNo
) {
8460 UseMemo Memo
= { *UI
, i
, &Use
};
8461 Uses
.push_back(Memo
);
8466 // Sort the uses, so that all the uses from a given User are together.
8469 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
8470 UseIndex
!= UseIndexEnd
; ) {
8471 // We know that this user uses some value of From. If it is the right
8472 // value, update it.
8473 SDNode
*User
= Uses
[UseIndex
].User
;
8475 // This node is about to morph, remove its old self from the CSE maps.
8476 RemoveNodeFromCSEMaps(User
);
8478 // The Uses array is sorted, so all the uses for a given User
8479 // are next to each other in the list.
8480 // To help reduce the number of CSE recomputations, process all
8481 // the uses of this user that we can find this way.
8483 unsigned i
= Uses
[UseIndex
].Index
;
8484 SDUse
&Use
= *Uses
[UseIndex
].Use
;
8488 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
8490 // Now that we have modified User, add it back to the CSE maps. If it
8491 // already exists there, recursively merge the results together.
8492 AddModifiedNodeToCSEMaps(User
);
8496 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8497 /// based on their topological order. It returns the maximum id and a vector
8498 /// of the SDNodes* in assigned order by reference.
8499 unsigned SelectionDAG::AssignTopologicalOrder() {
8500 unsigned DAGSize
= 0;
8502 // SortedPos tracks the progress of the algorithm. Nodes before it are
8503 // sorted, nodes after it are unsorted. When the algorithm completes
8504 // it is at the end of the list.
8505 allnodes_iterator SortedPos
= allnodes_begin();
8507 // Visit all the nodes. Move nodes with no operands to the front of
8508 // the list immediately. Annotate nodes that do have operands with their
8509 // operand count. Before we do this, the Node Id fields of the nodes
8510 // may contain arbitrary values. After, the Node Id fields for nodes
8511 // before SortedPos will contain the topological sort index, and the
8512 // Node Id fields for nodes At SortedPos and after will contain the
8513 // count of outstanding operands.
8514 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
8516 checkForCycles(N
, this);
8517 unsigned Degree
= N
->getNumOperands();
8519 // A node with no uses, add it to the result array immediately.
8520 N
->setNodeId(DAGSize
++);
8521 allnodes_iterator
Q(N
);
8523 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
8524 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
8527 // Temporarily use the Node Id as scratch space for the degree count.
8528 N
->setNodeId(Degree
);
8532 // Visit all the nodes. As we iterate, move nodes into sorted order,
8533 // such that by the time the end is reached all nodes will be sorted.
8534 for (SDNode
&Node
: allnodes()) {
8536 checkForCycles(N
, this);
8537 // N is in sorted position, so all its uses have one less operand
8538 // that needs to be sorted.
8539 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
8542 unsigned Degree
= P
->getNodeId();
8543 assert(Degree
!= 0 && "Invalid node degree");
8546 // All of P's operands are sorted, so P may sorted now.
8547 P
->setNodeId(DAGSize
++);
8548 if (P
->getIterator() != SortedPos
)
8549 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
8550 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
8553 // Update P's outstanding operand count.
8554 P
->setNodeId(Degree
);
8557 if (Node
.getIterator() == SortedPos
) {
8559 allnodes_iterator
I(N
);
8561 dbgs() << "Overran sorted position:\n";
8562 S
->dumprFull(this); dbgs() << "\n";
8563 dbgs() << "Checking if this is due to cycles\n";
8564 checkForCycles(this, true);
8566 llvm_unreachable(nullptr);
8570 assert(SortedPos
== AllNodes
.end() &&
8571 "Topological sort incomplete!");
8572 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
8573 "First node in topological sort is not the entry token!");
8574 assert(AllNodes
.front().getNodeId() == 0 &&
8575 "First node in topological sort has non-zero id!");
8576 assert(AllNodes
.front().getNumOperands() == 0 &&
8577 "First node in topological sort has operands!");
8578 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
8579 "Last node in topologic sort has unexpected id!");
8580 assert(AllNodes
.back().use_empty() &&
8581 "Last node in topologic sort has users!");
8582 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
8586 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8587 /// value is produced by SD.
8588 void SelectionDAG::AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
) {
8590 assert(DbgInfo
->getSDDbgValues(SD
).empty() || SD
->getHasDebugValue());
8591 SD
->setHasDebugValue(true);
8593 DbgInfo
->add(DB
, SD
, isParameter
);
8596 void SelectionDAG::AddDbgLabel(SDDbgLabel
*DB
) {
8600 SDValue
SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode
*OldLoad
,
8602 assert(isa
<MemSDNode
>(NewMemOp
.getNode()) && "Expected a memop node");
8603 // The new memory operation must have the same position as the old load in
8604 // terms of memory dependency. Create a TokenFactor for the old load and new
8605 // memory operation and update uses of the old load's output chain to use that
8607 SDValue OldChain
= SDValue(OldLoad
, 1);
8608 SDValue NewChain
= SDValue(NewMemOp
.getNode(), 1);
8609 if (OldChain
== NewChain
|| !OldLoad
->hasAnyUseOfValue(1))
8612 SDValue TokenFactor
=
8613 getNode(ISD::TokenFactor
, SDLoc(OldLoad
), MVT::Other
, OldChain
, NewChain
);
8614 ReplaceAllUsesOfValueWith(OldChain
, TokenFactor
);
8615 UpdateNodeOperands(TokenFactor
.getNode(), OldChain
, NewChain
);
8619 SDValue
SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op
,
8620 Function
**OutFunction
) {
8621 assert(isa
<ExternalSymbolSDNode
>(Op
) && "Node should be an ExternalSymbol");
8623 auto *Symbol
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
8624 auto *Module
= MF
->getFunction().getParent();
8625 auto *Function
= Module
->getFunction(Symbol
);
8627 if (OutFunction
!= nullptr)
8628 *OutFunction
= Function
;
8630 if (Function
!= nullptr) {
8631 auto PtrTy
= TLI
->getPointerTy(getDataLayout(), Function
->getAddressSpace());
8632 return getGlobalAddress(Function
, SDLoc(Op
), PtrTy
);
8635 std::string ErrorStr
;
8636 raw_string_ostream
ErrorFormatter(ErrorStr
);
8638 ErrorFormatter
<< "Undefined external symbol ";
8639 ErrorFormatter
<< '"' << Symbol
<< '"';
8640 ErrorFormatter
.flush();
8642 report_fatal_error(ErrorStr
);
8645 //===----------------------------------------------------------------------===//
8647 //===----------------------------------------------------------------------===//
8649 bool llvm::isNullConstant(SDValue V
) {
8650 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
8651 return Const
!= nullptr && Const
->isNullValue();
8654 bool llvm::isNullFPConstant(SDValue V
) {
8655 ConstantFPSDNode
*Const
= dyn_cast
<ConstantFPSDNode
>(V
);
8656 return Const
!= nullptr && Const
->isZero() && !Const
->isNegative();
8659 bool llvm::isAllOnesConstant(SDValue V
) {
8660 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
8661 return Const
!= nullptr && Const
->isAllOnesValue();
8664 bool llvm::isOneConstant(SDValue V
) {
8665 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
8666 return Const
!= nullptr && Const
->isOne();
8669 SDValue
llvm::peekThroughBitcasts(SDValue V
) {
8670 while (V
.getOpcode() == ISD::BITCAST
)
8671 V
= V
.getOperand(0);
8675 SDValue
llvm::peekThroughOneUseBitcasts(SDValue V
) {
8676 while (V
.getOpcode() == ISD::BITCAST
&& V
.getOperand(0).hasOneUse())
8677 V
= V
.getOperand(0);
8681 SDValue
llvm::peekThroughExtractSubvectors(SDValue V
) {
8682 while (V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)
8683 V
= V
.getOperand(0);
8687 bool llvm::isBitwiseNot(SDValue V
, bool AllowUndefs
) {
8688 if (V
.getOpcode() != ISD::XOR
)
8690 V
= peekThroughBitcasts(V
.getOperand(1));
8691 unsigned NumBits
= V
.getScalarValueSizeInBits();
8693 isConstOrConstSplat(V
, AllowUndefs
, /*AllowTruncation*/ true);
8694 return C
&& (C
->getAPIntValue().countTrailingOnes() >= NumBits
);
8697 ConstantSDNode
*llvm::isConstOrConstSplat(SDValue N
, bool AllowUndefs
,
8698 bool AllowTruncation
) {
8699 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
))
8702 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
8703 BitVector UndefElements
;
8704 ConstantSDNode
*CN
= BV
->getConstantSplatNode(&UndefElements
);
8706 // BuildVectors can truncate their operands. Ignore that case here unless
8707 // AllowTruncation is set.
8708 if (CN
&& (UndefElements
.none() || AllowUndefs
)) {
8709 EVT CVT
= CN
->getValueType(0);
8710 EVT NSVT
= N
.getValueType().getScalarType();
8711 assert(CVT
.bitsGE(NSVT
) && "Illegal build vector element extension");
8712 if (AllowTruncation
|| (CVT
== NSVT
))
8720 ConstantSDNode
*llvm::isConstOrConstSplat(SDValue N
, const APInt
&DemandedElts
,
8722 bool AllowTruncation
) {
8723 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
))
8726 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
8727 BitVector UndefElements
;
8728 ConstantSDNode
*CN
= BV
->getConstantSplatNode(DemandedElts
, &UndefElements
);
8730 // BuildVectors can truncate their operands. Ignore that case here unless
8731 // AllowTruncation is set.
8732 if (CN
&& (UndefElements
.none() || AllowUndefs
)) {
8733 EVT CVT
= CN
->getValueType(0);
8734 EVT NSVT
= N
.getValueType().getScalarType();
8735 assert(CVT
.bitsGE(NSVT
) && "Illegal build vector element extension");
8736 if (AllowTruncation
|| (CVT
== NSVT
))
8744 ConstantFPSDNode
*llvm::isConstOrConstSplatFP(SDValue N
, bool AllowUndefs
) {
8745 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
8748 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
8749 BitVector UndefElements
;
8750 ConstantFPSDNode
*CN
= BV
->getConstantFPSplatNode(&UndefElements
);
8751 if (CN
&& (UndefElements
.none() || AllowUndefs
))
8758 ConstantFPSDNode
*llvm::isConstOrConstSplatFP(SDValue N
,
8759 const APInt
&DemandedElts
,
8761 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
8764 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
8765 BitVector UndefElements
;
8766 ConstantFPSDNode
*CN
=
8767 BV
->getConstantFPSplatNode(DemandedElts
, &UndefElements
);
8768 if (CN
&& (UndefElements
.none() || AllowUndefs
))
8775 bool llvm::isNullOrNullSplat(SDValue N
, bool AllowUndefs
) {
8776 // TODO: may want to use peekThroughBitcast() here.
8777 ConstantSDNode
*C
= isConstOrConstSplat(N
, AllowUndefs
);
8778 return C
&& C
->isNullValue();
8781 bool llvm::isOneOrOneSplat(SDValue N
) {
8782 // TODO: may want to use peekThroughBitcast() here.
8783 unsigned BitWidth
= N
.getScalarValueSizeInBits();
8784 ConstantSDNode
*C
= isConstOrConstSplat(N
);
8785 return C
&& C
->isOne() && C
->getValueSizeInBits(0) == BitWidth
;
8788 bool llvm::isAllOnesOrAllOnesSplat(SDValue N
) {
8789 N
= peekThroughBitcasts(N
);
8790 unsigned BitWidth
= N
.getScalarValueSizeInBits();
8791 ConstantSDNode
*C
= isConstOrConstSplat(N
);
8792 return C
&& C
->isAllOnesValue() && C
->getValueSizeInBits(0) == BitWidth
;
8795 HandleSDNode::~HandleSDNode() {
8799 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, unsigned Order
,
8801 const GlobalValue
*GA
, EVT VT
,
8802 int64_t o
, unsigned TF
)
8803 : SDNode(Opc
, Order
, DL
, getSDVTList(VT
)), Offset(o
), TargetFlags(TF
) {
8807 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order
, const DebugLoc
&dl
,
8808 EVT VT
, unsigned SrcAS
,
8810 : SDNode(ISD::ADDRSPACECAST
, Order
, dl
, getSDVTList(VT
)),
8811 SrcAddrSpace(SrcAS
), DestAddrSpace(DestAS
) {}
8813 MemSDNode::MemSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
,
8814 SDVTList VTs
, EVT memvt
, MachineMemOperand
*mmo
)
8815 : SDNode(Opc
, Order
, dl
, VTs
), MemoryVT(memvt
), MMO(mmo
) {
8816 MemSDNodeBits
.IsVolatile
= MMO
->isVolatile();
8817 MemSDNodeBits
.IsNonTemporal
= MMO
->isNonTemporal();
8818 MemSDNodeBits
.IsDereferenceable
= MMO
->isDereferenceable();
8819 MemSDNodeBits
.IsInvariant
= MMO
->isInvariant();
8821 // We check here that the size of the memory operand fits within the size of
8822 // the MMO. This is because the MMO might indicate only a possible address
8823 // range instead of specifying the affected memory addresses precisely.
8824 assert(memvt
.getStoreSize() <= MMO
->getSize() && "Size mismatch!");
8827 /// Profile - Gather unique data for the node.
8829 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
8830 AddNodeIDNode(ID
, this);
8836 std::vector
<EVT
> VTs
;
8839 VTs
.reserve(MVT::LAST_VALUETYPE
);
8840 for (unsigned i
= 0; i
< MVT::LAST_VALUETYPE
; ++i
)
8841 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
8845 } // end anonymous namespace
8847 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
>> EVTs
;
8848 static ManagedStatic
<EVTArray
> SimpleVTArray
;
8849 static ManagedStatic
<sys::SmartMutex
<true>> VTMutex
;
8851 /// getValueTypeList - Return a pointer to the specified value type.
8853 const EVT
*SDNode::getValueTypeList(EVT VT
) {
8854 if (VT
.isExtended()) {
8855 sys::SmartScopedLock
<true> Lock(*VTMutex
);
8856 return &(*EVTs
->insert(VT
).first
);
8858 assert(VT
.getSimpleVT() < MVT::LAST_VALUETYPE
&&
8859 "Value type out of range!");
8860 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
8864 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8865 /// indicated value. This method ignores uses of other values defined by this
8867 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
8868 assert(Value
< getNumValues() && "Bad value!");
8870 // TODO: Only iterate over uses of a given value of the node
8871 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
8872 if (UI
.getUse().getResNo() == Value
) {
8879 // Found exactly the right number of uses?
8883 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8884 /// value. This method ignores uses of other values defined by this operation.
8885 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
8886 assert(Value
< getNumValues() && "Bad value!");
8888 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
8889 if (UI
.getUse().getResNo() == Value
)
8895 /// isOnlyUserOf - Return true if this node is the only use of N.
8896 bool SDNode::isOnlyUserOf(const SDNode
*N
) const {
8898 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
8909 /// Return true if the only users of N are contained in Nodes.
8910 bool SDNode::areOnlyUsersOf(ArrayRef
<const SDNode
*> Nodes
, const SDNode
*N
) {
8912 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
8914 if (llvm::any_of(Nodes
,
8915 [&User
](const SDNode
*Node
) { return User
== Node
; }))
8924 /// isOperand - Return true if this node is an operand of N.
8925 bool SDValue::isOperandOf(const SDNode
*N
) const {
8926 return any_of(N
->op_values(), [this](SDValue Op
) { return *this == Op
; });
8929 bool SDNode::isOperandOf(const SDNode
*N
) const {
8930 return any_of(N
->op_values(),
8931 [this](SDValue Op
) { return this == Op
.getNode(); });
8934 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8935 /// be a chain) reaches the specified operand without crossing any
8936 /// side-effecting instructions on any chain path. In practice, this looks
8937 /// through token factors and non-volatile loads. In order to remain efficient,
8938 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8940 /// Note that we only need to examine chains when we're searching for
8941 /// side-effects; SelectionDAG requires that all side-effects are represented
8942 /// by chains, even if another operand would force a specific ordering. This
8943 /// constraint is necessary to allow transformations like splitting loads.
8944 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
8945 unsigned Depth
) const {
8946 if (*this == Dest
) return true;
8948 // Don't search too deeply, we just want to be able to see through
8949 // TokenFactor's etc.
8950 if (Depth
== 0) return false;
8952 // If this is a token factor, all inputs to the TF happen in parallel.
8953 if (getOpcode() == ISD::TokenFactor
) {
8954 // First, try a shallow search.
8955 if (is_contained((*this)->ops(), Dest
)) {
8956 // We found the chain we want as an operand of this TokenFactor.
8957 // Essentially, we reach the chain without side-effects if we could
8958 // serialize the TokenFactor into a simple chain of operations with
8959 // Dest as the last operation. This is automatically true if the
8960 // chain has one use: there are no other ordering constraints.
8961 // If the chain has more than one use, we give up: some other
8962 // use of Dest might force a side-effect between Dest and the current
8964 if (Dest
.hasOneUse())
8967 // Next, try a deep search: check whether every operand of the TokenFactor
8969 return llvm::all_of((*this)->ops(), [=](SDValue Op
) {
8970 return Op
.reachesChainWithoutSideEffects(Dest
, Depth
- 1);
8974 // Loads don't have side effects, look through them.
8975 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
8976 if (!Ld
->isVolatile())
8977 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
8982 bool SDNode::hasPredecessor(const SDNode
*N
) const {
8983 SmallPtrSet
<const SDNode
*, 32> Visited
;
8984 SmallVector
<const SDNode
*, 16> Worklist
;
8985 Worklist
.push_back(this);
8986 return hasPredecessorHelper(N
, Visited
, Worklist
);
8989 void SDNode::intersectFlagsWith(const SDNodeFlags Flags
) {
8990 this->Flags
.intersectWith(Flags
);
8994 SelectionDAG::matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
8995 ArrayRef
<ISD::NodeType
> CandidateBinOps
,
8996 bool AllowPartials
) {
8997 // The pattern must end in an extract from index 0.
8998 if (Extract
->getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
8999 !isNullConstant(Extract
->getOperand(1)))
9002 // Match against one of the candidate binary ops.
9003 SDValue Op
= Extract
->getOperand(0);
9004 if (llvm::none_of(CandidateBinOps
, [Op
](ISD::NodeType BinOp
) {
9005 return Op
.getOpcode() == unsigned(BinOp
);
9009 // Floating-point reductions may require relaxed constraints on the final step
9010 // of the reduction because they may reorder intermediate operations.
9011 unsigned CandidateBinOp
= Op
.getOpcode();
9012 if (Op
.getValueType().isFloatingPoint()) {
9013 SDNodeFlags Flags
= Op
->getFlags();
9014 switch (CandidateBinOp
) {
9016 if (!Flags
.hasNoSignedZeros() || !Flags
.hasAllowReassociation())
9020 llvm_unreachable("Unhandled FP opcode for binop reduction");
9024 // Matching failed - attempt to see if we did enough stages that a partial
9025 // reduction from a subvector is possible.
9026 auto PartialReduction
= [&](SDValue Op
, unsigned NumSubElts
) {
9027 if (!AllowPartials
|| !Op
)
9029 EVT OpVT
= Op
.getValueType();
9030 EVT OpSVT
= OpVT
.getScalarType();
9031 EVT SubVT
= EVT::getVectorVT(*getContext(), OpSVT
, NumSubElts
);
9032 if (!TLI
->isExtractSubvectorCheap(SubVT
, OpVT
, 0))
9034 BinOp
= (ISD::NodeType
)CandidateBinOp
;
9036 ISD::EXTRACT_SUBVECTOR
, SDLoc(Op
), SubVT
, Op
,
9037 getConstant(0, SDLoc(Op
), TLI
->getVectorIdxTy(getDataLayout())));
9040 // At each stage, we're looking for something that looks like:
9041 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9042 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9043 // i32 undef, i32 undef, i32 undef, i32 undef>
9044 // %a = binop <8 x i32> %op, %s
9045 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9046 // we expect something like:
9047 // <4,5,6,7,u,u,u,u>
9048 // <2,3,u,u,u,u,u,u>
9049 // <1,u,u,u,u,u,u,u>
9050 // While a partial reduction match would be:
9051 // <2,3,u,u,u,u,u,u>
9052 // <1,u,u,u,u,u,u,u>
9053 unsigned Stages
= Log2_32(Op
.getValueType().getVectorNumElements());
9055 for (unsigned i
= 0; i
< Stages
; ++i
) {
9056 unsigned MaskEnd
= (1 << i
);
9058 if (Op
.getOpcode() != CandidateBinOp
)
9059 return PartialReduction(PrevOp
, MaskEnd
);
9061 SDValue Op0
= Op
.getOperand(0);
9062 SDValue Op1
= Op
.getOperand(1);
9064 ShuffleVectorSDNode
*Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Op0
);
9068 Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Op1
);
9072 // The first operand of the shuffle should be the same as the other operand
9074 if (!Shuffle
|| Shuffle
->getOperand(0) != Op
)
9075 return PartialReduction(PrevOp
, MaskEnd
);
9077 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9078 for (int Index
= 0; Index
< (int)MaskEnd
; ++Index
)
9079 if (Shuffle
->getMaskElt(Index
) != (int)(MaskEnd
+ Index
))
9080 return PartialReduction(PrevOp
, MaskEnd
);
9085 BinOp
= (ISD::NodeType
)CandidateBinOp
;
9089 SDValue
SelectionDAG::UnrollVectorOp(SDNode
*N
, unsigned ResNE
) {
9090 assert(N
->getNumValues() == 1 &&
9091 "Can't unroll a vector with multiple results!");
9093 EVT VT
= N
->getValueType(0);
9094 unsigned NE
= VT
.getVectorNumElements();
9095 EVT EltVT
= VT
.getVectorElementType();
9098 SmallVector
<SDValue
, 8> Scalars
;
9099 SmallVector
<SDValue
, 4> Operands(N
->getNumOperands());
9101 // If ResNE is 0, fully unroll the vector op.
9104 else if (NE
> ResNE
)
9108 for (i
= 0; i
!= NE
; ++i
) {
9109 for (unsigned j
= 0, e
= N
->getNumOperands(); j
!= e
; ++j
) {
9110 SDValue Operand
= N
->getOperand(j
);
9111 EVT OperandVT
= Operand
.getValueType();
9112 if (OperandVT
.isVector()) {
9113 // A vector operand; extract a single element.
9114 EVT OperandEltVT
= OperandVT
.getVectorElementType();
9116 getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, OperandEltVT
, Operand
,
9117 getConstant(i
, dl
, TLI
->getVectorIdxTy(getDataLayout())));
9119 // A scalar operand; just use it as is.
9120 Operands
[j
] = Operand
;
9124 switch (N
->getOpcode()) {
9126 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
,
9131 Scalars
.push_back(getNode(ISD::SELECT
, dl
, EltVT
, Operands
));
9138 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
[0],
9139 getShiftAmountOperand(Operands
[0].getValueType(),
9142 case ISD::SIGN_EXTEND_INREG
: {
9143 EVT ExtVT
= cast
<VTSDNode
>(Operands
[1])->getVT().getVectorElementType();
9144 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
9146 getValueType(ExtVT
)));
9151 for (; i
< ResNE
; ++i
)
9152 Scalars
.push_back(getUNDEF(EltVT
));
9154 EVT VecVT
= EVT::getVectorVT(*getContext(), EltVT
, ResNE
);
9155 return getBuildVector(VecVT
, dl
, Scalars
);
9158 std::pair
<SDValue
, SDValue
> SelectionDAG::UnrollVectorOverflowOp(
9159 SDNode
*N
, unsigned ResNE
) {
9160 unsigned Opcode
= N
->getOpcode();
9161 assert((Opcode
== ISD::UADDO
|| Opcode
== ISD::SADDO
||
9162 Opcode
== ISD::USUBO
|| Opcode
== ISD::SSUBO
||
9163 Opcode
== ISD::UMULO
|| Opcode
== ISD::SMULO
) &&
9164 "Expected an overflow opcode");
9166 EVT ResVT
= N
->getValueType(0);
9167 EVT OvVT
= N
->getValueType(1);
9168 EVT ResEltVT
= ResVT
.getVectorElementType();
9169 EVT OvEltVT
= OvVT
.getVectorElementType();
9172 // If ResNE is 0, fully unroll the vector op.
9173 unsigned NE
= ResVT
.getVectorNumElements();
9176 else if (NE
> ResNE
)
9179 SmallVector
<SDValue
, 8> LHSScalars
;
9180 SmallVector
<SDValue
, 8> RHSScalars
;
9181 ExtractVectorElements(N
->getOperand(0), LHSScalars
, 0, NE
);
9182 ExtractVectorElements(N
->getOperand(1), RHSScalars
, 0, NE
);
9184 EVT SVT
= TLI
->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT
);
9185 SDVTList VTs
= getVTList(ResEltVT
, SVT
);
9186 SmallVector
<SDValue
, 8> ResScalars
;
9187 SmallVector
<SDValue
, 8> OvScalars
;
9188 for (unsigned i
= 0; i
< NE
; ++i
) {
9189 SDValue Res
= getNode(Opcode
, dl
, VTs
, LHSScalars
[i
], RHSScalars
[i
]);
9191 getSelect(dl
, OvEltVT
, Res
.getValue(1),
9192 getBoolConstant(true, dl
, OvEltVT
, ResVT
),
9193 getConstant(0, dl
, OvEltVT
));
9195 ResScalars
.push_back(Res
);
9196 OvScalars
.push_back(Ov
);
9199 ResScalars
.append(ResNE
- NE
, getUNDEF(ResEltVT
));
9200 OvScalars
.append(ResNE
- NE
, getUNDEF(OvEltVT
));
9202 EVT NewResVT
= EVT::getVectorVT(*getContext(), ResEltVT
, ResNE
);
9203 EVT NewOvVT
= EVT::getVectorVT(*getContext(), OvEltVT
, ResNE
);
9204 return std::make_pair(getBuildVector(NewResVT
, dl
, ResScalars
),
9205 getBuildVector(NewOvVT
, dl
, OvScalars
));
9208 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode
*LD
,
9212 if (LD
->isVolatile() || Base
->isVolatile())
9214 if (LD
->isIndexed() || Base
->isIndexed())
9216 if (LD
->getChain() != Base
->getChain())
9218 EVT VT
= LD
->getValueType(0);
9219 if (VT
.getSizeInBits() / 8 != Bytes
)
9222 auto BaseLocDecomp
= BaseIndexOffset::match(Base
, *this);
9223 auto LocDecomp
= BaseIndexOffset::match(LD
, *this);
9226 if (BaseLocDecomp
.equalBaseIndex(LocDecomp
, *this, Offset
))
9227 return (Dist
* Bytes
== Offset
);
9231 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9232 /// it cannot be inferred.
9233 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr
) const {
9234 // If this is a GlobalAddress + cst, return the alignment.
9235 const GlobalValue
*GV
;
9236 int64_t GVOffset
= 0;
9237 if (TLI
->isGAPlusOffset(Ptr
.getNode(), GV
, GVOffset
)) {
9238 unsigned IdxWidth
= getDataLayout().getIndexTypeSizeInBits(GV
->getType());
9239 KnownBits
Known(IdxWidth
);
9240 llvm::computeKnownBits(GV
, Known
, getDataLayout());
9241 unsigned AlignBits
= Known
.countMinTrailingZeros();
9242 unsigned Align
= AlignBits
? 1 << std::min(31U, AlignBits
) : 0;
9244 return MinAlign(Align
, GVOffset
);
9247 // If this is a direct reference to a stack slot, use information about the
9248 // stack slot's alignment.
9249 int FrameIdx
= INT_MIN
;
9250 int64_t FrameOffset
= 0;
9251 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
9252 FrameIdx
= FI
->getIndex();
9253 } else if (isBaseWithConstantOffset(Ptr
) &&
9254 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
9256 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
9257 FrameOffset
= Ptr
.getConstantOperandVal(1);
9260 if (FrameIdx
!= INT_MIN
) {
9261 const MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
9262 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
9270 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9271 /// which is split (or expanded) into two not necessarily identical pieces.
9272 std::pair
<EVT
, EVT
> SelectionDAG::GetSplitDestVTs(const EVT
&VT
) const {
9273 // Currently all types are split in half.
9276 LoVT
= HiVT
= TLI
->getTypeToTransformTo(*getContext(), VT
);
9278 LoVT
= HiVT
= VT
.getHalfNumVectorElementsVT(*getContext());
9280 return std::make_pair(LoVT
, HiVT
);
9283 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9285 std::pair
<SDValue
, SDValue
>
9286 SelectionDAG::SplitVector(const SDValue
&N
, const SDLoc
&DL
, const EVT
&LoVT
,
9288 assert(LoVT
.getVectorNumElements() + HiVT
.getVectorNumElements() <=
9289 N
.getValueType().getVectorNumElements() &&
9290 "More vector elements requested than available!");
9292 Lo
= getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
9293 getConstant(0, DL
, TLI
->getVectorIdxTy(getDataLayout())));
9294 Hi
= getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HiVT
, N
,
9295 getConstant(LoVT
.getVectorNumElements(), DL
,
9296 TLI
->getVectorIdxTy(getDataLayout())));
9297 return std::make_pair(Lo
, Hi
);
9300 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9301 SDValue
SelectionDAG::WidenVector(const SDValue
&N
, const SDLoc
&DL
) {
9302 EVT VT
= N
.getValueType();
9303 EVT WideVT
= EVT::getVectorVT(*getContext(), VT
.getVectorElementType(),
9304 NextPowerOf2(VT
.getVectorNumElements()));
9305 return getNode(ISD::INSERT_SUBVECTOR
, DL
, WideVT
, getUNDEF(WideVT
), N
,
9306 getConstant(0, DL
, TLI
->getVectorIdxTy(getDataLayout())));
9309 void SelectionDAG::ExtractVectorElements(SDValue Op
,
9310 SmallVectorImpl
<SDValue
> &Args
,
9311 unsigned Start
, unsigned Count
) {
9312 EVT VT
= Op
.getValueType();
9314 Count
= VT
.getVectorNumElements();
9316 EVT EltVT
= VT
.getVectorElementType();
9317 EVT IdxTy
= TLI
->getVectorIdxTy(getDataLayout());
9319 for (unsigned i
= Start
, e
= Start
+ Count
; i
!= e
; ++i
) {
9320 Args
.push_back(getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, EltVT
,
9321 Op
, getConstant(i
, SL
, IdxTy
)));
9325 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9326 unsigned GlobalAddressSDNode::getAddressSpace() const {
9327 return getGlobal()->getType()->getAddressSpace();
9330 Type
*ConstantPoolSDNode::getType() const {
9331 if (isMachineConstantPoolEntry())
9332 return Val
.MachineCPVal
->getType();
9333 return Val
.ConstVal
->getType();
9336 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
, APInt
&SplatUndef
,
9337 unsigned &SplatBitSize
,
9339 unsigned MinSplatBits
,
9340 bool IsBigEndian
) const {
9341 EVT VT
= getValueType(0);
9342 assert(VT
.isVector() && "Expected a vector type");
9343 unsigned VecWidth
= VT
.getSizeInBits();
9344 if (MinSplatBits
> VecWidth
)
9347 // FIXME: The widths are based on this node's type, but build vectors can
9348 // truncate their operands.
9349 SplatValue
= APInt(VecWidth
, 0);
9350 SplatUndef
= APInt(VecWidth
, 0);
9352 // Get the bits. Bits with undefined values (when the corresponding element
9353 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9354 // in SplatValue. If any of the values are not constant, give up and return
9356 unsigned int NumOps
= getNumOperands();
9357 assert(NumOps
> 0 && "isConstantSplat has 0-size build vector");
9358 unsigned EltWidth
= VT
.getScalarSizeInBits();
9360 for (unsigned j
= 0; j
< NumOps
; ++j
) {
9361 unsigned i
= IsBigEndian
? NumOps
- 1 - j
: j
;
9362 SDValue OpVal
= getOperand(i
);
9363 unsigned BitPos
= j
* EltWidth
;
9365 if (OpVal
.isUndef())
9366 SplatUndef
.setBits(BitPos
, BitPos
+ EltWidth
);
9367 else if (auto *CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
9368 SplatValue
.insertBits(CN
->getAPIntValue().zextOrTrunc(EltWidth
), BitPos
);
9369 else if (auto *CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
9370 SplatValue
.insertBits(CN
->getValueAPF().bitcastToAPInt(), BitPos
);
9375 // The build_vector is all constants or undefs. Find the smallest element
9376 // size that splats the vector.
9377 HasAnyUndefs
= (SplatUndef
!= 0);
9379 // FIXME: This does not work for vectors with elements less than 8 bits.
9380 while (VecWidth
> 8) {
9381 unsigned HalfSize
= VecWidth
/ 2;
9382 APInt HighValue
= SplatValue
.lshr(HalfSize
).trunc(HalfSize
);
9383 APInt LowValue
= SplatValue
.trunc(HalfSize
);
9384 APInt HighUndef
= SplatUndef
.lshr(HalfSize
).trunc(HalfSize
);
9385 APInt LowUndef
= SplatUndef
.trunc(HalfSize
);
9387 // If the two halves do not match (ignoring undef bits), stop here.
9388 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
9389 MinSplatBits
> HalfSize
)
9392 SplatValue
= HighValue
| LowValue
;
9393 SplatUndef
= HighUndef
& LowUndef
;
9395 VecWidth
= HalfSize
;
9398 SplatBitSize
= VecWidth
;
9402 SDValue
BuildVectorSDNode::getSplatValue(const APInt
&DemandedElts
,
9403 BitVector
*UndefElements
) const {
9404 if (UndefElements
) {
9405 UndefElements
->clear();
9406 UndefElements
->resize(getNumOperands());
9408 assert(getNumOperands() == DemandedElts
.getBitWidth() &&
9409 "Unexpected vector size");
9413 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
9414 if (!DemandedElts
[i
])
9416 SDValue Op
= getOperand(i
);
9419 (*UndefElements
)[i
] = true;
9420 } else if (!Splatted
) {
9422 } else if (Splatted
!= Op
) {
9428 unsigned FirstDemandedIdx
= DemandedElts
.countTrailingZeros();
9429 assert(getOperand(FirstDemandedIdx
).isUndef() &&
9430 "Can only have a splat without a constant for all undefs.");
9431 return getOperand(FirstDemandedIdx
);
9437 SDValue
BuildVectorSDNode::getSplatValue(BitVector
*UndefElements
) const {
9438 APInt DemandedElts
= APInt::getAllOnesValue(getNumOperands());
9439 return getSplatValue(DemandedElts
, UndefElements
);
9443 BuildVectorSDNode::getConstantSplatNode(const APInt
&DemandedElts
,
9444 BitVector
*UndefElements
) const {
9445 return dyn_cast_or_null
<ConstantSDNode
>(
9446 getSplatValue(DemandedElts
, UndefElements
));
9450 BuildVectorSDNode::getConstantSplatNode(BitVector
*UndefElements
) const {
9451 return dyn_cast_or_null
<ConstantSDNode
>(getSplatValue(UndefElements
));
9455 BuildVectorSDNode::getConstantFPSplatNode(const APInt
&DemandedElts
,
9456 BitVector
*UndefElements
) const {
9457 return dyn_cast_or_null
<ConstantFPSDNode
>(
9458 getSplatValue(DemandedElts
, UndefElements
));
9462 BuildVectorSDNode::getConstantFPSplatNode(BitVector
*UndefElements
) const {
9463 return dyn_cast_or_null
<ConstantFPSDNode
>(getSplatValue(UndefElements
));
9467 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector
*UndefElements
,
9468 uint32_t BitWidth
) const {
9469 if (ConstantFPSDNode
*CN
=
9470 dyn_cast_or_null
<ConstantFPSDNode
>(getSplatValue(UndefElements
))) {
9472 APSInt
IntVal(BitWidth
);
9473 const APFloat
&APF
= CN
->getValueAPF();
9474 if (APF
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
) !=
9479 return IntVal
.exactLogBase2();
9484 bool BuildVectorSDNode::isConstant() const {
9485 for (const SDValue
&Op
: op_values()) {
9486 unsigned Opc
= Op
.getOpcode();
9487 if (Opc
!= ISD::UNDEF
&& Opc
!= ISD::Constant
&& Opc
!= ISD::ConstantFP
)
9493 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
9494 // Find the first non-undef value in the shuffle mask.
9496 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
9499 // If all elements are undefined, this shuffle can be considered a splat
9500 // (although it should eventually get simplified away completely).
9504 // Make sure all remaining elements are either undef or the same as the first
9506 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
9507 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)
9512 // Returns the SDNode if it is a constant integer BuildVector
9513 // or constant integer.
9514 SDNode
*SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N
) {
9515 if (isa
<ConstantSDNode
>(N
))
9517 if (ISD::isBuildVectorOfConstantSDNodes(N
.getNode()))
9519 // Treat a GlobalAddress supporting constant offset folding as a
9520 // constant integer.
9521 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N
))
9522 if (GA
->getOpcode() == ISD::GlobalAddress
&&
9523 TLI
->isOffsetFoldingLegal(GA
))
9528 SDNode
*SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N
) {
9529 if (isa
<ConstantFPSDNode
>(N
))
9532 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
9538 void SelectionDAG::createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
) {
9539 assert(!Node
->OperandList
&& "Node already has operands");
9540 assert(SDNode::getMaxNumOperands() >= Vals
.size() &&
9541 "too many operands to fit into SDNode");
9542 SDUse
*Ops
= OperandRecycler
.allocate(
9543 ArrayRecycler
<SDUse
>::Capacity::get(Vals
.size()), OperandAllocator
);
9545 bool IsDivergent
= false;
9546 for (unsigned I
= 0; I
!= Vals
.size(); ++I
) {
9547 Ops
[I
].setUser(Node
);
9548 Ops
[I
].setInitial(Vals
[I
]);
9549 if (Ops
[I
].Val
.getValueType() != MVT::Other
) // Skip Chain. It does not carry divergence.
9550 IsDivergent
= IsDivergent
|| Ops
[I
].getNode()->isDivergent();
9552 Node
->NumOperands
= Vals
.size();
9553 Node
->OperandList
= Ops
;
9554 IsDivergent
|= TLI
->isSDNodeSourceOfDivergence(Node
, FLI
, DA
);
9555 if (!TLI
->isSDNodeAlwaysUniform(Node
))
9556 Node
->SDNodeBits
.IsDivergent
= IsDivergent
;
9557 checkForCycles(Node
);
9560 SDValue
SelectionDAG::getTokenFactor(const SDLoc
&DL
,
9561 SmallVectorImpl
<SDValue
> &Vals
) {
9562 size_t Limit
= SDNode::getMaxNumOperands();
9563 while (Vals
.size() > Limit
) {
9564 unsigned SliceIdx
= Vals
.size() - Limit
;
9565 auto ExtractedTFs
= ArrayRef
<SDValue
>(Vals
).slice(SliceIdx
, Limit
);
9566 SDValue NewTF
= getNode(ISD::TokenFactor
, DL
, MVT::Other
, ExtractedTFs
);
9567 Vals
.erase(Vals
.begin() + SliceIdx
, Vals
.end());
9568 Vals
.emplace_back(NewTF
);
9570 return getNode(ISD::TokenFactor
, DL
, MVT::Other
, Vals
);
9574 static void checkForCyclesHelper(const SDNode
*N
,
9575 SmallPtrSetImpl
<const SDNode
*> &Visited
,
9576 SmallPtrSetImpl
<const SDNode
*> &Checked
,
9577 const llvm::SelectionDAG
*DAG
) {
9578 // If this node has already been checked, don't check it again.
9579 if (Checked
.count(N
))
9582 // If a node has already been visited on this depth-first walk, reject it as
9584 if (!Visited
.insert(N
).second
) {
9585 errs() << "Detected cycle in SelectionDAG\n";
9586 dbgs() << "Offending node:\n";
9587 N
->dumprFull(DAG
); dbgs() << "\n";
9591 for (const SDValue
&Op
: N
->op_values())
9592 checkForCyclesHelper(Op
.getNode(), Visited
, Checked
, DAG
);
9599 void llvm::checkForCycles(const llvm::SDNode
*N
,
9600 const llvm::SelectionDAG
*DAG
,
9604 #ifdef EXPENSIVE_CHECKS
9606 #endif // EXPENSIVE_CHECKS
9608 assert(N
&& "Checking nonexistent SDNode");
9609 SmallPtrSet
<const SDNode
*, 32> visited
;
9610 SmallPtrSet
<const SDNode
*, 32> checked
;
9611 checkForCyclesHelper(N
, visited
, checked
, DAG
);
9616 void llvm::checkForCycles(const llvm::SelectionDAG
*DAG
, bool force
) {
9617 checkForCycles(DAG
->getRoot().getNode(), DAG
, force
);