1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec
,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr
,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill
, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted
,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs
,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd
,
58 "Number of record-form rotates converted to record-form andi");
61 opt
<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden
,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt
<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden
);
67 static cl::opt
<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden
,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
85 SOK_VectorFloat8Spill
,
86 SOK_VectorFloat4Spill
,
94 SOK_LastOpcodeSpill
// This must be last on the enum.
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget
&STI
)
101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN
, PPC::ADJCALLSTACKUP
,
102 /* CatchRetOpcode */ -1,
103 STI
.isPPC64() ? PPC::BLR8
: PPC::BLR
),
104 Subtarget(STI
), RI(STI
.getTargetMachine()) {}
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer
*
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
110 const ScheduleDAG
*DAG
) const {
112 static_cast<const PPCSubtarget
*>(STI
)->getDarwinDirective();
113 if (Directive
== PPC::DIR_440
|| Directive
== PPC::DIR_A2
||
114 Directive
== PPC::DIR_E500mc
|| Directive
== PPC::DIR_E5500
) {
115 const InstrItineraryData
*II
=
116 static_cast<const PPCSubtarget
*>(STI
)->getInstrItineraryData();
117 return new ScoreboardHazardRecognizer(II
, DAG
);
120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer
*
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
127 const ScheduleDAG
*DAG
) const {
129 DAG
->MF
.getSubtarget
<PPCSubtarget
>().getDarwinDirective();
131 // FIXME: Leaving this as-is until we have POWER9 scheduling info
132 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
)
133 return new PPCDispatchGroupSBHazardRecognizer(II
, DAG
);
135 // Most subtargets use a PPC970 recognizer.
136 if (Directive
!= PPC::DIR_440
&& Directive
!= PPC::DIR_A2
&&
137 Directive
!= PPC::DIR_E500mc
&& Directive
!= PPC::DIR_E5500
) {
138 assert(DAG
->TII
&& "No InstrInfo?");
140 return new PPCHazardRecognizer970(*DAG
);
143 return new ScoreboardHazardRecognizer(II
, DAG
);
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
147 const MachineInstr
&MI
,
148 unsigned *PredCost
) const {
149 if (!ItinData
|| UseOldLatencyCalc
)
150 return PPCGenInstrInfo::getInstrLatency(ItinData
, MI
, PredCost
);
152 // The default implementation of getInstrLatency calls getStageLatency, but
153 // getStageLatency does not do the right thing for us. While we have
154 // itinerary, most cores are fully pipelined, and so the itineraries only
155 // express the first part of the pipeline, not every stage. Instead, we need
156 // to use the listed output operand cycle number (using operand 0 here, which
159 unsigned Latency
= 1;
160 unsigned DefClass
= MI
.getDesc().getSchedClass();
161 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
162 const MachineOperand
&MO
= MI
.getOperand(i
);
163 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
166 int Cycle
= ItinData
->getOperandCycle(DefClass
, i
);
170 Latency
= std::max(Latency
, (unsigned) Cycle
);
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
177 const MachineInstr
&DefMI
, unsigned DefIdx
,
178 const MachineInstr
&UseMI
,
179 unsigned UseIdx
) const {
180 int Latency
= PPCGenInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
183 if (!DefMI
.getParent())
186 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
187 Register Reg
= DefMO
.getReg();
190 if (Register::isVirtualRegister(Reg
)) {
191 const MachineRegisterInfo
*MRI
=
192 &DefMI
.getParent()->getParent()->getRegInfo();
193 IsRegCR
= MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRRCRegClass
) ||
194 MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRBITRCRegClass
);
196 IsRegCR
= PPC::CRRCRegClass
.contains(Reg
) ||
197 PPC::CRBITRCRegClass
.contains(Reg
);
200 if (UseMI
.isBranch() && IsRegCR
) {
202 Latency
= getInstrLatency(ItinData
, DefMI
);
204 // On some cores, there is an additional delay between writing to a condition
205 // register, and using it from a branch.
206 unsigned Directive
= Subtarget
.getDarwinDirective();
220 // FIXME: Is this needed for POWER9?
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
235 switch (Inst
.getOpcode()) {
268 bool PPCInstrInfo::getMachineCombinerPatterns(
270 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
271 // Using the machine combiner in this way is potentially expensive, so
272 // restrict to when aggressive optimizations are desired.
273 if (Subtarget
.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive
)
276 // FP reassociation is only legal when we don't need strict IEEE semantics.
277 if (!Root
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
)
280 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
);
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
285 unsigned &SrcReg
, unsigned &DstReg
,
286 unsigned &SubIdx
) const {
287 switch (MI
.getOpcode()) {
288 default: return false;
291 case PPC::EXTSW_32_64
:
292 SrcReg
= MI
.getOperand(1).getReg();
293 DstReg
= MI
.getOperand(0).getReg();
294 SubIdx
= PPC::sub_32
;
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
300 int &FrameIndex
) const {
301 unsigned Opcode
= MI
.getOpcode();
302 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
303 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
305 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
306 // Check for the operands added by addFrameReference (the immediate is the
307 // offset which defaults to 0).
308 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
309 MI
.getOperand(2).isFI()) {
310 FrameIndex
= MI
.getOperand(2).getIndex();
311 return MI
.getOperand(0).getReg();
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
320 AliasAnalysis
*AA
) const {
321 switch (MI
.getOpcode()) {
323 // This function should only be called for opcodes with the ReMaterializable
325 llvm_unreachable("Unknown rematerializable operation!");
332 case PPC::ADDIStocHA8
:
334 case PPC::LOAD_STACK_GUARD
:
338 case PPC::XXLEQVOnes
:
342 case PPC::V_SETALLONESB
:
343 case PPC::V_SETALLONESH
:
344 case PPC::V_SETALLONES
:
352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
353 int &FrameIndex
) const {
354 unsigned Opcode
= MI
.getOpcode();
355 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
356 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
358 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
359 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
360 MI
.getOperand(2).isFI()) {
361 FrameIndex
= MI
.getOperand(2).getIndex();
362 return MI
.getOperand(0).getReg();
368 MachineInstr
*PPCInstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
370 unsigned OpIdx2
) const {
371 MachineFunction
&MF
= *MI
.getParent()->getParent();
373 // Normal instructions can be commuted the obvious way.
374 if (MI
.getOpcode() != PPC::RLWIMI
&& MI
.getOpcode() != PPC::RLWIMIo
)
375 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378 // changing the relative order of the mask operands might change what happens
379 // to the high-bits of the mask (and, thus, the result).
381 // Cannot commute if it has a non-zero rotate count.
382 if (MI
.getOperand(3).getImm() != 0)
385 // If we have a zero rotate count, we have:
387 // Op0 = (Op1 & ~M) | (Op2 & M)
389 // M = mask((ME+1)&31, (MB-1)&31)
390 // Op0 = (Op2 & ~M) | (Op1 & M)
393 assert(((OpIdx1
== 1 && OpIdx2
== 2) || (OpIdx1
== 2 && OpIdx2
== 1)) &&
394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
395 Register Reg0
= MI
.getOperand(0).getReg();
396 Register Reg1
= MI
.getOperand(1).getReg();
397 Register Reg2
= MI
.getOperand(2).getReg();
398 unsigned SubReg1
= MI
.getOperand(1).getSubReg();
399 unsigned SubReg2
= MI
.getOperand(2).getSubReg();
400 bool Reg1IsKill
= MI
.getOperand(1).isKill();
401 bool Reg2IsKill
= MI
.getOperand(2).isKill();
402 bool ChangeReg0
= false;
403 // If machine instrs are no longer in two-address forms, update
404 // destination register as well.
406 // Must be two address instruction!
407 assert(MI
.getDesc().getOperandConstraint(0, MCOI::TIED_TO
) &&
408 "Expecting a two-address instruction!");
409 assert(MI
.getOperand(0).getSubReg() == SubReg1
&& "Tied subreg mismatch");
415 unsigned MB
= MI
.getOperand(4).getImm();
416 unsigned ME
= MI
.getOperand(5).getImm();
418 // We can't commute a trivial mask (there is no way to represent an all-zero
420 if (MB
== 0 && ME
== 31)
424 // Create a new instruction.
425 Register Reg0
= ChangeReg0
? Reg2
: MI
.getOperand(0).getReg();
426 bool Reg0IsDead
= MI
.getOperand(0).isDead();
427 return BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc())
428 .addReg(Reg0
, RegState::Define
| getDeadRegState(Reg0IsDead
))
429 .addReg(Reg2
, getKillRegState(Reg2IsKill
))
430 .addReg(Reg1
, getKillRegState(Reg1IsKill
))
431 .addImm((ME
+ 1) & 31)
432 .addImm((MB
- 1) & 31);
436 MI
.getOperand(0).setReg(Reg2
);
437 MI
.getOperand(0).setSubReg(SubReg2
);
439 MI
.getOperand(2).setReg(Reg1
);
440 MI
.getOperand(1).setReg(Reg2
);
441 MI
.getOperand(2).setSubReg(SubReg1
);
442 MI
.getOperand(1).setSubReg(SubReg2
);
443 MI
.getOperand(2).setIsKill(Reg1IsKill
);
444 MI
.getOperand(1).setIsKill(Reg2IsKill
);
446 // Swap the mask around.
447 MI
.getOperand(4).setImm((ME
+ 1) & 31);
448 MI
.getOperand(5).setImm((MB
- 1) & 31);
452 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
453 unsigned &SrcOpIdx2
) const {
454 // For VSX A-Type FMA instructions, it is the first two operands that can be
455 // commuted, however, because the non-encoded tied input operand is listed
456 // first, the operands to swap are actually the second and third.
458 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
460 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
462 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
464 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 2, 3);
467 void PPCInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
468 MachineBasicBlock::iterator MI
) const {
469 // This function is used for scheduling, and the nop wanted here is the type
470 // that terminates dispatch groups on the POWER cores.
471 unsigned Directive
= Subtarget
.getDarwinDirective();
474 default: Opcode
= PPC::NOP
; break;
475 case PPC::DIR_PWR6
: Opcode
= PPC::NOP_GT_PWR6
; break;
476 case PPC::DIR_PWR7
: Opcode
= PPC::NOP_GT_PWR7
; break;
477 case PPC::DIR_PWR8
: Opcode
= PPC::NOP_GT_PWR7
; break; /* FIXME: Update when P8 InstrScheduling model is ready */
478 // FIXME: Update when POWER9 scheduling model is ready.
479 case PPC::DIR_PWR9
: Opcode
= PPC::NOP_GT_PWR7
; break;
483 BuildMI(MBB
, MI
, DL
, get(Opcode
));
486 /// Return the noop instruction to use for a noop.
487 void PPCInstrInfo::getNoop(MCInst
&NopInst
) const {
488 NopInst
.setOpcode(PPC::NOP
);
492 // Note: If the condition register is set to CTR or CTR8 then this is a
493 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
494 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
495 MachineBasicBlock
*&TBB
,
496 MachineBasicBlock
*&FBB
,
497 SmallVectorImpl
<MachineOperand
> &Cond
,
498 bool AllowModify
) const {
499 bool isPPC64
= Subtarget
.isPPC64();
501 // If the block has no terminators, it just falls into the block after it.
502 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
506 if (!isUnpredicatedTerminator(*I
))
510 // If the BB ends with an unconditional branch to the fallthrough BB,
511 // we eliminate the branch instruction.
512 if (I
->getOpcode() == PPC::B
&&
513 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
514 I
->eraseFromParent();
516 // We update iterator after deleting the last branch.
517 I
= MBB
.getLastNonDebugInstr();
518 if (I
== MBB
.end() || !isUnpredicatedTerminator(*I
))
523 // Get the last instruction in the block.
524 MachineInstr
&LastInst
= *I
;
526 // If there is only one terminator instruction, process it.
527 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
528 if (LastInst
.getOpcode() == PPC::B
) {
529 if (!LastInst
.getOperand(0).isMBB())
531 TBB
= LastInst
.getOperand(0).getMBB();
533 } else if (LastInst
.getOpcode() == PPC::BCC
) {
534 if (!LastInst
.getOperand(2).isMBB())
536 // Block ends with fall-through condbranch.
537 TBB
= LastInst
.getOperand(2).getMBB();
538 Cond
.push_back(LastInst
.getOperand(0));
539 Cond
.push_back(LastInst
.getOperand(1));
541 } else if (LastInst
.getOpcode() == PPC::BC
) {
542 if (!LastInst
.getOperand(1).isMBB())
544 // Block ends with fall-through condbranch.
545 TBB
= LastInst
.getOperand(1).getMBB();
546 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
547 Cond
.push_back(LastInst
.getOperand(0));
549 } else if (LastInst
.getOpcode() == PPC::BCn
) {
550 if (!LastInst
.getOperand(1).isMBB())
552 // Block ends with fall-through condbranch.
553 TBB
= LastInst
.getOperand(1).getMBB();
554 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
555 Cond
.push_back(LastInst
.getOperand(0));
557 } else if (LastInst
.getOpcode() == PPC::BDNZ8
||
558 LastInst
.getOpcode() == PPC::BDNZ
) {
559 if (!LastInst
.getOperand(0).isMBB())
561 if (DisableCTRLoopAnal
)
563 TBB
= LastInst
.getOperand(0).getMBB();
564 Cond
.push_back(MachineOperand::CreateImm(1));
565 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
568 } else if (LastInst
.getOpcode() == PPC::BDZ8
||
569 LastInst
.getOpcode() == PPC::BDZ
) {
570 if (!LastInst
.getOperand(0).isMBB())
572 if (DisableCTRLoopAnal
)
574 TBB
= LastInst
.getOperand(0).getMBB();
575 Cond
.push_back(MachineOperand::CreateImm(0));
576 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
581 // Otherwise, don't know what this is.
585 // Get the instruction before it if it's a terminator.
586 MachineInstr
&SecondLastInst
= *I
;
588 // If there are three terminators, we don't know what sort of block this is.
589 if (I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
592 // If the block ends with PPC::B and PPC:BCC, handle it.
593 if (SecondLastInst
.getOpcode() == PPC::BCC
&&
594 LastInst
.getOpcode() == PPC::B
) {
595 if (!SecondLastInst
.getOperand(2).isMBB() ||
596 !LastInst
.getOperand(0).isMBB())
598 TBB
= SecondLastInst
.getOperand(2).getMBB();
599 Cond
.push_back(SecondLastInst
.getOperand(0));
600 Cond
.push_back(SecondLastInst
.getOperand(1));
601 FBB
= LastInst
.getOperand(0).getMBB();
603 } else if (SecondLastInst
.getOpcode() == PPC::BC
&&
604 LastInst
.getOpcode() == PPC::B
) {
605 if (!SecondLastInst
.getOperand(1).isMBB() ||
606 !LastInst
.getOperand(0).isMBB())
608 TBB
= SecondLastInst
.getOperand(1).getMBB();
609 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
610 Cond
.push_back(SecondLastInst
.getOperand(0));
611 FBB
= LastInst
.getOperand(0).getMBB();
613 } else if (SecondLastInst
.getOpcode() == PPC::BCn
&&
614 LastInst
.getOpcode() == PPC::B
) {
615 if (!SecondLastInst
.getOperand(1).isMBB() ||
616 !LastInst
.getOperand(0).isMBB())
618 TBB
= SecondLastInst
.getOperand(1).getMBB();
619 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
620 Cond
.push_back(SecondLastInst
.getOperand(0));
621 FBB
= LastInst
.getOperand(0).getMBB();
623 } else if ((SecondLastInst
.getOpcode() == PPC::BDNZ8
||
624 SecondLastInst
.getOpcode() == PPC::BDNZ
) &&
625 LastInst
.getOpcode() == PPC::B
) {
626 if (!SecondLastInst
.getOperand(0).isMBB() ||
627 !LastInst
.getOperand(0).isMBB())
629 if (DisableCTRLoopAnal
)
631 TBB
= SecondLastInst
.getOperand(0).getMBB();
632 Cond
.push_back(MachineOperand::CreateImm(1));
633 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
635 FBB
= LastInst
.getOperand(0).getMBB();
637 } else if ((SecondLastInst
.getOpcode() == PPC::BDZ8
||
638 SecondLastInst
.getOpcode() == PPC::BDZ
) &&
639 LastInst
.getOpcode() == PPC::B
) {
640 if (!SecondLastInst
.getOperand(0).isMBB() ||
641 !LastInst
.getOperand(0).isMBB())
643 if (DisableCTRLoopAnal
)
645 TBB
= SecondLastInst
.getOperand(0).getMBB();
646 Cond
.push_back(MachineOperand::CreateImm(0));
647 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
649 FBB
= LastInst
.getOperand(0).getMBB();
653 // If the block ends with two PPC:Bs, handle it. The second one is not
654 // executed, so remove it.
655 if (SecondLastInst
.getOpcode() == PPC::B
&& LastInst
.getOpcode() == PPC::B
) {
656 if (!SecondLastInst
.getOperand(0).isMBB())
658 TBB
= SecondLastInst
.getOperand(0).getMBB();
661 I
->eraseFromParent();
665 // Otherwise, can't handle this.
669 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
670 int *BytesRemoved
) const {
671 assert(!BytesRemoved
&& "code size not handled");
673 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
677 if (I
->getOpcode() != PPC::B
&& I
->getOpcode() != PPC::BCC
&&
678 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
679 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
680 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
683 // Remove the branch.
684 I
->eraseFromParent();
688 if (I
== MBB
.begin()) return 1;
690 if (I
->getOpcode() != PPC::BCC
&&
691 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
692 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
693 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
696 // Remove the branch.
697 I
->eraseFromParent();
701 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
702 MachineBasicBlock
*TBB
,
703 MachineBasicBlock
*FBB
,
704 ArrayRef
<MachineOperand
> Cond
,
706 int *BytesAdded
) const {
707 // Shouldn't be a fall through.
708 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
709 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
710 "PPC branch conditions have two components!");
711 assert(!BytesAdded
&& "code size not handled");
713 bool isPPC64
= Subtarget
.isPPC64();
717 if (Cond
.empty()) // Unconditional branch
718 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(TBB
);
719 else if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
720 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
721 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
722 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
723 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
724 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
725 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
726 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
727 else // Conditional branch
728 BuildMI(&MBB
, DL
, get(PPC::BCC
))
729 .addImm(Cond
[0].getImm())
735 // Two-way Conditional Branch.
736 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
737 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
738 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
739 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
740 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
741 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
742 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
743 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
745 BuildMI(&MBB
, DL
, get(PPC::BCC
))
746 .addImm(Cond
[0].getImm())
749 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(FBB
);
754 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
755 ArrayRef
<MachineOperand
> Cond
,
756 unsigned TrueReg
, unsigned FalseReg
,
757 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
758 if (Cond
.size() != 2)
761 // If this is really a bdnz-like condition, then it cannot be turned into a
763 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
766 // Check register classes.
767 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
768 const TargetRegisterClass
*RC
=
769 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
773 // isel is for regular integer GPRs only.
774 if (!PPC::GPRCRegClass
.hasSubClassEq(RC
) &&
775 !PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
) &&
776 !PPC::G8RCRegClass
.hasSubClassEq(RC
) &&
777 !PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
))
780 // FIXME: These numbers are for the A2, how well they work for other cores is
781 // an open question. On the A2, the isel instruction has a 2-cycle latency
782 // but single-cycle throughput. These numbers are used in combination with
783 // the MispredictPenalty setting from the active SchedMachineModel.
791 void PPCInstrInfo::insertSelect(MachineBasicBlock
&MBB
,
792 MachineBasicBlock::iterator MI
,
793 const DebugLoc
&dl
, unsigned DestReg
,
794 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
795 unsigned FalseReg
) const {
796 assert(Cond
.size() == 2 &&
797 "PPC branch conditions have two components!");
799 // Get the register classes.
800 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
801 const TargetRegisterClass
*RC
=
802 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
803 assert(RC
&& "TrueReg and FalseReg must have overlapping register classes");
805 bool Is64Bit
= PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
806 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
);
808 PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
809 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) &&
810 "isel is for regular integer GPRs only");
812 unsigned OpCode
= Is64Bit
? PPC::ISEL8
: PPC::ISEL
;
813 auto SelectPred
= static_cast<PPC::Predicate
>(Cond
[0].getImm());
816 bool SwapOps
= false;
817 switch (SelectPred
) {
819 case PPC::PRED_EQ_MINUS
:
820 case PPC::PRED_EQ_PLUS
:
821 SubIdx
= PPC::sub_eq
; SwapOps
= false; break;
823 case PPC::PRED_NE_MINUS
:
824 case PPC::PRED_NE_PLUS
:
825 SubIdx
= PPC::sub_eq
; SwapOps
= true; break;
827 case PPC::PRED_LT_MINUS
:
828 case PPC::PRED_LT_PLUS
:
829 SubIdx
= PPC::sub_lt
; SwapOps
= false; break;
831 case PPC::PRED_GE_MINUS
:
832 case PPC::PRED_GE_PLUS
:
833 SubIdx
= PPC::sub_lt
; SwapOps
= true; break;
835 case PPC::PRED_GT_MINUS
:
836 case PPC::PRED_GT_PLUS
:
837 SubIdx
= PPC::sub_gt
; SwapOps
= false; break;
839 case PPC::PRED_LE_MINUS
:
840 case PPC::PRED_LE_PLUS
:
841 SubIdx
= PPC::sub_gt
; SwapOps
= true; break;
843 case PPC::PRED_UN_MINUS
:
844 case PPC::PRED_UN_PLUS
:
845 SubIdx
= PPC::sub_un
; SwapOps
= false; break;
847 case PPC::PRED_NU_MINUS
:
848 case PPC::PRED_NU_PLUS
:
849 SubIdx
= PPC::sub_un
; SwapOps
= true; break;
850 case PPC::PRED_BIT_SET
: SubIdx
= 0; SwapOps
= false; break;
851 case PPC::PRED_BIT_UNSET
: SubIdx
= 0; SwapOps
= true; break;
854 unsigned FirstReg
= SwapOps
? FalseReg
: TrueReg
,
855 SecondReg
= SwapOps
? TrueReg
: FalseReg
;
857 // The first input register of isel cannot be r0. If it is a member
858 // of a register class that can be r0, then copy it first (the
859 // register allocator should eliminate the copy).
860 if (MRI
.getRegClass(FirstReg
)->contains(PPC::R0
) ||
861 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
)) {
862 const TargetRegisterClass
*FirstRC
=
863 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
) ?
864 &PPC::G8RC_NOX0RegClass
: &PPC::GPRC_NOR0RegClass
;
865 unsigned OldFirstReg
= FirstReg
;
866 FirstReg
= MRI
.createVirtualRegister(FirstRC
);
867 BuildMI(MBB
, MI
, dl
, get(TargetOpcode::COPY
), FirstReg
)
868 .addReg(OldFirstReg
);
871 BuildMI(MBB
, MI
, dl
, get(OpCode
), DestReg
)
872 .addReg(FirstReg
).addReg(SecondReg
)
873 .addReg(Cond
[1].getReg(), 0, SubIdx
);
876 static unsigned getCRBitValue(unsigned CRBit
) {
878 if (CRBit
== PPC::CR0LT
|| CRBit
== PPC::CR1LT
||
879 CRBit
== PPC::CR2LT
|| CRBit
== PPC::CR3LT
||
880 CRBit
== PPC::CR4LT
|| CRBit
== PPC::CR5LT
||
881 CRBit
== PPC::CR6LT
|| CRBit
== PPC::CR7LT
)
883 if (CRBit
== PPC::CR0GT
|| CRBit
== PPC::CR1GT
||
884 CRBit
== PPC::CR2GT
|| CRBit
== PPC::CR3GT
||
885 CRBit
== PPC::CR4GT
|| CRBit
== PPC::CR5GT
||
886 CRBit
== PPC::CR6GT
|| CRBit
== PPC::CR7GT
)
888 if (CRBit
== PPC::CR0EQ
|| CRBit
== PPC::CR1EQ
||
889 CRBit
== PPC::CR2EQ
|| CRBit
== PPC::CR3EQ
||
890 CRBit
== PPC::CR4EQ
|| CRBit
== PPC::CR5EQ
||
891 CRBit
== PPC::CR6EQ
|| CRBit
== PPC::CR7EQ
)
893 if (CRBit
== PPC::CR0UN
|| CRBit
== PPC::CR1UN
||
894 CRBit
== PPC::CR2UN
|| CRBit
== PPC::CR3UN
||
895 CRBit
== PPC::CR4UN
|| CRBit
== PPC::CR5UN
||
896 CRBit
== PPC::CR6UN
|| CRBit
== PPC::CR7UN
)
899 assert(Ret
!= 4 && "Invalid CR bit register");
903 void PPCInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
904 MachineBasicBlock::iterator I
,
905 const DebugLoc
&DL
, unsigned DestReg
,
906 unsigned SrcReg
, bool KillSrc
) const {
907 // We can end up with self copies and similar things as a result of VSX copy
908 // legalization. Promote them here.
909 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
910 if (PPC::F8RCRegClass
.contains(DestReg
) &&
911 PPC::VSRCRegClass
.contains(SrcReg
)) {
913 TRI
->getMatchingSuperReg(DestReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
915 if (VSXSelfCopyCrash
&& SrcReg
== SuperReg
)
916 llvm_unreachable("nop VSX copy");
919 } else if (PPC::F8RCRegClass
.contains(SrcReg
) &&
920 PPC::VSRCRegClass
.contains(DestReg
)) {
922 TRI
->getMatchingSuperReg(SrcReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
924 if (VSXSelfCopyCrash
&& DestReg
== SuperReg
)
925 llvm_unreachable("nop VSX copy");
930 // Different class register copy
931 if (PPC::CRBITRCRegClass
.contains(SrcReg
) &&
932 PPC::GPRCRegClass
.contains(DestReg
)) {
933 unsigned CRReg
= getCRFromCRBit(SrcReg
);
934 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(CRReg
);
935 getKillRegState(KillSrc
);
936 // Rotate the CR bit in the CR fields to be the least significant bit and
937 // then mask with 0x1 (MB = ME = 31).
938 BuildMI(MBB
, I
, DL
, get(PPC::RLWINM
), DestReg
)
939 .addReg(DestReg
, RegState::Kill
)
940 .addImm(TRI
->getEncodingValue(CRReg
) * 4 + (4 - getCRBitValue(SrcReg
)))
944 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
945 PPC::G8RCRegClass
.contains(DestReg
)) {
946 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF8
), DestReg
).addReg(SrcReg
);
947 getKillRegState(KillSrc
);
949 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
950 PPC::GPRCRegClass
.contains(DestReg
)) {
951 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(SrcReg
);
952 getKillRegState(KillSrc
);
954 } else if (PPC::G8RCRegClass
.contains(SrcReg
) &&
955 PPC::VSFRCRegClass
.contains(DestReg
)) {
956 assert(Subtarget
.hasDirectMove() &&
957 "Subtarget doesn't support directmove, don't know how to copy.");
958 BuildMI(MBB
, I
, DL
, get(PPC::MTVSRD
), DestReg
).addReg(SrcReg
);
960 getKillRegState(KillSrc
);
962 } else if (PPC::VSFRCRegClass
.contains(SrcReg
) &&
963 PPC::G8RCRegClass
.contains(DestReg
)) {
964 assert(Subtarget
.hasDirectMove() &&
965 "Subtarget doesn't support directmove, don't know how to copy.");
966 BuildMI(MBB
, I
, DL
, get(PPC::MFVSRD
), DestReg
).addReg(SrcReg
);
967 getKillRegState(KillSrc
);
969 } else if (PPC::SPERCRegClass
.contains(SrcReg
) &&
970 PPC::SPE4RCRegClass
.contains(DestReg
)) {
971 BuildMI(MBB
, I
, DL
, get(PPC::EFSCFD
), DestReg
).addReg(SrcReg
);
972 getKillRegState(KillSrc
);
974 } else if (PPC::SPE4RCRegClass
.contains(SrcReg
) &&
975 PPC::SPERCRegClass
.contains(DestReg
)) {
976 BuildMI(MBB
, I
, DL
, get(PPC::EFDCFS
), DestReg
).addReg(SrcReg
);
977 getKillRegState(KillSrc
);
982 if (PPC::GPRCRegClass
.contains(DestReg
, SrcReg
))
984 else if (PPC::G8RCRegClass
.contains(DestReg
, SrcReg
))
986 else if (PPC::F4RCRegClass
.contains(DestReg
, SrcReg
))
988 else if (PPC::CRRCRegClass
.contains(DestReg
, SrcReg
))
990 else if (PPC::VRRCRegClass
.contains(DestReg
, SrcReg
))
992 else if (PPC::VSRCRegClass
.contains(DestReg
, SrcReg
))
993 // There are two different ways this can be done:
994 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
995 // issue in VSU pipeline 0.
996 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
997 // can go to either pipeline.
998 // We'll always use xxlor here, because in practically all cases where
999 // copies are generated, they are close enough to some use that the
1000 // lower-latency form is preferable.
1002 else if (PPC::VSFRCRegClass
.contains(DestReg
, SrcReg
) ||
1003 PPC::VSSRCRegClass
.contains(DestReg
, SrcReg
))
1004 Opc
= (Subtarget
.hasP9Vector()) ? PPC::XSCPSGNDP
: PPC::XXLORf
;
1005 else if (PPC::QFRCRegClass
.contains(DestReg
, SrcReg
))
1007 else if (PPC::QSRCRegClass
.contains(DestReg
, SrcReg
))
1009 else if (PPC::QBRCRegClass
.contains(DestReg
, SrcReg
))
1011 else if (PPC::CRBITRCRegClass
.contains(DestReg
, SrcReg
))
1013 else if (PPC::SPE4RCRegClass
.contains(DestReg
, SrcReg
))
1015 else if (PPC::SPERCRegClass
.contains(DestReg
, SrcReg
))
1018 llvm_unreachable("Impossible reg-to-reg copy");
1020 const MCInstrDesc
&MCID
= get(Opc
);
1021 if (MCID
.getNumOperands() == 3)
1022 BuildMI(MBB
, I
, DL
, MCID
, DestReg
)
1023 .addReg(SrcReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1025 BuildMI(MBB
, I
, DL
, MCID
, DestReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1028 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg
,
1029 const TargetRegisterClass
*RC
)
1031 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
1032 int OpcodeIndex
= 0;
1034 if (RC
!= nullptr) {
1035 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1036 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1037 OpcodeIndex
= SOK_Int4Spill
;
1038 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1039 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1040 OpcodeIndex
= SOK_Int8Spill
;
1041 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1042 OpcodeIndex
= SOK_Float8Spill
;
1043 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1044 OpcodeIndex
= SOK_Float4Spill
;
1045 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1046 OpcodeIndex
= SOK_SPESpill
;
1047 } else if (PPC::SPE4RCRegClass
.hasSubClassEq(RC
)) {
1048 OpcodeIndex
= SOK_SPE4Spill
;
1049 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1050 OpcodeIndex
= SOK_CRSpill
;
1051 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1052 OpcodeIndex
= SOK_CRBitSpill
;
1053 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1054 OpcodeIndex
= SOK_VRVectorSpill
;
1055 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1056 OpcodeIndex
= SOK_VSXVectorSpill
;
1057 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1058 OpcodeIndex
= SOK_VectorFloat8Spill
;
1059 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1060 OpcodeIndex
= SOK_VectorFloat4Spill
;
1061 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1062 OpcodeIndex
= SOK_VRSaveSpill
;
1063 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1064 OpcodeIndex
= SOK_QuadFloat8Spill
;
1065 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1066 OpcodeIndex
= SOK_QuadFloat4Spill
;
1067 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1068 OpcodeIndex
= SOK_QuadBitSpill
;
1069 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1070 OpcodeIndex
= SOK_SpillToVSR
;
1072 llvm_unreachable("Unknown regclass!");
1075 if (PPC::GPRCRegClass
.contains(Reg
) ||
1076 PPC::GPRC_NOR0RegClass
.contains(Reg
)) {
1077 OpcodeIndex
= SOK_Int4Spill
;
1078 } else if (PPC::G8RCRegClass
.contains(Reg
) ||
1079 PPC::G8RC_NOX0RegClass
.contains(Reg
)) {
1080 OpcodeIndex
= SOK_Int8Spill
;
1081 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
1082 OpcodeIndex
= SOK_Float8Spill
;
1083 } else if (PPC::F4RCRegClass
.contains(Reg
)) {
1084 OpcodeIndex
= SOK_Float4Spill
;
1085 } else if (PPC::SPERCRegClass
.contains(Reg
)) {
1086 OpcodeIndex
= SOK_SPESpill
;
1087 } else if (PPC::SPE4RCRegClass
.contains(Reg
)) {
1088 OpcodeIndex
= SOK_SPE4Spill
;
1089 } else if (PPC::CRRCRegClass
.contains(Reg
)) {
1090 OpcodeIndex
= SOK_CRSpill
;
1091 } else if (PPC::CRBITRCRegClass
.contains(Reg
)) {
1092 OpcodeIndex
= SOK_CRBitSpill
;
1093 } else if (PPC::VRRCRegClass
.contains(Reg
)) {
1094 OpcodeIndex
= SOK_VRVectorSpill
;
1095 } else if (PPC::VSRCRegClass
.contains(Reg
)) {
1096 OpcodeIndex
= SOK_VSXVectorSpill
;
1097 } else if (PPC::VSFRCRegClass
.contains(Reg
)) {
1098 OpcodeIndex
= SOK_VectorFloat8Spill
;
1099 } else if (PPC::VSSRCRegClass
.contains(Reg
)) {
1100 OpcodeIndex
= SOK_VectorFloat4Spill
;
1101 } else if (PPC::VRSAVERCRegClass
.contains(Reg
)) {
1102 OpcodeIndex
= SOK_VRSaveSpill
;
1103 } else if (PPC::QFRCRegClass
.contains(Reg
)) {
1104 OpcodeIndex
= SOK_QuadFloat8Spill
;
1105 } else if (PPC::QSRCRegClass
.contains(Reg
)) {
1106 OpcodeIndex
= SOK_QuadFloat4Spill
;
1107 } else if (PPC::QBRCRegClass
.contains(Reg
)) {
1108 OpcodeIndex
= SOK_QuadBitSpill
;
1109 } else if (PPC::SPILLTOVSRRCRegClass
.contains(Reg
)) {
1110 OpcodeIndex
= SOK_SpillToVSR
;
1112 llvm_unreachable("Unknown regclass!");
1115 return OpcodesForSpill
[OpcodeIndex
];
1119 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg
,
1120 const TargetRegisterClass
*RC
) const {
1121 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
1122 int OpcodeIndex
= 0;
1124 if (RC
!= nullptr) {
1125 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1126 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1127 OpcodeIndex
= SOK_Int4Spill
;
1128 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1129 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1130 OpcodeIndex
= SOK_Int8Spill
;
1131 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1132 OpcodeIndex
= SOK_Float8Spill
;
1133 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1134 OpcodeIndex
= SOK_Float4Spill
;
1135 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1136 OpcodeIndex
= SOK_SPESpill
;
1137 } else if (PPC::SPE4RCRegClass
.hasSubClassEq(RC
)) {
1138 OpcodeIndex
= SOK_SPE4Spill
;
1139 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1140 OpcodeIndex
= SOK_CRSpill
;
1141 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1142 OpcodeIndex
= SOK_CRBitSpill
;
1143 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1144 OpcodeIndex
= SOK_VRVectorSpill
;
1145 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1146 OpcodeIndex
= SOK_VSXVectorSpill
;
1147 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1148 OpcodeIndex
= SOK_VectorFloat8Spill
;
1149 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1150 OpcodeIndex
= SOK_VectorFloat4Spill
;
1151 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1152 OpcodeIndex
= SOK_VRSaveSpill
;
1153 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1154 OpcodeIndex
= SOK_QuadFloat8Spill
;
1155 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1156 OpcodeIndex
= SOK_QuadFloat4Spill
;
1157 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1158 OpcodeIndex
= SOK_QuadBitSpill
;
1159 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1160 OpcodeIndex
= SOK_SpillToVSR
;
1162 llvm_unreachable("Unknown regclass!");
1165 if (PPC::GPRCRegClass
.contains(Reg
) ||
1166 PPC::GPRC_NOR0RegClass
.contains(Reg
)) {
1167 OpcodeIndex
= SOK_Int4Spill
;
1168 } else if (PPC::G8RCRegClass
.contains(Reg
) ||
1169 PPC::G8RC_NOX0RegClass
.contains(Reg
)) {
1170 OpcodeIndex
= SOK_Int8Spill
;
1171 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
1172 OpcodeIndex
= SOK_Float8Spill
;
1173 } else if (PPC::F4RCRegClass
.contains(Reg
)) {
1174 OpcodeIndex
= SOK_Float4Spill
;
1175 } else if (PPC::SPERCRegClass
.contains(Reg
)) {
1176 OpcodeIndex
= SOK_SPESpill
;
1177 } else if (PPC::SPE4RCRegClass
.contains(Reg
)) {
1178 OpcodeIndex
= SOK_SPE4Spill
;
1179 } else if (PPC::CRRCRegClass
.contains(Reg
)) {
1180 OpcodeIndex
= SOK_CRSpill
;
1181 } else if (PPC::CRBITRCRegClass
.contains(Reg
)) {
1182 OpcodeIndex
= SOK_CRBitSpill
;
1183 } else if (PPC::VRRCRegClass
.contains(Reg
)) {
1184 OpcodeIndex
= SOK_VRVectorSpill
;
1185 } else if (PPC::VSRCRegClass
.contains(Reg
)) {
1186 OpcodeIndex
= SOK_VSXVectorSpill
;
1187 } else if (PPC::VSFRCRegClass
.contains(Reg
)) {
1188 OpcodeIndex
= SOK_VectorFloat8Spill
;
1189 } else if (PPC::VSSRCRegClass
.contains(Reg
)) {
1190 OpcodeIndex
= SOK_VectorFloat4Spill
;
1191 } else if (PPC::VRSAVERCRegClass
.contains(Reg
)) {
1192 OpcodeIndex
= SOK_VRSaveSpill
;
1193 } else if (PPC::QFRCRegClass
.contains(Reg
)) {
1194 OpcodeIndex
= SOK_QuadFloat8Spill
;
1195 } else if (PPC::QSRCRegClass
.contains(Reg
)) {
1196 OpcodeIndex
= SOK_QuadFloat4Spill
;
1197 } else if (PPC::QBRCRegClass
.contains(Reg
)) {
1198 OpcodeIndex
= SOK_QuadBitSpill
;
1199 } else if (PPC::SPILLTOVSRRCRegClass
.contains(Reg
)) {
1200 OpcodeIndex
= SOK_SpillToVSR
;
1202 llvm_unreachable("Unknown regclass!");
1205 return OpcodesForSpill
[OpcodeIndex
];
1208 void PPCInstrInfo::StoreRegToStackSlot(
1209 MachineFunction
&MF
, unsigned SrcReg
, bool isKill
, int FrameIdx
,
1210 const TargetRegisterClass
*RC
,
1211 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1212 unsigned Opcode
= getStoreOpcodeForSpill(PPC::NoRegister
, RC
);
1215 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1216 FuncInfo
->setHasSpills();
1218 NewMIs
.push_back(addFrameReference(
1219 BuildMI(MF
, DL
, get(Opcode
)).addReg(SrcReg
, getKillRegState(isKill
)),
1222 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1223 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1224 FuncInfo
->setSpillsCR();
1226 if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
))
1227 FuncInfo
->setSpillsVRSAVE();
1229 if (isXFormMemOp(Opcode
))
1230 FuncInfo
->setHasNonRISpills();
1233 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1234 MachineBasicBlock::iterator MI
,
1235 unsigned SrcReg
, bool isKill
,
1237 const TargetRegisterClass
*RC
,
1238 const TargetRegisterInfo
*TRI
) const {
1239 MachineFunction
&MF
= *MBB
.getParent();
1240 SmallVector
<MachineInstr
*, 4> NewMIs
;
1242 // We need to avoid a situation in which the value from a VRRC register is
1243 // spilled using an Altivec instruction and reloaded into a VSRC register
1244 // using a VSX instruction. The issue with this is that the VSX
1245 // load/store instructions swap the doublewords in the vector and the Altivec
1246 // ones don't. The register classes on the spill/reload may be different if
1247 // the register is defined using an Altivec instruction and is then used by a
1251 StoreRegToStackSlot(MF
, SrcReg
, isKill
, FrameIdx
, RC
, NewMIs
);
1253 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1254 MBB
.insert(MI
, NewMIs
[i
]);
1256 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1257 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1258 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1259 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
1260 MFI
.getObjectAlignment(FrameIdx
));
1261 NewMIs
.back()->addMemOperand(MF
, MMO
);
1264 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction
&MF
, const DebugLoc
&DL
,
1265 unsigned DestReg
, int FrameIdx
,
1266 const TargetRegisterClass
*RC
,
1267 SmallVectorImpl
<MachineInstr
*> &NewMIs
)
1269 unsigned Opcode
= getLoadOpcodeForSpill(PPC::NoRegister
, RC
);
1270 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opcode
), DestReg
),
1272 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1274 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1275 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1276 FuncInfo
->setSpillsCR();
1278 if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
))
1279 FuncInfo
->setSpillsVRSAVE();
1281 if (isXFormMemOp(Opcode
))
1282 FuncInfo
->setHasNonRISpills();
1286 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
1287 MachineBasicBlock::iterator MI
,
1288 unsigned DestReg
, int FrameIdx
,
1289 const TargetRegisterClass
*RC
,
1290 const TargetRegisterInfo
*TRI
) const {
1291 MachineFunction
&MF
= *MBB
.getParent();
1292 SmallVector
<MachineInstr
*, 4> NewMIs
;
1294 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1296 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1297 FuncInfo
->setHasSpills();
1299 // We need to avoid a situation in which the value from a VRRC register is
1300 // spilled using an Altivec instruction and reloaded into a VSRC register
1301 // using a VSX instruction. The issue with this is that the VSX
1302 // load/store instructions swap the doublewords in the vector and the Altivec
1303 // ones don't. The register classes on the spill/reload may be different if
1304 // the register is defined using an Altivec instruction and is then used by a
1306 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
1307 RC
= &PPC::VSRCRegClass
;
1309 LoadRegFromStackSlot(MF
, DL
, DestReg
, FrameIdx
, RC
, NewMIs
);
1311 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1312 MBB
.insert(MI
, NewMIs
[i
]);
1314 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1315 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1316 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1317 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
1318 MFI
.getObjectAlignment(FrameIdx
));
1319 NewMIs
.back()->addMemOperand(MF
, MMO
);
1323 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
1324 assert(Cond
.size() == 2 && "Invalid PPC branch opcode!");
1325 if (Cond
[1].getReg() == PPC::CTR8
|| Cond
[1].getReg() == PPC::CTR
)
1326 Cond
[0].setImm(Cond
[0].getImm() == 0 ? 1 : 0);
1328 // Leave the CR# the same, but invert the condition.
1329 Cond
[0].setImm(PPC::InvertPredicate((PPC::Predicate
)Cond
[0].getImm()));
1333 bool PPCInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
1334 unsigned Reg
, MachineRegisterInfo
*MRI
) const {
1335 // For some instructions, it is legal to fold ZERO into the RA register field.
1336 // A zero immediate should always be loaded with a single li.
1337 unsigned DefOpc
= DefMI
.getOpcode();
1338 if (DefOpc
!= PPC::LI
&& DefOpc
!= PPC::LI8
)
1340 if (!DefMI
.getOperand(1).isImm())
1342 if (DefMI
.getOperand(1).getImm() != 0)
1345 // Note that we cannot here invert the arguments of an isel in order to fold
1346 // a ZERO into what is presented as the second argument. All we have here
1347 // is the condition bit, and that might come from a CR-logical bit operation.
1349 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
1351 // Only fold into real machine instructions.
1352 if (UseMCID
.isPseudo())
1356 for (UseIdx
= 0; UseIdx
< UseMI
.getNumOperands(); ++UseIdx
)
1357 if (UseMI
.getOperand(UseIdx
).isReg() &&
1358 UseMI
.getOperand(UseIdx
).getReg() == Reg
)
1361 assert(UseIdx
< UseMI
.getNumOperands() && "Cannot find Reg in UseMI");
1362 assert(UseIdx
< UseMCID
.getNumOperands() && "No operand description for Reg");
1364 const MCOperandInfo
*UseInfo
= &UseMCID
.OpInfo
[UseIdx
];
1366 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1367 // register (which might also be specified as a pointer class kind).
1368 if (UseInfo
->isLookupPtrRegClass()) {
1369 if (UseInfo
->RegClass
/* Kind */ != 1)
1372 if (UseInfo
->RegClass
!= PPC::GPRC_NOR0RegClassID
&&
1373 UseInfo
->RegClass
!= PPC::G8RC_NOX0RegClassID
)
1377 // Make sure this is not tied to an output register (or otherwise
1378 // constrained). This is true for ST?UX registers, for example, which
1379 // are tied to their output registers.
1380 if (UseInfo
->Constraints
!= 0)
1384 if (UseInfo
->isLookupPtrRegClass()) {
1385 bool isPPC64
= Subtarget
.isPPC64();
1386 ZeroReg
= isPPC64
? PPC::ZERO8
: PPC::ZERO
;
1388 ZeroReg
= UseInfo
->RegClass
== PPC::G8RC_NOX0RegClassID
?
1389 PPC::ZERO8
: PPC::ZERO
;
1392 bool DeleteDef
= MRI
->hasOneNonDBGUse(Reg
);
1393 UseMI
.getOperand(UseIdx
).setReg(ZeroReg
);
1396 DefMI
.eraseFromParent();
1401 static bool MBBDefinesCTR(MachineBasicBlock
&MBB
) {
1402 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
1404 if (I
->definesRegister(PPC::CTR
) || I
->definesRegister(PPC::CTR8
))
1409 // We should make sure that, if we're going to predicate both sides of a
1410 // condition (a diamond), that both sides don't define the counter register. We
1411 // can predicate counter-decrement-based branches, but while that predicates
1412 // the branching, it does not predicate the counter decrement. If we tried to
1413 // merge the triangle into one predicated block, we'd decrement the counter
1415 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
1416 unsigned NumT
, unsigned ExtraT
,
1417 MachineBasicBlock
&FMBB
,
1418 unsigned NumF
, unsigned ExtraF
,
1419 BranchProbability Probability
) const {
1420 return !(MBBDefinesCTR(TMBB
) && MBBDefinesCTR(FMBB
));
1424 bool PPCInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1425 // The predicated branches are identified by their type, not really by the
1426 // explicit presence of a predicate. Furthermore, some of them can be
1427 // predicated more than once. Because if conversion won't try to predicate
1428 // any instruction which already claims to be predicated (by returning true
1429 // here), always return false. In doing so, we let isPredicable() be the
1430 // final word on whether not the instruction can be (further) predicated.
1435 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
1436 if (!MI
.isTerminator())
1439 // Conditional branch is a special case.
1440 if (MI
.isBranch() && !MI
.isBarrier())
1443 return !isPredicated(MI
);
1446 bool PPCInstrInfo::PredicateInstruction(MachineInstr
&MI
,
1447 ArrayRef
<MachineOperand
> Pred
) const {
1448 unsigned OpC
= MI
.getOpcode();
1449 if (OpC
== PPC::BLR
|| OpC
== PPC::BLR8
) {
1450 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1451 bool isPPC64
= Subtarget
.isPPC64();
1452 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZLR8
: PPC::BDNZLR
)
1453 : (isPPC64
? PPC::BDZLR8
: PPC::BDZLR
)));
1454 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1455 MI
.setDesc(get(PPC::BCLR
));
1456 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1457 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1458 MI
.setDesc(get(PPC::BCLRn
));
1459 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1461 MI
.setDesc(get(PPC::BCCLR
));
1462 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1463 .addImm(Pred
[0].getImm())
1468 } else if (OpC
== PPC::B
) {
1469 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1470 bool isPPC64
= Subtarget
.isPPC64();
1471 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
)
1472 : (isPPC64
? PPC::BDZ8
: PPC::BDZ
)));
1473 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1474 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1475 MI
.RemoveOperand(0);
1477 MI
.setDesc(get(PPC::BC
));
1478 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1481 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1482 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1483 MI
.RemoveOperand(0);
1485 MI
.setDesc(get(PPC::BCn
));
1486 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1490 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1491 MI
.RemoveOperand(0);
1493 MI
.setDesc(get(PPC::BCC
));
1494 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1495 .addImm(Pred
[0].getImm())
1501 } else if (OpC
== PPC::BCTR
|| OpC
== PPC::BCTR8
|| OpC
== PPC::BCTRL
||
1502 OpC
== PPC::BCTRL8
) {
1503 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
)
1504 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1506 bool setLR
= OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
;
1507 bool isPPC64
= Subtarget
.isPPC64();
1509 if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1510 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8
: PPC::BCCTR8
)
1511 : (setLR
? PPC::BCCTRL
: PPC::BCCTR
)));
1512 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1514 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1515 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8n
: PPC::BCCTR8n
)
1516 : (setLR
? PPC::BCCTRLn
: PPC::BCCTRn
)));
1517 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
1521 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCCTRL8
: PPC::BCCCTR8
)
1522 : (setLR
? PPC::BCCCTRL
: PPC::BCCCTR
)));
1523 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1524 .addImm(Pred
[0].getImm())
1532 bool PPCInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1533 ArrayRef
<MachineOperand
> Pred2
) const {
1534 assert(Pred1
.size() == 2 && "Invalid PPC first predicate");
1535 assert(Pred2
.size() == 2 && "Invalid PPC second predicate");
1537 if (Pred1
[1].getReg() == PPC::CTR8
|| Pred1
[1].getReg() == PPC::CTR
)
1539 if (Pred2
[1].getReg() == PPC::CTR8
|| Pred2
[1].getReg() == PPC::CTR
)
1542 // P1 can only subsume P2 if they test the same condition register.
1543 if (Pred1
[1].getReg() != Pred2
[1].getReg())
1546 PPC::Predicate P1
= (PPC::Predicate
) Pred1
[0].getImm();
1547 PPC::Predicate P2
= (PPC::Predicate
) Pred2
[0].getImm();
1552 // Does P1 subsume P2, e.g. GE subsumes GT.
1553 if (P1
== PPC::PRED_LE
&&
1554 (P2
== PPC::PRED_LT
|| P2
== PPC::PRED_EQ
))
1556 if (P1
== PPC::PRED_GE
&&
1557 (P2
== PPC::PRED_GT
|| P2
== PPC::PRED_EQ
))
1563 bool PPCInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1564 std::vector
<MachineOperand
> &Pred
) const {
1565 // Note: At the present time, the contents of Pred from this function is
1566 // unused by IfConversion. This implementation follows ARM by pushing the
1567 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1568 // predicate, instructions defining CTR or CTR8 are also included as
1569 // predicate-defining instructions.
1571 const TargetRegisterClass
*RCs
[] =
1572 { &PPC::CRRCRegClass
, &PPC::CRBITRCRegClass
,
1573 &PPC::CTRRCRegClass
, &PPC::CTRRC8RegClass
};
1576 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1577 const MachineOperand
&MO
= MI
.getOperand(i
);
1578 for (unsigned c
= 0; c
< array_lengthof(RCs
) && !Found
; ++c
) {
1579 const TargetRegisterClass
*RC
= RCs
[c
];
1581 if (MO
.isDef() && RC
->contains(MO
.getReg())) {
1585 } else if (MO
.isRegMask()) {
1586 for (TargetRegisterClass::iterator I
= RC
->begin(),
1587 IE
= RC
->end(); I
!= IE
; ++I
)
1588 if (MO
.clobbersPhysReg(*I
)) {
1599 bool PPCInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1600 unsigned OpC
= MI
.getOpcode();
1615 bool PPCInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1616 unsigned &SrcReg2
, int &Mask
,
1618 unsigned Opc
= MI
.getOpcode();
1621 default: return false;
1626 SrcReg
= MI
.getOperand(1).getReg();
1628 Value
= MI
.getOperand(2).getImm();
1637 SrcReg
= MI
.getOperand(1).getReg();
1638 SrcReg2
= MI
.getOperand(2).getReg();
1645 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
1646 unsigned SrcReg2
, int Mask
, int Value
,
1647 const MachineRegisterInfo
*MRI
) const {
1651 int OpC
= CmpInstr
.getOpcode();
1652 Register CRReg
= CmpInstr
.getOperand(0).getReg();
1654 // FP record forms set CR1 based on the exception status bits, not a
1655 // comparison with zero.
1656 if (OpC
== PPC::FCMPUS
|| OpC
== PPC::FCMPUD
)
1659 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1660 // The record forms set the condition register based on a signed comparison
1661 // with zero (so says the ISA manual). This is not as straightforward as it
1662 // seems, however, because this is always a 64-bit comparison on PPC64, even
1663 // for instructions that are 32-bit in nature (like slw for example).
1664 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1665 // for equality checks (as those don't depend on the sign). On PPC64,
1666 // we are restricted to equality for unsigned 64-bit comparisons and for
1667 // signed 32-bit comparisons the applicability is more restricted.
1668 bool isPPC64
= Subtarget
.isPPC64();
1669 bool is32BitSignedCompare
= OpC
== PPC::CMPWI
|| OpC
== PPC::CMPW
;
1670 bool is32BitUnsignedCompare
= OpC
== PPC::CMPLWI
|| OpC
== PPC::CMPLW
;
1671 bool is64BitUnsignedCompare
= OpC
== PPC::CMPLDI
|| OpC
== PPC::CMPLD
;
1673 // Look through copies unless that gets us to a physical register.
1674 unsigned ActualSrc
= TRI
->lookThruCopyLike(SrcReg
, MRI
);
1675 if (Register::isVirtualRegister(ActualSrc
))
1678 // Get the unique definition of SrcReg.
1679 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
1680 if (!MI
) return false;
1682 bool equalityOnly
= false;
1685 if (is32BitSignedCompare
) {
1686 // We can perform this optimization only if MI is sign-extending.
1687 if (isSignExtended(*MI
))
1691 } else if (is32BitUnsignedCompare
) {
1692 // We can perform this optimization, equality only, if MI is
1694 if (isZeroExtended(*MI
)) {
1696 equalityOnly
= true;
1700 equalityOnly
= is64BitUnsignedCompare
;
1702 equalityOnly
= is32BitUnsignedCompare
;
1705 // We need to check the uses of the condition register in order to reject
1706 // non-equality comparisons.
1707 for (MachineRegisterInfo::use_instr_iterator
1708 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1710 MachineInstr
*UseMI
= &*I
;
1711 if (UseMI
->getOpcode() == PPC::BCC
) {
1712 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1713 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1714 // We ignore hint bits when checking for non-equality comparisons.
1715 if (PredCond
!= PPC::PRED_EQ
&& PredCond
!= PPC::PRED_NE
)
1717 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1718 UseMI
->getOpcode() == PPC::ISEL8
) {
1719 unsigned SubIdx
= UseMI
->getOperand(3).getSubReg();
1720 if (SubIdx
!= PPC::sub_eq
)
1727 MachineBasicBlock::iterator I
= CmpInstr
;
1729 // Scan forward to find the first use of the compare.
1730 for (MachineBasicBlock::iterator EL
= CmpInstr
.getParent()->end(); I
!= EL
;
1732 bool FoundUse
= false;
1733 for (MachineRegisterInfo::use_instr_iterator
1734 J
= MRI
->use_instr_begin(CRReg
), JE
= MRI
->use_instr_end();
1745 SmallVector
<std::pair
<MachineOperand
*, PPC::Predicate
>, 4> PredsToUpdate
;
1746 SmallVector
<std::pair
<MachineOperand
*, unsigned>, 4> SubRegsToUpdate
;
1748 // There are two possible candidates which can be changed to set CR[01].
1749 // One is MI, the other is a SUB instruction.
1750 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1751 MachineInstr
*Sub
= nullptr;
1753 // MI is not a candidate for CMPrr.
1755 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1756 // same BB as the comparison. This is to allow the check below to avoid calls
1757 // (and other explicit clobbers); instead we should really check for these
1758 // more explicitly (in at least a few predecessors).
1759 else if (MI
->getParent() != CmpInstr
.getParent())
1761 else if (Value
!= 0) {
1762 // The record-form instructions set CR bit based on signed comparison
1763 // against 0. We try to convert a compare against 1 or -1 into a compare
1764 // against 0 to exploit record-form instructions. For example, we change
1765 // the condition "greater than -1" into "greater than or equal to 0"
1766 // and "less than 1" into "less than or equal to 0".
1768 // Since we optimize comparison based on a specific branch condition,
1769 // we don't optimize if condition code is used by more than once.
1770 if (equalityOnly
|| !MRI
->hasOneUse(CRReg
))
1773 MachineInstr
*UseMI
= &*MRI
->use_instr_begin(CRReg
);
1774 if (UseMI
->getOpcode() != PPC::BCC
)
1777 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1778 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1779 unsigned PredHint
= PPC::getPredicateHint(Pred
);
1780 int16_t Immed
= (int16_t)Value
;
1782 // When modifying the condition in the predicate, we propagate hint bits
1783 // from the original predicate to the new one.
1784 if (Immed
== -1 && PredCond
== PPC::PRED_GT
)
1785 // We convert "greater than -1" into "greater than or equal to 0",
1786 // since we are assuming signed comparison by !equalityOnly
1787 Pred
= PPC::getPredicate(PPC::PRED_GE
, PredHint
);
1788 else if (Immed
== -1 && PredCond
== PPC::PRED_LE
)
1789 // We convert "less than or equal to -1" into "less than 0".
1790 Pred
= PPC::getPredicate(PPC::PRED_LT
, PredHint
);
1791 else if (Immed
== 1 && PredCond
== PPC::PRED_LT
)
1792 // We convert "less than 1" into "less than or equal to 0".
1793 Pred
= PPC::getPredicate(PPC::PRED_LE
, PredHint
);
1794 else if (Immed
== 1 && PredCond
== PPC::PRED_GE
)
1795 // We convert "greater than or equal to 1" into "greater than 0".
1796 Pred
= PPC::getPredicate(PPC::PRED_GT
, PredHint
);
1800 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)), Pred
));
1806 // Get ready to iterate backward from CmpInstr.
1807 MachineBasicBlock::iterator E
= MI
, B
= CmpInstr
.getParent()->begin();
1809 for (; I
!= E
&& !noSub
; --I
) {
1810 const MachineInstr
&Instr
= *I
;
1811 unsigned IOpC
= Instr
.getOpcode();
1813 if (&*I
!= &CmpInstr
&& (Instr
.modifiesRegister(PPC::CR0
, TRI
) ||
1814 Instr
.readsRegister(PPC::CR0
, TRI
)))
1815 // This instruction modifies or uses the record condition register after
1816 // the one we want to change. While we could do this transformation, it
1817 // would likely not be profitable. This transformation removes one
1818 // instruction, and so even forcing RA to generate one move probably
1819 // makes it unprofitable.
1822 // Check whether CmpInstr can be made redundant by the current instruction.
1823 if ((OpC
== PPC::CMPW
|| OpC
== PPC::CMPLW
||
1824 OpC
== PPC::CMPD
|| OpC
== PPC::CMPLD
) &&
1825 (IOpC
== PPC::SUBF
|| IOpC
== PPC::SUBF8
) &&
1826 ((Instr
.getOperand(1).getReg() == SrcReg
&&
1827 Instr
.getOperand(2).getReg() == SrcReg2
) ||
1828 (Instr
.getOperand(1).getReg() == SrcReg2
&&
1829 Instr
.getOperand(2).getReg() == SrcReg
))) {
1835 // The 'and' is below the comparison instruction.
1839 // Return false if no candidates exist.
1843 // The single candidate is called MI.
1847 int MIOpC
= MI
->getOpcode();
1848 if (MIOpC
== PPC::ANDIo
|| MIOpC
== PPC::ANDIo8
||
1849 MIOpC
== PPC::ANDISo
|| MIOpC
== PPC::ANDISo8
)
1852 NewOpC
= PPC::getRecordFormOpcode(MIOpC
);
1853 if (NewOpC
== -1 && PPC::getNonRecordFormOpcode(MIOpC
) != -1)
1857 // FIXME: On the non-embedded POWER architectures, only some of the record
1858 // forms are fast, and we should use only the fast ones.
1860 // The defining instruction has a record form (or is already a record
1861 // form). It is possible, however, that we'll need to reverse the condition
1862 // code of the users.
1866 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1867 // needs to be updated to be based on SUB. Push the condition code
1868 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1869 // condition code of these operands will be modified.
1870 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1871 // comparison against 0, which may modify predicate.
1872 bool ShouldSwap
= false;
1873 if (Sub
&& Value
== 0) {
1874 ShouldSwap
= SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
1875 Sub
->getOperand(2).getReg() == SrcReg
;
1877 // The operands to subf are the opposite of sub, so only in the fixed-point
1878 // case, invert the order.
1879 ShouldSwap
= !ShouldSwap
;
1883 for (MachineRegisterInfo::use_instr_iterator
1884 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1886 MachineInstr
*UseMI
= &*I
;
1887 if (UseMI
->getOpcode() == PPC::BCC
) {
1888 PPC::Predicate Pred
= (PPC::Predicate
) UseMI
->getOperand(0).getImm();
1889 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1890 assert((!equalityOnly
||
1891 PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
) &&
1892 "Invalid predicate for equality-only optimization");
1893 (void)PredCond
; // To suppress warning in release build.
1894 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
1895 PPC::getSwappedPredicate(Pred
)));
1896 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1897 UseMI
->getOpcode() == PPC::ISEL8
) {
1898 unsigned NewSubReg
= UseMI
->getOperand(3).getSubReg();
1899 assert((!equalityOnly
|| NewSubReg
== PPC::sub_eq
) &&
1900 "Invalid CR bit for equality-only optimization");
1902 if (NewSubReg
== PPC::sub_lt
)
1903 NewSubReg
= PPC::sub_gt
;
1904 else if (NewSubReg
== PPC::sub_gt
)
1905 NewSubReg
= PPC::sub_lt
;
1907 SubRegsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(3)),
1909 } else // We need to abort on a user we don't understand.
1912 assert(!(Value
!= 0 && ShouldSwap
) &&
1913 "Non-zero immediate support and ShouldSwap"
1914 "may conflict in updating predicate");
1916 // Create a new virtual register to hold the value of the CR set by the
1917 // record-form instruction. If the instruction was not previously in
1918 // record form, then set the kill flag on the CR.
1919 CmpInstr
.eraseFromParent();
1921 MachineBasicBlock::iterator MII
= MI
;
1922 BuildMI(*MI
->getParent(), std::next(MII
), MI
->getDebugLoc(),
1923 get(TargetOpcode::COPY
), CRReg
)
1924 .addReg(PPC::CR0
, MIOpC
!= NewOpC
? RegState::Kill
: 0);
1926 // Even if CR0 register were dead before, it is alive now since the
1927 // instruction we just built uses it.
1928 MI
->clearRegisterDeads(PPC::CR0
);
1930 if (MIOpC
!= NewOpC
) {
1931 // We need to be careful here: we're replacing one instruction with
1932 // another, and we need to make sure that we get all of the right
1933 // implicit uses and defs. On the other hand, the caller may be holding
1934 // an iterator to this instruction, and so we can't delete it (this is
1935 // specifically the case if this is the instruction directly after the
1938 // Rotates are expensive instructions. If we're emitting a record-form
1939 // rotate that can just be an andi/andis, we should just emit that.
1940 if (MIOpC
== PPC::RLWINM
|| MIOpC
== PPC::RLWINM8
) {
1941 Register GPRRes
= MI
->getOperand(0).getReg();
1942 int64_t SH
= MI
->getOperand(2).getImm();
1943 int64_t MB
= MI
->getOperand(3).getImm();
1944 int64_t ME
= MI
->getOperand(4).getImm();
1945 // We can only do this if both the start and end of the mask are in the
1947 bool MBInLoHWord
= MB
>= 16;
1948 bool MEInLoHWord
= ME
>= 16;
1949 uint64_t Mask
= ~0LLU;
1951 if (MB
<= ME
&& MBInLoHWord
== MEInLoHWord
&& SH
== 0) {
1952 Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
1953 // The mask value needs to shift right 16 if we're emitting andis.
1954 Mask
>>= MBInLoHWord
? 0 : 16;
1955 NewOpC
= MIOpC
== PPC::RLWINM
?
1956 (MBInLoHWord
? PPC::ANDIo
: PPC::ANDISo
) :
1957 (MBInLoHWord
? PPC::ANDIo8
:PPC::ANDISo8
);
1958 } else if (MRI
->use_empty(GPRRes
) && (ME
== 31) &&
1959 (ME
- MB
+ 1 == SH
) && (MB
>= 16)) {
1960 // If we are rotating by the exact number of bits as are in the mask
1961 // and the mask is in the least significant bits of the register,
1962 // that's just an andis. (as long as the GPR result has no uses).
1963 Mask
= ((1LLU << 32) - 1) & ~((1LLU << (32 - SH
)) - 1);
1965 NewOpC
= MIOpC
== PPC::RLWINM
? PPC::ANDISo
:PPC::ANDISo8
;
1967 // If we've set the mask, we can transform.
1968 if (Mask
!= ~0LLU) {
1969 MI
->RemoveOperand(4);
1970 MI
->RemoveOperand(3);
1971 MI
->getOperand(2).setImm(Mask
);
1972 NumRcRotatesConvertedToRcAnd
++;
1974 } else if (MIOpC
== PPC::RLDICL
&& MI
->getOperand(2).getImm() == 0) {
1975 int64_t MB
= MI
->getOperand(3).getImm();
1977 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
1978 NewOpC
= PPC::ANDIo8
;
1979 MI
->RemoveOperand(3);
1980 MI
->getOperand(2).setImm(Mask
);
1981 NumRcRotatesConvertedToRcAnd
++;
1985 const MCInstrDesc
&NewDesc
= get(NewOpC
);
1986 MI
->setDesc(NewDesc
);
1988 if (NewDesc
.ImplicitDefs
)
1989 for (const MCPhysReg
*ImpDefs
= NewDesc
.getImplicitDefs();
1990 *ImpDefs
; ++ImpDefs
)
1991 if (!MI
->definesRegister(*ImpDefs
))
1992 MI
->addOperand(*MI
->getParent()->getParent(),
1993 MachineOperand::CreateReg(*ImpDefs
, true, true));
1994 if (NewDesc
.ImplicitUses
)
1995 for (const MCPhysReg
*ImpUses
= NewDesc
.getImplicitUses();
1996 *ImpUses
; ++ImpUses
)
1997 if (!MI
->readsRegister(*ImpUses
))
1998 MI
->addOperand(*MI
->getParent()->getParent(),
1999 MachineOperand::CreateReg(*ImpUses
, false, true));
2001 assert(MI
->definesRegister(PPC::CR0
) &&
2002 "Record-form instruction does not define cr0?");
2004 // Modify the condition code of operands in OperandsToUpdate.
2005 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2006 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2007 for (unsigned i
= 0, e
= PredsToUpdate
.size(); i
< e
; i
++)
2008 PredsToUpdate
[i
].first
->setImm(PredsToUpdate
[i
].second
);
2010 for (unsigned i
= 0, e
= SubRegsToUpdate
.size(); i
< e
; i
++)
2011 SubRegsToUpdate
[i
].first
->setSubReg(SubRegsToUpdate
[i
].second
);
2016 /// GetInstSize - Return the number of bytes of code the specified
2017 /// instruction may be. This returns the maximum number of bytes.
2019 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
2020 unsigned Opcode
= MI
.getOpcode();
2022 if (Opcode
== PPC::INLINEASM
|| Opcode
== PPC::INLINEASM_BR
) {
2023 const MachineFunction
*MF
= MI
.getParent()->getParent();
2024 const char *AsmStr
= MI
.getOperand(0).getSymbolName();
2025 return getInlineAsmLength(AsmStr
, *MF
->getTarget().getMCAsmInfo());
2026 } else if (Opcode
== TargetOpcode::STACKMAP
) {
2027 StackMapOpers
Opers(&MI
);
2028 return Opers
.getNumPatchBytes();
2029 } else if (Opcode
== TargetOpcode::PATCHPOINT
) {
2030 PatchPointOpers
Opers(&MI
);
2031 return Opers
.getNumPatchBytes();
2033 return get(Opcode
).getSize();
2037 std::pair
<unsigned, unsigned>
2038 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
2039 const unsigned Mask
= PPCII::MO_ACCESS_MASK
;
2040 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
2043 ArrayRef
<std::pair
<unsigned, const char *>>
2044 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2045 using namespace PPCII
;
2046 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2049 {MO_TPREL_LO
, "ppc-tprel-lo"},
2050 {MO_TPREL_HA
, "ppc-tprel-ha"},
2051 {MO_DTPREL_LO
, "ppc-dtprel-lo"},
2052 {MO_TLSLD_LO
, "ppc-tlsld-lo"},
2053 {MO_TOC_LO
, "ppc-toc-lo"},
2054 {MO_TLS
, "ppc-tls"}};
2055 return makeArrayRef(TargetFlags
);
2058 ArrayRef
<std::pair
<unsigned, const char *>>
2059 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2060 using namespace PPCII
;
2061 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2062 {MO_PLT
, "ppc-plt"},
2063 {MO_PIC_FLAG
, "ppc-pic"},
2064 {MO_NLP_FLAG
, "ppc-nlp"},
2065 {MO_NLP_HIDDEN_FLAG
, "ppc-nlp-hidden"}};
2066 return makeArrayRef(TargetFlags
);
2069 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2070 // The VSX versions have the advantage of a full 64-register target whereas
2071 // the FP ones have the advantage of lower latency and higher throughput. So
2072 // what we are after is using the faster instructions in low register pressure
2073 // situations and using the larger register file in high register pressure
2075 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr
&MI
) const {
2076 unsigned UpperOpcode
, LowerOpcode
;
2077 switch (MI
.getOpcode()) {
2078 case PPC::DFLOADf32
:
2079 UpperOpcode
= PPC::LXSSP
;
2080 LowerOpcode
= PPC::LFS
;
2082 case PPC::DFLOADf64
:
2083 UpperOpcode
= PPC::LXSD
;
2084 LowerOpcode
= PPC::LFD
;
2086 case PPC::DFSTOREf32
:
2087 UpperOpcode
= PPC::STXSSP
;
2088 LowerOpcode
= PPC::STFS
;
2090 case PPC::DFSTOREf64
:
2091 UpperOpcode
= PPC::STXSD
;
2092 LowerOpcode
= PPC::STFD
;
2094 case PPC::XFLOADf32
:
2095 UpperOpcode
= PPC::LXSSPX
;
2096 LowerOpcode
= PPC::LFSX
;
2098 case PPC::XFLOADf64
:
2099 UpperOpcode
= PPC::LXSDX
;
2100 LowerOpcode
= PPC::LFDX
;
2102 case PPC::XFSTOREf32
:
2103 UpperOpcode
= PPC::STXSSPX
;
2104 LowerOpcode
= PPC::STFSX
;
2106 case PPC::XFSTOREf64
:
2107 UpperOpcode
= PPC::STXSDX
;
2108 LowerOpcode
= PPC::STFDX
;
2111 UpperOpcode
= PPC::LXSIWAX
;
2112 LowerOpcode
= PPC::LFIWAX
;
2115 UpperOpcode
= PPC::LXSIWZX
;
2116 LowerOpcode
= PPC::LFIWZX
;
2119 UpperOpcode
= PPC::STXSIWX
;
2120 LowerOpcode
= PPC::STFIWX
;
2123 llvm_unreachable("Unknown Operation!");
2126 Register TargetReg
= MI
.getOperand(0).getReg();
2128 if ((TargetReg
>= PPC::F0
&& TargetReg
<= PPC::F31
) ||
2129 (TargetReg
>= PPC::VSL0
&& TargetReg
<= PPC::VSL31
))
2130 Opcode
= LowerOpcode
;
2132 Opcode
= UpperOpcode
;
2133 MI
.setDesc(get(Opcode
));
2137 static bool isAnImmediateOperand(const MachineOperand
&MO
) {
2138 return MO
.isCPI() || MO
.isGlobal() || MO
.isImm();
2141 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
2142 auto &MBB
= *MI
.getParent();
2143 auto DL
= MI
.getDebugLoc();
2145 switch (MI
.getOpcode()) {
2146 case TargetOpcode::LOAD_STACK_GUARD
: {
2147 assert(Subtarget
.isTargetLinux() &&
2148 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2149 const int64_t Offset
= Subtarget
.isPPC64() ? -0x7010 : -0x7008;
2150 const unsigned Reg
= Subtarget
.isPPC64() ? PPC::X13
: PPC::R2
;
2151 MI
.setDesc(get(Subtarget
.isPPC64() ? PPC::LD
: PPC::LWZ
));
2152 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2157 case PPC::DFLOADf32
:
2158 case PPC::DFLOADf64
:
2159 case PPC::DFSTOREf32
:
2160 case PPC::DFSTOREf64
: {
2161 assert(Subtarget
.hasP9Vector() &&
2162 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2163 assert(MI
.getOperand(2).isReg() &&
2164 isAnImmediateOperand(MI
.getOperand(1)) &&
2165 "D-form op must have register and immediate operands");
2166 return expandVSXMemPseudo(MI
);
2168 case PPC::XFLOADf32
:
2169 case PPC::XFSTOREf32
:
2173 assert(Subtarget
.hasP8Vector() &&
2174 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2175 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2176 "X-form op must have register and register operands");
2177 return expandVSXMemPseudo(MI
);
2179 case PPC::XFLOADf64
:
2180 case PPC::XFSTOREf64
: {
2181 assert(Subtarget
.hasVSX() &&
2182 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2183 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2184 "X-form op must have register and register operands");
2185 return expandVSXMemPseudo(MI
);
2187 case PPC::SPILLTOVSR_LD
: {
2188 Register TargetReg
= MI
.getOperand(0).getReg();
2189 if (PPC::VSFRCRegClass
.contains(TargetReg
)) {
2190 MI
.setDesc(get(PPC::DFLOADf64
));
2191 return expandPostRAPseudo(MI
);
2194 MI
.setDesc(get(PPC::LD
));
2197 case PPC::SPILLTOVSR_ST
: {
2198 Register SrcReg
= MI
.getOperand(0).getReg();
2199 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2200 NumStoreSPILLVSRRCAsVec
++;
2201 MI
.setDesc(get(PPC::DFSTOREf64
));
2202 return expandPostRAPseudo(MI
);
2204 NumStoreSPILLVSRRCAsGpr
++;
2205 MI
.setDesc(get(PPC::STD
));
2209 case PPC::SPILLTOVSR_LDX
: {
2210 Register TargetReg
= MI
.getOperand(0).getReg();
2211 if (PPC::VSFRCRegClass
.contains(TargetReg
))
2212 MI
.setDesc(get(PPC::LXSDX
));
2214 MI
.setDesc(get(PPC::LDX
));
2217 case PPC::SPILLTOVSR_STX
: {
2218 Register SrcReg
= MI
.getOperand(0).getReg();
2219 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2220 NumStoreSPILLVSRRCAsVec
++;
2221 MI
.setDesc(get(PPC::STXSDX
));
2223 NumStoreSPILLVSRRCAsGpr
++;
2224 MI
.setDesc(get(PPC::STDX
));
2229 case PPC::CFENCE8
: {
2230 auto Val
= MI
.getOperand(0).getReg();
2231 BuildMI(MBB
, MI
, DL
, get(PPC::CMPD
), PPC::CR7
).addReg(Val
).addReg(Val
);
2232 BuildMI(MBB
, MI
, DL
, get(PPC::CTRL_DEP
))
2233 .addImm(PPC::PRED_NE_MINUS
)
2236 MI
.setDesc(get(PPC::ISYNC
));
2237 MI
.RemoveOperand(0);
2244 // Essentially a compile-time implementation of a compare->isel sequence.
2245 // It takes two constants to compare, along with the true/false registers
2246 // and the comparison type (as a subreg to a CR field) and returns one
2247 // of the true/false registers, depending on the comparison results.
2248 static unsigned selectReg(int64_t Imm1
, int64_t Imm2
, unsigned CompareOpc
,
2249 unsigned TrueReg
, unsigned FalseReg
,
2250 unsigned CRSubReg
) {
2251 // Signed comparisons. The immediates are assumed to be sign-extended.
2252 if (CompareOpc
== PPC::CMPWI
|| CompareOpc
== PPC::CMPDI
) {
2254 default: llvm_unreachable("Unknown integer comparison type.");
2256 return Imm1
< Imm2
? TrueReg
: FalseReg
;
2258 return Imm1
> Imm2
? TrueReg
: FalseReg
;
2260 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2263 // Unsigned comparisons.
2264 else if (CompareOpc
== PPC::CMPLWI
|| CompareOpc
== PPC::CMPLDI
) {
2266 default: llvm_unreachable("Unknown integer comparison type.");
2268 return (uint64_t)Imm1
< (uint64_t)Imm2
? TrueReg
: FalseReg
;
2270 return (uint64_t)Imm1
> (uint64_t)Imm2
? TrueReg
: FalseReg
;
2272 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2275 return PPC::NoRegister
;
2278 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr
&MI
,
2280 int64_t Imm
) const {
2281 assert(MI
.getOperand(OpNo
).isReg() && "Operand must be a REG");
2282 // Replace the REG with the Immediate.
2283 Register InUseReg
= MI
.getOperand(OpNo
).getReg();
2284 MI
.getOperand(OpNo
).ChangeToImmediate(Imm
);
2286 if (empty(MI
.implicit_operands()))
2289 // We need to make sure that the MI didn't have any implicit use
2290 // of this REG any more.
2291 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2292 int UseOpIdx
= MI
.findRegisterUseOperandIdx(InUseReg
, false, TRI
);
2293 if (UseOpIdx
>= 0) {
2294 MachineOperand
&MO
= MI
.getOperand(UseOpIdx
);
2295 if (MO
.isImplicit())
2296 // The operands must always be in the following order:
2297 // - explicit reg defs,
2298 // - other explicit operands (reg uses, immediates, etc.),
2299 // - implicit reg defs
2300 // - implicit reg uses
2301 // Therefore, removing the implicit operand won't change the explicit
2303 MI
.RemoveOperand(UseOpIdx
);
2307 // Replace an instruction with one that materializes a constant (and sets
2308 // CR0 if the original instruction was a record-form instruction).
2309 void PPCInstrInfo::replaceInstrWithLI(MachineInstr
&MI
,
2310 const LoadImmediateInfo
&LII
) const {
2311 // Remove existing operands.
2312 int OperandToKeep
= LII
.SetCR
? 1 : 0;
2313 for (int i
= MI
.getNumOperands() - 1; i
> OperandToKeep
; i
--)
2314 MI
.RemoveOperand(i
);
2316 // Replace the instruction.
2318 MI
.setDesc(get(LII
.Is64Bit
? PPC::ANDIo8
: PPC::ANDIo
));
2319 // Set the immediate.
2320 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2321 .addImm(LII
.Imm
).addReg(PPC::CR0
, RegState::ImplicitDefine
);
2325 MI
.setDesc(get(LII
.Is64Bit
? PPC::LI8
: PPC::LI
));
2327 // Set the immediate.
2328 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2332 MachineInstr
*PPCInstrInfo::getDefMIPostRA(unsigned Reg
, MachineInstr
&MI
,
2333 bool &SeenIntermediateUse
) const {
2334 assert(!MI
.getParent()->getParent()->getRegInfo().isSSA() &&
2335 "Should be called after register allocation.");
2336 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2337 MachineBasicBlock::reverse_iterator E
= MI
.getParent()->rend(), It
= MI
;
2339 SeenIntermediateUse
= false;
2340 for (; It
!= E
; ++It
) {
2341 if (It
->modifiesRegister(Reg
, TRI
))
2343 if (It
->readsRegister(Reg
, TRI
))
2344 SeenIntermediateUse
= true;
2349 MachineInstr
*PPCInstrInfo::getForwardingDefMI(
2351 unsigned &OpNoForForwarding
,
2352 bool &SeenIntermediateUse
) const {
2353 OpNoForForwarding
= ~0U;
2354 MachineInstr
*DefMI
= nullptr;
2355 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
2356 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2357 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2358 // within the basic block to see if the register is defined using an LI/LI8.
2360 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2361 if (!MI
.getOperand(i
).isReg())
2363 Register Reg
= MI
.getOperand(i
).getReg();
2364 if (!Register::isVirtualRegister(Reg
))
2366 unsigned TrueReg
= TRI
->lookThruCopyLike(Reg
, MRI
);
2367 if (Register::isVirtualRegister(TrueReg
)) {
2368 DefMI
= MRI
->getVRegDef(TrueReg
);
2369 if (DefMI
->getOpcode() == PPC::LI
|| DefMI
->getOpcode() == PPC::LI8
) {
2370 OpNoForForwarding
= i
;
2376 // Looking back through the definition for each operand could be expensive,
2377 // so exit early if this isn't an instruction that either has an immediate
2378 // form or is already an immediate form that we can handle.
2380 unsigned Opc
= MI
.getOpcode();
2381 bool ConvertibleImmForm
=
2382 Opc
== PPC::CMPWI
|| Opc
== PPC::CMPLWI
||
2383 Opc
== PPC::CMPDI
|| Opc
== PPC::CMPLDI
||
2384 Opc
== PPC::ADDI
|| Opc
== PPC::ADDI8
||
2385 Opc
== PPC::ORI
|| Opc
== PPC::ORI8
||
2386 Opc
== PPC::XORI
|| Opc
== PPC::XORI8
||
2387 Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
||
2388 Opc
== PPC::RLDICL_32
|| Opc
== PPC::RLDICL_32_64
||
2389 Opc
== PPC::RLWINM
|| Opc
== PPC::RLWINMo
||
2390 Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2391 bool IsVFReg
= (MI
.getNumOperands() && MI
.getOperand(0).isReg())
2392 ? isVFRegister(MI
.getOperand(0).getReg())
2394 if (!ConvertibleImmForm
&& !instrHasImmForm(Opc
, IsVFReg
, III
, true))
2397 // Don't convert or %X, %Y, %Y since that's just a register move.
2398 if ((Opc
== PPC::OR
|| Opc
== PPC::OR8
) &&
2399 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
2401 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2402 MachineOperand
&MO
= MI
.getOperand(i
);
2403 SeenIntermediateUse
= false;
2404 if (MO
.isReg() && MO
.isUse() && !MO
.isImplicit()) {
2405 Register Reg
= MI
.getOperand(i
).getReg();
2406 // If we see another use of this reg between the def and the MI,
2407 // we want to flat it so the def isn't deleted.
2408 MachineInstr
*DefMI
= getDefMIPostRA(Reg
, MI
, SeenIntermediateUse
);
2410 // Is this register defined by some form of add-immediate (including
2411 // load-immediate) within this basic block?
2412 switch (DefMI
->getOpcode()) {
2420 OpNoForForwarding
= i
;
2427 return OpNoForForwarding
== ~0U ? nullptr : DefMI
;
2430 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2431 static const unsigned OpcodesForSpill
[2][SOK_LastOpcodeSpill
] = {
2433 {PPC::STW
, PPC::STD
, PPC::STFD
, PPC::STFS
, PPC::SPILL_CR
,
2434 PPC::SPILL_CRBIT
, PPC::STVX
, PPC::STXVD2X
, PPC::STXSDX
, PPC::STXSSPX
,
2435 PPC::SPILL_VRSAVE
, PPC::QVSTFDX
, PPC::QVSTFSXs
, PPC::QVSTFDXb
,
2436 PPC::SPILLTOVSR_ST
, PPC::EVSTDD
, PPC::SPESTW
},
2438 {PPC::STW
, PPC::STD
, PPC::STFD
, PPC::STFS
, PPC::SPILL_CR
,
2439 PPC::SPILL_CRBIT
, PPC::STVX
, PPC::STXV
, PPC::DFSTOREf64
, PPC::DFSTOREf32
,
2440 PPC::SPILL_VRSAVE
, PPC::QVSTFDX
, PPC::QVSTFSXs
, PPC::QVSTFDXb
,
2441 PPC::SPILLTOVSR_ST
}};
2443 return OpcodesForSpill
[(Subtarget
.hasP9Vector()) ? 1 : 0];
2446 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2447 static const unsigned OpcodesForSpill
[2][SOK_LastOpcodeSpill
] = {
2449 {PPC::LWZ
, PPC::LD
, PPC::LFD
, PPC::LFS
, PPC::RESTORE_CR
,
2450 PPC::RESTORE_CRBIT
, PPC::LVX
, PPC::LXVD2X
, PPC::LXSDX
, PPC::LXSSPX
,
2451 PPC::RESTORE_VRSAVE
, PPC::QVLFDX
, PPC::QVLFSXs
, PPC::QVLFDXb
,
2452 PPC::SPILLTOVSR_LD
, PPC::EVLDD
, PPC::SPELWZ
},
2454 {PPC::LWZ
, PPC::LD
, PPC::LFD
, PPC::LFS
, PPC::RESTORE_CR
,
2455 PPC::RESTORE_CRBIT
, PPC::LVX
, PPC::LXV
, PPC::DFLOADf64
, PPC::DFLOADf32
,
2456 PPC::RESTORE_VRSAVE
, PPC::QVLFDX
, PPC::QVLFSXs
, PPC::QVLFDXb
,
2457 PPC::SPILLTOVSR_LD
}};
2459 return OpcodesForSpill
[(Subtarget
.hasP9Vector()) ? 1 : 0];
2462 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr
&StartMI
, MachineInstr
&EndMI
,
2463 unsigned RegNo
) const {
2464 const MachineRegisterInfo
&MRI
=
2465 StartMI
.getParent()->getParent()->getRegInfo();
2469 // Instructions between [StartMI, EndMI] should be in same basic block.
2470 assert((StartMI
.getParent() == EndMI
.getParent()) &&
2471 "Instructions are not in same basic block");
2473 bool IsKillSet
= false;
2475 auto clearOperandKillInfo
= [=] (MachineInstr
&MI
, unsigned Index
) {
2476 MachineOperand
&MO
= MI
.getOperand(Index
);
2477 if (MO
.isReg() && MO
.isUse() && MO
.isKill() &&
2478 getRegisterInfo().regsOverlap(MO
.getReg(), RegNo
))
2479 MO
.setIsKill(false);
2482 // Set killed flag for EndMI.
2483 // No need to do anything if EndMI defines RegNo.
2485 EndMI
.findRegisterUseOperandIdx(RegNo
, false, &getRegisterInfo());
2486 if (UseIndex
!= -1) {
2487 EndMI
.getOperand(UseIndex
).setIsKill(true);
2489 // Clear killed flag for other EndMI operands related to RegNo. In some
2490 // upexpected cases, killed may be set multiple times for same register
2491 // operand in same MI.
2492 for (int i
= 0, e
= EndMI
.getNumOperands(); i
!= e
; ++i
)
2494 clearOperandKillInfo(EndMI
, i
);
2497 // Walking the inst in reverse order (EndMI -> StartMI].
2498 MachineBasicBlock::reverse_iterator It
= EndMI
;
2499 MachineBasicBlock::reverse_iterator E
= EndMI
.getParent()->rend();
2500 // EndMI has been handled above, skip it here.
2502 MachineOperand
*MO
= nullptr;
2503 for (; It
!= E
; ++It
) {
2504 // Skip insturctions which could not be a def/use of RegNo.
2505 if (It
->isDebugInstr() || It
->isPosition())
2508 // Clear killed flag for all It operands related to RegNo. In some
2509 // upexpected cases, killed may be set multiple times for same register
2510 // operand in same MI.
2511 for (int i
= 0, e
= It
->getNumOperands(); i
!= e
; ++i
)
2512 clearOperandKillInfo(*It
, i
);
2514 // If killed is not set, set killed for its last use or set dead for its def
2517 if ((MO
= It
->findRegisterUseOperand(RegNo
, false, &getRegisterInfo()))) {
2518 // Use found, set it killed.
2520 MO
->setIsKill(true);
2522 } else if ((MO
= It
->findRegisterDefOperand(RegNo
, false, true,
2523 &getRegisterInfo()))) {
2524 // No use found, set dead for its def.
2525 assert(&*It
== &StartMI
&& "No new def between StartMI and EndMI.");
2526 MO
->setIsDead(true);
2531 if ((&*It
) == &StartMI
)
2534 // Ensure RegMo liveness is killed after EndMI.
2535 assert((IsKillSet
|| (MO
&& MO
->isDead())) &&
2536 "RegNo should be killed or dead");
2539 // If this instruction has an immediate form and one of its operands is a
2540 // result of a load-immediate or an add-immediate, convert it to
2541 // the immediate form if the constant is in range.
2542 bool PPCInstrInfo::convertToImmediateForm(MachineInstr
&MI
,
2543 MachineInstr
**KilledDef
) const {
2544 MachineFunction
*MF
= MI
.getParent()->getParent();
2545 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
2546 bool PostRA
= !MRI
->isSSA();
2547 bool SeenIntermediateUse
= true;
2548 unsigned ForwardingOperand
= ~0U;
2549 MachineInstr
*DefMI
= getForwardingDefMI(MI
, ForwardingOperand
,
2550 SeenIntermediateUse
);
2553 assert(ForwardingOperand
< MI
.getNumOperands() &&
2554 "The forwarding operand needs to be valid at this point");
2555 bool IsForwardingOperandKilled
= MI
.getOperand(ForwardingOperand
).isKill();
2556 bool KillFwdDefMI
= !SeenIntermediateUse
&& IsForwardingOperandKilled
;
2557 Register ForwardingOperandReg
= MI
.getOperand(ForwardingOperand
).getReg();
2558 if (KilledDef
&& KillFwdDefMI
)
2562 bool IsVFReg
= MI
.getOperand(0).isReg()
2563 ? isVFRegister(MI
.getOperand(0).getReg())
2565 bool HasImmForm
= instrHasImmForm(MI
.getOpcode(), IsVFReg
, III
, PostRA
);
2566 // If this is a reg+reg instruction that has a reg+imm form,
2567 // and one of the operands is produced by an add-immediate,
2568 // try to convert it.
2570 transformToImmFormFedByAdd(MI
, III
, ForwardingOperand
, *DefMI
,
2574 if ((DefMI
->getOpcode() != PPC::LI
&& DefMI
->getOpcode() != PPC::LI8
) ||
2575 !DefMI
->getOperand(1).isImm())
2578 int64_t Immediate
= DefMI
->getOperand(1).getImm();
2579 // Sign-extend to 64-bits.
2580 int64_t SExtImm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
2581 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
2583 // If this is a reg+reg instruction that has a reg+imm form,
2584 // and one of the operands is produced by LI, convert it now.
2586 return transformToImmFormFedByLI(MI
, III
, ForwardingOperand
, *DefMI
, SExtImm
);
2588 bool ReplaceWithLI
= false;
2589 bool Is64BitLI
= false;
2592 unsigned Opc
= MI
.getOpcode();
2594 default: return false;
2596 // FIXME: Any branches conditional on such a comparison can be made
2597 // unconditional. At this time, this happens too infrequently to be worth
2598 // the implementation effort, but if that ever changes, we could convert
2599 // such a pattern here.
2604 // Doing this post-RA would require dataflow analysis to reliably find uses
2605 // of the CR register set by the compare.
2606 // No need to fixup killed/dead flag since this transformation is only valid
2610 // If a compare-immediate is fed by an immediate and is itself an input of
2611 // an ISEL (the most common case) into a COPY of the correct register.
2612 bool Changed
= false;
2613 Register DefReg
= MI
.getOperand(0).getReg();
2614 int64_t Comparand
= MI
.getOperand(2).getImm();
2615 int64_t SExtComparand
= ((uint64_t)Comparand
& ~0x7FFFuLL
) != 0 ?
2616 (Comparand
| 0xFFFFFFFFFFFF0000) : Comparand
;
2618 for (auto &CompareUseMI
: MRI
->use_instructions(DefReg
)) {
2619 unsigned UseOpc
= CompareUseMI
.getOpcode();
2620 if (UseOpc
!= PPC::ISEL
&& UseOpc
!= PPC::ISEL8
)
2622 unsigned CRSubReg
= CompareUseMI
.getOperand(3).getSubReg();
2623 Register TrueReg
= CompareUseMI
.getOperand(1).getReg();
2624 Register FalseReg
= CompareUseMI
.getOperand(2).getReg();
2625 unsigned RegToCopy
= selectReg(SExtImm
, SExtComparand
, Opc
, TrueReg
,
2626 FalseReg
, CRSubReg
);
2627 if (RegToCopy
== PPC::NoRegister
)
2629 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2630 if (RegToCopy
== PPC::ZERO
|| RegToCopy
== PPC::ZERO8
) {
2631 CompareUseMI
.setDesc(get(UseOpc
== PPC::ISEL8
? PPC::LI8
: PPC::LI
));
2632 replaceInstrOperandWithImm(CompareUseMI
, 1, 0);
2633 CompareUseMI
.RemoveOperand(3);
2634 CompareUseMI
.RemoveOperand(2);
2638 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2639 LLVM_DEBUG(DefMI
->dump(); MI
.dump(); CompareUseMI
.dump());
2640 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2641 // Convert to copy and remove unneeded operands.
2642 CompareUseMI
.setDesc(get(PPC::COPY
));
2643 CompareUseMI
.RemoveOperand(3);
2644 CompareUseMI
.RemoveOperand(RegToCopy
== TrueReg
? 2 : 1);
2645 CmpIselsConverted
++;
2647 LLVM_DEBUG(CompareUseMI
.dump());
2651 // This may end up incremented multiple times since this function is called
2652 // during a fixed-point transformation, but it is only meant to indicate the
2653 // presence of this opportunity.
2654 MissedConvertibleImmediateInstrs
++;
2658 // Immediate forms - may simply be convertable to an LI.
2661 // Does the sum fit in a 16-bit signed field?
2662 int64_t Addend
= MI
.getOperand(2).getImm();
2663 if (isInt
<16>(Addend
+ SExtImm
)) {
2664 ReplaceWithLI
= true;
2665 Is64BitLI
= Opc
== PPC::ADDI8
;
2666 NewImm
= Addend
+ SExtImm
;
2673 case PPC::RLDICL_32
:
2674 case PPC::RLDICL_32_64
: {
2675 // Use APInt's rotate function.
2676 int64_t SH
= MI
.getOperand(2).getImm();
2677 int64_t MB
= MI
.getOperand(3).getImm();
2678 APInt
InVal((Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
) ?
2679 64 : 32, SExtImm
, true);
2680 InVal
= InVal
.rotl(SH
);
2681 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
2683 // Can't replace negative values with an LI as that will sign-extend
2684 // and not clear the left bits. If we're setting the CR bit, we will use
2685 // ANDIo which won't sign extend, so that's safe.
2686 if (isUInt
<15>(InVal
.getSExtValue()) ||
2687 (Opc
== PPC::RLDICLo
&& isUInt
<16>(InVal
.getSExtValue()))) {
2688 ReplaceWithLI
= true;
2689 Is64BitLI
= Opc
!= PPC::RLDICL_32
;
2690 NewImm
= InVal
.getSExtValue();
2691 SetCR
= Opc
== PPC::RLDICLo
;
2699 case PPC::RLWINM8o
: {
2700 int64_t SH
= MI
.getOperand(2).getImm();
2701 int64_t MB
= MI
.getOperand(3).getImm();
2702 int64_t ME
= MI
.getOperand(4).getImm();
2703 APInt
InVal(32, SExtImm
, true);
2704 InVal
= InVal
.rotl(SH
);
2705 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2706 uint64_t Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
2708 // Can't replace negative values with an LI as that will sign-extend
2709 // and not clear the left bits. If we're setting the CR bit, we will use
2710 // ANDIo which won't sign extend, so that's safe.
2711 bool ValueFits
= isUInt
<15>(InVal
.getSExtValue());
2712 ValueFits
|= ((Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
) &&
2713 isUInt
<16>(InVal
.getSExtValue()));
2715 ReplaceWithLI
= true;
2716 Is64BitLI
= Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2717 NewImm
= InVal
.getSExtValue();
2718 SetCR
= Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
;
2727 int64_t LogicalImm
= MI
.getOperand(2).getImm();
2729 if (Opc
== PPC::ORI
|| Opc
== PPC::ORI8
)
2730 Result
= LogicalImm
| SExtImm
;
2732 Result
= LogicalImm
^ SExtImm
;
2733 if (isInt
<16>(Result
)) {
2734 ReplaceWithLI
= true;
2735 Is64BitLI
= Opc
== PPC::ORI8
|| Opc
== PPC::XORI8
;
2743 if (ReplaceWithLI
) {
2744 // We need to be careful with CR-setting instructions we're replacing.
2746 // We don't know anything about uses when we're out of SSA, so only
2747 // replace if the new immediate will be reproduced.
2748 bool ImmChanged
= (SExtImm
& NewImm
) != NewImm
;
2749 if (PostRA
&& ImmChanged
)
2753 // If the defining load-immediate has no other uses, we can just replace
2754 // the immediate with the new immediate.
2755 if (MRI
->hasOneUse(DefMI
->getOperand(0).getReg()))
2756 DefMI
->getOperand(1).setImm(NewImm
);
2758 // If we're not using the GPR result of the CR-setting instruction, we
2759 // just need to and with zero/non-zero depending on the new immediate.
2760 else if (MRI
->use_empty(MI
.getOperand(0).getReg())) {
2762 assert(Immediate
&& "Transformation converted zero to non-zero?");
2766 else if (ImmChanged
)
2771 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2772 LLVM_DEBUG(MI
.dump());
2773 LLVM_DEBUG(dbgs() << "Fed by:\n");
2774 LLVM_DEBUG(DefMI
->dump());
2775 LoadImmediateInfo LII
;
2777 LII
.Is64Bit
= Is64BitLI
;
2779 // If we're setting the CR, the original load-immediate must be kept (as an
2780 // operand to ANDIo/ANDI8o).
2781 if (KilledDef
&& SetCR
)
2782 *KilledDef
= nullptr;
2783 replaceInstrWithLI(MI
, LII
);
2785 // Fixup killed/dead flag after transformation.
2787 // ForwardingOperandReg = LI imm1
2788 // y = op2 imm2, ForwardingOperandReg(killed)
2789 if (IsForwardingOperandKilled
)
2790 fixupIsDeadOrKill(*DefMI
, MI
, ForwardingOperandReg
);
2792 LLVM_DEBUG(dbgs() << "With:\n");
2793 LLVM_DEBUG(MI
.dump());
2799 bool PPCInstrInfo::instrHasImmForm(unsigned Opc
, bool IsVFReg
,
2800 ImmInstrInfo
&III
, bool PostRA
) const {
2801 // The vast majority of the instructions would need their operand 2 replaced
2802 // with an immediate when switching to the reg+imm form. A marked exception
2803 // are the update form loads/stores for which a constant operand 2 would need
2804 // to turn into a displacement and move operand 1 to the operand 2 position.
2806 III
.OpNoForForwarding
= 2;
2808 III
.ImmMustBeMultipleOf
= 1;
2809 III
.TruncateImmTo
= 0;
2810 III
.IsSummingOperands
= false;
2812 default: return false;
2815 III
.SignedImm
= true;
2816 III
.ZeroIsSpecialOrig
= 0;
2817 III
.ZeroIsSpecialNew
= 1;
2818 III
.IsCommutative
= true;
2819 III
.IsSummingOperands
= true;
2820 III
.ImmOpcode
= Opc
== PPC::ADD4
? PPC::ADDI
: PPC::ADDI8
;
2824 III
.SignedImm
= true;
2825 III
.ZeroIsSpecialOrig
= 0;
2826 III
.ZeroIsSpecialNew
= 0;
2827 III
.IsCommutative
= true;
2828 III
.IsSummingOperands
= true;
2829 III
.ImmOpcode
= Opc
== PPC::ADDC
? PPC::ADDIC
: PPC::ADDIC8
;
2832 III
.SignedImm
= true;
2833 III
.ZeroIsSpecialOrig
= 0;
2834 III
.ZeroIsSpecialNew
= 0;
2835 III
.IsCommutative
= true;
2836 III
.IsSummingOperands
= true;
2837 III
.ImmOpcode
= PPC::ADDICo
;
2841 III
.SignedImm
= true;
2842 III
.ZeroIsSpecialOrig
= 0;
2843 III
.ZeroIsSpecialNew
= 0;
2844 III
.IsCommutative
= false;
2845 III
.ImmOpcode
= Opc
== PPC::SUBFC
? PPC::SUBFIC
: PPC::SUBFIC8
;
2849 III
.SignedImm
= true;
2850 III
.ZeroIsSpecialOrig
= 0;
2851 III
.ZeroIsSpecialNew
= 0;
2852 III
.IsCommutative
= false;
2853 III
.ImmOpcode
= Opc
== PPC::CMPW
? PPC::CMPWI
: PPC::CMPDI
;
2857 III
.SignedImm
= false;
2858 III
.ZeroIsSpecialOrig
= 0;
2859 III
.ZeroIsSpecialNew
= 0;
2860 III
.IsCommutative
= false;
2861 III
.ImmOpcode
= Opc
== PPC::CMPLW
? PPC::CMPLWI
: PPC::CMPLDI
;
2869 III
.SignedImm
= false;
2870 III
.ZeroIsSpecialOrig
= 0;
2871 III
.ZeroIsSpecialNew
= 0;
2872 III
.IsCommutative
= true;
2874 default: llvm_unreachable("Unknown opcode");
2875 case PPC::ANDo
: III
.ImmOpcode
= PPC::ANDIo
; break;
2876 case PPC::AND8o
: III
.ImmOpcode
= PPC::ANDIo8
; break;
2877 case PPC::OR
: III
.ImmOpcode
= PPC::ORI
; break;
2878 case PPC::OR8
: III
.ImmOpcode
= PPC::ORI8
; break;
2879 case PPC::XOR
: III
.ImmOpcode
= PPC::XORI
; break;
2880 case PPC::XOR8
: III
.ImmOpcode
= PPC::XORI8
; break;
2897 III
.SignedImm
= false;
2898 III
.ZeroIsSpecialOrig
= 0;
2899 III
.ZeroIsSpecialNew
= 0;
2900 III
.IsCommutative
= false;
2901 // This isn't actually true, but the instructions ignore any of the
2902 // upper bits, so any immediate loaded with an LI is acceptable.
2903 // This does not apply to shift right algebraic because a value
2904 // out of range will produce a -1/0.
2906 if (Opc
== PPC::RLWNM
|| Opc
== PPC::RLWNM8
||
2907 Opc
== PPC::RLWNMo
|| Opc
== PPC::RLWNM8o
)
2908 III
.TruncateImmTo
= 5;
2910 III
.TruncateImmTo
= 6;
2912 default: llvm_unreachable("Unknown opcode");
2913 case PPC::RLWNM
: III
.ImmOpcode
= PPC::RLWINM
; break;
2914 case PPC::RLWNM8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2915 case PPC::RLWNMo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2916 case PPC::RLWNM8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2917 case PPC::SLW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2918 case PPC::SLW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2919 case PPC::SLWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2920 case PPC::SLW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2921 case PPC::SRW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2922 case PPC::SRW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2923 case PPC::SRWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2924 case PPC::SRW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2927 III
.TruncateImmTo
= 0;
2928 III
.ImmOpcode
= PPC::SRAWI
;
2932 III
.TruncateImmTo
= 0;
2933 III
.ImmOpcode
= PPC::SRAWIo
;
2947 III
.SignedImm
= false;
2948 III
.ZeroIsSpecialOrig
= 0;
2949 III
.ZeroIsSpecialNew
= 0;
2950 III
.IsCommutative
= false;
2951 // This isn't actually true, but the instructions ignore any of the
2952 // upper bits, so any immediate loaded with an LI is acceptable.
2953 // This does not apply to shift right algebraic because a value
2954 // out of range will produce a -1/0.
2956 if (Opc
== PPC::RLDCL
|| Opc
== PPC::RLDCLo
||
2957 Opc
== PPC::RLDCR
|| Opc
== PPC::RLDCRo
)
2958 III
.TruncateImmTo
= 6;
2960 III
.TruncateImmTo
= 7;
2962 default: llvm_unreachable("Unknown opcode");
2963 case PPC::RLDCL
: III
.ImmOpcode
= PPC::RLDICL
; break;
2964 case PPC::RLDCLo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2965 case PPC::RLDCR
: III
.ImmOpcode
= PPC::RLDICR
; break;
2966 case PPC::RLDCRo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2967 case PPC::SLD
: III
.ImmOpcode
= PPC::RLDICR
; break;
2968 case PPC::SLDo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2969 case PPC::SRD
: III
.ImmOpcode
= PPC::RLDICL
; break;
2970 case PPC::SRDo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2973 III
.TruncateImmTo
= 0;
2974 III
.ImmOpcode
= PPC::SRADI
;
2978 III
.TruncateImmTo
= 0;
2979 III
.ImmOpcode
= PPC::SRADIo
;
2983 // Loads and stores:
3005 III
.SignedImm
= true;
3006 III
.ZeroIsSpecialOrig
= 1;
3007 III
.ZeroIsSpecialNew
= 2;
3008 III
.IsCommutative
= true;
3009 III
.IsSummingOperands
= true;
3011 III
.OpNoForForwarding
= 2;
3013 default: llvm_unreachable("Unknown opcode");
3014 case PPC::LBZX
: III
.ImmOpcode
= PPC::LBZ
; break;
3015 case PPC::LBZX8
: III
.ImmOpcode
= PPC::LBZ8
; break;
3016 case PPC::LHZX
: III
.ImmOpcode
= PPC::LHZ
; break;
3017 case PPC::LHZX8
: III
.ImmOpcode
= PPC::LHZ8
; break;
3018 case PPC::LHAX
: III
.ImmOpcode
= PPC::LHA
; break;
3019 case PPC::LHAX8
: III
.ImmOpcode
= PPC::LHA8
; break;
3020 case PPC::LWZX
: III
.ImmOpcode
= PPC::LWZ
; break;
3021 case PPC::LWZX8
: III
.ImmOpcode
= PPC::LWZ8
; break;
3023 III
.ImmOpcode
= PPC::LWA
;
3024 III
.ImmMustBeMultipleOf
= 4;
3026 case PPC::LDX
: III
.ImmOpcode
= PPC::LD
; III
.ImmMustBeMultipleOf
= 4; break;
3027 case PPC::LFSX
: III
.ImmOpcode
= PPC::LFS
; break;
3028 case PPC::LFDX
: III
.ImmOpcode
= PPC::LFD
; break;
3029 case PPC::STBX
: III
.ImmOpcode
= PPC::STB
; break;
3030 case PPC::STBX8
: III
.ImmOpcode
= PPC::STB8
; break;
3031 case PPC::STHX
: III
.ImmOpcode
= PPC::STH
; break;
3032 case PPC::STHX8
: III
.ImmOpcode
= PPC::STH8
; break;
3033 case PPC::STWX
: III
.ImmOpcode
= PPC::STW
; break;
3034 case PPC::STWX8
: III
.ImmOpcode
= PPC::STW8
; break;
3036 III
.ImmOpcode
= PPC::STD
;
3037 III
.ImmMustBeMultipleOf
= 4;
3039 case PPC::STFSX
: III
.ImmOpcode
= PPC::STFS
; break;
3040 case PPC::STFDX
: III
.ImmOpcode
= PPC::STFD
; break;
3063 III
.SignedImm
= true;
3064 III
.ZeroIsSpecialOrig
= 2;
3065 III
.ZeroIsSpecialNew
= 3;
3066 III
.IsCommutative
= false;
3067 III
.IsSummingOperands
= true;
3069 III
.OpNoForForwarding
= 3;
3071 default: llvm_unreachable("Unknown opcode");
3072 case PPC::LBZUX
: III
.ImmOpcode
= PPC::LBZU
; break;
3073 case PPC::LBZUX8
: III
.ImmOpcode
= PPC::LBZU8
; break;
3074 case PPC::LHZUX
: III
.ImmOpcode
= PPC::LHZU
; break;
3075 case PPC::LHZUX8
: III
.ImmOpcode
= PPC::LHZU8
; break;
3076 case PPC::LHAUX
: III
.ImmOpcode
= PPC::LHAU
; break;
3077 case PPC::LHAUX8
: III
.ImmOpcode
= PPC::LHAU8
; break;
3078 case PPC::LWZUX
: III
.ImmOpcode
= PPC::LWZU
; break;
3079 case PPC::LWZUX8
: III
.ImmOpcode
= PPC::LWZU8
; break;
3081 III
.ImmOpcode
= PPC::LDU
;
3082 III
.ImmMustBeMultipleOf
= 4;
3084 case PPC::LFSUX
: III
.ImmOpcode
= PPC::LFSU
; break;
3085 case PPC::LFDUX
: III
.ImmOpcode
= PPC::LFDU
; break;
3086 case PPC::STBUX
: III
.ImmOpcode
= PPC::STBU
; break;
3087 case PPC::STBUX8
: III
.ImmOpcode
= PPC::STBU8
; break;
3088 case PPC::STHUX
: III
.ImmOpcode
= PPC::STHU
; break;
3089 case PPC::STHUX8
: III
.ImmOpcode
= PPC::STHU8
; break;
3090 case PPC::STWUX
: III
.ImmOpcode
= PPC::STWU
; break;
3091 case PPC::STWUX8
: III
.ImmOpcode
= PPC::STWU8
; break;
3093 III
.ImmOpcode
= PPC::STDU
;
3094 III
.ImmMustBeMultipleOf
= 4;
3096 case PPC::STFSUX
: III
.ImmOpcode
= PPC::STFSU
; break;
3097 case PPC::STFDUX
: III
.ImmOpcode
= PPC::STFDU
; break;
3100 // Power9 and up only. For some of these, the X-Form version has access to all
3101 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3102 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3103 // into or stored from is one of the VR registers.
3110 case PPC::XFLOADf32
:
3111 case PPC::XFLOADf64
:
3112 case PPC::XFSTOREf32
:
3113 case PPC::XFSTOREf64
:
3114 if (!Subtarget
.hasP9Vector())
3116 III
.SignedImm
= true;
3117 III
.ZeroIsSpecialOrig
= 1;
3118 III
.ZeroIsSpecialNew
= 2;
3119 III
.IsCommutative
= true;
3120 III
.IsSummingOperands
= true;
3122 III
.OpNoForForwarding
= 2;
3123 III
.ImmMustBeMultipleOf
= 4;
3125 default: llvm_unreachable("Unknown opcode");
3127 III
.ImmOpcode
= PPC::LXV
;
3128 III
.ImmMustBeMultipleOf
= 16;
3133 III
.ImmOpcode
= PPC::LXSSP
;
3135 III
.ImmOpcode
= PPC::LFS
;
3136 III
.ImmMustBeMultipleOf
= 1;
3141 case PPC::XFLOADf32
:
3142 III
.ImmOpcode
= PPC::DFLOADf32
;
3147 III
.ImmOpcode
= PPC::LXSD
;
3149 III
.ImmOpcode
= PPC::LFD
;
3150 III
.ImmMustBeMultipleOf
= 1;
3155 case PPC::XFLOADf64
:
3156 III
.ImmOpcode
= PPC::DFLOADf64
;
3159 III
.ImmOpcode
= PPC::STXV
;
3160 III
.ImmMustBeMultipleOf
= 16;
3165 III
.ImmOpcode
= PPC::STXSSP
;
3167 III
.ImmOpcode
= PPC::STFS
;
3168 III
.ImmMustBeMultipleOf
= 1;
3173 case PPC::XFSTOREf32
:
3174 III
.ImmOpcode
= PPC::DFSTOREf32
;
3179 III
.ImmOpcode
= PPC::STXSD
;
3181 III
.ImmOpcode
= PPC::STFD
;
3182 III
.ImmMustBeMultipleOf
= 1;
3187 case PPC::XFSTOREf64
:
3188 III
.ImmOpcode
= PPC::DFSTOREf64
;
3196 // Utility function for swaping two arbitrary operands of an instruction.
3197 static void swapMIOperands(MachineInstr
&MI
, unsigned Op1
, unsigned Op2
) {
3198 assert(Op1
!= Op2
&& "Cannot swap operand with itself.");
3200 unsigned MaxOp
= std::max(Op1
, Op2
);
3201 unsigned MinOp
= std::min(Op1
, Op2
);
3202 MachineOperand MOp1
= MI
.getOperand(MinOp
);
3203 MachineOperand MOp2
= MI
.getOperand(MaxOp
);
3204 MI
.RemoveOperand(std::max(Op1
, Op2
));
3205 MI
.RemoveOperand(std::min(Op1
, Op2
));
3207 // If the operands we are swapping are the two at the end (the common case)
3208 // we can just remove both and add them in the opposite order.
3209 if (MaxOp
- MinOp
== 1 && MI
.getNumOperands() == MinOp
) {
3210 MI
.addOperand(MOp2
);
3211 MI
.addOperand(MOp1
);
3213 // Store all operands in a temporary vector, remove them and re-add in the
3215 SmallVector
<MachineOperand
, 2> MOps
;
3216 unsigned TotalOps
= MI
.getNumOperands() + 2; // We've already removed 2 ops.
3217 for (unsigned i
= MI
.getNumOperands() - 1; i
>= MinOp
; i
--) {
3218 MOps
.push_back(MI
.getOperand(i
));
3219 MI
.RemoveOperand(i
);
3221 // MOp2 needs to be added next.
3222 MI
.addOperand(MOp2
);
3223 // Now add the rest.
3224 for (unsigned i
= MI
.getNumOperands(); i
< TotalOps
; i
++) {
3226 MI
.addOperand(MOp1
);
3228 MI
.addOperand(MOps
.back());
3235 // Check if the 'MI' that has the index OpNoForForwarding
3236 // meets the requirement described in the ImmInstrInfo.
3237 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr
&MI
,
3238 const ImmInstrInfo
&III
,
3239 unsigned OpNoForForwarding
3241 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3242 // would not work pre-RA, we can only do the check post RA.
3243 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3247 // Cannot do the transform if MI isn't summing the operands.
3248 if (!III
.IsSummingOperands
)
3251 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3252 if (!III
.ZeroIsSpecialOrig
)
3255 // We cannot do the transform if the operand we are trying to replace
3256 // isn't the same as the operand the instruction allows.
3257 if (OpNoForForwarding
!= III
.OpNoForForwarding
)
3260 // Check if the instruction we are trying to transform really has
3261 // the special zero register as its operand.
3262 if (MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO
&&
3263 MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO8
)
3266 // This machine instruction is convertible if it is,
3267 // 1. summing the operands.
3268 // 2. one of the operands is special zero register.
3269 // 3. the operand we are trying to replace is allowed by the MI.
3273 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3275 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr
&DefMI
,
3276 const ImmInstrInfo
&III
,
3277 MachineOperand
*&ImmMO
,
3278 MachineOperand
*&RegMO
) const {
3279 unsigned Opc
= DefMI
.getOpcode();
3280 if (Opc
!= PPC::ADDItocL
&& Opc
!= PPC::ADDI
&& Opc
!= PPC::ADDI8
)
3283 assert(DefMI
.getNumOperands() >= 3 &&
3284 "Add inst must have at least three operands");
3285 RegMO
= &DefMI
.getOperand(1);
3286 ImmMO
= &DefMI
.getOperand(2);
3288 // This DefMI is elgible for forwarding if it is:
3290 // 2. one of the operands is Imm/CPI/Global.
3291 return isAnImmediateOperand(*ImmMO
);
3294 bool PPCInstrInfo::isRegElgibleForForwarding(
3295 const MachineOperand
&RegMO
, const MachineInstr
&DefMI
,
3296 const MachineInstr
&MI
, bool KillDefMI
,
3297 bool &IsFwdFeederRegKilled
) const {
3300 // z = lfdx 0, x -> z = lfd imm(y)
3301 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3302 // of "y" between the DEF of "x" and "z".
3303 // The query is only valid post RA.
3304 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3308 Register Reg
= RegMO
.getReg();
3310 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3311 MachineBasicBlock::const_reverse_iterator It
= MI
;
3312 MachineBasicBlock::const_reverse_iterator E
= MI
.getParent()->rend();
3314 for (; It
!= E
; ++It
) {
3315 if (It
->modifiesRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
3317 else if (It
->killsRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
3318 IsFwdFeederRegKilled
= true;
3319 // Made it to DefMI without encountering a clobber.
3320 if ((&*It
) == &DefMI
)
3323 assert((&*It
) == &DefMI
&& "DefMI is missing");
3325 // If DefMI also defines the register to be forwarded, we can only forward it
3326 // if DefMI is being erased.
3327 if (DefMI
.modifiesRegister(Reg
, &getRegisterInfo()))
3333 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand
&ImmMO
,
3334 const MachineInstr
&DefMI
,
3335 const ImmInstrInfo
&III
,
3336 int64_t &Imm
) const {
3337 assert(isAnImmediateOperand(ImmMO
) && "ImmMO is NOT an immediate");
3338 if (DefMI
.getOpcode() == PPC::ADDItocL
) {
3339 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3340 // However, we know that, it is 16-bit width, and has the alignment of 4.
3341 // Check if the instruction met the requirement.
3342 if (III
.ImmMustBeMultipleOf
> 4 ||
3343 III
.TruncateImmTo
|| III
.ImmWidth
!= 16)
3346 // Going from XForm to DForm loads means that the displacement needs to be
3347 // not just an immediate but also a multiple of 4, or 16 depending on the
3348 // load. A DForm load cannot be represented if it is a multiple of say 2.
3349 // XForm loads do not have this restriction.
3350 if (ImmMO
.isGlobal() &&
3351 ImmMO
.getGlobal()->getAlignment() < III
.ImmMustBeMultipleOf
)
3357 if (ImmMO
.isImm()) {
3358 // It is Imm, we need to check if the Imm fit the range.
3359 int64_t Immediate
= ImmMO
.getImm();
3360 // Sign-extend to 64-bits.
3361 Imm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
3362 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
3364 if (Imm
% III
.ImmMustBeMultipleOf
)
3366 if (III
.TruncateImmTo
)
3367 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
3368 if (III
.SignedImm
) {
3369 APInt
ActualValue(64, Imm
, true);
3370 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
3373 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
3374 if ((uint64_t)Imm
> UnsignedMax
)
3381 // This ImmMO is forwarded if it meets the requriement describle
3386 // If an X-Form instruction is fed by an add-immediate and one of its operands
3387 // is the literal zero, attempt to forward the source of the add-immediate to
3388 // the corresponding D-Form instruction with the displacement coming from
3389 // the immediate being added.
3390 bool PPCInstrInfo::transformToImmFormFedByAdd(
3391 MachineInstr
&MI
, const ImmInstrInfo
&III
, unsigned OpNoForForwarding
,
3392 MachineInstr
&DefMI
, bool KillDefMI
) const {
3395 // x = addi reg, imm <----- DefMI
3396 // y = op 0 , x <----- MI
3398 // OpNoForForwarding
3399 // Check if the MI meet the requirement described in the III.
3400 if (!isUseMIElgibleForForwarding(MI
, III
, OpNoForForwarding
))
3403 // Check if the DefMI meet the requirement
3404 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3405 MachineOperand
*ImmMO
= nullptr;
3406 MachineOperand
*RegMO
= nullptr;
3407 if (!isDefMIElgibleForForwarding(DefMI
, III
, ImmMO
, RegMO
))
3409 assert(ImmMO
&& RegMO
&& "Imm and Reg operand must have been set");
3411 // As we get the Imm operand now, we need to check if the ImmMO meet
3412 // the requirement described in the III. If yes set the Imm.
3414 if (!isImmElgibleForForwarding(*ImmMO
, DefMI
, III
, Imm
))
3417 bool IsFwdFeederRegKilled
= false;
3418 // Check if the RegMO can be forwarded to MI.
3419 if (!isRegElgibleForForwarding(*RegMO
, DefMI
, MI
, KillDefMI
,
3420 IsFwdFeederRegKilled
))
3423 // Get killed info in case fixup needed after transformation.
3424 unsigned ForwardKilledOperandReg
= ~0U;
3425 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3426 bool PostRA
= !MRI
.isSSA();
3427 if (PostRA
&& MI
.getOperand(OpNoForForwarding
).isKill())
3428 ForwardKilledOperandReg
= MI
.getOperand(OpNoForForwarding
).getReg();
3430 // We know that, the MI and DefMI both meet the pattern, and
3431 // the Imm also meet the requirement with the new Imm-form.
3432 // It is safe to do the transformation now.
3433 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3434 LLVM_DEBUG(MI
.dump());
3435 LLVM_DEBUG(dbgs() << "Fed by:\n");
3436 LLVM_DEBUG(DefMI
.dump());
3438 // Update the base reg first.
3439 MI
.getOperand(III
.OpNoForForwarding
).ChangeToRegister(RegMO
->getReg(),
3443 // Then, update the imm.
3444 if (ImmMO
->isImm()) {
3445 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3447 replaceInstrOperandWithImm(MI
, III
.ZeroIsSpecialOrig
, Imm
);
3450 // Otherwise, it is Constant Pool Index(CPI) or Global,
3451 // which is relocation in fact. We need to replace the special zero
3452 // register with ImmMO.
3453 // Before that, we need to fixup the target flags for imm.
3454 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3455 if (DefMI
.getOpcode() == PPC::ADDItocL
)
3456 ImmMO
->setTargetFlags(PPCII::MO_TOC_LO
);
3458 // MI didn't have the interface such as MI.setOperand(i) though
3459 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3460 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3461 // and, add the ImmMO, then, move back all the operands behind ZERO.
3462 SmallVector
<MachineOperand
, 2> MOps
;
3463 for (unsigned i
= MI
.getNumOperands() - 1; i
>= III
.ZeroIsSpecialOrig
; i
--) {
3464 MOps
.push_back(MI
.getOperand(i
));
3465 MI
.RemoveOperand(i
);
3468 // Remove the last MO in the list, which is ZERO operand in fact.
3470 // Add the imm operand.
3471 MI
.addOperand(*ImmMO
);
3472 // Now add the rest back.
3473 for (auto &MO
: MOps
)
3477 // Update the opcode.
3478 MI
.setDesc(get(III
.ImmOpcode
));
3480 // Fix up killed/dead flag after transformation.
3482 // x = ADD KilledFwdFeederReg, imm
3483 // n = opn KilledFwdFeederReg(killed), regn
3486 // x = ADD reg(killed), imm
3488 if (IsFwdFeederRegKilled
|| RegMO
->isKill())
3489 fixupIsDeadOrKill(DefMI
, MI
, RegMO
->getReg());
3491 // ForwardKilledOperandReg = ADD reg, imm
3492 // y = XOP 0, ForwardKilledOperandReg(killed)
3493 if (ForwardKilledOperandReg
!= ~0U)
3494 fixupIsDeadOrKill(DefMI
, MI
, ForwardKilledOperandReg
);
3496 LLVM_DEBUG(dbgs() << "With:\n");
3497 LLVM_DEBUG(MI
.dump());
3502 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr
&MI
,
3503 const ImmInstrInfo
&III
,
3504 unsigned ConstantOpNo
,
3505 MachineInstr
&DefMI
,
3506 int64_t Imm
) const {
3507 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3508 bool PostRA
= !MRI
.isSSA();
3509 // Exit early if we can't convert this.
3510 if ((ConstantOpNo
!= III
.OpNoForForwarding
) && !III
.IsCommutative
)
3512 if (Imm
% III
.ImmMustBeMultipleOf
)
3514 if (III
.TruncateImmTo
)
3515 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
3516 if (III
.SignedImm
) {
3517 APInt
ActualValue(64, Imm
, true);
3518 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
3521 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
3522 if ((uint64_t)Imm
> UnsignedMax
)
3526 // If we're post-RA, the instructions don't agree on whether register zero is
3527 // special, we can transform this as long as the register operand that will
3528 // end up in the location where zero is special isn't R0.
3529 if (PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
3530 unsigned PosForOrigZero
= III
.ZeroIsSpecialOrig
? III
.ZeroIsSpecialOrig
:
3531 III
.ZeroIsSpecialNew
+ 1;
3532 Register OrigZeroReg
= MI
.getOperand(PosForOrigZero
).getReg();
3533 Register NewZeroReg
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
3534 // If R0 is in the operand where zero is special for the new instruction,
3535 // it is unsafe to transform if the constant operand isn't that operand.
3536 if ((NewZeroReg
== PPC::R0
|| NewZeroReg
== PPC::X0
) &&
3537 ConstantOpNo
!= III
.ZeroIsSpecialNew
)
3539 if ((OrigZeroReg
== PPC::R0
|| OrigZeroReg
== PPC::X0
) &&
3540 ConstantOpNo
!= PosForOrigZero
)
3544 // Get killed info in case fixup needed after transformation.
3545 unsigned ForwardKilledOperandReg
= ~0U;
3546 if (PostRA
&& MI
.getOperand(ConstantOpNo
).isKill())
3547 ForwardKilledOperandReg
= MI
.getOperand(ConstantOpNo
).getReg();
3549 unsigned Opc
= MI
.getOpcode();
3550 bool SpecialShift32
=
3551 Opc
== PPC::SLW
|| Opc
== PPC::SLWo
|| Opc
== PPC::SRW
|| Opc
== PPC::SRWo
;
3552 bool SpecialShift64
=
3553 Opc
== PPC::SLD
|| Opc
== PPC::SLDo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
3554 bool SetCR
= Opc
== PPC::SLWo
|| Opc
== PPC::SRWo
||
3555 Opc
== PPC::SLDo
|| Opc
== PPC::SRDo
;
3557 Opc
== PPC::SRW
|| Opc
== PPC::SRWo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
3559 MI
.setDesc(get(III
.ImmOpcode
));
3560 if (ConstantOpNo
== III
.OpNoForForwarding
) {
3561 // Converting shifts to immediate form is a bit tricky since they may do
3562 // one of three things:
3563 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3564 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3566 // 3. If the shift amount is in [1, OpSize), it's just a shift
3567 if (SpecialShift32
|| SpecialShift64
) {
3568 LoadImmediateInfo LII
;
3571 LII
.Is64Bit
= SpecialShift64
;
3572 uint64_t ShAmt
= Imm
& (SpecialShift32
? 0x1F : 0x3F);
3573 if (Imm
& (SpecialShift32
? 0x20 : 0x40))
3574 replaceInstrWithLI(MI
, LII
);
3575 // Shifts by zero don't change the value. If we don't need to set CR0,
3576 // just convert this to a COPY. Can't do this post-RA since we've already
3577 // cleaned up the copies.
3578 else if (!SetCR
&& ShAmt
== 0 && !PostRA
) {
3579 MI
.RemoveOperand(2);
3580 MI
.setDesc(get(PPC::COPY
));
3582 // The 32 bit and 64 bit instructions are quite different.
3583 if (SpecialShift32
) {
3584 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3585 uint64_t SH
= RightShift
? 32 - ShAmt
: ShAmt
;
3586 uint64_t MB
= RightShift
? ShAmt
: 0;
3587 uint64_t ME
= RightShift
? 31 : 31 - ShAmt
;
3588 replaceInstrOperandWithImm(MI
, III
.OpNoForForwarding
, SH
);
3589 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(MB
)
3592 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3593 uint64_t SH
= RightShift
? 64 - ShAmt
: ShAmt
;
3594 uint64_t ME
= RightShift
? ShAmt
: 63 - ShAmt
;
3595 replaceInstrOperandWithImm(MI
, III
.OpNoForForwarding
, SH
);
3596 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(ME
);
3600 replaceInstrOperandWithImm(MI
, ConstantOpNo
, Imm
);
3602 // Convert commutative instructions (switch the operands and convert the
3603 // desired one to an immediate.
3604 else if (III
.IsCommutative
) {
3605 replaceInstrOperandWithImm(MI
, ConstantOpNo
, Imm
);
3606 swapMIOperands(MI
, ConstantOpNo
, III
.OpNoForForwarding
);
3608 llvm_unreachable("Should have exited early!");
3610 // For instructions for which the constant register replaces a different
3611 // operand than where the immediate goes, we need to swap them.
3612 if (III
.OpNoForForwarding
!= III
.ImmOpNo
)
3613 swapMIOperands(MI
, III
.OpNoForForwarding
, III
.ImmOpNo
);
3615 // If the special R0/X0 register index are different for original instruction
3616 // and new instruction, we need to fix up the register class in new
3618 if (!PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
3619 if (III
.ZeroIsSpecialNew
) {
3620 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3621 // need to fix up register class.
3622 Register RegToModify
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
3623 if (Register::isVirtualRegister(RegToModify
)) {
3624 const TargetRegisterClass
*NewRC
=
3625 MRI
.getRegClass(RegToModify
)->hasSuperClassEq(&PPC::GPRCRegClass
) ?
3626 &PPC::GPRC_and_GPRC_NOR0RegClass
: &PPC::G8RC_and_G8RC_NOX0RegClass
;
3627 MRI
.setRegClass(RegToModify
, NewRC
);
3632 // Fix up killed/dead flag after transformation.
3634 // ForwardKilledOperandReg = LI imm
3635 // y = XOP reg, ForwardKilledOperandReg(killed)
3636 if (ForwardKilledOperandReg
!= ~0U)
3637 fixupIsDeadOrKill(DefMI
, MI
, ForwardKilledOperandReg
);
3641 const TargetRegisterClass
*
3642 PPCInstrInfo::updatedRC(const TargetRegisterClass
*RC
) const {
3643 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
3644 return &PPC::VSRCRegClass
;
3648 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode
) {
3649 return PPC::getRecordFormOpcode(Opcode
);
3652 // This function returns true if the machine instruction
3653 // always outputs a value by sign-extending a 32 bit value,
3654 // i.e. 0 to 31-th bits are same as 32-th bit.
3655 static bool isSignExtendingOp(const MachineInstr
&MI
) {
3656 int Opcode
= MI
.getOpcode();
3657 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3658 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
||
3659 Opcode
== PPC::SRAW
|| Opcode
== PPC::SRAWo
||
3660 Opcode
== PPC::SRAWI
|| Opcode
== PPC::SRAWIo
||
3661 Opcode
== PPC::LWA
|| Opcode
== PPC::LWAX
||
3662 Opcode
== PPC::LWA_32
|| Opcode
== PPC::LWAX_32
||
3663 Opcode
== PPC::LHA
|| Opcode
== PPC::LHAX
||
3664 Opcode
== PPC::LHA8
|| Opcode
== PPC::LHAX8
||
3665 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3666 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3667 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3668 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3669 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3670 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3671 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3672 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3673 Opcode
== PPC::EXTSB
|| Opcode
== PPC::EXTSBo
||
3674 Opcode
== PPC::EXTSH
|| Opcode
== PPC::EXTSHo
||
3675 Opcode
== PPC::EXTSB8
|| Opcode
== PPC::EXTSH8
||
3676 Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSWo
||
3677 Opcode
== PPC::SETB
|| Opcode
== PPC::SETB8
||
3678 Opcode
== PPC::EXTSH8_32_64
|| Opcode
== PPC::EXTSW_32_64
||
3679 Opcode
== PPC::EXTSB8_32_64
)
3682 if (Opcode
== PPC::RLDICL
&& MI
.getOperand(3).getImm() >= 33)
3685 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3686 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
) &&
3687 MI
.getOperand(3).getImm() > 0 &&
3688 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3694 // This function returns true if the machine instruction
3695 // always outputs zeros in higher 32 bits.
3696 static bool isZeroExtendingOp(const MachineInstr
&MI
) {
3697 int Opcode
= MI
.getOpcode();
3698 // The 16-bit immediate is sign-extended in li/lis.
3699 // If the most significant bit is zero, all higher bits are zero.
3700 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3701 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
) {
3702 int64_t Imm
= MI
.getOperand(1).getImm();
3703 if (((uint64_t)Imm
& ~0x7FFFuLL
) == 0)
3707 // We have some variations of rotate-and-mask instructions
3708 // that clear higher 32-bits.
3709 if ((Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
3710 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
||
3711 Opcode
== PPC::RLDICL_32_64
) &&
3712 MI
.getOperand(3).getImm() >= 32)
3715 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
3716 MI
.getOperand(3).getImm() >= 32 &&
3717 MI
.getOperand(3).getImm() <= 63 - MI
.getOperand(2).getImm())
3720 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3721 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
3722 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
3723 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3726 // There are other instructions that clear higher 32-bits.
3727 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
3728 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
3729 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
||
3730 Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
3731 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
||
3732 Opcode
== PPC::POPCNTD
|| Opcode
== PPC::POPCNTW
||
3733 Opcode
== PPC::SLW
|| Opcode
== PPC::SLWo
||
3734 Opcode
== PPC::SRW
|| Opcode
== PPC::SRWo
||
3735 Opcode
== PPC::SLW8
|| Opcode
== PPC::SRW8
||
3736 Opcode
== PPC::SLWI
|| Opcode
== PPC::SLWIo
||
3737 Opcode
== PPC::SRWI
|| Opcode
== PPC::SRWIo
||
3738 Opcode
== PPC::LWZ
|| Opcode
== PPC::LWZX
||
3739 Opcode
== PPC::LWZU
|| Opcode
== PPC::LWZUX
||
3740 Opcode
== PPC::LWBRX
|| Opcode
== PPC::LHBRX
||
3741 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3742 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3743 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3744 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3745 Opcode
== PPC::LWZ8
|| Opcode
== PPC::LWZX8
||
3746 Opcode
== PPC::LWZU8
|| Opcode
== PPC::LWZUX8
||
3747 Opcode
== PPC::LWBRX8
|| Opcode
== PPC::LHBRX8
||
3748 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3749 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3750 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3751 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3752 Opcode
== PPC::ANDIo
|| Opcode
== PPC::ANDISo
||
3753 Opcode
== PPC::ROTRWI
|| Opcode
== PPC::ROTRWIo
||
3754 Opcode
== PPC::EXTLWI
|| Opcode
== PPC::EXTLWIo
||
3755 Opcode
== PPC::MFVSRWZ
)
3761 // This function returns true if the input MachineInstr is a TOC save
3763 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr
&MI
) const {
3764 if (!MI
.getOperand(1).isImm() || !MI
.getOperand(2).isReg())
3766 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
3767 unsigned StackOffset
= MI
.getOperand(1).getImm();
3768 Register StackReg
= MI
.getOperand(2).getReg();
3769 if (StackReg
== PPC::X1
&& StackOffset
== TOCSaveOffset
)
3775 // We limit the max depth to track incoming values of PHIs or binary ops
3776 // (e.g. AND) to avoid excessive cost.
3777 const unsigned MAX_DEPTH
= 1;
3780 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr
&MI
, bool SignExt
,
3781 const unsigned Depth
) const {
3782 const MachineFunction
*MF
= MI
.getParent()->getParent();
3783 const MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
3785 // If we know this instruction returns sign- or zero-extended result,
3787 if (SignExt
? isSignExtendingOp(MI
):
3788 isZeroExtendingOp(MI
))
3791 switch (MI
.getOpcode()) {
3793 Register SrcReg
= MI
.getOperand(1).getReg();
3795 // In both ELFv1 and v2 ABI, method parameters and the return value
3796 // are sign- or zero-extended.
3797 if (MF
->getSubtarget
<PPCSubtarget
>().isSVR4ABI()) {
3798 const PPCFunctionInfo
*FuncInfo
= MF
->getInfo
<PPCFunctionInfo
>();
3799 // We check the ZExt/SExt flags for a method parameter.
3800 if (MI
.getParent()->getBasicBlock() ==
3801 &MF
->getFunction().getEntryBlock()) {
3802 Register VReg
= MI
.getOperand(0).getReg();
3803 if (MF
->getRegInfo().isLiveIn(VReg
))
3804 return SignExt
? FuncInfo
->isLiveInSExt(VReg
) :
3805 FuncInfo
->isLiveInZExt(VReg
);
3808 // For a method return value, we check the ZExt/SExt flags in attribute.
3809 // We assume the following code sequence for method call.
3810 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3811 // BL8_NOP @func,...
3812 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3813 // %5 = COPY %x3; G8RC:%5
3814 if (SrcReg
== PPC::X3
) {
3815 const MachineBasicBlock
*MBB
= MI
.getParent();
3816 MachineBasicBlock::const_instr_iterator II
=
3817 MachineBasicBlock::const_instr_iterator(&MI
);
3818 if (II
!= MBB
->instr_begin() &&
3819 (--II
)->getOpcode() == PPC::ADJCALLSTACKUP
) {
3820 const MachineInstr
&CallMI
= *(--II
);
3821 if (CallMI
.isCall() && CallMI
.getOperand(0).isGlobal()) {
3822 const Function
*CalleeFn
=
3823 dyn_cast
<Function
>(CallMI
.getOperand(0).getGlobal());
3826 const IntegerType
*IntTy
=
3827 dyn_cast
<IntegerType
>(CalleeFn
->getReturnType());
3828 const AttributeSet
&Attrs
=
3829 CalleeFn
->getAttributes().getRetAttributes();
3830 if (IntTy
&& IntTy
->getBitWidth() <= 32)
3831 return Attrs
.hasAttribute(SignExt
? Attribute::SExt
:
3838 // If this is a copy from another register, we recursively check source.
3839 if (!Register::isVirtualRegister(SrcReg
))
3841 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3843 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3860 // logical operation with 16-bit immediate does not change the upper bits.
3861 // So, we track the operand register as we do for register copy.
3862 Register SrcReg
= MI
.getOperand(1).getReg();
3863 if (!Register::isVirtualRegister(SrcReg
))
3865 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3867 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3872 // If all incoming values are sign-/zero-extended,
3873 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3878 if (Depth
>= MAX_DEPTH
)
3881 // The input registers for PHI are operand 1, 3, ...
3882 // The input registers for others are operand 1 and 2.
3883 unsigned E
= 3, D
= 1;
3884 if (MI
.getOpcode() == PPC::PHI
) {
3885 E
= MI
.getNumOperands();
3889 for (unsigned I
= 1; I
!= E
; I
+= D
) {
3890 if (MI
.getOperand(I
).isReg()) {
3891 Register SrcReg
= MI
.getOperand(I
).getReg();
3892 if (!Register::isVirtualRegister(SrcReg
))
3894 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3895 if (SrcMI
== NULL
|| !isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
+1))
3904 // If at least one of the incoming values of an AND is zero extended
3905 // then the output is also zero-extended. If both of the incoming values
3906 // are sign-extended then the output is also sign extended.
3909 if (Depth
>= MAX_DEPTH
)
3912 assert(MI
.getOperand(1).isReg() && MI
.getOperand(2).isReg());
3914 Register SrcReg1
= MI
.getOperand(1).getReg();
3915 Register SrcReg2
= MI
.getOperand(2).getReg();
3917 if (!Register::isVirtualRegister(SrcReg1
) ||
3918 !Register::isVirtualRegister(SrcReg2
))
3921 const MachineInstr
*MISrc1
= MRI
->getVRegDef(SrcReg1
);
3922 const MachineInstr
*MISrc2
= MRI
->getVRegDef(SrcReg2
);
3923 if (!MISrc1
|| !MISrc2
)
3927 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) &&
3928 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
3930 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) ||
3931 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
3940 bool PPCInstrInfo::isBDNZ(unsigned Opcode
) const {
3941 return (Opcode
== (Subtarget
.isPPC64() ? PPC::BDNZ8
: PPC::BDNZ
));
3944 bool PPCInstrInfo::analyzeLoop(MachineLoop
&L
, MachineInstr
*&IndVarInst
,
3945 MachineInstr
*&CmpInst
) const {
3946 MachineBasicBlock
*LoopEnd
= L
.getBottomBlock();
3947 MachineBasicBlock::iterator I
= LoopEnd
->getFirstTerminator();
3948 // We really "analyze" only CTR loops right now.
3949 if (I
!= LoopEnd
->end() && isBDNZ(I
->getOpcode())) {
3950 IndVarInst
= nullptr;
3958 PPCInstrInfo::findLoopInstr(MachineBasicBlock
&PreHeader
) const {
3960 unsigned LOOPi
= (Subtarget
.isPPC64() ? PPC::MTCTR8loop
: PPC::MTCTRloop
);
3962 // The loop set-up instruction should be in preheader
3963 for (auto &I
: PreHeader
.instrs())
3964 if (I
.getOpcode() == LOOPi
)
3969 unsigned PPCInstrInfo::reduceLoopCount(
3970 MachineBasicBlock
&MBB
, MachineBasicBlock
&PreHeader
, MachineInstr
*IndVar
,
3971 MachineInstr
&Cmp
, SmallVectorImpl
<MachineOperand
> &Cond
,
3972 SmallVectorImpl
<MachineInstr
*> &PrevInsts
, unsigned Iter
,
3973 unsigned MaxIter
) const {
3974 // We expect a hardware loop currently. This means that IndVar is set
3975 // to null, and the compare is the ENDLOOP instruction.
3976 assert((!IndVar
) && isBDNZ(Cmp
.getOpcode()) && "Expecting a CTR loop");
3977 MachineFunction
*MF
= MBB
.getParent();
3978 DebugLoc DL
= Cmp
.getDebugLoc();
3979 MachineInstr
*Loop
= findLoopInstr(PreHeader
);
3982 Register LoopCountReg
= Loop
->getOperand(0).getReg();
3983 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
3984 MachineInstr
*LoopCount
= MRI
.getUniqueVRegDef(LoopCountReg
);
3988 // If the loop trip count is a compile-time value, then just change the
3990 if (LoopCount
->getOpcode() == PPC::LI8
|| LoopCount
->getOpcode() == PPC::LI
) {
3991 int64_t Offset
= LoopCount
->getOperand(1).getImm();
3993 LoopCount
->eraseFromParent();
3994 Loop
->eraseFromParent();
3997 LoopCount
->getOperand(1).setImm(Offset
- 1);
4001 // The loop trip count is a run-time value.
4002 // We need to subtract one from the trip count,
4003 // and insert branch later to check if we're done with the loop.
4005 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4006 // so we don't need to generate any thing here.
4007 Cond
.push_back(MachineOperand::CreateImm(0));
4008 Cond
.push_back(MachineOperand::CreateReg(
4009 Subtarget
.isPPC64() ? PPC::CTR8
: PPC::CTR
, true));
4010 return LoopCountReg
;
4013 // Return true if get the base operand, byte offset of an instruction and the
4014 // memory width. Width is the size of memory that is being loaded/stored.
4015 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4016 const MachineInstr
&LdSt
,
4017 const MachineOperand
*&BaseReg
,
4020 const TargetRegisterInfo
*TRI
) const {
4021 assert(LdSt
.mayLoadOrStore() && "Expected a memory operation.");
4023 // Handle only loads/stores with base register followed by immediate offset.
4024 if (LdSt
.getNumExplicitOperands() != 3)
4026 if (!LdSt
.getOperand(1).isImm() || !LdSt
.getOperand(2).isReg())
4029 if (!LdSt
.hasOneMemOperand())
4032 Width
= (*LdSt
.memoperands_begin())->getSize();
4033 Offset
= LdSt
.getOperand(1).getImm();
4034 BaseReg
= &LdSt
.getOperand(2);
4038 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4039 const MachineInstr
&MIa
, const MachineInstr
&MIb
,
4040 AliasAnalysis
* /*AA*/) const {
4041 assert(MIa
.mayLoadOrStore() && "MIa must be a load or store.");
4042 assert(MIb
.mayLoadOrStore() && "MIb must be a load or store.");
4044 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
4045 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
4048 // Retrieve the base register, offset from the base register and width. Width
4049 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
4050 // base registers are identical, and the offset of a lower memory access +
4051 // the width doesn't overlap the offset of a higher memory access,
4052 // then the memory accesses are different.
4053 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4054 const MachineOperand
*BaseOpA
= nullptr, *BaseOpB
= nullptr;
4055 int64_t OffsetA
= 0, OffsetB
= 0;
4056 unsigned int WidthA
= 0, WidthB
= 0;
4057 if (getMemOperandWithOffsetWidth(MIa
, BaseOpA
, OffsetA
, WidthA
, TRI
) &&
4058 getMemOperandWithOffsetWidth(MIb
, BaseOpB
, OffsetB
, WidthB
, TRI
)) {
4059 if (BaseOpA
->isIdenticalTo(*BaseOpB
)) {
4060 int LowOffset
= std::min(OffsetA
, OffsetB
);
4061 int HighOffset
= std::max(OffsetA
, OffsetB
);
4062 int LowWidth
= (LowOffset
== OffsetA
) ? WidthA
: WidthB
;
4063 if (LowOffset
+ LowWidth
<= HighOffset
)