[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
blobc1a5d94d865141a2739c8318a65aaffec22e8979
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58 "Number of record-form rotates converted to record-form andi");
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77 SOK_Int4Spill,
78 SOK_Int8Spill,
79 SOK_Float8Spill,
80 SOK_Float4Spill,
81 SOK_CRSpill,
82 SOK_CRBitSpill,
83 SOK_VRVectorSpill,
84 SOK_VSXVectorSpill,
85 SOK_VectorFloat8Spill,
86 SOK_VectorFloat4Spill,
87 SOK_VRSaveSpill,
88 SOK_QuadFloat8Spill,
89 SOK_QuadFloat4Spill,
90 SOK_QuadBitSpill,
91 SOK_SpillToVSR,
92 SOK_SPESpill,
93 SOK_SPE4Spill,
94 SOK_LastOpcodeSpill // This must be last on the enum.
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102 /* CatchRetOpcode */ -1,
103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104 Subtarget(STI), RI(STI.getTargetMachine()) {}
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110 const ScheduleDAG *DAG) const {
111 unsigned Directive =
112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115 const InstrItineraryData *II =
116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117 return new ScoreboardHazardRecognizer(II, DAG);
120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127 const ScheduleDAG *DAG) const {
128 unsigned Directive =
129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
131 // FIXME: Leaving this as-is until we have POWER9 scheduling info
132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
135 // Most subtargets use a PPC970 recognizer.
136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138 assert(DAG->TII && "No InstrInfo?");
140 return new PPCHazardRecognizer970(*DAG);
143 return new ScoreboardHazardRecognizer(II, DAG);
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147 const MachineInstr &MI,
148 unsigned *PredCost) const {
149 if (!ItinData || UseOldLatencyCalc)
150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
152 // The default implementation of getInstrLatency calls getStageLatency, but
153 // getStageLatency does not do the right thing for us. While we have
154 // itinerary, most cores are fully pipelined, and so the itineraries only
155 // express the first part of the pipeline, not every stage. Instead, we need
156 // to use the listed output operand cycle number (using operand 0 here, which
157 // is an output).
159 unsigned Latency = 1;
160 unsigned DefClass = MI.getDesc().getSchedClass();
161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162 const MachineOperand &MO = MI.getOperand(i);
163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164 continue;
166 int Cycle = ItinData->getOperandCycle(DefClass, i);
167 if (Cycle < 0)
168 continue;
170 Latency = std::max(Latency, (unsigned) Cycle);
173 return Latency;
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177 const MachineInstr &DefMI, unsigned DefIdx,
178 const MachineInstr &UseMI,
179 unsigned UseIdx) const {
180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181 UseMI, UseIdx);
183 if (!DefMI.getParent())
184 return Latency;
186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187 Register Reg = DefMO.getReg();
189 bool IsRegCR;
190 if (Register::isVirtualRegister(Reg)) {
191 const MachineRegisterInfo *MRI =
192 &DefMI.getParent()->getParent()->getRegInfo();
193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195 } else {
196 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197 PPC::CRBITRCRegClass.contains(Reg);
200 if (UseMI.isBranch() && IsRegCR) {
201 if (Latency < 0)
202 Latency = getInstrLatency(ItinData, DefMI);
204 // On some cores, there is an additional delay between writing to a condition
205 // register, and using it from a branch.
206 unsigned Directive = Subtarget.getDarwinDirective();
207 switch (Directive) {
208 default: break;
209 case PPC::DIR_7400:
210 case PPC::DIR_750:
211 case PPC::DIR_970:
212 case PPC::DIR_E5500:
213 case PPC::DIR_PWR4:
214 case PPC::DIR_PWR5:
215 case PPC::DIR_PWR5X:
216 case PPC::DIR_PWR6:
217 case PPC::DIR_PWR6X:
218 case PPC::DIR_PWR7:
219 case PPC::DIR_PWR8:
220 // FIXME: Is this needed for POWER9?
221 Latency += 2;
222 break;
226 return Latency;
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235 switch (Inst.getOpcode()) {
236 // FP Add:
237 case PPC::FADD:
238 case PPC::FADDS:
239 // FP Multiply:
240 case PPC::FMUL:
241 case PPC::FMULS:
242 // Altivec Add:
243 case PPC::VADDFP:
244 // VSX Add:
245 case PPC::XSADDDP:
246 case PPC::XVADDDP:
247 case PPC::XVADDSP:
248 case PPC::XSADDSP:
249 // VSX Multiply:
250 case PPC::XSMULDP:
251 case PPC::XVMULDP:
252 case PPC::XVMULSP:
253 case PPC::XSMULSP:
254 // QPX Add:
255 case PPC::QVFADD:
256 case PPC::QVFADDS:
257 case PPC::QVFADDSs:
258 // QPX Multiply:
259 case PPC::QVFMUL:
260 case PPC::QVFMULS:
261 case PPC::QVFMULSs:
262 return true;
263 default:
264 return false;
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269 MachineInstr &Root,
270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271 // Using the machine combiner in this way is potentially expensive, so
272 // restrict to when aggressive optimizations are desired.
273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274 return false;
276 // FP reassociation is only legal when we don't need strict IEEE semantics.
277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278 return false;
280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285 unsigned &SrcReg, unsigned &DstReg,
286 unsigned &SubIdx) const {
287 switch (MI.getOpcode()) {
288 default: return false;
289 case PPC::EXTSW:
290 case PPC::EXTSW_32:
291 case PPC::EXTSW_32_64:
292 SrcReg = MI.getOperand(1).getReg();
293 DstReg = MI.getOperand(0).getReg();
294 SubIdx = PPC::sub_32;
295 return true;
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300 int &FrameIndex) const {
301 unsigned Opcode = MI.getOpcode();
302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
305 if (End != std::find(OpcodesForSpill, End, Opcode)) {
306 // Check for the operands added by addFrameReference (the immediate is the
307 // offset which defaults to 0).
308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309 MI.getOperand(2).isFI()) {
310 FrameIndex = MI.getOperand(2).getIndex();
311 return MI.getOperand(0).getReg();
314 return 0;
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320 AliasAnalysis *AA) const {
321 switch (MI.getOpcode()) {
322 default:
323 // This function should only be called for opcodes with the ReMaterializable
324 // flag set.
325 llvm_unreachable("Unknown rematerializable operation!");
326 break;
327 case PPC::LI:
328 case PPC::LI8:
329 case PPC::LIS:
330 case PPC::LIS8:
331 case PPC::QVGPCI:
332 case PPC::ADDIStocHA8:
333 case PPC::ADDItocL:
334 case PPC::LOAD_STACK_GUARD:
335 case PPC::XXLXORz:
336 case PPC::XXLXORspz:
337 case PPC::XXLXORdpz:
338 case PPC::XXLEQVOnes:
339 case PPC::V_SET0B:
340 case PPC::V_SET0H:
341 case PPC::V_SET0:
342 case PPC::V_SETALLONESB:
343 case PPC::V_SETALLONESH:
344 case PPC::V_SETALLONES:
345 case PPC::CRSET:
346 case PPC::CRUNSET:
347 return true;
349 return false;
352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353 int &FrameIndex) const {
354 unsigned Opcode = MI.getOpcode();
355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
358 if (End != std::find(OpcodesForSpill, End, Opcode)) {
359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
360 MI.getOperand(2).isFI()) {
361 FrameIndex = MI.getOperand(2).getIndex();
362 return MI.getOperand(0).getReg();
365 return 0;
368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
369 unsigned OpIdx1,
370 unsigned OpIdx2) const {
371 MachineFunction &MF = *MI.getParent()->getParent();
373 // Normal instructions can be commuted the obvious way.
374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378 // changing the relative order of the mask operands might change what happens
379 // to the high-bits of the mask (and, thus, the result).
381 // Cannot commute if it has a non-zero rotate count.
382 if (MI.getOperand(3).getImm() != 0)
383 return nullptr;
385 // If we have a zero rotate count, we have:
386 // M = mask(MB,ME)
387 // Op0 = (Op1 & ~M) | (Op2 & M)
388 // Change this to:
389 // M = mask((ME+1)&31, (MB-1)&31)
390 // Op0 = (Op2 & ~M) | (Op1 & M)
392 // Swap op1/op2
393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
395 Register Reg0 = MI.getOperand(0).getReg();
396 Register Reg1 = MI.getOperand(1).getReg();
397 Register Reg2 = MI.getOperand(2).getReg();
398 unsigned SubReg1 = MI.getOperand(1).getSubReg();
399 unsigned SubReg2 = MI.getOperand(2).getSubReg();
400 bool Reg1IsKill = MI.getOperand(1).isKill();
401 bool Reg2IsKill = MI.getOperand(2).isKill();
402 bool ChangeReg0 = false;
403 // If machine instrs are no longer in two-address forms, update
404 // destination register as well.
405 if (Reg0 == Reg1) {
406 // Must be two address instruction!
407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
408 "Expecting a two-address instruction!");
409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
410 Reg2IsKill = false;
411 ChangeReg0 = true;
414 // Masks.
415 unsigned MB = MI.getOperand(4).getImm();
416 unsigned ME = MI.getOperand(5).getImm();
418 // We can't commute a trivial mask (there is no way to represent an all-zero
419 // mask).
420 if (MB == 0 && ME == 31)
421 return nullptr;
423 if (NewMI) {
424 // Create a new instruction.
425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
426 bool Reg0IsDead = MI.getOperand(0).isDead();
427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
429 .addReg(Reg2, getKillRegState(Reg2IsKill))
430 .addReg(Reg1, getKillRegState(Reg1IsKill))
431 .addImm((ME + 1) & 31)
432 .addImm((MB - 1) & 31);
435 if (ChangeReg0) {
436 MI.getOperand(0).setReg(Reg2);
437 MI.getOperand(0).setSubReg(SubReg2);
439 MI.getOperand(2).setReg(Reg1);
440 MI.getOperand(1).setReg(Reg2);
441 MI.getOperand(2).setSubReg(SubReg1);
442 MI.getOperand(1).setSubReg(SubReg2);
443 MI.getOperand(2).setIsKill(Reg1IsKill);
444 MI.getOperand(1).setIsKill(Reg2IsKill);
446 // Swap the mask around.
447 MI.getOperand(4).setImm((ME + 1) & 31);
448 MI.getOperand(5).setImm((MB - 1) & 31);
449 return &MI;
452 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
453 unsigned &SrcOpIdx2) const {
454 // For VSX A-Type FMA instructions, it is the first two operands that can be
455 // commuted, however, because the non-encoded tied input operand is listed
456 // first, the operands to swap are actually the second and third.
458 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
459 if (AltOpc == -1)
460 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
462 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
463 // and SrcOpIdx2.
464 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
467 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
468 MachineBasicBlock::iterator MI) const {
469 // This function is used for scheduling, and the nop wanted here is the type
470 // that terminates dispatch groups on the POWER cores.
471 unsigned Directive = Subtarget.getDarwinDirective();
472 unsigned Opcode;
473 switch (Directive) {
474 default: Opcode = PPC::NOP; break;
475 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
476 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
477 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
478 // FIXME: Update when POWER9 scheduling model is ready.
479 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
482 DebugLoc DL;
483 BuildMI(MBB, MI, DL, get(Opcode));
486 /// Return the noop instruction to use for a noop.
487 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
488 NopInst.setOpcode(PPC::NOP);
491 // Branch analysis.
492 // Note: If the condition register is set to CTR or CTR8 then this is a
493 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
494 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
495 MachineBasicBlock *&TBB,
496 MachineBasicBlock *&FBB,
497 SmallVectorImpl<MachineOperand> &Cond,
498 bool AllowModify) const {
499 bool isPPC64 = Subtarget.isPPC64();
501 // If the block has no terminators, it just falls into the block after it.
502 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
503 if (I == MBB.end())
504 return false;
506 if (!isUnpredicatedTerminator(*I))
507 return false;
509 if (AllowModify) {
510 // If the BB ends with an unconditional branch to the fallthrough BB,
511 // we eliminate the branch instruction.
512 if (I->getOpcode() == PPC::B &&
513 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
514 I->eraseFromParent();
516 // We update iterator after deleting the last branch.
517 I = MBB.getLastNonDebugInstr();
518 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
519 return false;
523 // Get the last instruction in the block.
524 MachineInstr &LastInst = *I;
526 // If there is only one terminator instruction, process it.
527 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
528 if (LastInst.getOpcode() == PPC::B) {
529 if (!LastInst.getOperand(0).isMBB())
530 return true;
531 TBB = LastInst.getOperand(0).getMBB();
532 return false;
533 } else if (LastInst.getOpcode() == PPC::BCC) {
534 if (!LastInst.getOperand(2).isMBB())
535 return true;
536 // Block ends with fall-through condbranch.
537 TBB = LastInst.getOperand(2).getMBB();
538 Cond.push_back(LastInst.getOperand(0));
539 Cond.push_back(LastInst.getOperand(1));
540 return false;
541 } else if (LastInst.getOpcode() == PPC::BC) {
542 if (!LastInst.getOperand(1).isMBB())
543 return true;
544 // Block ends with fall-through condbranch.
545 TBB = LastInst.getOperand(1).getMBB();
546 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
547 Cond.push_back(LastInst.getOperand(0));
548 return false;
549 } else if (LastInst.getOpcode() == PPC::BCn) {
550 if (!LastInst.getOperand(1).isMBB())
551 return true;
552 // Block ends with fall-through condbranch.
553 TBB = LastInst.getOperand(1).getMBB();
554 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
555 Cond.push_back(LastInst.getOperand(0));
556 return false;
557 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
558 LastInst.getOpcode() == PPC::BDNZ) {
559 if (!LastInst.getOperand(0).isMBB())
560 return true;
561 if (DisableCTRLoopAnal)
562 return true;
563 TBB = LastInst.getOperand(0).getMBB();
564 Cond.push_back(MachineOperand::CreateImm(1));
565 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
566 true));
567 return false;
568 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
569 LastInst.getOpcode() == PPC::BDZ) {
570 if (!LastInst.getOperand(0).isMBB())
571 return true;
572 if (DisableCTRLoopAnal)
573 return true;
574 TBB = LastInst.getOperand(0).getMBB();
575 Cond.push_back(MachineOperand::CreateImm(0));
576 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
577 true));
578 return false;
581 // Otherwise, don't know what this is.
582 return true;
585 // Get the instruction before it if it's a terminator.
586 MachineInstr &SecondLastInst = *I;
588 // If there are three terminators, we don't know what sort of block this is.
589 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
590 return true;
592 // If the block ends with PPC::B and PPC:BCC, handle it.
593 if (SecondLastInst.getOpcode() == PPC::BCC &&
594 LastInst.getOpcode() == PPC::B) {
595 if (!SecondLastInst.getOperand(2).isMBB() ||
596 !LastInst.getOperand(0).isMBB())
597 return true;
598 TBB = SecondLastInst.getOperand(2).getMBB();
599 Cond.push_back(SecondLastInst.getOperand(0));
600 Cond.push_back(SecondLastInst.getOperand(1));
601 FBB = LastInst.getOperand(0).getMBB();
602 return false;
603 } else if (SecondLastInst.getOpcode() == PPC::BC &&
604 LastInst.getOpcode() == PPC::B) {
605 if (!SecondLastInst.getOperand(1).isMBB() ||
606 !LastInst.getOperand(0).isMBB())
607 return true;
608 TBB = SecondLastInst.getOperand(1).getMBB();
609 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
610 Cond.push_back(SecondLastInst.getOperand(0));
611 FBB = LastInst.getOperand(0).getMBB();
612 return false;
613 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
614 LastInst.getOpcode() == PPC::B) {
615 if (!SecondLastInst.getOperand(1).isMBB() ||
616 !LastInst.getOperand(0).isMBB())
617 return true;
618 TBB = SecondLastInst.getOperand(1).getMBB();
619 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
620 Cond.push_back(SecondLastInst.getOperand(0));
621 FBB = LastInst.getOperand(0).getMBB();
622 return false;
623 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
624 SecondLastInst.getOpcode() == PPC::BDNZ) &&
625 LastInst.getOpcode() == PPC::B) {
626 if (!SecondLastInst.getOperand(0).isMBB() ||
627 !LastInst.getOperand(0).isMBB())
628 return true;
629 if (DisableCTRLoopAnal)
630 return true;
631 TBB = SecondLastInst.getOperand(0).getMBB();
632 Cond.push_back(MachineOperand::CreateImm(1));
633 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
634 true));
635 FBB = LastInst.getOperand(0).getMBB();
636 return false;
637 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
638 SecondLastInst.getOpcode() == PPC::BDZ) &&
639 LastInst.getOpcode() == PPC::B) {
640 if (!SecondLastInst.getOperand(0).isMBB() ||
641 !LastInst.getOperand(0).isMBB())
642 return true;
643 if (DisableCTRLoopAnal)
644 return true;
645 TBB = SecondLastInst.getOperand(0).getMBB();
646 Cond.push_back(MachineOperand::CreateImm(0));
647 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
648 true));
649 FBB = LastInst.getOperand(0).getMBB();
650 return false;
653 // If the block ends with two PPC:Bs, handle it. The second one is not
654 // executed, so remove it.
655 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
656 if (!SecondLastInst.getOperand(0).isMBB())
657 return true;
658 TBB = SecondLastInst.getOperand(0).getMBB();
659 I = LastInst;
660 if (AllowModify)
661 I->eraseFromParent();
662 return false;
665 // Otherwise, can't handle this.
666 return true;
669 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
670 int *BytesRemoved) const {
671 assert(!BytesRemoved && "code size not handled");
673 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
674 if (I == MBB.end())
675 return 0;
677 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
678 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
679 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
680 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
681 return 0;
683 // Remove the branch.
684 I->eraseFromParent();
686 I = MBB.end();
688 if (I == MBB.begin()) return 1;
689 --I;
690 if (I->getOpcode() != PPC::BCC &&
691 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
692 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
693 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
694 return 1;
696 // Remove the branch.
697 I->eraseFromParent();
698 return 2;
701 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
702 MachineBasicBlock *TBB,
703 MachineBasicBlock *FBB,
704 ArrayRef<MachineOperand> Cond,
705 const DebugLoc &DL,
706 int *BytesAdded) const {
707 // Shouldn't be a fall through.
708 assert(TBB && "insertBranch must not be told to insert a fallthrough");
709 assert((Cond.size() == 2 || Cond.size() == 0) &&
710 "PPC branch conditions have two components!");
711 assert(!BytesAdded && "code size not handled");
713 bool isPPC64 = Subtarget.isPPC64();
715 // One-way branch.
716 if (!FBB) {
717 if (Cond.empty()) // Unconditional branch
718 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
719 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
720 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
721 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
722 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
723 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
724 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
725 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
726 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
727 else // Conditional branch
728 BuildMI(&MBB, DL, get(PPC::BCC))
729 .addImm(Cond[0].getImm())
730 .add(Cond[1])
731 .addMBB(TBB);
732 return 1;
735 // Two-way Conditional Branch.
736 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
737 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
738 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
739 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
740 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
741 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
742 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
743 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
744 else
745 BuildMI(&MBB, DL, get(PPC::BCC))
746 .addImm(Cond[0].getImm())
747 .add(Cond[1])
748 .addMBB(TBB);
749 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
750 return 2;
753 // Select analysis.
754 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
755 ArrayRef<MachineOperand> Cond,
756 unsigned TrueReg, unsigned FalseReg,
757 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
758 if (Cond.size() != 2)
759 return false;
761 // If this is really a bdnz-like condition, then it cannot be turned into a
762 // select.
763 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
764 return false;
766 // Check register classes.
767 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
768 const TargetRegisterClass *RC =
769 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
770 if (!RC)
771 return false;
773 // isel is for regular integer GPRs only.
774 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
775 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
776 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
777 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
778 return false;
780 // FIXME: These numbers are for the A2, how well they work for other cores is
781 // an open question. On the A2, the isel instruction has a 2-cycle latency
782 // but single-cycle throughput. These numbers are used in combination with
783 // the MispredictPenalty setting from the active SchedMachineModel.
784 CondCycles = 1;
785 TrueCycles = 1;
786 FalseCycles = 1;
788 return true;
791 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
792 MachineBasicBlock::iterator MI,
793 const DebugLoc &dl, unsigned DestReg,
794 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
795 unsigned FalseReg) const {
796 assert(Cond.size() == 2 &&
797 "PPC branch conditions have two components!");
799 // Get the register classes.
800 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
801 const TargetRegisterClass *RC =
802 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
803 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
805 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
806 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
807 assert((Is64Bit ||
808 PPC::GPRCRegClass.hasSubClassEq(RC) ||
809 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
810 "isel is for regular integer GPRs only");
812 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
813 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
815 unsigned SubIdx = 0;
816 bool SwapOps = false;
817 switch (SelectPred) {
818 case PPC::PRED_EQ:
819 case PPC::PRED_EQ_MINUS:
820 case PPC::PRED_EQ_PLUS:
821 SubIdx = PPC::sub_eq; SwapOps = false; break;
822 case PPC::PRED_NE:
823 case PPC::PRED_NE_MINUS:
824 case PPC::PRED_NE_PLUS:
825 SubIdx = PPC::sub_eq; SwapOps = true; break;
826 case PPC::PRED_LT:
827 case PPC::PRED_LT_MINUS:
828 case PPC::PRED_LT_PLUS:
829 SubIdx = PPC::sub_lt; SwapOps = false; break;
830 case PPC::PRED_GE:
831 case PPC::PRED_GE_MINUS:
832 case PPC::PRED_GE_PLUS:
833 SubIdx = PPC::sub_lt; SwapOps = true; break;
834 case PPC::PRED_GT:
835 case PPC::PRED_GT_MINUS:
836 case PPC::PRED_GT_PLUS:
837 SubIdx = PPC::sub_gt; SwapOps = false; break;
838 case PPC::PRED_LE:
839 case PPC::PRED_LE_MINUS:
840 case PPC::PRED_LE_PLUS:
841 SubIdx = PPC::sub_gt; SwapOps = true; break;
842 case PPC::PRED_UN:
843 case PPC::PRED_UN_MINUS:
844 case PPC::PRED_UN_PLUS:
845 SubIdx = PPC::sub_un; SwapOps = false; break;
846 case PPC::PRED_NU:
847 case PPC::PRED_NU_MINUS:
848 case PPC::PRED_NU_PLUS:
849 SubIdx = PPC::sub_un; SwapOps = true; break;
850 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
851 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
854 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
855 SecondReg = SwapOps ? TrueReg : FalseReg;
857 // The first input register of isel cannot be r0. If it is a member
858 // of a register class that can be r0, then copy it first (the
859 // register allocator should eliminate the copy).
860 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
861 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
862 const TargetRegisterClass *FirstRC =
863 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
864 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
865 unsigned OldFirstReg = FirstReg;
866 FirstReg = MRI.createVirtualRegister(FirstRC);
867 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
868 .addReg(OldFirstReg);
871 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
872 .addReg(FirstReg).addReg(SecondReg)
873 .addReg(Cond[1].getReg(), 0, SubIdx);
876 static unsigned getCRBitValue(unsigned CRBit) {
877 unsigned Ret = 4;
878 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
879 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
880 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
881 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
882 Ret = 3;
883 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
884 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
885 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
886 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
887 Ret = 2;
888 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
889 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
890 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
891 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
892 Ret = 1;
893 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
894 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
895 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
896 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
897 Ret = 0;
899 assert(Ret != 4 && "Invalid CR bit register");
900 return Ret;
903 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
904 MachineBasicBlock::iterator I,
905 const DebugLoc &DL, unsigned DestReg,
906 unsigned SrcReg, bool KillSrc) const {
907 // We can end up with self copies and similar things as a result of VSX copy
908 // legalization. Promote them here.
909 const TargetRegisterInfo *TRI = &getRegisterInfo();
910 if (PPC::F8RCRegClass.contains(DestReg) &&
911 PPC::VSRCRegClass.contains(SrcReg)) {
912 unsigned SuperReg =
913 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
915 if (VSXSelfCopyCrash && SrcReg == SuperReg)
916 llvm_unreachable("nop VSX copy");
918 DestReg = SuperReg;
919 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
920 PPC::VSRCRegClass.contains(DestReg)) {
921 unsigned SuperReg =
922 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
924 if (VSXSelfCopyCrash && DestReg == SuperReg)
925 llvm_unreachable("nop VSX copy");
927 SrcReg = SuperReg;
930 // Different class register copy
931 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
932 PPC::GPRCRegClass.contains(DestReg)) {
933 unsigned CRReg = getCRFromCRBit(SrcReg);
934 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
935 getKillRegState(KillSrc);
936 // Rotate the CR bit in the CR fields to be the least significant bit and
937 // then mask with 0x1 (MB = ME = 31).
938 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
939 .addReg(DestReg, RegState::Kill)
940 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
941 .addImm(31)
942 .addImm(31);
943 return;
944 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
945 PPC::G8RCRegClass.contains(DestReg)) {
946 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
947 getKillRegState(KillSrc);
948 return;
949 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
950 PPC::GPRCRegClass.contains(DestReg)) {
951 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
952 getKillRegState(KillSrc);
953 return;
954 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
955 PPC::VSFRCRegClass.contains(DestReg)) {
956 assert(Subtarget.hasDirectMove() &&
957 "Subtarget doesn't support directmove, don't know how to copy.");
958 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
959 NumGPRtoVSRSpill++;
960 getKillRegState(KillSrc);
961 return;
962 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
963 PPC::G8RCRegClass.contains(DestReg)) {
964 assert(Subtarget.hasDirectMove() &&
965 "Subtarget doesn't support directmove, don't know how to copy.");
966 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
967 getKillRegState(KillSrc);
968 return;
969 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
970 PPC::SPE4RCRegClass.contains(DestReg)) {
971 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
972 getKillRegState(KillSrc);
973 return;
974 } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
975 PPC::SPERCRegClass.contains(DestReg)) {
976 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
977 getKillRegState(KillSrc);
978 return;
981 unsigned Opc;
982 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
983 Opc = PPC::OR;
984 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
985 Opc = PPC::OR8;
986 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
987 Opc = PPC::FMR;
988 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
989 Opc = PPC::MCRF;
990 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
991 Opc = PPC::VOR;
992 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
993 // There are two different ways this can be done:
994 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
995 // issue in VSU pipeline 0.
996 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
997 // can go to either pipeline.
998 // We'll always use xxlor here, because in practically all cases where
999 // copies are generated, they are close enough to some use that the
1000 // lower-latency form is preferable.
1001 Opc = PPC::XXLOR;
1002 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1003 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1004 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1005 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1006 Opc = PPC::QVFMR;
1007 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1008 Opc = PPC::QVFMRs;
1009 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1010 Opc = PPC::QVFMRb;
1011 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1012 Opc = PPC::CROR;
1013 else if (PPC::SPE4RCRegClass.contains(DestReg, SrcReg))
1014 Opc = PPC::OR;
1015 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1016 Opc = PPC::EVOR;
1017 else
1018 llvm_unreachable("Impossible reg-to-reg copy");
1020 const MCInstrDesc &MCID = get(Opc);
1021 if (MCID.getNumOperands() == 3)
1022 BuildMI(MBB, I, DL, MCID, DestReg)
1023 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1024 else
1025 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1028 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1029 const TargetRegisterClass *RC)
1030 const {
1031 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1032 int OpcodeIndex = 0;
1034 if (RC != nullptr) {
1035 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1036 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1037 OpcodeIndex = SOK_Int4Spill;
1038 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1039 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1040 OpcodeIndex = SOK_Int8Spill;
1041 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1042 OpcodeIndex = SOK_Float8Spill;
1043 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1044 OpcodeIndex = SOK_Float4Spill;
1045 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1046 OpcodeIndex = SOK_SPESpill;
1047 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1048 OpcodeIndex = SOK_SPE4Spill;
1049 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1050 OpcodeIndex = SOK_CRSpill;
1051 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1052 OpcodeIndex = SOK_CRBitSpill;
1053 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1054 OpcodeIndex = SOK_VRVectorSpill;
1055 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1056 OpcodeIndex = SOK_VSXVectorSpill;
1057 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1058 OpcodeIndex = SOK_VectorFloat8Spill;
1059 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1060 OpcodeIndex = SOK_VectorFloat4Spill;
1061 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1062 OpcodeIndex = SOK_VRSaveSpill;
1063 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1064 OpcodeIndex = SOK_QuadFloat8Spill;
1065 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1066 OpcodeIndex = SOK_QuadFloat4Spill;
1067 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1068 OpcodeIndex = SOK_QuadBitSpill;
1069 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1070 OpcodeIndex = SOK_SpillToVSR;
1071 } else {
1072 llvm_unreachable("Unknown regclass!");
1074 } else {
1075 if (PPC::GPRCRegClass.contains(Reg) ||
1076 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1077 OpcodeIndex = SOK_Int4Spill;
1078 } else if (PPC::G8RCRegClass.contains(Reg) ||
1079 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1080 OpcodeIndex = SOK_Int8Spill;
1081 } else if (PPC::F8RCRegClass.contains(Reg)) {
1082 OpcodeIndex = SOK_Float8Spill;
1083 } else if (PPC::F4RCRegClass.contains(Reg)) {
1084 OpcodeIndex = SOK_Float4Spill;
1085 } else if (PPC::SPERCRegClass.contains(Reg)) {
1086 OpcodeIndex = SOK_SPESpill;
1087 } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1088 OpcodeIndex = SOK_SPE4Spill;
1089 } else if (PPC::CRRCRegClass.contains(Reg)) {
1090 OpcodeIndex = SOK_CRSpill;
1091 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1092 OpcodeIndex = SOK_CRBitSpill;
1093 } else if (PPC::VRRCRegClass.contains(Reg)) {
1094 OpcodeIndex = SOK_VRVectorSpill;
1095 } else if (PPC::VSRCRegClass.contains(Reg)) {
1096 OpcodeIndex = SOK_VSXVectorSpill;
1097 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1098 OpcodeIndex = SOK_VectorFloat8Spill;
1099 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1100 OpcodeIndex = SOK_VectorFloat4Spill;
1101 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1102 OpcodeIndex = SOK_VRSaveSpill;
1103 } else if (PPC::QFRCRegClass.contains(Reg)) {
1104 OpcodeIndex = SOK_QuadFloat8Spill;
1105 } else if (PPC::QSRCRegClass.contains(Reg)) {
1106 OpcodeIndex = SOK_QuadFloat4Spill;
1107 } else if (PPC::QBRCRegClass.contains(Reg)) {
1108 OpcodeIndex = SOK_QuadBitSpill;
1109 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1110 OpcodeIndex = SOK_SpillToVSR;
1111 } else {
1112 llvm_unreachable("Unknown regclass!");
1115 return OpcodesForSpill[OpcodeIndex];
1118 unsigned
1119 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1120 const TargetRegisterClass *RC) const {
1121 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1122 int OpcodeIndex = 0;
1124 if (RC != nullptr) {
1125 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1126 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1127 OpcodeIndex = SOK_Int4Spill;
1128 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1129 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1130 OpcodeIndex = SOK_Int8Spill;
1131 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1132 OpcodeIndex = SOK_Float8Spill;
1133 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1134 OpcodeIndex = SOK_Float4Spill;
1135 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1136 OpcodeIndex = SOK_SPESpill;
1137 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1138 OpcodeIndex = SOK_SPE4Spill;
1139 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1140 OpcodeIndex = SOK_CRSpill;
1141 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1142 OpcodeIndex = SOK_CRBitSpill;
1143 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1144 OpcodeIndex = SOK_VRVectorSpill;
1145 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1146 OpcodeIndex = SOK_VSXVectorSpill;
1147 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1148 OpcodeIndex = SOK_VectorFloat8Spill;
1149 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1150 OpcodeIndex = SOK_VectorFloat4Spill;
1151 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1152 OpcodeIndex = SOK_VRSaveSpill;
1153 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1154 OpcodeIndex = SOK_QuadFloat8Spill;
1155 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1156 OpcodeIndex = SOK_QuadFloat4Spill;
1157 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1158 OpcodeIndex = SOK_QuadBitSpill;
1159 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1160 OpcodeIndex = SOK_SpillToVSR;
1161 } else {
1162 llvm_unreachable("Unknown regclass!");
1164 } else {
1165 if (PPC::GPRCRegClass.contains(Reg) ||
1166 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1167 OpcodeIndex = SOK_Int4Spill;
1168 } else if (PPC::G8RCRegClass.contains(Reg) ||
1169 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1170 OpcodeIndex = SOK_Int8Spill;
1171 } else if (PPC::F8RCRegClass.contains(Reg)) {
1172 OpcodeIndex = SOK_Float8Spill;
1173 } else if (PPC::F4RCRegClass.contains(Reg)) {
1174 OpcodeIndex = SOK_Float4Spill;
1175 } else if (PPC::SPERCRegClass.contains(Reg)) {
1176 OpcodeIndex = SOK_SPESpill;
1177 } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1178 OpcodeIndex = SOK_SPE4Spill;
1179 } else if (PPC::CRRCRegClass.contains(Reg)) {
1180 OpcodeIndex = SOK_CRSpill;
1181 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1182 OpcodeIndex = SOK_CRBitSpill;
1183 } else if (PPC::VRRCRegClass.contains(Reg)) {
1184 OpcodeIndex = SOK_VRVectorSpill;
1185 } else if (PPC::VSRCRegClass.contains(Reg)) {
1186 OpcodeIndex = SOK_VSXVectorSpill;
1187 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1188 OpcodeIndex = SOK_VectorFloat8Spill;
1189 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1190 OpcodeIndex = SOK_VectorFloat4Spill;
1191 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1192 OpcodeIndex = SOK_VRSaveSpill;
1193 } else if (PPC::QFRCRegClass.contains(Reg)) {
1194 OpcodeIndex = SOK_QuadFloat8Spill;
1195 } else if (PPC::QSRCRegClass.contains(Reg)) {
1196 OpcodeIndex = SOK_QuadFloat4Spill;
1197 } else if (PPC::QBRCRegClass.contains(Reg)) {
1198 OpcodeIndex = SOK_QuadBitSpill;
1199 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1200 OpcodeIndex = SOK_SpillToVSR;
1201 } else {
1202 llvm_unreachable("Unknown regclass!");
1205 return OpcodesForSpill[OpcodeIndex];
1208 void PPCInstrInfo::StoreRegToStackSlot(
1209 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1210 const TargetRegisterClass *RC,
1211 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1212 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1213 DebugLoc DL;
1215 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1216 FuncInfo->setHasSpills();
1218 NewMIs.push_back(addFrameReference(
1219 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1220 FrameIdx));
1222 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1223 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1224 FuncInfo->setSpillsCR();
1226 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1227 FuncInfo->setSpillsVRSAVE();
1229 if (isXFormMemOp(Opcode))
1230 FuncInfo->setHasNonRISpills();
1233 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1234 MachineBasicBlock::iterator MI,
1235 unsigned SrcReg, bool isKill,
1236 int FrameIdx,
1237 const TargetRegisterClass *RC,
1238 const TargetRegisterInfo *TRI) const {
1239 MachineFunction &MF = *MBB.getParent();
1240 SmallVector<MachineInstr *, 4> NewMIs;
1242 // We need to avoid a situation in which the value from a VRRC register is
1243 // spilled using an Altivec instruction and reloaded into a VSRC register
1244 // using a VSX instruction. The issue with this is that the VSX
1245 // load/store instructions swap the doublewords in the vector and the Altivec
1246 // ones don't. The register classes on the spill/reload may be different if
1247 // the register is defined using an Altivec instruction and is then used by a
1248 // VSX instruction.
1249 RC = updatedRC(RC);
1251 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1253 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1254 MBB.insert(MI, NewMIs[i]);
1256 const MachineFrameInfo &MFI = MF.getFrameInfo();
1257 MachineMemOperand *MMO = MF.getMachineMemOperand(
1258 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1259 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1260 MFI.getObjectAlignment(FrameIdx));
1261 NewMIs.back()->addMemOperand(MF, MMO);
1264 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1265 unsigned DestReg, int FrameIdx,
1266 const TargetRegisterClass *RC,
1267 SmallVectorImpl<MachineInstr *> &NewMIs)
1268 const {
1269 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1270 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1271 FrameIdx));
1272 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1274 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1275 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1276 FuncInfo->setSpillsCR();
1278 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1279 FuncInfo->setSpillsVRSAVE();
1281 if (isXFormMemOp(Opcode))
1282 FuncInfo->setHasNonRISpills();
1285 void
1286 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1287 MachineBasicBlock::iterator MI,
1288 unsigned DestReg, int FrameIdx,
1289 const TargetRegisterClass *RC,
1290 const TargetRegisterInfo *TRI) const {
1291 MachineFunction &MF = *MBB.getParent();
1292 SmallVector<MachineInstr*, 4> NewMIs;
1293 DebugLoc DL;
1294 if (MI != MBB.end()) DL = MI->getDebugLoc();
1296 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1297 FuncInfo->setHasSpills();
1299 // We need to avoid a situation in which the value from a VRRC register is
1300 // spilled using an Altivec instruction and reloaded into a VSRC register
1301 // using a VSX instruction. The issue with this is that the VSX
1302 // load/store instructions swap the doublewords in the vector and the Altivec
1303 // ones don't. The register classes on the spill/reload may be different if
1304 // the register is defined using an Altivec instruction and is then used by a
1305 // VSX instruction.
1306 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1307 RC = &PPC::VSRCRegClass;
1309 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1311 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1312 MBB.insert(MI, NewMIs[i]);
1314 const MachineFrameInfo &MFI = MF.getFrameInfo();
1315 MachineMemOperand *MMO = MF.getMachineMemOperand(
1316 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1317 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1318 MFI.getObjectAlignment(FrameIdx));
1319 NewMIs.back()->addMemOperand(MF, MMO);
1322 bool PPCInstrInfo::
1323 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1324 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1325 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1326 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1327 else
1328 // Leave the CR# the same, but invert the condition.
1329 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1330 return false;
1333 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1334 unsigned Reg, MachineRegisterInfo *MRI) const {
1335 // For some instructions, it is legal to fold ZERO into the RA register field.
1336 // A zero immediate should always be loaded with a single li.
1337 unsigned DefOpc = DefMI.getOpcode();
1338 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1339 return false;
1340 if (!DefMI.getOperand(1).isImm())
1341 return false;
1342 if (DefMI.getOperand(1).getImm() != 0)
1343 return false;
1345 // Note that we cannot here invert the arguments of an isel in order to fold
1346 // a ZERO into what is presented as the second argument. All we have here
1347 // is the condition bit, and that might come from a CR-logical bit operation.
1349 const MCInstrDesc &UseMCID = UseMI.getDesc();
1351 // Only fold into real machine instructions.
1352 if (UseMCID.isPseudo())
1353 return false;
1355 unsigned UseIdx;
1356 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1357 if (UseMI.getOperand(UseIdx).isReg() &&
1358 UseMI.getOperand(UseIdx).getReg() == Reg)
1359 break;
1361 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1362 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1364 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1366 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1367 // register (which might also be specified as a pointer class kind).
1368 if (UseInfo->isLookupPtrRegClass()) {
1369 if (UseInfo->RegClass /* Kind */ != 1)
1370 return false;
1371 } else {
1372 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1373 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1374 return false;
1377 // Make sure this is not tied to an output register (or otherwise
1378 // constrained). This is true for ST?UX registers, for example, which
1379 // are tied to their output registers.
1380 if (UseInfo->Constraints != 0)
1381 return false;
1383 unsigned ZeroReg;
1384 if (UseInfo->isLookupPtrRegClass()) {
1385 bool isPPC64 = Subtarget.isPPC64();
1386 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1387 } else {
1388 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1389 PPC::ZERO8 : PPC::ZERO;
1392 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1393 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1395 if (DeleteDef)
1396 DefMI.eraseFromParent();
1398 return true;
1401 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1402 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1403 I != IE; ++I)
1404 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1405 return true;
1406 return false;
1409 // We should make sure that, if we're going to predicate both sides of a
1410 // condition (a diamond), that both sides don't define the counter register. We
1411 // can predicate counter-decrement-based branches, but while that predicates
1412 // the branching, it does not predicate the counter decrement. If we tried to
1413 // merge the triangle into one predicated block, we'd decrement the counter
1414 // twice.
1415 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1416 unsigned NumT, unsigned ExtraT,
1417 MachineBasicBlock &FMBB,
1418 unsigned NumF, unsigned ExtraF,
1419 BranchProbability Probability) const {
1420 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1424 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1425 // The predicated branches are identified by their type, not really by the
1426 // explicit presence of a predicate. Furthermore, some of them can be
1427 // predicated more than once. Because if conversion won't try to predicate
1428 // any instruction which already claims to be predicated (by returning true
1429 // here), always return false. In doing so, we let isPredicable() be the
1430 // final word on whether not the instruction can be (further) predicated.
1432 return false;
1435 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1436 if (!MI.isTerminator())
1437 return false;
1439 // Conditional branch is a special case.
1440 if (MI.isBranch() && !MI.isBarrier())
1441 return true;
1443 return !isPredicated(MI);
1446 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1447 ArrayRef<MachineOperand> Pred) const {
1448 unsigned OpC = MI.getOpcode();
1449 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1450 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1451 bool isPPC64 = Subtarget.isPPC64();
1452 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1453 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1454 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1455 MI.setDesc(get(PPC::BCLR));
1456 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1457 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1458 MI.setDesc(get(PPC::BCLRn));
1459 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1460 } else {
1461 MI.setDesc(get(PPC::BCCLR));
1462 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1463 .addImm(Pred[0].getImm())
1464 .add(Pred[1]);
1467 return true;
1468 } else if (OpC == PPC::B) {
1469 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1470 bool isPPC64 = Subtarget.isPPC64();
1471 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1472 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1473 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1474 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1475 MI.RemoveOperand(0);
1477 MI.setDesc(get(PPC::BC));
1478 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1479 .add(Pred[1])
1480 .addMBB(MBB);
1481 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1482 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1483 MI.RemoveOperand(0);
1485 MI.setDesc(get(PPC::BCn));
1486 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1487 .add(Pred[1])
1488 .addMBB(MBB);
1489 } else {
1490 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1491 MI.RemoveOperand(0);
1493 MI.setDesc(get(PPC::BCC));
1494 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1495 .addImm(Pred[0].getImm())
1496 .add(Pred[1])
1497 .addMBB(MBB);
1500 return true;
1501 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1502 OpC == PPC::BCTRL8) {
1503 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1504 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1506 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1507 bool isPPC64 = Subtarget.isPPC64();
1509 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1510 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1511 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1512 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1513 return true;
1514 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1515 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1516 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1517 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1518 return true;
1521 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1522 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1523 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1524 .addImm(Pred[0].getImm())
1525 .add(Pred[1]);
1526 return true;
1529 return false;
1532 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1533 ArrayRef<MachineOperand> Pred2) const {
1534 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1535 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1537 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1538 return false;
1539 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1540 return false;
1542 // P1 can only subsume P2 if they test the same condition register.
1543 if (Pred1[1].getReg() != Pred2[1].getReg())
1544 return false;
1546 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1547 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1549 if (P1 == P2)
1550 return true;
1552 // Does P1 subsume P2, e.g. GE subsumes GT.
1553 if (P1 == PPC::PRED_LE &&
1554 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1555 return true;
1556 if (P1 == PPC::PRED_GE &&
1557 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1558 return true;
1560 return false;
1563 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1564 std::vector<MachineOperand> &Pred) const {
1565 // Note: At the present time, the contents of Pred from this function is
1566 // unused by IfConversion. This implementation follows ARM by pushing the
1567 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1568 // predicate, instructions defining CTR or CTR8 are also included as
1569 // predicate-defining instructions.
1571 const TargetRegisterClass *RCs[] =
1572 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1573 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1575 bool Found = false;
1576 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1577 const MachineOperand &MO = MI.getOperand(i);
1578 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1579 const TargetRegisterClass *RC = RCs[c];
1580 if (MO.isReg()) {
1581 if (MO.isDef() && RC->contains(MO.getReg())) {
1582 Pred.push_back(MO);
1583 Found = true;
1585 } else if (MO.isRegMask()) {
1586 for (TargetRegisterClass::iterator I = RC->begin(),
1587 IE = RC->end(); I != IE; ++I)
1588 if (MO.clobbersPhysReg(*I)) {
1589 Pred.push_back(MO);
1590 Found = true;
1596 return Found;
1599 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1600 unsigned OpC = MI.getOpcode();
1601 switch (OpC) {
1602 default:
1603 return false;
1604 case PPC::B:
1605 case PPC::BLR:
1606 case PPC::BLR8:
1607 case PPC::BCTR:
1608 case PPC::BCTR8:
1609 case PPC::BCTRL:
1610 case PPC::BCTRL8:
1611 return true;
1615 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1616 unsigned &SrcReg2, int &Mask,
1617 int &Value) const {
1618 unsigned Opc = MI.getOpcode();
1620 switch (Opc) {
1621 default: return false;
1622 case PPC::CMPWI:
1623 case PPC::CMPLWI:
1624 case PPC::CMPDI:
1625 case PPC::CMPLDI:
1626 SrcReg = MI.getOperand(1).getReg();
1627 SrcReg2 = 0;
1628 Value = MI.getOperand(2).getImm();
1629 Mask = 0xFFFF;
1630 return true;
1631 case PPC::CMPW:
1632 case PPC::CMPLW:
1633 case PPC::CMPD:
1634 case PPC::CMPLD:
1635 case PPC::FCMPUS:
1636 case PPC::FCMPUD:
1637 SrcReg = MI.getOperand(1).getReg();
1638 SrcReg2 = MI.getOperand(2).getReg();
1639 Value = 0;
1640 Mask = 0;
1641 return true;
1645 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1646 unsigned SrcReg2, int Mask, int Value,
1647 const MachineRegisterInfo *MRI) const {
1648 if (DisableCmpOpt)
1649 return false;
1651 int OpC = CmpInstr.getOpcode();
1652 Register CRReg = CmpInstr.getOperand(0).getReg();
1654 // FP record forms set CR1 based on the exception status bits, not a
1655 // comparison with zero.
1656 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1657 return false;
1659 const TargetRegisterInfo *TRI = &getRegisterInfo();
1660 // The record forms set the condition register based on a signed comparison
1661 // with zero (so says the ISA manual). This is not as straightforward as it
1662 // seems, however, because this is always a 64-bit comparison on PPC64, even
1663 // for instructions that are 32-bit in nature (like slw for example).
1664 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1665 // for equality checks (as those don't depend on the sign). On PPC64,
1666 // we are restricted to equality for unsigned 64-bit comparisons and for
1667 // signed 32-bit comparisons the applicability is more restricted.
1668 bool isPPC64 = Subtarget.isPPC64();
1669 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1670 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1671 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1673 // Look through copies unless that gets us to a physical register.
1674 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1675 if (Register::isVirtualRegister(ActualSrc))
1676 SrcReg = ActualSrc;
1678 // Get the unique definition of SrcReg.
1679 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1680 if (!MI) return false;
1682 bool equalityOnly = false;
1683 bool noSub = false;
1684 if (isPPC64) {
1685 if (is32BitSignedCompare) {
1686 // We can perform this optimization only if MI is sign-extending.
1687 if (isSignExtended(*MI))
1688 noSub = true;
1689 else
1690 return false;
1691 } else if (is32BitUnsignedCompare) {
1692 // We can perform this optimization, equality only, if MI is
1693 // zero-extending.
1694 if (isZeroExtended(*MI)) {
1695 noSub = true;
1696 equalityOnly = true;
1697 } else
1698 return false;
1699 } else
1700 equalityOnly = is64BitUnsignedCompare;
1701 } else
1702 equalityOnly = is32BitUnsignedCompare;
1704 if (equalityOnly) {
1705 // We need to check the uses of the condition register in order to reject
1706 // non-equality comparisons.
1707 for (MachineRegisterInfo::use_instr_iterator
1708 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1709 I != IE; ++I) {
1710 MachineInstr *UseMI = &*I;
1711 if (UseMI->getOpcode() == PPC::BCC) {
1712 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1713 unsigned PredCond = PPC::getPredicateCondition(Pred);
1714 // We ignore hint bits when checking for non-equality comparisons.
1715 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1716 return false;
1717 } else if (UseMI->getOpcode() == PPC::ISEL ||
1718 UseMI->getOpcode() == PPC::ISEL8) {
1719 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1720 if (SubIdx != PPC::sub_eq)
1721 return false;
1722 } else
1723 return false;
1727 MachineBasicBlock::iterator I = CmpInstr;
1729 // Scan forward to find the first use of the compare.
1730 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1731 ++I) {
1732 bool FoundUse = false;
1733 for (MachineRegisterInfo::use_instr_iterator
1734 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1735 J != JE; ++J)
1736 if (&*J == &*I) {
1737 FoundUse = true;
1738 break;
1741 if (FoundUse)
1742 break;
1745 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1746 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1748 // There are two possible candidates which can be changed to set CR[01].
1749 // One is MI, the other is a SUB instruction.
1750 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1751 MachineInstr *Sub = nullptr;
1752 if (SrcReg2 != 0)
1753 // MI is not a candidate for CMPrr.
1754 MI = nullptr;
1755 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1756 // same BB as the comparison. This is to allow the check below to avoid calls
1757 // (and other explicit clobbers); instead we should really check for these
1758 // more explicitly (in at least a few predecessors).
1759 else if (MI->getParent() != CmpInstr.getParent())
1760 return false;
1761 else if (Value != 0) {
1762 // The record-form instructions set CR bit based on signed comparison
1763 // against 0. We try to convert a compare against 1 or -1 into a compare
1764 // against 0 to exploit record-form instructions. For example, we change
1765 // the condition "greater than -1" into "greater than or equal to 0"
1766 // and "less than 1" into "less than or equal to 0".
1768 // Since we optimize comparison based on a specific branch condition,
1769 // we don't optimize if condition code is used by more than once.
1770 if (equalityOnly || !MRI->hasOneUse(CRReg))
1771 return false;
1773 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1774 if (UseMI->getOpcode() != PPC::BCC)
1775 return false;
1777 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1778 unsigned PredCond = PPC::getPredicateCondition(Pred);
1779 unsigned PredHint = PPC::getPredicateHint(Pred);
1780 int16_t Immed = (int16_t)Value;
1782 // When modifying the condition in the predicate, we propagate hint bits
1783 // from the original predicate to the new one.
1784 if (Immed == -1 && PredCond == PPC::PRED_GT)
1785 // We convert "greater than -1" into "greater than or equal to 0",
1786 // since we are assuming signed comparison by !equalityOnly
1787 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1788 else if (Immed == -1 && PredCond == PPC::PRED_LE)
1789 // We convert "less than or equal to -1" into "less than 0".
1790 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1791 else if (Immed == 1 && PredCond == PPC::PRED_LT)
1792 // We convert "less than 1" into "less than or equal to 0".
1793 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1794 else if (Immed == 1 && PredCond == PPC::PRED_GE)
1795 // We convert "greater than or equal to 1" into "greater than 0".
1796 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1797 else
1798 return false;
1800 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1803 // Search for Sub.
1804 --I;
1806 // Get ready to iterate backward from CmpInstr.
1807 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1809 for (; I != E && !noSub; --I) {
1810 const MachineInstr &Instr = *I;
1811 unsigned IOpC = Instr.getOpcode();
1813 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1814 Instr.readsRegister(PPC::CR0, TRI)))
1815 // This instruction modifies or uses the record condition register after
1816 // the one we want to change. While we could do this transformation, it
1817 // would likely not be profitable. This transformation removes one
1818 // instruction, and so even forcing RA to generate one move probably
1819 // makes it unprofitable.
1820 return false;
1822 // Check whether CmpInstr can be made redundant by the current instruction.
1823 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1824 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1825 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1826 ((Instr.getOperand(1).getReg() == SrcReg &&
1827 Instr.getOperand(2).getReg() == SrcReg2) ||
1828 (Instr.getOperand(1).getReg() == SrcReg2 &&
1829 Instr.getOperand(2).getReg() == SrcReg))) {
1830 Sub = &*I;
1831 break;
1834 if (I == B)
1835 // The 'and' is below the comparison instruction.
1836 return false;
1839 // Return false if no candidates exist.
1840 if (!MI && !Sub)
1841 return false;
1843 // The single candidate is called MI.
1844 if (!MI) MI = Sub;
1846 int NewOpC = -1;
1847 int MIOpC = MI->getOpcode();
1848 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1849 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1850 NewOpC = MIOpC;
1851 else {
1852 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1853 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1854 NewOpC = MIOpC;
1857 // FIXME: On the non-embedded POWER architectures, only some of the record
1858 // forms are fast, and we should use only the fast ones.
1860 // The defining instruction has a record form (or is already a record
1861 // form). It is possible, however, that we'll need to reverse the condition
1862 // code of the users.
1863 if (NewOpC == -1)
1864 return false;
1866 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1867 // needs to be updated to be based on SUB. Push the condition code
1868 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1869 // condition code of these operands will be modified.
1870 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1871 // comparison against 0, which may modify predicate.
1872 bool ShouldSwap = false;
1873 if (Sub && Value == 0) {
1874 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1875 Sub->getOperand(2).getReg() == SrcReg;
1877 // The operands to subf are the opposite of sub, so only in the fixed-point
1878 // case, invert the order.
1879 ShouldSwap = !ShouldSwap;
1882 if (ShouldSwap)
1883 for (MachineRegisterInfo::use_instr_iterator
1884 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1885 I != IE; ++I) {
1886 MachineInstr *UseMI = &*I;
1887 if (UseMI->getOpcode() == PPC::BCC) {
1888 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1889 unsigned PredCond = PPC::getPredicateCondition(Pred);
1890 assert((!equalityOnly ||
1891 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1892 "Invalid predicate for equality-only optimization");
1893 (void)PredCond; // To suppress warning in release build.
1894 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1895 PPC::getSwappedPredicate(Pred)));
1896 } else if (UseMI->getOpcode() == PPC::ISEL ||
1897 UseMI->getOpcode() == PPC::ISEL8) {
1898 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1899 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1900 "Invalid CR bit for equality-only optimization");
1902 if (NewSubReg == PPC::sub_lt)
1903 NewSubReg = PPC::sub_gt;
1904 else if (NewSubReg == PPC::sub_gt)
1905 NewSubReg = PPC::sub_lt;
1907 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1908 NewSubReg));
1909 } else // We need to abort on a user we don't understand.
1910 return false;
1912 assert(!(Value != 0 && ShouldSwap) &&
1913 "Non-zero immediate support and ShouldSwap"
1914 "may conflict in updating predicate");
1916 // Create a new virtual register to hold the value of the CR set by the
1917 // record-form instruction. If the instruction was not previously in
1918 // record form, then set the kill flag on the CR.
1919 CmpInstr.eraseFromParent();
1921 MachineBasicBlock::iterator MII = MI;
1922 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1923 get(TargetOpcode::COPY), CRReg)
1924 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1926 // Even if CR0 register were dead before, it is alive now since the
1927 // instruction we just built uses it.
1928 MI->clearRegisterDeads(PPC::CR0);
1930 if (MIOpC != NewOpC) {
1931 // We need to be careful here: we're replacing one instruction with
1932 // another, and we need to make sure that we get all of the right
1933 // implicit uses and defs. On the other hand, the caller may be holding
1934 // an iterator to this instruction, and so we can't delete it (this is
1935 // specifically the case if this is the instruction directly after the
1936 // compare).
1938 // Rotates are expensive instructions. If we're emitting a record-form
1939 // rotate that can just be an andi/andis, we should just emit that.
1940 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1941 Register GPRRes = MI->getOperand(0).getReg();
1942 int64_t SH = MI->getOperand(2).getImm();
1943 int64_t MB = MI->getOperand(3).getImm();
1944 int64_t ME = MI->getOperand(4).getImm();
1945 // We can only do this if both the start and end of the mask are in the
1946 // same halfword.
1947 bool MBInLoHWord = MB >= 16;
1948 bool MEInLoHWord = ME >= 16;
1949 uint64_t Mask = ~0LLU;
1951 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1952 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1953 // The mask value needs to shift right 16 if we're emitting andis.
1954 Mask >>= MBInLoHWord ? 0 : 16;
1955 NewOpC = MIOpC == PPC::RLWINM ?
1956 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1957 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1958 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1959 (ME - MB + 1 == SH) && (MB >= 16)) {
1960 // If we are rotating by the exact number of bits as are in the mask
1961 // and the mask is in the least significant bits of the register,
1962 // that's just an andis. (as long as the GPR result has no uses).
1963 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1964 Mask >>= 16;
1965 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1967 // If we've set the mask, we can transform.
1968 if (Mask != ~0LLU) {
1969 MI->RemoveOperand(4);
1970 MI->RemoveOperand(3);
1971 MI->getOperand(2).setImm(Mask);
1972 NumRcRotatesConvertedToRcAnd++;
1974 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1975 int64_t MB = MI->getOperand(3).getImm();
1976 if (MB >= 48) {
1977 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1978 NewOpC = PPC::ANDIo8;
1979 MI->RemoveOperand(3);
1980 MI->getOperand(2).setImm(Mask);
1981 NumRcRotatesConvertedToRcAnd++;
1985 const MCInstrDesc &NewDesc = get(NewOpC);
1986 MI->setDesc(NewDesc);
1988 if (NewDesc.ImplicitDefs)
1989 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1990 *ImpDefs; ++ImpDefs)
1991 if (!MI->definesRegister(*ImpDefs))
1992 MI->addOperand(*MI->getParent()->getParent(),
1993 MachineOperand::CreateReg(*ImpDefs, true, true));
1994 if (NewDesc.ImplicitUses)
1995 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1996 *ImpUses; ++ImpUses)
1997 if (!MI->readsRegister(*ImpUses))
1998 MI->addOperand(*MI->getParent()->getParent(),
1999 MachineOperand::CreateReg(*ImpUses, false, true));
2001 assert(MI->definesRegister(PPC::CR0) &&
2002 "Record-form instruction does not define cr0?");
2004 // Modify the condition code of operands in OperandsToUpdate.
2005 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2006 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2007 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2008 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2010 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2011 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2013 return true;
2016 /// GetInstSize - Return the number of bytes of code the specified
2017 /// instruction may be. This returns the maximum number of bytes.
2019 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2020 unsigned Opcode = MI.getOpcode();
2022 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2023 const MachineFunction *MF = MI.getParent()->getParent();
2024 const char *AsmStr = MI.getOperand(0).getSymbolName();
2025 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2026 } else if (Opcode == TargetOpcode::STACKMAP) {
2027 StackMapOpers Opers(&MI);
2028 return Opers.getNumPatchBytes();
2029 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2030 PatchPointOpers Opers(&MI);
2031 return Opers.getNumPatchBytes();
2032 } else {
2033 return get(Opcode).getSize();
2037 std::pair<unsigned, unsigned>
2038 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2039 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2040 return std::make_pair(TF & Mask, TF & ~Mask);
2043 ArrayRef<std::pair<unsigned, const char *>>
2044 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2045 using namespace PPCII;
2046 static const std::pair<unsigned, const char *> TargetFlags[] = {
2047 {MO_LO, "ppc-lo"},
2048 {MO_HA, "ppc-ha"},
2049 {MO_TPREL_LO, "ppc-tprel-lo"},
2050 {MO_TPREL_HA, "ppc-tprel-ha"},
2051 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2052 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2053 {MO_TOC_LO, "ppc-toc-lo"},
2054 {MO_TLS, "ppc-tls"}};
2055 return makeArrayRef(TargetFlags);
2058 ArrayRef<std::pair<unsigned, const char *>>
2059 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2060 using namespace PPCII;
2061 static const std::pair<unsigned, const char *> TargetFlags[] = {
2062 {MO_PLT, "ppc-plt"},
2063 {MO_PIC_FLAG, "ppc-pic"},
2064 {MO_NLP_FLAG, "ppc-nlp"},
2065 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2066 return makeArrayRef(TargetFlags);
2069 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2070 // The VSX versions have the advantage of a full 64-register target whereas
2071 // the FP ones have the advantage of lower latency and higher throughput. So
2072 // what we are after is using the faster instructions in low register pressure
2073 // situations and using the larger register file in high register pressure
2074 // situations.
2075 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2076 unsigned UpperOpcode, LowerOpcode;
2077 switch (MI.getOpcode()) {
2078 case PPC::DFLOADf32:
2079 UpperOpcode = PPC::LXSSP;
2080 LowerOpcode = PPC::LFS;
2081 break;
2082 case PPC::DFLOADf64:
2083 UpperOpcode = PPC::LXSD;
2084 LowerOpcode = PPC::LFD;
2085 break;
2086 case PPC::DFSTOREf32:
2087 UpperOpcode = PPC::STXSSP;
2088 LowerOpcode = PPC::STFS;
2089 break;
2090 case PPC::DFSTOREf64:
2091 UpperOpcode = PPC::STXSD;
2092 LowerOpcode = PPC::STFD;
2093 break;
2094 case PPC::XFLOADf32:
2095 UpperOpcode = PPC::LXSSPX;
2096 LowerOpcode = PPC::LFSX;
2097 break;
2098 case PPC::XFLOADf64:
2099 UpperOpcode = PPC::LXSDX;
2100 LowerOpcode = PPC::LFDX;
2101 break;
2102 case PPC::XFSTOREf32:
2103 UpperOpcode = PPC::STXSSPX;
2104 LowerOpcode = PPC::STFSX;
2105 break;
2106 case PPC::XFSTOREf64:
2107 UpperOpcode = PPC::STXSDX;
2108 LowerOpcode = PPC::STFDX;
2109 break;
2110 case PPC::LIWAX:
2111 UpperOpcode = PPC::LXSIWAX;
2112 LowerOpcode = PPC::LFIWAX;
2113 break;
2114 case PPC::LIWZX:
2115 UpperOpcode = PPC::LXSIWZX;
2116 LowerOpcode = PPC::LFIWZX;
2117 break;
2118 case PPC::STIWX:
2119 UpperOpcode = PPC::STXSIWX;
2120 LowerOpcode = PPC::STFIWX;
2121 break;
2122 default:
2123 llvm_unreachable("Unknown Operation!");
2126 Register TargetReg = MI.getOperand(0).getReg();
2127 unsigned Opcode;
2128 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2129 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2130 Opcode = LowerOpcode;
2131 else
2132 Opcode = UpperOpcode;
2133 MI.setDesc(get(Opcode));
2134 return true;
2137 static bool isAnImmediateOperand(const MachineOperand &MO) {
2138 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2141 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2142 auto &MBB = *MI.getParent();
2143 auto DL = MI.getDebugLoc();
2145 switch (MI.getOpcode()) {
2146 case TargetOpcode::LOAD_STACK_GUARD: {
2147 assert(Subtarget.isTargetLinux() &&
2148 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2149 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2150 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2151 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2152 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2153 .addImm(Offset)
2154 .addReg(Reg);
2155 return true;
2157 case PPC::DFLOADf32:
2158 case PPC::DFLOADf64:
2159 case PPC::DFSTOREf32:
2160 case PPC::DFSTOREf64: {
2161 assert(Subtarget.hasP9Vector() &&
2162 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2163 assert(MI.getOperand(2).isReg() &&
2164 isAnImmediateOperand(MI.getOperand(1)) &&
2165 "D-form op must have register and immediate operands");
2166 return expandVSXMemPseudo(MI);
2168 case PPC::XFLOADf32:
2169 case PPC::XFSTOREf32:
2170 case PPC::LIWAX:
2171 case PPC::LIWZX:
2172 case PPC::STIWX: {
2173 assert(Subtarget.hasP8Vector() &&
2174 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2175 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2176 "X-form op must have register and register operands");
2177 return expandVSXMemPseudo(MI);
2179 case PPC::XFLOADf64:
2180 case PPC::XFSTOREf64: {
2181 assert(Subtarget.hasVSX() &&
2182 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2183 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2184 "X-form op must have register and register operands");
2185 return expandVSXMemPseudo(MI);
2187 case PPC::SPILLTOVSR_LD: {
2188 Register TargetReg = MI.getOperand(0).getReg();
2189 if (PPC::VSFRCRegClass.contains(TargetReg)) {
2190 MI.setDesc(get(PPC::DFLOADf64));
2191 return expandPostRAPseudo(MI);
2193 else
2194 MI.setDesc(get(PPC::LD));
2195 return true;
2197 case PPC::SPILLTOVSR_ST: {
2198 Register SrcReg = MI.getOperand(0).getReg();
2199 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2200 NumStoreSPILLVSRRCAsVec++;
2201 MI.setDesc(get(PPC::DFSTOREf64));
2202 return expandPostRAPseudo(MI);
2203 } else {
2204 NumStoreSPILLVSRRCAsGpr++;
2205 MI.setDesc(get(PPC::STD));
2207 return true;
2209 case PPC::SPILLTOVSR_LDX: {
2210 Register TargetReg = MI.getOperand(0).getReg();
2211 if (PPC::VSFRCRegClass.contains(TargetReg))
2212 MI.setDesc(get(PPC::LXSDX));
2213 else
2214 MI.setDesc(get(PPC::LDX));
2215 return true;
2217 case PPC::SPILLTOVSR_STX: {
2218 Register SrcReg = MI.getOperand(0).getReg();
2219 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2220 NumStoreSPILLVSRRCAsVec++;
2221 MI.setDesc(get(PPC::STXSDX));
2222 } else {
2223 NumStoreSPILLVSRRCAsGpr++;
2224 MI.setDesc(get(PPC::STDX));
2226 return true;
2229 case PPC::CFENCE8: {
2230 auto Val = MI.getOperand(0).getReg();
2231 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2232 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2233 .addImm(PPC::PRED_NE_MINUS)
2234 .addReg(PPC::CR7)
2235 .addImm(1);
2236 MI.setDesc(get(PPC::ISYNC));
2237 MI.RemoveOperand(0);
2238 return true;
2241 return false;
2244 // Essentially a compile-time implementation of a compare->isel sequence.
2245 // It takes two constants to compare, along with the true/false registers
2246 // and the comparison type (as a subreg to a CR field) and returns one
2247 // of the true/false registers, depending on the comparison results.
2248 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2249 unsigned TrueReg, unsigned FalseReg,
2250 unsigned CRSubReg) {
2251 // Signed comparisons. The immediates are assumed to be sign-extended.
2252 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2253 switch (CRSubReg) {
2254 default: llvm_unreachable("Unknown integer comparison type.");
2255 case PPC::sub_lt:
2256 return Imm1 < Imm2 ? TrueReg : FalseReg;
2257 case PPC::sub_gt:
2258 return Imm1 > Imm2 ? TrueReg : FalseReg;
2259 case PPC::sub_eq:
2260 return Imm1 == Imm2 ? TrueReg : FalseReg;
2263 // Unsigned comparisons.
2264 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2265 switch (CRSubReg) {
2266 default: llvm_unreachable("Unknown integer comparison type.");
2267 case PPC::sub_lt:
2268 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2269 case PPC::sub_gt:
2270 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2271 case PPC::sub_eq:
2272 return Imm1 == Imm2 ? TrueReg : FalseReg;
2275 return PPC::NoRegister;
2278 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2279 unsigned OpNo,
2280 int64_t Imm) const {
2281 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2282 // Replace the REG with the Immediate.
2283 Register InUseReg = MI.getOperand(OpNo).getReg();
2284 MI.getOperand(OpNo).ChangeToImmediate(Imm);
2286 if (empty(MI.implicit_operands()))
2287 return;
2289 // We need to make sure that the MI didn't have any implicit use
2290 // of this REG any more.
2291 const TargetRegisterInfo *TRI = &getRegisterInfo();
2292 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2293 if (UseOpIdx >= 0) {
2294 MachineOperand &MO = MI.getOperand(UseOpIdx);
2295 if (MO.isImplicit())
2296 // The operands must always be in the following order:
2297 // - explicit reg defs,
2298 // - other explicit operands (reg uses, immediates, etc.),
2299 // - implicit reg defs
2300 // - implicit reg uses
2301 // Therefore, removing the implicit operand won't change the explicit
2302 // operands layout.
2303 MI.RemoveOperand(UseOpIdx);
2307 // Replace an instruction with one that materializes a constant (and sets
2308 // CR0 if the original instruction was a record-form instruction).
2309 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2310 const LoadImmediateInfo &LII) const {
2311 // Remove existing operands.
2312 int OperandToKeep = LII.SetCR ? 1 : 0;
2313 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2314 MI.RemoveOperand(i);
2316 // Replace the instruction.
2317 if (LII.SetCR) {
2318 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2319 // Set the immediate.
2320 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2321 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2322 return;
2324 else
2325 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2327 // Set the immediate.
2328 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2329 .addImm(LII.Imm);
2332 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2333 bool &SeenIntermediateUse) const {
2334 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2335 "Should be called after register allocation.");
2336 const TargetRegisterInfo *TRI = &getRegisterInfo();
2337 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2338 It++;
2339 SeenIntermediateUse = false;
2340 for (; It != E; ++It) {
2341 if (It->modifiesRegister(Reg, TRI))
2342 return &*It;
2343 if (It->readsRegister(Reg, TRI))
2344 SeenIntermediateUse = true;
2346 return nullptr;
2349 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2350 MachineInstr &MI,
2351 unsigned &OpNoForForwarding,
2352 bool &SeenIntermediateUse) const {
2353 OpNoForForwarding = ~0U;
2354 MachineInstr *DefMI = nullptr;
2355 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2356 const TargetRegisterInfo *TRI = &getRegisterInfo();
2357 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2358 // within the basic block to see if the register is defined using an LI/LI8.
2359 if (MRI->isSSA()) {
2360 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2361 if (!MI.getOperand(i).isReg())
2362 continue;
2363 Register Reg = MI.getOperand(i).getReg();
2364 if (!Register::isVirtualRegister(Reg))
2365 continue;
2366 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2367 if (Register::isVirtualRegister(TrueReg)) {
2368 DefMI = MRI->getVRegDef(TrueReg);
2369 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2370 OpNoForForwarding = i;
2371 break;
2375 } else {
2376 // Looking back through the definition for each operand could be expensive,
2377 // so exit early if this isn't an instruction that either has an immediate
2378 // form or is already an immediate form that we can handle.
2379 ImmInstrInfo III;
2380 unsigned Opc = MI.getOpcode();
2381 bool ConvertibleImmForm =
2382 Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2383 Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2384 Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2385 Opc == PPC::ORI || Opc == PPC::ORI8 ||
2386 Opc == PPC::XORI || Opc == PPC::XORI8 ||
2387 Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2388 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2389 Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2390 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2391 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2392 ? isVFRegister(MI.getOperand(0).getReg())
2393 : false;
2394 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2395 return nullptr;
2397 // Don't convert or %X, %Y, %Y since that's just a register move.
2398 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2399 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2400 return nullptr;
2401 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2402 MachineOperand &MO = MI.getOperand(i);
2403 SeenIntermediateUse = false;
2404 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2405 Register Reg = MI.getOperand(i).getReg();
2406 // If we see another use of this reg between the def and the MI,
2407 // we want to flat it so the def isn't deleted.
2408 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2409 if (DefMI) {
2410 // Is this register defined by some form of add-immediate (including
2411 // load-immediate) within this basic block?
2412 switch (DefMI->getOpcode()) {
2413 default:
2414 break;
2415 case PPC::LI:
2416 case PPC::LI8:
2417 case PPC::ADDItocL:
2418 case PPC::ADDI:
2419 case PPC::ADDI8:
2420 OpNoForForwarding = i;
2421 return DefMI;
2427 return OpNoForForwarding == ~0U ? nullptr : DefMI;
2430 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2431 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2432 // Power 8
2433 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2434 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2435 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2436 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2437 // Power 9
2438 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2439 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2440 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2441 PPC::SPILLTOVSR_ST}};
2443 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2446 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2447 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2448 // Power 8
2449 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2450 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2451 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2452 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2453 // Power 9
2454 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2455 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2456 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2457 PPC::SPILLTOVSR_LD}};
2459 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2462 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2463 unsigned RegNo) const {
2464 const MachineRegisterInfo &MRI =
2465 StartMI.getParent()->getParent()->getRegInfo();
2466 if (MRI.isSSA())
2467 return;
2469 // Instructions between [StartMI, EndMI] should be in same basic block.
2470 assert((StartMI.getParent() == EndMI.getParent()) &&
2471 "Instructions are not in same basic block");
2473 bool IsKillSet = false;
2475 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2476 MachineOperand &MO = MI.getOperand(Index);
2477 if (MO.isReg() && MO.isUse() && MO.isKill() &&
2478 getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2479 MO.setIsKill(false);
2482 // Set killed flag for EndMI.
2483 // No need to do anything if EndMI defines RegNo.
2484 int UseIndex =
2485 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2486 if (UseIndex != -1) {
2487 EndMI.getOperand(UseIndex).setIsKill(true);
2488 IsKillSet = true;
2489 // Clear killed flag for other EndMI operands related to RegNo. In some
2490 // upexpected cases, killed may be set multiple times for same register
2491 // operand in same MI.
2492 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2493 if (i != UseIndex)
2494 clearOperandKillInfo(EndMI, i);
2497 // Walking the inst in reverse order (EndMI -> StartMI].
2498 MachineBasicBlock::reverse_iterator It = EndMI;
2499 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2500 // EndMI has been handled above, skip it here.
2501 It++;
2502 MachineOperand *MO = nullptr;
2503 for (; It != E; ++It) {
2504 // Skip insturctions which could not be a def/use of RegNo.
2505 if (It->isDebugInstr() || It->isPosition())
2506 continue;
2508 // Clear killed flag for all It operands related to RegNo. In some
2509 // upexpected cases, killed may be set multiple times for same register
2510 // operand in same MI.
2511 for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2512 clearOperandKillInfo(*It, i);
2514 // If killed is not set, set killed for its last use or set dead for its def
2515 // if no use found.
2516 if (!IsKillSet) {
2517 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2518 // Use found, set it killed.
2519 IsKillSet = true;
2520 MO->setIsKill(true);
2521 continue;
2522 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2523 &getRegisterInfo()))) {
2524 // No use found, set dead for its def.
2525 assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2526 MO->setIsDead(true);
2527 break;
2531 if ((&*It) == &StartMI)
2532 break;
2534 // Ensure RegMo liveness is killed after EndMI.
2535 assert((IsKillSet || (MO && MO->isDead())) &&
2536 "RegNo should be killed or dead");
2539 // If this instruction has an immediate form and one of its operands is a
2540 // result of a load-immediate or an add-immediate, convert it to
2541 // the immediate form if the constant is in range.
2542 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2543 MachineInstr **KilledDef) const {
2544 MachineFunction *MF = MI.getParent()->getParent();
2545 MachineRegisterInfo *MRI = &MF->getRegInfo();
2546 bool PostRA = !MRI->isSSA();
2547 bool SeenIntermediateUse = true;
2548 unsigned ForwardingOperand = ~0U;
2549 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2550 SeenIntermediateUse);
2551 if (!DefMI)
2552 return false;
2553 assert(ForwardingOperand < MI.getNumOperands() &&
2554 "The forwarding operand needs to be valid at this point");
2555 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2556 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2557 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2558 if (KilledDef && KillFwdDefMI)
2559 *KilledDef = DefMI;
2561 ImmInstrInfo III;
2562 bool IsVFReg = MI.getOperand(0).isReg()
2563 ? isVFRegister(MI.getOperand(0).getReg())
2564 : false;
2565 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2566 // If this is a reg+reg instruction that has a reg+imm form,
2567 // and one of the operands is produced by an add-immediate,
2568 // try to convert it.
2569 if (HasImmForm &&
2570 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2571 KillFwdDefMI))
2572 return true;
2574 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2575 !DefMI->getOperand(1).isImm())
2576 return false;
2578 int64_t Immediate = DefMI->getOperand(1).getImm();
2579 // Sign-extend to 64-bits.
2580 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2581 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2583 // If this is a reg+reg instruction that has a reg+imm form,
2584 // and one of the operands is produced by LI, convert it now.
2585 if (HasImmForm)
2586 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2588 bool ReplaceWithLI = false;
2589 bool Is64BitLI = false;
2590 int64_t NewImm = 0;
2591 bool SetCR = false;
2592 unsigned Opc = MI.getOpcode();
2593 switch (Opc) {
2594 default: return false;
2596 // FIXME: Any branches conditional on such a comparison can be made
2597 // unconditional. At this time, this happens too infrequently to be worth
2598 // the implementation effort, but if that ever changes, we could convert
2599 // such a pattern here.
2600 case PPC::CMPWI:
2601 case PPC::CMPLWI:
2602 case PPC::CMPDI:
2603 case PPC::CMPLDI: {
2604 // Doing this post-RA would require dataflow analysis to reliably find uses
2605 // of the CR register set by the compare.
2606 // No need to fixup killed/dead flag since this transformation is only valid
2607 // before RA.
2608 if (PostRA)
2609 return false;
2610 // If a compare-immediate is fed by an immediate and is itself an input of
2611 // an ISEL (the most common case) into a COPY of the correct register.
2612 bool Changed = false;
2613 Register DefReg = MI.getOperand(0).getReg();
2614 int64_t Comparand = MI.getOperand(2).getImm();
2615 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2616 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2618 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2619 unsigned UseOpc = CompareUseMI.getOpcode();
2620 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2621 continue;
2622 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2623 Register TrueReg = CompareUseMI.getOperand(1).getReg();
2624 Register FalseReg = CompareUseMI.getOperand(2).getReg();
2625 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2626 FalseReg, CRSubReg);
2627 if (RegToCopy == PPC::NoRegister)
2628 continue;
2629 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2630 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2631 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2632 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2633 CompareUseMI.RemoveOperand(3);
2634 CompareUseMI.RemoveOperand(2);
2635 continue;
2637 LLVM_DEBUG(
2638 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2639 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2640 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2641 // Convert to copy and remove unneeded operands.
2642 CompareUseMI.setDesc(get(PPC::COPY));
2643 CompareUseMI.RemoveOperand(3);
2644 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2645 CmpIselsConverted++;
2646 Changed = true;
2647 LLVM_DEBUG(CompareUseMI.dump());
2649 if (Changed)
2650 return true;
2651 // This may end up incremented multiple times since this function is called
2652 // during a fixed-point transformation, but it is only meant to indicate the
2653 // presence of this opportunity.
2654 MissedConvertibleImmediateInstrs++;
2655 return false;
2658 // Immediate forms - may simply be convertable to an LI.
2659 case PPC::ADDI:
2660 case PPC::ADDI8: {
2661 // Does the sum fit in a 16-bit signed field?
2662 int64_t Addend = MI.getOperand(2).getImm();
2663 if (isInt<16>(Addend + SExtImm)) {
2664 ReplaceWithLI = true;
2665 Is64BitLI = Opc == PPC::ADDI8;
2666 NewImm = Addend + SExtImm;
2667 break;
2669 return false;
2671 case PPC::RLDICL:
2672 case PPC::RLDICLo:
2673 case PPC::RLDICL_32:
2674 case PPC::RLDICL_32_64: {
2675 // Use APInt's rotate function.
2676 int64_t SH = MI.getOperand(2).getImm();
2677 int64_t MB = MI.getOperand(3).getImm();
2678 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2679 64 : 32, SExtImm, true);
2680 InVal = InVal.rotl(SH);
2681 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2682 InVal &= Mask;
2683 // Can't replace negative values with an LI as that will sign-extend
2684 // and not clear the left bits. If we're setting the CR bit, we will use
2685 // ANDIo which won't sign extend, so that's safe.
2686 if (isUInt<15>(InVal.getSExtValue()) ||
2687 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2688 ReplaceWithLI = true;
2689 Is64BitLI = Opc != PPC::RLDICL_32;
2690 NewImm = InVal.getSExtValue();
2691 SetCR = Opc == PPC::RLDICLo;
2692 break;
2694 return false;
2696 case PPC::RLWINM:
2697 case PPC::RLWINM8:
2698 case PPC::RLWINMo:
2699 case PPC::RLWINM8o: {
2700 int64_t SH = MI.getOperand(2).getImm();
2701 int64_t MB = MI.getOperand(3).getImm();
2702 int64_t ME = MI.getOperand(4).getImm();
2703 APInt InVal(32, SExtImm, true);
2704 InVal = InVal.rotl(SH);
2705 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2706 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2707 InVal &= Mask;
2708 // Can't replace negative values with an LI as that will sign-extend
2709 // and not clear the left bits. If we're setting the CR bit, we will use
2710 // ANDIo which won't sign extend, so that's safe.
2711 bool ValueFits = isUInt<15>(InVal.getSExtValue());
2712 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2713 isUInt<16>(InVal.getSExtValue()));
2714 if (ValueFits) {
2715 ReplaceWithLI = true;
2716 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2717 NewImm = InVal.getSExtValue();
2718 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2719 break;
2721 return false;
2723 case PPC::ORI:
2724 case PPC::ORI8:
2725 case PPC::XORI:
2726 case PPC::XORI8: {
2727 int64_t LogicalImm = MI.getOperand(2).getImm();
2728 int64_t Result = 0;
2729 if (Opc == PPC::ORI || Opc == PPC::ORI8)
2730 Result = LogicalImm | SExtImm;
2731 else
2732 Result = LogicalImm ^ SExtImm;
2733 if (isInt<16>(Result)) {
2734 ReplaceWithLI = true;
2735 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2736 NewImm = Result;
2737 break;
2739 return false;
2743 if (ReplaceWithLI) {
2744 // We need to be careful with CR-setting instructions we're replacing.
2745 if (SetCR) {
2746 // We don't know anything about uses when we're out of SSA, so only
2747 // replace if the new immediate will be reproduced.
2748 bool ImmChanged = (SExtImm & NewImm) != NewImm;
2749 if (PostRA && ImmChanged)
2750 return false;
2752 if (!PostRA) {
2753 // If the defining load-immediate has no other uses, we can just replace
2754 // the immediate with the new immediate.
2755 if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2756 DefMI->getOperand(1).setImm(NewImm);
2758 // If we're not using the GPR result of the CR-setting instruction, we
2759 // just need to and with zero/non-zero depending on the new immediate.
2760 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2761 if (NewImm) {
2762 assert(Immediate && "Transformation converted zero to non-zero?");
2763 NewImm = Immediate;
2766 else if (ImmChanged)
2767 return false;
2771 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2772 LLVM_DEBUG(MI.dump());
2773 LLVM_DEBUG(dbgs() << "Fed by:\n");
2774 LLVM_DEBUG(DefMI->dump());
2775 LoadImmediateInfo LII;
2776 LII.Imm = NewImm;
2777 LII.Is64Bit = Is64BitLI;
2778 LII.SetCR = SetCR;
2779 // If we're setting the CR, the original load-immediate must be kept (as an
2780 // operand to ANDIo/ANDI8o).
2781 if (KilledDef && SetCR)
2782 *KilledDef = nullptr;
2783 replaceInstrWithLI(MI, LII);
2785 // Fixup killed/dead flag after transformation.
2786 // Pattern:
2787 // ForwardingOperandReg = LI imm1
2788 // y = op2 imm2, ForwardingOperandReg(killed)
2789 if (IsForwardingOperandKilled)
2790 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2792 LLVM_DEBUG(dbgs() << "With:\n");
2793 LLVM_DEBUG(MI.dump());
2794 return true;
2796 return false;
2799 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2800 ImmInstrInfo &III, bool PostRA) const {
2801 // The vast majority of the instructions would need their operand 2 replaced
2802 // with an immediate when switching to the reg+imm form. A marked exception
2803 // are the update form loads/stores for which a constant operand 2 would need
2804 // to turn into a displacement and move operand 1 to the operand 2 position.
2805 III.ImmOpNo = 2;
2806 III.OpNoForForwarding = 2;
2807 III.ImmWidth = 16;
2808 III.ImmMustBeMultipleOf = 1;
2809 III.TruncateImmTo = 0;
2810 III.IsSummingOperands = false;
2811 switch (Opc) {
2812 default: return false;
2813 case PPC::ADD4:
2814 case PPC::ADD8:
2815 III.SignedImm = true;
2816 III.ZeroIsSpecialOrig = 0;
2817 III.ZeroIsSpecialNew = 1;
2818 III.IsCommutative = true;
2819 III.IsSummingOperands = true;
2820 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2821 break;
2822 case PPC::ADDC:
2823 case PPC::ADDC8:
2824 III.SignedImm = true;
2825 III.ZeroIsSpecialOrig = 0;
2826 III.ZeroIsSpecialNew = 0;
2827 III.IsCommutative = true;
2828 III.IsSummingOperands = true;
2829 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2830 break;
2831 case PPC::ADDCo:
2832 III.SignedImm = true;
2833 III.ZeroIsSpecialOrig = 0;
2834 III.ZeroIsSpecialNew = 0;
2835 III.IsCommutative = true;
2836 III.IsSummingOperands = true;
2837 III.ImmOpcode = PPC::ADDICo;
2838 break;
2839 case PPC::SUBFC:
2840 case PPC::SUBFC8:
2841 III.SignedImm = true;
2842 III.ZeroIsSpecialOrig = 0;
2843 III.ZeroIsSpecialNew = 0;
2844 III.IsCommutative = false;
2845 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2846 break;
2847 case PPC::CMPW:
2848 case PPC::CMPD:
2849 III.SignedImm = true;
2850 III.ZeroIsSpecialOrig = 0;
2851 III.ZeroIsSpecialNew = 0;
2852 III.IsCommutative = false;
2853 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2854 break;
2855 case PPC::CMPLW:
2856 case PPC::CMPLD:
2857 III.SignedImm = false;
2858 III.ZeroIsSpecialOrig = 0;
2859 III.ZeroIsSpecialNew = 0;
2860 III.IsCommutative = false;
2861 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2862 break;
2863 case PPC::ANDo:
2864 case PPC::AND8o:
2865 case PPC::OR:
2866 case PPC::OR8:
2867 case PPC::XOR:
2868 case PPC::XOR8:
2869 III.SignedImm = false;
2870 III.ZeroIsSpecialOrig = 0;
2871 III.ZeroIsSpecialNew = 0;
2872 III.IsCommutative = true;
2873 switch(Opc) {
2874 default: llvm_unreachable("Unknown opcode");
2875 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2876 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2877 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2878 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2879 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2880 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2882 break;
2883 case PPC::RLWNM:
2884 case PPC::RLWNM8:
2885 case PPC::RLWNMo:
2886 case PPC::RLWNM8o:
2887 case PPC::SLW:
2888 case PPC::SLW8:
2889 case PPC::SLWo:
2890 case PPC::SLW8o:
2891 case PPC::SRW:
2892 case PPC::SRW8:
2893 case PPC::SRWo:
2894 case PPC::SRW8o:
2895 case PPC::SRAW:
2896 case PPC::SRAWo:
2897 III.SignedImm = false;
2898 III.ZeroIsSpecialOrig = 0;
2899 III.ZeroIsSpecialNew = 0;
2900 III.IsCommutative = false;
2901 // This isn't actually true, but the instructions ignore any of the
2902 // upper bits, so any immediate loaded with an LI is acceptable.
2903 // This does not apply to shift right algebraic because a value
2904 // out of range will produce a -1/0.
2905 III.ImmWidth = 16;
2906 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2907 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2908 III.TruncateImmTo = 5;
2909 else
2910 III.TruncateImmTo = 6;
2911 switch(Opc) {
2912 default: llvm_unreachable("Unknown opcode");
2913 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2914 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2915 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2916 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2917 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2918 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2919 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2920 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2921 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2922 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2923 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2924 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2925 case PPC::SRAW:
2926 III.ImmWidth = 5;
2927 III.TruncateImmTo = 0;
2928 III.ImmOpcode = PPC::SRAWI;
2929 break;
2930 case PPC::SRAWo:
2931 III.ImmWidth = 5;
2932 III.TruncateImmTo = 0;
2933 III.ImmOpcode = PPC::SRAWIo;
2934 break;
2936 break;
2937 case PPC::RLDCL:
2938 case PPC::RLDCLo:
2939 case PPC::RLDCR:
2940 case PPC::RLDCRo:
2941 case PPC::SLD:
2942 case PPC::SLDo:
2943 case PPC::SRD:
2944 case PPC::SRDo:
2945 case PPC::SRAD:
2946 case PPC::SRADo:
2947 III.SignedImm = false;
2948 III.ZeroIsSpecialOrig = 0;
2949 III.ZeroIsSpecialNew = 0;
2950 III.IsCommutative = false;
2951 // This isn't actually true, but the instructions ignore any of the
2952 // upper bits, so any immediate loaded with an LI is acceptable.
2953 // This does not apply to shift right algebraic because a value
2954 // out of range will produce a -1/0.
2955 III.ImmWidth = 16;
2956 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2957 Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2958 III.TruncateImmTo = 6;
2959 else
2960 III.TruncateImmTo = 7;
2961 switch(Opc) {
2962 default: llvm_unreachable("Unknown opcode");
2963 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2964 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2965 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2966 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2967 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2968 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2969 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2970 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2971 case PPC::SRAD:
2972 III.ImmWidth = 6;
2973 III.TruncateImmTo = 0;
2974 III.ImmOpcode = PPC::SRADI;
2975 break;
2976 case PPC::SRADo:
2977 III.ImmWidth = 6;
2978 III.TruncateImmTo = 0;
2979 III.ImmOpcode = PPC::SRADIo;
2980 break;
2982 break;
2983 // Loads and stores:
2984 case PPC::LBZX:
2985 case PPC::LBZX8:
2986 case PPC::LHZX:
2987 case PPC::LHZX8:
2988 case PPC::LHAX:
2989 case PPC::LHAX8:
2990 case PPC::LWZX:
2991 case PPC::LWZX8:
2992 case PPC::LWAX:
2993 case PPC::LDX:
2994 case PPC::LFSX:
2995 case PPC::LFDX:
2996 case PPC::STBX:
2997 case PPC::STBX8:
2998 case PPC::STHX:
2999 case PPC::STHX8:
3000 case PPC::STWX:
3001 case PPC::STWX8:
3002 case PPC::STDX:
3003 case PPC::STFSX:
3004 case PPC::STFDX:
3005 III.SignedImm = true;
3006 III.ZeroIsSpecialOrig = 1;
3007 III.ZeroIsSpecialNew = 2;
3008 III.IsCommutative = true;
3009 III.IsSummingOperands = true;
3010 III.ImmOpNo = 1;
3011 III.OpNoForForwarding = 2;
3012 switch(Opc) {
3013 default: llvm_unreachable("Unknown opcode");
3014 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3015 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3016 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3017 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3018 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3019 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3020 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3021 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3022 case PPC::LWAX:
3023 III.ImmOpcode = PPC::LWA;
3024 III.ImmMustBeMultipleOf = 4;
3025 break;
3026 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3027 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3028 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3029 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3030 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3031 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3032 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3033 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3034 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3035 case PPC::STDX:
3036 III.ImmOpcode = PPC::STD;
3037 III.ImmMustBeMultipleOf = 4;
3038 break;
3039 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3040 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3042 break;
3043 case PPC::LBZUX:
3044 case PPC::LBZUX8:
3045 case PPC::LHZUX:
3046 case PPC::LHZUX8:
3047 case PPC::LHAUX:
3048 case PPC::LHAUX8:
3049 case PPC::LWZUX:
3050 case PPC::LWZUX8:
3051 case PPC::LDUX:
3052 case PPC::LFSUX:
3053 case PPC::LFDUX:
3054 case PPC::STBUX:
3055 case PPC::STBUX8:
3056 case PPC::STHUX:
3057 case PPC::STHUX8:
3058 case PPC::STWUX:
3059 case PPC::STWUX8:
3060 case PPC::STDUX:
3061 case PPC::STFSUX:
3062 case PPC::STFDUX:
3063 III.SignedImm = true;
3064 III.ZeroIsSpecialOrig = 2;
3065 III.ZeroIsSpecialNew = 3;
3066 III.IsCommutative = false;
3067 III.IsSummingOperands = true;
3068 III.ImmOpNo = 2;
3069 III.OpNoForForwarding = 3;
3070 switch(Opc) {
3071 default: llvm_unreachable("Unknown opcode");
3072 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3073 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3074 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3075 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3076 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3077 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3078 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3079 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3080 case PPC::LDUX:
3081 III.ImmOpcode = PPC::LDU;
3082 III.ImmMustBeMultipleOf = 4;
3083 break;
3084 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3085 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3086 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3087 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3088 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3089 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3090 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3091 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3092 case PPC::STDUX:
3093 III.ImmOpcode = PPC::STDU;
3094 III.ImmMustBeMultipleOf = 4;
3095 break;
3096 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3097 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3099 break;
3100 // Power9 and up only. For some of these, the X-Form version has access to all
3101 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3102 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3103 // into or stored from is one of the VR registers.
3104 case PPC::LXVX:
3105 case PPC::LXSSPX:
3106 case PPC::LXSDX:
3107 case PPC::STXVX:
3108 case PPC::STXSSPX:
3109 case PPC::STXSDX:
3110 case PPC::XFLOADf32:
3111 case PPC::XFLOADf64:
3112 case PPC::XFSTOREf32:
3113 case PPC::XFSTOREf64:
3114 if (!Subtarget.hasP9Vector())
3115 return false;
3116 III.SignedImm = true;
3117 III.ZeroIsSpecialOrig = 1;
3118 III.ZeroIsSpecialNew = 2;
3119 III.IsCommutative = true;
3120 III.IsSummingOperands = true;
3121 III.ImmOpNo = 1;
3122 III.OpNoForForwarding = 2;
3123 III.ImmMustBeMultipleOf = 4;
3124 switch(Opc) {
3125 default: llvm_unreachable("Unknown opcode");
3126 case PPC::LXVX:
3127 III.ImmOpcode = PPC::LXV;
3128 III.ImmMustBeMultipleOf = 16;
3129 break;
3130 case PPC::LXSSPX:
3131 if (PostRA) {
3132 if (IsVFReg)
3133 III.ImmOpcode = PPC::LXSSP;
3134 else {
3135 III.ImmOpcode = PPC::LFS;
3136 III.ImmMustBeMultipleOf = 1;
3138 break;
3140 LLVM_FALLTHROUGH;
3141 case PPC::XFLOADf32:
3142 III.ImmOpcode = PPC::DFLOADf32;
3143 break;
3144 case PPC::LXSDX:
3145 if (PostRA) {
3146 if (IsVFReg)
3147 III.ImmOpcode = PPC::LXSD;
3148 else {
3149 III.ImmOpcode = PPC::LFD;
3150 III.ImmMustBeMultipleOf = 1;
3152 break;
3154 LLVM_FALLTHROUGH;
3155 case PPC::XFLOADf64:
3156 III.ImmOpcode = PPC::DFLOADf64;
3157 break;
3158 case PPC::STXVX:
3159 III.ImmOpcode = PPC::STXV;
3160 III.ImmMustBeMultipleOf = 16;
3161 break;
3162 case PPC::STXSSPX:
3163 if (PostRA) {
3164 if (IsVFReg)
3165 III.ImmOpcode = PPC::STXSSP;
3166 else {
3167 III.ImmOpcode = PPC::STFS;
3168 III.ImmMustBeMultipleOf = 1;
3170 break;
3172 LLVM_FALLTHROUGH;
3173 case PPC::XFSTOREf32:
3174 III.ImmOpcode = PPC::DFSTOREf32;
3175 break;
3176 case PPC::STXSDX:
3177 if (PostRA) {
3178 if (IsVFReg)
3179 III.ImmOpcode = PPC::STXSD;
3180 else {
3181 III.ImmOpcode = PPC::STFD;
3182 III.ImmMustBeMultipleOf = 1;
3184 break;
3186 LLVM_FALLTHROUGH;
3187 case PPC::XFSTOREf64:
3188 III.ImmOpcode = PPC::DFSTOREf64;
3189 break;
3191 break;
3193 return true;
3196 // Utility function for swaping two arbitrary operands of an instruction.
3197 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3198 assert(Op1 != Op2 && "Cannot swap operand with itself.");
3200 unsigned MaxOp = std::max(Op1, Op2);
3201 unsigned MinOp = std::min(Op1, Op2);
3202 MachineOperand MOp1 = MI.getOperand(MinOp);
3203 MachineOperand MOp2 = MI.getOperand(MaxOp);
3204 MI.RemoveOperand(std::max(Op1, Op2));
3205 MI.RemoveOperand(std::min(Op1, Op2));
3207 // If the operands we are swapping are the two at the end (the common case)
3208 // we can just remove both and add them in the opposite order.
3209 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3210 MI.addOperand(MOp2);
3211 MI.addOperand(MOp1);
3212 } else {
3213 // Store all operands in a temporary vector, remove them and re-add in the
3214 // right order.
3215 SmallVector<MachineOperand, 2> MOps;
3216 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3217 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3218 MOps.push_back(MI.getOperand(i));
3219 MI.RemoveOperand(i);
3221 // MOp2 needs to be added next.
3222 MI.addOperand(MOp2);
3223 // Now add the rest.
3224 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3225 if (i == MaxOp)
3226 MI.addOperand(MOp1);
3227 else {
3228 MI.addOperand(MOps.back());
3229 MOps.pop_back();
3235 // Check if the 'MI' that has the index OpNoForForwarding
3236 // meets the requirement described in the ImmInstrInfo.
3237 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3238 const ImmInstrInfo &III,
3239 unsigned OpNoForForwarding
3240 ) const {
3241 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3242 // would not work pre-RA, we can only do the check post RA.
3243 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3244 if (MRI.isSSA())
3245 return false;
3247 // Cannot do the transform if MI isn't summing the operands.
3248 if (!III.IsSummingOperands)
3249 return false;
3251 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3252 if (!III.ZeroIsSpecialOrig)
3253 return false;
3255 // We cannot do the transform if the operand we are trying to replace
3256 // isn't the same as the operand the instruction allows.
3257 if (OpNoForForwarding != III.OpNoForForwarding)
3258 return false;
3260 // Check if the instruction we are trying to transform really has
3261 // the special zero register as its operand.
3262 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3263 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3264 return false;
3266 // This machine instruction is convertible if it is,
3267 // 1. summing the operands.
3268 // 2. one of the operands is special zero register.
3269 // 3. the operand we are trying to replace is allowed by the MI.
3270 return true;
3273 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3274 // accordingly.
3275 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3276 const ImmInstrInfo &III,
3277 MachineOperand *&ImmMO,
3278 MachineOperand *&RegMO) const {
3279 unsigned Opc = DefMI.getOpcode();
3280 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3281 return false;
3283 assert(DefMI.getNumOperands() >= 3 &&
3284 "Add inst must have at least three operands");
3285 RegMO = &DefMI.getOperand(1);
3286 ImmMO = &DefMI.getOperand(2);
3288 // This DefMI is elgible for forwarding if it is:
3289 // 1. add inst
3290 // 2. one of the operands is Imm/CPI/Global.
3291 return isAnImmediateOperand(*ImmMO);
3294 bool PPCInstrInfo::isRegElgibleForForwarding(
3295 const MachineOperand &RegMO, const MachineInstr &DefMI,
3296 const MachineInstr &MI, bool KillDefMI,
3297 bool &IsFwdFeederRegKilled) const {
3298 // x = addi y, imm
3299 // ...
3300 // z = lfdx 0, x -> z = lfd imm(y)
3301 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3302 // of "y" between the DEF of "x" and "z".
3303 // The query is only valid post RA.
3304 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3305 if (MRI.isSSA())
3306 return false;
3308 Register Reg = RegMO.getReg();
3310 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3311 MachineBasicBlock::const_reverse_iterator It = MI;
3312 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3313 It++;
3314 for (; It != E; ++It) {
3315 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3316 return false;
3317 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3318 IsFwdFeederRegKilled = true;
3319 // Made it to DefMI without encountering a clobber.
3320 if ((&*It) == &DefMI)
3321 break;
3323 assert((&*It) == &DefMI && "DefMI is missing");
3325 // If DefMI also defines the register to be forwarded, we can only forward it
3326 // if DefMI is being erased.
3327 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3328 return KillDefMI;
3330 return true;
3333 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3334 const MachineInstr &DefMI,
3335 const ImmInstrInfo &III,
3336 int64_t &Imm) const {
3337 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3338 if (DefMI.getOpcode() == PPC::ADDItocL) {
3339 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3340 // However, we know that, it is 16-bit width, and has the alignment of 4.
3341 // Check if the instruction met the requirement.
3342 if (III.ImmMustBeMultipleOf > 4 ||
3343 III.TruncateImmTo || III.ImmWidth != 16)
3344 return false;
3346 // Going from XForm to DForm loads means that the displacement needs to be
3347 // not just an immediate but also a multiple of 4, or 16 depending on the
3348 // load. A DForm load cannot be represented if it is a multiple of say 2.
3349 // XForm loads do not have this restriction.
3350 if (ImmMO.isGlobal() &&
3351 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3352 return false;
3354 return true;
3357 if (ImmMO.isImm()) {
3358 // It is Imm, we need to check if the Imm fit the range.
3359 int64_t Immediate = ImmMO.getImm();
3360 // Sign-extend to 64-bits.
3361 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3362 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3364 if (Imm % III.ImmMustBeMultipleOf)
3365 return false;
3366 if (III.TruncateImmTo)
3367 Imm &= ((1 << III.TruncateImmTo) - 1);
3368 if (III.SignedImm) {
3369 APInt ActualValue(64, Imm, true);
3370 if (!ActualValue.isSignedIntN(III.ImmWidth))
3371 return false;
3372 } else {
3373 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3374 if ((uint64_t)Imm > UnsignedMax)
3375 return false;
3378 else
3379 return false;
3381 // This ImmMO is forwarded if it meets the requriement describle
3382 // in ImmInstrInfo
3383 return true;
3386 // If an X-Form instruction is fed by an add-immediate and one of its operands
3387 // is the literal zero, attempt to forward the source of the add-immediate to
3388 // the corresponding D-Form instruction with the displacement coming from
3389 // the immediate being added.
3390 bool PPCInstrInfo::transformToImmFormFedByAdd(
3391 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3392 MachineInstr &DefMI, bool KillDefMI) const {
3393 // RegMO ImmMO
3394 // | |
3395 // x = addi reg, imm <----- DefMI
3396 // y = op 0 , x <----- MI
3397 // |
3398 // OpNoForForwarding
3399 // Check if the MI meet the requirement described in the III.
3400 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3401 return false;
3403 // Check if the DefMI meet the requirement
3404 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3405 MachineOperand *ImmMO = nullptr;
3406 MachineOperand *RegMO = nullptr;
3407 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3408 return false;
3409 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3411 // As we get the Imm operand now, we need to check if the ImmMO meet
3412 // the requirement described in the III. If yes set the Imm.
3413 int64_t Imm = 0;
3414 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3415 return false;
3417 bool IsFwdFeederRegKilled = false;
3418 // Check if the RegMO can be forwarded to MI.
3419 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3420 IsFwdFeederRegKilled))
3421 return false;
3423 // Get killed info in case fixup needed after transformation.
3424 unsigned ForwardKilledOperandReg = ~0U;
3425 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3426 bool PostRA = !MRI.isSSA();
3427 if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3428 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3430 // We know that, the MI and DefMI both meet the pattern, and
3431 // the Imm also meet the requirement with the new Imm-form.
3432 // It is safe to do the transformation now.
3433 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3434 LLVM_DEBUG(MI.dump());
3435 LLVM_DEBUG(dbgs() << "Fed by:\n");
3436 LLVM_DEBUG(DefMI.dump());
3438 // Update the base reg first.
3439 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3440 false, false,
3441 RegMO->isKill());
3443 // Then, update the imm.
3444 if (ImmMO->isImm()) {
3445 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3446 // directly.
3447 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3449 else {
3450 // Otherwise, it is Constant Pool Index(CPI) or Global,
3451 // which is relocation in fact. We need to replace the special zero
3452 // register with ImmMO.
3453 // Before that, we need to fixup the target flags for imm.
3454 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3455 if (DefMI.getOpcode() == PPC::ADDItocL)
3456 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3458 // MI didn't have the interface such as MI.setOperand(i) though
3459 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3460 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3461 // and, add the ImmMO, then, move back all the operands behind ZERO.
3462 SmallVector<MachineOperand, 2> MOps;
3463 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3464 MOps.push_back(MI.getOperand(i));
3465 MI.RemoveOperand(i);
3468 // Remove the last MO in the list, which is ZERO operand in fact.
3469 MOps.pop_back();
3470 // Add the imm operand.
3471 MI.addOperand(*ImmMO);
3472 // Now add the rest back.
3473 for (auto &MO : MOps)
3474 MI.addOperand(MO);
3477 // Update the opcode.
3478 MI.setDesc(get(III.ImmOpcode));
3480 // Fix up killed/dead flag after transformation.
3481 // Pattern 1:
3482 // x = ADD KilledFwdFeederReg, imm
3483 // n = opn KilledFwdFeederReg(killed), regn
3484 // y = XOP 0, x
3485 // Pattern 2:
3486 // x = ADD reg(killed), imm
3487 // y = XOP 0, x
3488 if (IsFwdFeederRegKilled || RegMO->isKill())
3489 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3490 // Pattern 3:
3491 // ForwardKilledOperandReg = ADD reg, imm
3492 // y = XOP 0, ForwardKilledOperandReg(killed)
3493 if (ForwardKilledOperandReg != ~0U)
3494 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3496 LLVM_DEBUG(dbgs() << "With:\n");
3497 LLVM_DEBUG(MI.dump());
3499 return true;
3502 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3503 const ImmInstrInfo &III,
3504 unsigned ConstantOpNo,
3505 MachineInstr &DefMI,
3506 int64_t Imm) const {
3507 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3508 bool PostRA = !MRI.isSSA();
3509 // Exit early if we can't convert this.
3510 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3511 return false;
3512 if (Imm % III.ImmMustBeMultipleOf)
3513 return false;
3514 if (III.TruncateImmTo)
3515 Imm &= ((1 << III.TruncateImmTo) - 1);
3516 if (III.SignedImm) {
3517 APInt ActualValue(64, Imm, true);
3518 if (!ActualValue.isSignedIntN(III.ImmWidth))
3519 return false;
3520 } else {
3521 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3522 if ((uint64_t)Imm > UnsignedMax)
3523 return false;
3526 // If we're post-RA, the instructions don't agree on whether register zero is
3527 // special, we can transform this as long as the register operand that will
3528 // end up in the location where zero is special isn't R0.
3529 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3530 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3531 III.ZeroIsSpecialNew + 1;
3532 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3533 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3534 // If R0 is in the operand where zero is special for the new instruction,
3535 // it is unsafe to transform if the constant operand isn't that operand.
3536 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3537 ConstantOpNo != III.ZeroIsSpecialNew)
3538 return false;
3539 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3540 ConstantOpNo != PosForOrigZero)
3541 return false;
3544 // Get killed info in case fixup needed after transformation.
3545 unsigned ForwardKilledOperandReg = ~0U;
3546 if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3547 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3549 unsigned Opc = MI.getOpcode();
3550 bool SpecialShift32 =
3551 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3552 bool SpecialShift64 =
3553 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3554 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3555 Opc == PPC::SLDo || Opc == PPC::SRDo;
3556 bool RightShift =
3557 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3559 MI.setDesc(get(III.ImmOpcode));
3560 if (ConstantOpNo == III.OpNoForForwarding) {
3561 // Converting shifts to immediate form is a bit tricky since they may do
3562 // one of three things:
3563 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3564 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3565 // setting CR0)
3566 // 3. If the shift amount is in [1, OpSize), it's just a shift
3567 if (SpecialShift32 || SpecialShift64) {
3568 LoadImmediateInfo LII;
3569 LII.Imm = 0;
3570 LII.SetCR = SetCR;
3571 LII.Is64Bit = SpecialShift64;
3572 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3573 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3574 replaceInstrWithLI(MI, LII);
3575 // Shifts by zero don't change the value. If we don't need to set CR0,
3576 // just convert this to a COPY. Can't do this post-RA since we've already
3577 // cleaned up the copies.
3578 else if (!SetCR && ShAmt == 0 && !PostRA) {
3579 MI.RemoveOperand(2);
3580 MI.setDesc(get(PPC::COPY));
3581 } else {
3582 // The 32 bit and 64 bit instructions are quite different.
3583 if (SpecialShift32) {
3584 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3585 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3586 uint64_t MB = RightShift ? ShAmt : 0;
3587 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3588 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3589 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3590 .addImm(ME);
3591 } else {
3592 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3593 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3594 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3595 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3596 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3599 } else
3600 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3602 // Convert commutative instructions (switch the operands and convert the
3603 // desired one to an immediate.
3604 else if (III.IsCommutative) {
3605 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3606 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3607 } else
3608 llvm_unreachable("Should have exited early!");
3610 // For instructions for which the constant register replaces a different
3611 // operand than where the immediate goes, we need to swap them.
3612 if (III.OpNoForForwarding != III.ImmOpNo)
3613 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3615 // If the special R0/X0 register index are different for original instruction
3616 // and new instruction, we need to fix up the register class in new
3617 // instruction.
3618 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3619 if (III.ZeroIsSpecialNew) {
3620 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3621 // need to fix up register class.
3622 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3623 if (Register::isVirtualRegister(RegToModify)) {
3624 const TargetRegisterClass *NewRC =
3625 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3626 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3627 MRI.setRegClass(RegToModify, NewRC);
3632 // Fix up killed/dead flag after transformation.
3633 // Pattern:
3634 // ForwardKilledOperandReg = LI imm
3635 // y = XOP reg, ForwardKilledOperandReg(killed)
3636 if (ForwardKilledOperandReg != ~0U)
3637 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3638 return true;
3641 const TargetRegisterClass *
3642 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3643 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3644 return &PPC::VSRCRegClass;
3645 return RC;
3648 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3649 return PPC::getRecordFormOpcode(Opcode);
3652 // This function returns true if the machine instruction
3653 // always outputs a value by sign-extending a 32 bit value,
3654 // i.e. 0 to 31-th bits are same as 32-th bit.
3655 static bool isSignExtendingOp(const MachineInstr &MI) {
3656 int Opcode = MI.getOpcode();
3657 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3658 Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
3659 Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
3660 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
3661 Opcode == PPC::LWA || Opcode == PPC::LWAX ||
3662 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3663 Opcode == PPC::LHA || Opcode == PPC::LHAX ||
3664 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
3665 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3666 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3667 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3668 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3669 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3670 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3671 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3672 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3673 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
3674 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
3675 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
3676 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
3677 Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3678 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3679 Opcode == PPC::EXTSB8_32_64)
3680 return true;
3682 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3683 return true;
3685 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3686 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
3687 MI.getOperand(3).getImm() > 0 &&
3688 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3689 return true;
3691 return false;
3694 // This function returns true if the machine instruction
3695 // always outputs zeros in higher 32 bits.
3696 static bool isZeroExtendingOp(const MachineInstr &MI) {
3697 int Opcode = MI.getOpcode();
3698 // The 16-bit immediate is sign-extended in li/lis.
3699 // If the most significant bit is zero, all higher bits are zero.
3700 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3701 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3702 int64_t Imm = MI.getOperand(1).getImm();
3703 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3704 return true;
3707 // We have some variations of rotate-and-mask instructions
3708 // that clear higher 32-bits.
3709 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3710 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
3711 Opcode == PPC::RLDICL_32_64) &&
3712 MI.getOperand(3).getImm() >= 32)
3713 return true;
3715 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3716 MI.getOperand(3).getImm() >= 32 &&
3717 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3718 return true;
3720 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3721 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
3722 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3723 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3724 return true;
3726 // There are other instructions that clear higher 32-bits.
3727 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
3728 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
3729 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3730 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
3731 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
3732 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3733 Opcode == PPC::SLW || Opcode == PPC::SLWo ||
3734 Opcode == PPC::SRW || Opcode == PPC::SRWo ||
3735 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
3736 Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
3737 Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
3738 Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3739 Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
3740 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
3741 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3742 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3743 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3744 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3745 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
3746 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
3747 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3748 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3749 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3750 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3751 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3752 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
3753 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
3754 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
3755 Opcode == PPC::MFVSRWZ)
3756 return true;
3758 return false;
3761 // This function returns true if the input MachineInstr is a TOC save
3762 // instruction.
3763 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3764 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3765 return false;
3766 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3767 unsigned StackOffset = MI.getOperand(1).getImm();
3768 Register StackReg = MI.getOperand(2).getReg();
3769 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3770 return true;
3772 return false;
3775 // We limit the max depth to track incoming values of PHIs or binary ops
3776 // (e.g. AND) to avoid excessive cost.
3777 const unsigned MAX_DEPTH = 1;
3779 bool
3780 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3781 const unsigned Depth) const {
3782 const MachineFunction *MF = MI.getParent()->getParent();
3783 const MachineRegisterInfo *MRI = &MF->getRegInfo();
3785 // If we know this instruction returns sign- or zero-extended result,
3786 // return true.
3787 if (SignExt ? isSignExtendingOp(MI):
3788 isZeroExtendingOp(MI))
3789 return true;
3791 switch (MI.getOpcode()) {
3792 case PPC::COPY: {
3793 Register SrcReg = MI.getOperand(1).getReg();
3795 // In both ELFv1 and v2 ABI, method parameters and the return value
3796 // are sign- or zero-extended.
3797 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3798 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3799 // We check the ZExt/SExt flags for a method parameter.
3800 if (MI.getParent()->getBasicBlock() ==
3801 &MF->getFunction().getEntryBlock()) {
3802 Register VReg = MI.getOperand(0).getReg();
3803 if (MF->getRegInfo().isLiveIn(VReg))
3804 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3805 FuncInfo->isLiveInZExt(VReg);
3808 // For a method return value, we check the ZExt/SExt flags in attribute.
3809 // We assume the following code sequence for method call.
3810 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3811 // BL8_NOP @func,...
3812 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3813 // %5 = COPY %x3; G8RC:%5
3814 if (SrcReg == PPC::X3) {
3815 const MachineBasicBlock *MBB = MI.getParent();
3816 MachineBasicBlock::const_instr_iterator II =
3817 MachineBasicBlock::const_instr_iterator(&MI);
3818 if (II != MBB->instr_begin() &&
3819 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3820 const MachineInstr &CallMI = *(--II);
3821 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3822 const Function *CalleeFn =
3823 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3824 if (!CalleeFn)
3825 return false;
3826 const IntegerType *IntTy =
3827 dyn_cast<IntegerType>(CalleeFn->getReturnType());
3828 const AttributeSet &Attrs =
3829 CalleeFn->getAttributes().getRetAttributes();
3830 if (IntTy && IntTy->getBitWidth() <= 32)
3831 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3832 Attribute::ZExt);
3838 // If this is a copy from another register, we recursively check source.
3839 if (!Register::isVirtualRegister(SrcReg))
3840 return false;
3841 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3842 if (SrcMI != NULL)
3843 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3845 return false;
3848 case PPC::ANDIo:
3849 case PPC::ANDISo:
3850 case PPC::ORI:
3851 case PPC::ORIS:
3852 case PPC::XORI:
3853 case PPC::XORIS:
3854 case PPC::ANDIo8:
3855 case PPC::ANDISo8:
3856 case PPC::ORI8:
3857 case PPC::ORIS8:
3858 case PPC::XORI8:
3859 case PPC::XORIS8: {
3860 // logical operation with 16-bit immediate does not change the upper bits.
3861 // So, we track the operand register as we do for register copy.
3862 Register SrcReg = MI.getOperand(1).getReg();
3863 if (!Register::isVirtualRegister(SrcReg))
3864 return false;
3865 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3866 if (SrcMI != NULL)
3867 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3869 return false;
3872 // If all incoming values are sign-/zero-extended,
3873 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3874 case PPC::OR:
3875 case PPC::OR8:
3876 case PPC::ISEL:
3877 case PPC::PHI: {
3878 if (Depth >= MAX_DEPTH)
3879 return false;
3881 // The input registers for PHI are operand 1, 3, ...
3882 // The input registers for others are operand 1 and 2.
3883 unsigned E = 3, D = 1;
3884 if (MI.getOpcode() == PPC::PHI) {
3885 E = MI.getNumOperands();
3886 D = 2;
3889 for (unsigned I = 1; I != E; I += D) {
3890 if (MI.getOperand(I).isReg()) {
3891 Register SrcReg = MI.getOperand(I).getReg();
3892 if (!Register::isVirtualRegister(SrcReg))
3893 return false;
3894 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3895 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3896 return false;
3898 else
3899 return false;
3901 return true;
3904 // If at least one of the incoming values of an AND is zero extended
3905 // then the output is also zero-extended. If both of the incoming values
3906 // are sign-extended then the output is also sign extended.
3907 case PPC::AND:
3908 case PPC::AND8: {
3909 if (Depth >= MAX_DEPTH)
3910 return false;
3912 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3914 Register SrcReg1 = MI.getOperand(1).getReg();
3915 Register SrcReg2 = MI.getOperand(2).getReg();
3917 if (!Register::isVirtualRegister(SrcReg1) ||
3918 !Register::isVirtualRegister(SrcReg2))
3919 return false;
3921 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3922 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3923 if (!MISrc1 || !MISrc2)
3924 return false;
3926 if(SignExt)
3927 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3928 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3929 else
3930 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3931 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3934 default:
3935 break;
3937 return false;
3940 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3941 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3944 bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
3945 MachineInstr *&CmpInst) const {
3946 MachineBasicBlock *LoopEnd = L.getBottomBlock();
3947 MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
3948 // We really "analyze" only CTR loops right now.
3949 if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) {
3950 IndVarInst = nullptr;
3951 CmpInst = &*I;
3952 return false;
3954 return true;
3957 MachineInstr *
3958 PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const {
3960 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
3962 // The loop set-up instruction should be in preheader
3963 for (auto &I : PreHeader.instrs())
3964 if (I.getOpcode() == LOOPi)
3965 return &I;
3966 return nullptr;
3969 unsigned PPCInstrInfo::reduceLoopCount(
3970 MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
3971 MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
3972 SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
3973 unsigned MaxIter) const {
3974 // We expect a hardware loop currently. This means that IndVar is set
3975 // to null, and the compare is the ENDLOOP instruction.
3976 assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop");
3977 MachineFunction *MF = MBB.getParent();
3978 DebugLoc DL = Cmp.getDebugLoc();
3979 MachineInstr *Loop = findLoopInstr(PreHeader);
3980 if (!Loop)
3981 return 0;
3982 Register LoopCountReg = Loop->getOperand(0).getReg();
3983 MachineRegisterInfo &MRI = MF->getRegInfo();
3984 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
3986 if (!LoopCount)
3987 return 0;
3988 // If the loop trip count is a compile-time value, then just change the
3989 // value.
3990 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) {
3991 int64_t Offset = LoopCount->getOperand(1).getImm();
3992 if (Offset <= 1) {
3993 LoopCount->eraseFromParent();
3994 Loop->eraseFromParent();
3995 return 0;
3997 LoopCount->getOperand(1).setImm(Offset - 1);
3998 return Offset - 1;
4001 // The loop trip count is a run-time value.
4002 // We need to subtract one from the trip count,
4003 // and insert branch later to check if we're done with the loop.
4005 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4006 // so we don't need to generate any thing here.
4007 Cond.push_back(MachineOperand::CreateImm(0));
4008 Cond.push_back(MachineOperand::CreateReg(
4009 Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true));
4010 return LoopCountReg;
4013 // Return true if get the base operand, byte offset of an instruction and the
4014 // memory width. Width is the size of memory that is being loaded/stored.
4015 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4016 const MachineInstr &LdSt,
4017 const MachineOperand *&BaseReg,
4018 int64_t &Offset,
4019 unsigned &Width,
4020 const TargetRegisterInfo *TRI) const {
4021 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4023 // Handle only loads/stores with base register followed by immediate offset.
4024 if (LdSt.getNumExplicitOperands() != 3)
4025 return false;
4026 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4027 return false;
4029 if (!LdSt.hasOneMemOperand())
4030 return false;
4032 Width = (*LdSt.memoperands_begin())->getSize();
4033 Offset = LdSt.getOperand(1).getImm();
4034 BaseReg = &LdSt.getOperand(2);
4035 return true;
4038 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4039 const MachineInstr &MIa, const MachineInstr &MIb,
4040 AliasAnalysis * /*AA*/) const {
4041 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4042 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4044 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4045 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4046 return false;
4048 // Retrieve the base register, offset from the base register and width. Width
4049 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
4050 // base registers are identical, and the offset of a lower memory access +
4051 // the width doesn't overlap the offset of a higher memory access,
4052 // then the memory accesses are different.
4053 const TargetRegisterInfo *TRI = &getRegisterInfo();
4054 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4055 int64_t OffsetA = 0, OffsetB = 0;
4056 unsigned int WidthA = 0, WidthB = 0;
4057 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4058 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4059 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4060 int LowOffset = std::min(OffsetA, OffsetB);
4061 int HighOffset = std::max(OffsetA, OffsetB);
4062 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4063 if (LowOffset + LowWidth <= HighOffset)
4064 return true;
4067 return false;