1 //===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file includes code for rendering MCInst instances as AT&T-style
12 //===----------------------------------------------------------------------===//
14 #include "X86ATTInstPrinter.h"
15 #include "X86BaseInfo.h"
16 #include "X86InstComments.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCInstrInfo.h"
20 #include "llvm/MC/MCSubtargetInfo.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Support/raw_ostream.h"
31 #define DEBUG_TYPE "asm-printer"
33 // Include the auto-generated portion of the assembly writer.
34 #define PRINT_ALIAS_INSTR
35 #include "X86GenAsmWriter.inc"
37 void X86ATTInstPrinter::printRegName(raw_ostream
&OS
, unsigned RegNo
) const {
38 OS
<< markup("<reg:") << '%' << getRegisterName(RegNo
) << markup(">");
41 void X86ATTInstPrinter::printInst(const MCInst
*MI
, raw_ostream
&OS
,
42 StringRef Annot
, const MCSubtargetInfo
&STI
) {
43 // If verbose assembly is enabled, we can print some informative comments.
45 HasCustomInstComment
= EmitAnyX86InstComments(MI
, *CommentStream
, MII
);
47 printInstFlags(MI
, OS
);
49 // Output CALLpcrel32 as "callq" in 64-bit mode.
50 // In Intel annotation it's always emitted as "call".
52 // TODO: Probably this hack should be redesigned via InstAlias in
53 // InstrInfo.td as soon as Requires clause is supported properly
55 if (MI
->getOpcode() == X86::CALLpcrel32
&&
56 (STI
.getFeatureBits()[X86::Mode64Bit
])) {
58 printPCRelImm(MI
, 0, OS
);
60 // data16 and data32 both have the same encoding of 0x66. While data32 is
61 // valid only in 16 bit systems, data16 is valid in the rest.
62 // There seems to be some lack of support of the Requires clause that causes
63 // 0x66 to be interpreted as "data16" by the asm printer.
64 // Thus we add an adjustment here in order to print the "right" instruction.
65 else if (MI
->getOpcode() == X86::DATA16_PREFIX
&&
66 STI
.getFeatureBits()[X86::Mode16Bit
]) {
69 // Try to print any aliases first.
70 else if (!printAliasInstr(MI
, OS
) &&
71 !printVecCompareInstr(MI
, OS
))
72 printInstruction(MI
, OS
);
74 // Next always print the annotation.
75 printAnnotation(OS
, Annot
);
78 bool X86ATTInstPrinter::printVecCompareInstr(const MCInst
*MI
,
80 if (MI
->getNumOperands() == 0 ||
81 !MI
->getOperand(MI
->getNumOperands() - 1).isImm())
84 int64_t Imm
= MI
->getOperand(MI
->getNumOperands() - 1).getImm();
86 const MCInstrDesc
&Desc
= MII
.get(MI
->getOpcode());
88 // Custom print the vector compare instructions to get the immediate
89 // translated into the mnemonic.
90 switch (MI
->getOpcode()) {
91 case X86::CMPPDrmi
: case X86::CMPPDrri
:
92 case X86::CMPPSrmi
: case X86::CMPPSrri
:
93 case X86::CMPSDrm
: case X86::CMPSDrr
:
94 case X86::CMPSDrm_Int
: case X86::CMPSDrr_Int
:
95 case X86::CMPSSrm
: case X86::CMPSSrr
:
96 case X86::CMPSSrm_Int
: case X86::CMPSSrr_Int
:
97 if (Imm
>= 0 && Imm
<= 7) {
99 printCMPMnemonic(MI
, /*IsVCMP*/false, OS
);
101 if ((Desc
.TSFlags
& X86II::FormMask
) == X86II::MRMSrcMem
) {
102 if ((Desc
.TSFlags
& X86II::OpPrefixMask
) == X86II::XS
)
103 printdwordmem(MI
, 2, OS
);
104 else if ((Desc
.TSFlags
& X86II::OpPrefixMask
) == X86II::XD
)
105 printqwordmem(MI
, 2, OS
);
107 printxmmwordmem(MI
, 2, OS
);
109 printOperand(MI
, 2, OS
);
111 // Skip operand 1 as its tied to the dest.
114 printOperand(MI
, 0, OS
);
119 case X86::VCMPPDrmi
: case X86::VCMPPDrri
:
120 case X86::VCMPPDYrmi
: case X86::VCMPPDYrri
:
121 case X86::VCMPPDZ128rmi
: case X86::VCMPPDZ128rri
:
122 case X86::VCMPPDZ256rmi
: case X86::VCMPPDZ256rri
:
123 case X86::VCMPPDZrmi
: case X86::VCMPPDZrri
:
124 case X86::VCMPPSrmi
: case X86::VCMPPSrri
:
125 case X86::VCMPPSYrmi
: case X86::VCMPPSYrri
:
126 case X86::VCMPPSZ128rmi
: case X86::VCMPPSZ128rri
:
127 case X86::VCMPPSZ256rmi
: case X86::VCMPPSZ256rri
:
128 case X86::VCMPPSZrmi
: case X86::VCMPPSZrri
:
129 case X86::VCMPSDrm
: case X86::VCMPSDrr
:
130 case X86::VCMPSDZrm
: case X86::VCMPSDZrr
:
131 case X86::VCMPSDrm_Int
: case X86::VCMPSDrr_Int
:
132 case X86::VCMPSDZrm_Int
: case X86::VCMPSDZrr_Int
:
133 case X86::VCMPSSrm
: case X86::VCMPSSrr
:
134 case X86::VCMPSSZrm
: case X86::VCMPSSZrr
:
135 case X86::VCMPSSrm_Int
: case X86::VCMPSSrr_Int
:
136 case X86::VCMPSSZrm_Int
: case X86::VCMPSSZrr_Int
:
137 case X86::VCMPPDZ128rmik
: case X86::VCMPPDZ128rrik
:
138 case X86::VCMPPDZ256rmik
: case X86::VCMPPDZ256rrik
:
139 case X86::VCMPPDZrmik
: case X86::VCMPPDZrrik
:
140 case X86::VCMPPSZ128rmik
: case X86::VCMPPSZ128rrik
:
141 case X86::VCMPPSZ256rmik
: case X86::VCMPPSZ256rrik
:
142 case X86::VCMPPSZrmik
: case X86::VCMPPSZrrik
:
143 case X86::VCMPSDZrm_Intk
: case X86::VCMPSDZrr_Intk
:
144 case X86::VCMPSSZrm_Intk
: case X86::VCMPSSZrr_Intk
:
145 case X86::VCMPPDZ128rmbi
: case X86::VCMPPDZ128rmbik
:
146 case X86::VCMPPDZ256rmbi
: case X86::VCMPPDZ256rmbik
:
147 case X86::VCMPPDZrmbi
: case X86::VCMPPDZrmbik
:
148 case X86::VCMPPSZ128rmbi
: case X86::VCMPPSZ128rmbik
:
149 case X86::VCMPPSZ256rmbi
: case X86::VCMPPSZ256rmbik
:
150 case X86::VCMPPSZrmbi
: case X86::VCMPPSZrmbik
:
151 case X86::VCMPPDZrrib
: case X86::VCMPPDZrribk
:
152 case X86::VCMPPSZrrib
: case X86::VCMPPSZrribk
:
153 case X86::VCMPSDZrrb_Int
: case X86::VCMPSDZrrb_Intk
:
154 case X86::VCMPSSZrrb_Int
: case X86::VCMPSSZrrb_Intk
:
155 if (Imm
>= 0 && Imm
<= 31) {
157 printCMPMnemonic(MI
, /*IsVCMP*/true, OS
);
159 unsigned CurOp
= (Desc
.TSFlags
& X86II::EVEX_K
) ? 3 : 2;
161 if ((Desc
.TSFlags
& X86II::FormMask
) == X86II::MRMSrcMem
) {
162 if (Desc
.TSFlags
& X86II::EVEX_B
) {
164 // Load size is based on W-bit.
165 if (Desc
.TSFlags
& X86II::VEX_W
)
166 printqwordmem(MI
, CurOp
--, OS
);
168 printdwordmem(MI
, CurOp
--, OS
);
170 // Print the number of elements broadcasted.
172 if (Desc
.TSFlags
& X86II::EVEX_L2
)
173 NumElts
= (Desc
.TSFlags
& X86II::VEX_W
) ? 8 : 16;
174 else if (Desc
.TSFlags
& X86II::VEX_L
)
175 NumElts
= (Desc
.TSFlags
& X86II::VEX_W
) ? 4 : 8;
177 NumElts
= (Desc
.TSFlags
& X86II::VEX_W
) ? 2 : 4;
178 OS
<< "{1to" << NumElts
<< "}";
180 if ((Desc
.TSFlags
& X86II::OpPrefixMask
) == X86II::XS
)
181 printdwordmem(MI
, CurOp
--, OS
);
182 else if ((Desc
.TSFlags
& X86II::OpPrefixMask
) == X86II::XD
)
183 printqwordmem(MI
, CurOp
--, OS
);
184 else if (Desc
.TSFlags
& X86II::EVEX_L2
)
185 printzmmwordmem(MI
, CurOp
--, OS
);
186 else if (Desc
.TSFlags
& X86II::VEX_L
)
187 printymmwordmem(MI
, CurOp
--, OS
);
189 printxmmwordmem(MI
, CurOp
--, OS
);
192 if (Desc
.TSFlags
& X86II::EVEX_B
)
194 printOperand(MI
, CurOp
--, OS
);
198 printOperand(MI
, CurOp
--, OS
);
200 printOperand(MI
, 0, OS
);
202 // Print mask operand.
204 printOperand(MI
, CurOp
--, OS
);
212 case X86::VPCOMBmi
: case X86::VPCOMBri
:
213 case X86::VPCOMDmi
: case X86::VPCOMDri
:
214 case X86::VPCOMQmi
: case X86::VPCOMQri
:
215 case X86::VPCOMUBmi
: case X86::VPCOMUBri
:
216 case X86::VPCOMUDmi
: case X86::VPCOMUDri
:
217 case X86::VPCOMUQmi
: case X86::VPCOMUQri
:
218 case X86::VPCOMUWmi
: case X86::VPCOMUWri
:
219 case X86::VPCOMWmi
: case X86::VPCOMWri
:
220 if (Imm
>= 0 && Imm
<= 7) {
222 printVPCOMMnemonic(MI
, OS
);
224 if ((Desc
.TSFlags
& X86II::FormMask
) == X86II::MRMSrcMem
)
225 printxmmwordmem(MI
, 2, OS
);
227 printOperand(MI
, 2, OS
);
230 printOperand(MI
, 1, OS
);
232 printOperand(MI
, 0, OS
);
237 case X86::VPCMPBZ128rmi
: case X86::VPCMPBZ128rri
:
238 case X86::VPCMPBZ256rmi
: case X86::VPCMPBZ256rri
:
239 case X86::VPCMPBZrmi
: case X86::VPCMPBZrri
:
240 case X86::VPCMPDZ128rmi
: case X86::VPCMPDZ128rri
:
241 case X86::VPCMPDZ256rmi
: case X86::VPCMPDZ256rri
:
242 case X86::VPCMPDZrmi
: case X86::VPCMPDZrri
:
243 case X86::VPCMPQZ128rmi
: case X86::VPCMPQZ128rri
:
244 case X86::VPCMPQZ256rmi
: case X86::VPCMPQZ256rri
:
245 case X86::VPCMPQZrmi
: case X86::VPCMPQZrri
:
246 case X86::VPCMPUBZ128rmi
: case X86::VPCMPUBZ128rri
:
247 case X86::VPCMPUBZ256rmi
: case X86::VPCMPUBZ256rri
:
248 case X86::VPCMPUBZrmi
: case X86::VPCMPUBZrri
:
249 case X86::VPCMPUDZ128rmi
: case X86::VPCMPUDZ128rri
:
250 case X86::VPCMPUDZ256rmi
: case X86::VPCMPUDZ256rri
:
251 case X86::VPCMPUDZrmi
: case X86::VPCMPUDZrri
:
252 case X86::VPCMPUQZ128rmi
: case X86::VPCMPUQZ128rri
:
253 case X86::VPCMPUQZ256rmi
: case X86::VPCMPUQZ256rri
:
254 case X86::VPCMPUQZrmi
: case X86::VPCMPUQZrri
:
255 case X86::VPCMPUWZ128rmi
: case X86::VPCMPUWZ128rri
:
256 case X86::VPCMPUWZ256rmi
: case X86::VPCMPUWZ256rri
:
257 case X86::VPCMPUWZrmi
: case X86::VPCMPUWZrri
:
258 case X86::VPCMPWZ128rmi
: case X86::VPCMPWZ128rri
:
259 case X86::VPCMPWZ256rmi
: case X86::VPCMPWZ256rri
:
260 case X86::VPCMPWZrmi
: case X86::VPCMPWZrri
:
261 case X86::VPCMPBZ128rmik
: case X86::VPCMPBZ128rrik
:
262 case X86::VPCMPBZ256rmik
: case X86::VPCMPBZ256rrik
:
263 case X86::VPCMPBZrmik
: case X86::VPCMPBZrrik
:
264 case X86::VPCMPDZ128rmik
: case X86::VPCMPDZ128rrik
:
265 case X86::VPCMPDZ256rmik
: case X86::VPCMPDZ256rrik
:
266 case X86::VPCMPDZrmik
: case X86::VPCMPDZrrik
:
267 case X86::VPCMPQZ128rmik
: case X86::VPCMPQZ128rrik
:
268 case X86::VPCMPQZ256rmik
: case X86::VPCMPQZ256rrik
:
269 case X86::VPCMPQZrmik
: case X86::VPCMPQZrrik
:
270 case X86::VPCMPUBZ128rmik
: case X86::VPCMPUBZ128rrik
:
271 case X86::VPCMPUBZ256rmik
: case X86::VPCMPUBZ256rrik
:
272 case X86::VPCMPUBZrmik
: case X86::VPCMPUBZrrik
:
273 case X86::VPCMPUDZ128rmik
: case X86::VPCMPUDZ128rrik
:
274 case X86::VPCMPUDZ256rmik
: case X86::VPCMPUDZ256rrik
:
275 case X86::VPCMPUDZrmik
: case X86::VPCMPUDZrrik
:
276 case X86::VPCMPUQZ128rmik
: case X86::VPCMPUQZ128rrik
:
277 case X86::VPCMPUQZ256rmik
: case X86::VPCMPUQZ256rrik
:
278 case X86::VPCMPUQZrmik
: case X86::VPCMPUQZrrik
:
279 case X86::VPCMPUWZ128rmik
: case X86::VPCMPUWZ128rrik
:
280 case X86::VPCMPUWZ256rmik
: case X86::VPCMPUWZ256rrik
:
281 case X86::VPCMPUWZrmik
: case X86::VPCMPUWZrrik
:
282 case X86::VPCMPWZ128rmik
: case X86::VPCMPWZ128rrik
:
283 case X86::VPCMPWZ256rmik
: case X86::VPCMPWZ256rrik
:
284 case X86::VPCMPWZrmik
: case X86::VPCMPWZrrik
:
285 case X86::VPCMPDZ128rmib
: case X86::VPCMPDZ128rmibk
:
286 case X86::VPCMPDZ256rmib
: case X86::VPCMPDZ256rmibk
:
287 case X86::VPCMPDZrmib
: case X86::VPCMPDZrmibk
:
288 case X86::VPCMPQZ128rmib
: case X86::VPCMPQZ128rmibk
:
289 case X86::VPCMPQZ256rmib
: case X86::VPCMPQZ256rmibk
:
290 case X86::VPCMPQZrmib
: case X86::VPCMPQZrmibk
:
291 case X86::VPCMPUDZ128rmib
: case X86::VPCMPUDZ128rmibk
:
292 case X86::VPCMPUDZ256rmib
: case X86::VPCMPUDZ256rmibk
:
293 case X86::VPCMPUDZrmib
: case X86::VPCMPUDZrmibk
:
294 case X86::VPCMPUQZ128rmib
: case X86::VPCMPUQZ128rmibk
:
295 case X86::VPCMPUQZ256rmib
: case X86::VPCMPUQZ256rmibk
:
296 case X86::VPCMPUQZrmib
: case X86::VPCMPUQZrmibk
:
297 if ((Imm
>= 0 && Imm
<= 2) || (Imm
>= 4 && Imm
<= 6)) {
299 printVPCMPMnemonic(MI
, OS
);
301 unsigned CurOp
= (Desc
.TSFlags
& X86II::EVEX_K
) ? 3 : 2;
303 if ((Desc
.TSFlags
& X86II::FormMask
) == X86II::MRMSrcMem
) {
304 if (Desc
.TSFlags
& X86II::EVEX_B
) {
306 // Load size is based on W-bit as only D and Q are supported.
307 if (Desc
.TSFlags
& X86II::VEX_W
)
308 printqwordmem(MI
, CurOp
--, OS
);
310 printdwordmem(MI
, CurOp
--, OS
);
312 // Print the number of elements broadcasted.
314 if (Desc
.TSFlags
& X86II::EVEX_L2
)
315 NumElts
= (Desc
.TSFlags
& X86II::VEX_W
) ? 8 : 16;
316 else if (Desc
.TSFlags
& X86II::VEX_L
)
317 NumElts
= (Desc
.TSFlags
& X86II::VEX_W
) ? 4 : 8;
319 NumElts
= (Desc
.TSFlags
& X86II::VEX_W
) ? 2 : 4;
320 OS
<< "{1to" << NumElts
<< "}";
322 if (Desc
.TSFlags
& X86II::EVEX_L2
)
323 printzmmwordmem(MI
, CurOp
--, OS
);
324 else if (Desc
.TSFlags
& X86II::VEX_L
)
325 printymmwordmem(MI
, CurOp
--, OS
);
327 printxmmwordmem(MI
, CurOp
--, OS
);
330 printOperand(MI
, CurOp
--, OS
);
334 printOperand(MI
, CurOp
--, OS
);
336 printOperand(MI
, 0, OS
);
338 // Print mask operand.
340 printOperand(MI
, CurOp
--, OS
);
352 void X86ATTInstPrinter::printOperand(const MCInst
*MI
, unsigned OpNo
,
354 const MCOperand
&Op
= MI
->getOperand(OpNo
);
356 printRegName(O
, Op
.getReg());
357 } else if (Op
.isImm()) {
358 // Print immediates as signed values.
359 int64_t Imm
= Op
.getImm();
360 O
<< markup("<imm:") << '$' << formatImm(Imm
) << markup(">");
362 // TODO: This should be in a helper function in the base class, so it can
363 // be used by other printers.
365 // If there are no instruction-specific comments, add a comment clarifying
366 // the hex value of the immediate operand when it isn't in the range
368 if (CommentStream
&& !HasCustomInstComment
&& (Imm
> 255 || Imm
< -256)) {
369 // Don't print unnecessary hex sign bits.
370 if (Imm
== (int16_t)(Imm
))
371 *CommentStream
<< format("imm = 0x%" PRIX16
"\n", (uint16_t)Imm
);
372 else if (Imm
== (int32_t)(Imm
))
373 *CommentStream
<< format("imm = 0x%" PRIX32
"\n", (uint32_t)Imm
);
375 *CommentStream
<< format("imm = 0x%" PRIX64
"\n", (uint64_t)Imm
);
378 assert(Op
.isExpr() && "unknown operand kind in printOperand");
379 O
<< markup("<imm:") << '$';
380 Op
.getExpr()->print(O
, &MAI
);
385 void X86ATTInstPrinter::printMemReference(const MCInst
*MI
, unsigned Op
,
387 const MCOperand
&BaseReg
= MI
->getOperand(Op
+ X86::AddrBaseReg
);
388 const MCOperand
&IndexReg
= MI
->getOperand(Op
+ X86::AddrIndexReg
);
389 const MCOperand
&DispSpec
= MI
->getOperand(Op
+ X86::AddrDisp
);
391 O
<< markup("<mem:");
393 // If this has a segment register, print it.
394 printOptionalSegReg(MI
, Op
+ X86::AddrSegmentReg
, O
);
396 if (DispSpec
.isImm()) {
397 int64_t DispVal
= DispSpec
.getImm();
398 if (DispVal
|| (!IndexReg
.getReg() && !BaseReg
.getReg()))
399 O
<< formatImm(DispVal
);
401 assert(DispSpec
.isExpr() && "non-immediate displacement for LEA?");
402 DispSpec
.getExpr()->print(O
, &MAI
);
405 if (IndexReg
.getReg() || BaseReg
.getReg()) {
407 if (BaseReg
.getReg())
408 printOperand(MI
, Op
+ X86::AddrBaseReg
, O
);
410 if (IndexReg
.getReg()) {
412 printOperand(MI
, Op
+ X86::AddrIndexReg
, O
);
413 unsigned ScaleVal
= MI
->getOperand(Op
+ X86::AddrScaleAmt
).getImm();
415 O
<< ',' << markup("<imm:") << ScaleVal
// never printed in hex.
425 void X86ATTInstPrinter::printSrcIdx(const MCInst
*MI
, unsigned Op
,
427 O
<< markup("<mem:");
429 // If this has a segment register, print it.
430 printOptionalSegReg(MI
, Op
+ 1, O
);
433 printOperand(MI
, Op
, O
);
439 void X86ATTInstPrinter::printDstIdx(const MCInst
*MI
, unsigned Op
,
441 O
<< markup("<mem:");
444 printOperand(MI
, Op
, O
);
450 void X86ATTInstPrinter::printMemOffset(const MCInst
*MI
, unsigned Op
,
452 const MCOperand
&DispSpec
= MI
->getOperand(Op
);
454 O
<< markup("<mem:");
456 // If this has a segment register, print it.
457 printOptionalSegReg(MI
, Op
+ 1, O
);
459 if (DispSpec
.isImm()) {
460 O
<< formatImm(DispSpec
.getImm());
462 assert(DispSpec
.isExpr() && "non-immediate displacement?");
463 DispSpec
.getExpr()->print(O
, &MAI
);
469 void X86ATTInstPrinter::printU8Imm(const MCInst
*MI
, unsigned Op
,
471 if (MI
->getOperand(Op
).isExpr())
472 return printOperand(MI
, Op
, O
);
474 O
<< markup("<imm:") << '$' << formatImm(MI
->getOperand(Op
).getImm() & 0xff)
478 void X86ATTInstPrinter::printSTiRegOperand(const MCInst
*MI
, unsigned OpNo
,
480 const MCOperand
&Op
= MI
->getOperand(OpNo
);
481 unsigned Reg
= Op
.getReg();
482 // Override the default printing to print st(0) instead st.
484 OS
<< markup("<reg:") << "%st(0)" << markup(">");
486 printRegName(OS
, Reg
);