1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
40 /// AddrNumOperands - Total number of operands in a memory reference.
44 /// AVX512 static rounding constants. These need to match the values in
46 enum STATIC_ROUNDING
{
55 /// The constants to describe instr prefixes if there are
67 enum OperandType
: unsigned {
68 /// AVX512 embedded rounding control. This should only have values 0-3.
69 OPERAND_ROUNDING_CONTROL
= MCOI::OPERAND_FIRST_TARGET
,
73 // X86 specific condition code. These correspond to X86_*_COND in
74 // X86InstrInfo.td. They must be kept in synch.
92 LAST_VALID_COND
= COND_G
,
94 // Artificial condition codes. These are used by AnalyzeBranch
95 // to indicate a block terminated with two conditional branches that together
96 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97 // which can't be represented on x86 with a single condition. These
98 // are never used in MachineInstrs and are inverses of one another.
104 } // end namespace X86;
106 /// X86II - This namespace holds all of the target specific flags that
107 /// instruction info tracks.
110 /// Target Operand Flag enum.
112 //===------------------------------------------------------------------===//
113 // X86 Specific MachineOperand flags.
117 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
119 /// SYMBOL_LABEL + [. - PICBASELABEL]
120 MO_GOT_ABSOLUTE_ADDRESS
,
122 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
123 /// immediate should get the value of the symbol minus the PIC base label:
124 /// SYMBOL_LABEL - PICBASELABEL
127 /// MO_GOT - On a symbol operand this indicates that the immediate is the
128 /// offset to the GOT entry for the symbol name from the base of the GOT.
130 /// See the X86-64 ELF ABI supplement for more details.
131 /// SYMBOL_LABEL @GOT
134 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
135 /// the offset to the location of the symbol name from the base of the GOT.
137 /// See the X86-64 ELF ABI supplement for more details.
138 /// SYMBOL_LABEL @GOTOFF
141 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
142 /// offset to the GOT entry for the symbol name from the current code
145 /// See the X86-64 ELF ABI supplement for more details.
146 /// SYMBOL_LABEL @GOTPCREL
149 /// MO_PLT - On a symbol operand this indicates that the immediate is
150 /// offset to the PLT entry of symbol name from the current code location.
152 /// See the X86-64 ELF ABI supplement for more details.
153 /// SYMBOL_LABEL @PLT
156 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
157 /// the offset of the GOT entry with the TLS index structure that contains
158 /// the module number and variable offset for the symbol. Used in the
159 /// general dynamic TLS access model.
161 /// See 'ELF Handling for Thread-Local Storage' for more details.
162 /// SYMBOL_LABEL @TLSGD
165 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
166 /// the offset of the GOT entry with the TLS index for the module that
167 /// contains the symbol. When this index is passed to a call to
168 /// __tls_get_addr, the function will return the base address of the TLS
169 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
171 /// See 'ELF Handling for Thread-Local Storage' for more details.
172 /// SYMBOL_LABEL @TLSLD
175 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
176 /// the offset of the GOT entry with the TLS index for the module that
177 /// contains the symbol. When this index is passed to a call to
178 /// ___tls_get_addr, the function will return the base address of the TLS
179 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
181 /// See 'ELF Handling for Thread-Local Storage' for more details.
182 /// SYMBOL_LABEL @TLSLDM
185 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
186 /// the offset of the GOT entry with the thread-pointer offset for the
187 /// symbol. Used in the x86-64 initial exec TLS access model.
189 /// See 'ELF Handling for Thread-Local Storage' for more details.
190 /// SYMBOL_LABEL @GOTTPOFF
193 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
194 /// the absolute address of the GOT entry with the negative thread-pointer
195 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
198 /// See 'ELF Handling for Thread-Local Storage' for more details.
199 /// SYMBOL_LABEL @INDNTPOFF
202 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
203 /// the thread-pointer offset for the symbol. Used in the x86-64 local
204 /// exec TLS access model.
206 /// See 'ELF Handling for Thread-Local Storage' for more details.
207 /// SYMBOL_LABEL @TPOFF
210 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
211 /// the offset of the GOT entry with the TLS offset of the symbol. Used
212 /// in the local dynamic TLS access model.
214 /// See 'ELF Handling for Thread-Local Storage' for more details.
215 /// SYMBOL_LABEL @DTPOFF
218 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
219 /// the negative thread-pointer offset for the symbol. Used in the IA32
220 /// local exec TLS access model.
222 /// See 'ELF Handling for Thread-Local Storage' for more details.
223 /// SYMBOL_LABEL @NTPOFF
226 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
227 /// the offset of the GOT entry with the negative thread-pointer offset for
228 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
230 /// See 'ELF Handling for Thread-Local Storage' for more details.
231 /// SYMBOL_LABEL @GOTNTPOFF
234 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
235 /// reference is actually to the "__imp_FOO" symbol. This is used for
236 /// dllimport linkage on windows.
239 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
240 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
241 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
244 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
245 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
246 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
247 MO_DARWIN_NONLAZY_PIC_BASE
,
249 /// MO_TLVP - On a symbol operand this indicates that the immediate is
252 /// This is the TLS offset for the Darwin TLS mechanism.
255 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
256 /// is some TLS offset from the picbase.
258 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
261 /// MO_SECREL - On a symbol operand this indicates that the immediate is
262 /// the offset from beginning of section.
264 /// This is the TLS offset for the COFF/Windows TLS mechanism.
267 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
268 /// to be an absolute symbol in range [0,128), so we can use the @ABS8
272 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
273 /// reference is actually to the ".refptr.FOO" symbol. This is used for
274 /// stub symbols on windows.
279 //===------------------------------------------------------------------===//
280 // Instruction encodings. These are the standard/most common forms for X86
284 // PseudoFrm - This represents an instruction that is a pseudo instruction
285 // or one that has not been implemented yet. It is illegal to code generate
286 // it, but tolerated for intermediate implementation stages.
289 /// Raw - This form is for instructions that don't have any operands, so
290 /// they are just a fixed opcode value, like 'leave'.
293 /// AddRegFrm - This form is used for instructions like 'push r32' that have
294 /// their one register operand added to their opcode.
297 /// RawFrmMemOffs - This form is for instructions that store an absolute
298 /// memory offset as an immediate with a possible segment override.
301 /// RawFrmSrc - This form is for instructions that use the source index
302 /// register SI/ESI/RSI with a possible segment override.
305 /// RawFrmDst - This form is for instructions that use the destination index
306 /// register DI/EDI/RDI.
309 /// RawFrmDstSrc - This form is for instructions that use the source index
310 /// register SI/ESI/RSI with a possible segment override, and also the
311 /// destination index register DI/EDI/RDI.
314 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
315 /// immediates, the first of which is a 16-bit immediate (specified by
316 /// the imm encoding) and the second is a 8-bit fixed value.
319 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
320 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
321 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
322 /// manual, this operand is described as pntr16:32 and pntr16:16
325 /// AddCCFrm - This form is used for Jcc that encode the condition code
326 /// in the lower 4 bits of the opcode.
329 /// MRM[0-7][rm] - These forms are used to represent instructions that use
330 /// a Mod/RM byte, and use the middle field to hold extended opcode
331 /// information. In the intel manual these are represented as /0, /1, ...
334 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
335 /// to specify a destination, which in this case is memory.
339 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
340 /// to specify a source, which in this case is memory.
344 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
345 /// operand 3 with VEX.VVVV and load from memory.
349 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
350 /// byte to specify the fourth source, which in this case is memory.
354 /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
355 /// byte to specify the operands and also encodes a condition code.
359 /// MRMXm - This form is used for instructions that use the Mod/RM byte
360 /// to specify a memory source, but doesn't use the middle field. And has
361 /// a condition code.
365 /// MRMXm - This form is used for instructions that use the Mod/RM byte
366 /// to specify a memory source, but doesn't use the middle field.
370 // Next, instructions that operate on a memory r/m operand...
371 MRM0m
= 40, MRM1m
= 41, MRM2m
= 42, MRM3m
= 43, // Format /0 /1 /2 /3
372 MRM4m
= 44, MRM5m
= 45, MRM6m
= 46, MRM7m
= 47, // Format /4 /5 /6 /7
374 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
375 /// to specify a destination, which in this case is a register.
379 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
380 /// to specify a source, which in this case is a register.
384 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
385 /// operand 3 with VEX.VVVV and do not load from memory.
389 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
390 /// byte to specify the fourth source, which in this case is a register.
394 /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
395 /// byte to specify the operands and also encodes a condition code
399 /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
400 /// to specify a register source, but doesn't use the middle field. And has
401 /// a condition code.
405 /// MRMXr - This form is used for instructions that use the Mod/RM byte
406 /// to specify a register source, but doesn't use the middle field.
410 // Instructions that operate on a register r/m operand...
411 MRM0r
= 56, MRM1r
= 57, MRM2r
= 58, MRM3r
= 59, // Format /0 /1 /2 /3
412 MRM4r
= 60, MRM5r
= 61, MRM6r
= 62, MRM7r
= 63, // Format /4 /5 /6 /7
414 /// MRM_XX - A mod/rm byte of exactly 0xXX.
415 MRM_C0
= 64, MRM_C1
= 65, MRM_C2
= 66, MRM_C3
= 67,
416 MRM_C4
= 68, MRM_C5
= 69, MRM_C6
= 70, MRM_C7
= 71,
417 MRM_C8
= 72, MRM_C9
= 73, MRM_CA
= 74, MRM_CB
= 75,
418 MRM_CC
= 76, MRM_CD
= 77, MRM_CE
= 78, MRM_CF
= 79,
419 MRM_D0
= 80, MRM_D1
= 81, MRM_D2
= 82, MRM_D3
= 83,
420 MRM_D4
= 84, MRM_D5
= 85, MRM_D6
= 86, MRM_D7
= 87,
421 MRM_D8
= 88, MRM_D9
= 89, MRM_DA
= 90, MRM_DB
= 91,
422 MRM_DC
= 92, MRM_DD
= 93, MRM_DE
= 94, MRM_DF
= 95,
423 MRM_E0
= 96, MRM_E1
= 97, MRM_E2
= 98, MRM_E3
= 99,
424 MRM_E4
= 100, MRM_E5
= 101, MRM_E6
= 102, MRM_E7
= 103,
425 MRM_E8
= 104, MRM_E9
= 105, MRM_EA
= 106, MRM_EB
= 107,
426 MRM_EC
= 108, MRM_ED
= 109, MRM_EE
= 110, MRM_EF
= 111,
427 MRM_F0
= 112, MRM_F1
= 113, MRM_F2
= 114, MRM_F3
= 115,
428 MRM_F4
= 116, MRM_F5
= 117, MRM_F6
= 118, MRM_F7
= 119,
429 MRM_F8
= 120, MRM_F9
= 121, MRM_FA
= 122, MRM_FB
= 123,
430 MRM_FC
= 124, MRM_FD
= 125, MRM_FE
= 126, MRM_FF
= 127,
434 //===------------------------------------------------------------------===//
437 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
438 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
439 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
440 // prefix in 16-bit mode.
442 OpSizeMask
= 0x3 << OpSizeShift
,
444 OpSizeFixed
= 0 << OpSizeShift
,
445 OpSize16
= 1 << OpSizeShift
,
446 OpSize32
= 2 << OpSizeShift
,
448 // AsSize - AdSizeX implies this instruction determines its need of 0x67
449 // prefix from a normal ModRM memory operand. The other types indicate that
450 // an operand is encoded with a specific width and a prefix is needed if
451 // it differs from the current mode.
452 AdSizeShift
= OpSizeShift
+ 2,
453 AdSizeMask
= 0x3 << AdSizeShift
,
455 AdSizeX
= 0 << AdSizeShift
,
456 AdSize16
= 1 << AdSizeShift
,
457 AdSize32
= 2 << AdSizeShift
,
458 AdSize64
= 3 << AdSizeShift
,
460 //===------------------------------------------------------------------===//
461 // OpPrefix - There are several prefix bytes that are used as opcode
462 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
465 OpPrefixShift
= AdSizeShift
+ 2,
466 OpPrefixMask
= 0x3 << OpPrefixShift
,
468 // PD - Prefix code for packed double precision vector floating point
469 // operations performed in the SSE registers.
470 PD
= 1 << OpPrefixShift
,
472 // XS, XD - These prefix codes are for single and double precision scalar
473 // floating point operations performed in the SSE registers.
474 XS
= 2 << OpPrefixShift
, XD
= 3 << OpPrefixShift
,
476 //===------------------------------------------------------------------===//
477 // OpMap - This field determines which opcode map this instruction
478 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
480 OpMapShift
= OpPrefixShift
+ 2,
481 OpMapMask
= 0x7 << OpMapShift
,
483 // OB - OneByte - Set if this instruction has a one byte opcode.
484 OB
= 0 << OpMapShift
,
486 // TB - TwoByte - Set if this instruction has a two byte opcode, which
487 // starts with a 0x0F byte before the real opcode.
488 TB
= 1 << OpMapShift
,
490 // T8, TA - Prefix after the 0x0F prefix.
491 T8
= 2 << OpMapShift
, TA
= 3 << OpMapShift
,
493 // XOP8 - Prefix to include use of imm byte.
494 XOP8
= 4 << OpMapShift
,
496 // XOP9 - Prefix to exclude use of imm byte.
497 XOP9
= 5 << OpMapShift
,
499 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
500 XOPA
= 6 << OpMapShift
,
502 /// ThreeDNow - This indicates that the instruction uses the
503 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
504 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
505 /// storing a classifier in the imm8 field. To simplify our implementation,
506 /// we handle this by storeing the classifier in the opcode field and using
507 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
508 ThreeDNow
= 7 << OpMapShift
,
510 //===------------------------------------------------------------------===//
511 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
512 // They are used to specify GPRs and SSE registers, 64-bit operand size,
513 // etc. We only cares about REX.W and REX.R bits and only the former is
514 // statically determined.
516 REXShift
= OpMapShift
+ 3,
517 REX_W
= 1 << REXShift
,
519 //===------------------------------------------------------------------===//
520 // This three-bit field describes the size of an immediate operand. Zero is
521 // unused so that we can tell if we forgot to set a value.
522 ImmShift
= REXShift
+ 1,
523 ImmMask
= 15 << ImmShift
,
524 Imm8
= 1 << ImmShift
,
525 Imm8PCRel
= 2 << ImmShift
,
526 Imm8Reg
= 3 << ImmShift
,
527 Imm16
= 4 << ImmShift
,
528 Imm16PCRel
= 5 << ImmShift
,
529 Imm32
= 6 << ImmShift
,
530 Imm32PCRel
= 7 << ImmShift
,
531 Imm32S
= 8 << ImmShift
,
532 Imm64
= 9 << ImmShift
,
534 //===------------------------------------------------------------------===//
535 // FP Instruction Classification... Zero is non-fp instruction.
537 // FPTypeMask - Mask for all of the FP types...
538 FPTypeShift
= ImmShift
+ 4,
539 FPTypeMask
= 7 << FPTypeShift
,
541 // NotFP - The default, set for instructions that do not use FP registers.
542 NotFP
= 0 << FPTypeShift
,
544 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
545 ZeroArgFP
= 1 << FPTypeShift
,
547 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
548 OneArgFP
= 2 << FPTypeShift
,
550 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
551 // result back to ST(0). For example, fcos, fsqrt, etc.
553 OneArgFPRW
= 3 << FPTypeShift
,
555 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
556 // explicit argument, storing the result to either ST(0) or the implicit
557 // argument. For example: fadd, fsub, fmul, etc...
558 TwoArgFP
= 4 << FPTypeShift
,
560 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
561 // explicit argument, but have no destination. Example: fucom, fucomi, ...
562 CompareFP
= 5 << FPTypeShift
,
564 // CondMovFP - "2 operand" floating point conditional move instructions.
565 CondMovFP
= 6 << FPTypeShift
,
567 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
568 SpecialFP
= 7 << FPTypeShift
,
571 LOCKShift
= FPTypeShift
+ 3,
572 LOCK
= 1 << LOCKShift
,
575 REPShift
= LOCKShift
+ 1,
578 // Execution domain for SSE instructions.
579 // 0 means normal, non-SSE instruction.
580 SSEDomainShift
= REPShift
+ 1,
583 EncodingShift
= SSEDomainShift
+ 2,
584 EncodingMask
= 0x3 << EncodingShift
,
586 // VEX - encoding using 0xC4/0xC5
587 VEX
= 1 << EncodingShift
,
589 /// XOP - Opcode prefix used by XOP instructions.
590 XOP
= 2 << EncodingShift
,
592 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
593 // syntax support up to 32 512-bit register operands and up to 7 16-bit
594 // mask operands as well as source operand data swizzling/memory operand
595 // conversion, eviction hint, and rounding mode.
596 EVEX
= 3 << EncodingShift
,
599 OpcodeShift
= EncodingShift
+ 2,
601 /// VEX_W - Has a opcode specific functionality, but is used in the same
602 /// way as REX_W is for regular SSE instructions.
603 VEX_WShift
= OpcodeShift
+ 8,
604 VEX_W
= 1ULL << VEX_WShift
,
606 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
607 /// address instructions in SSE are represented as 3 address ones in AVX
608 /// and the additional register is encoded in VEX_VVVV prefix.
609 VEX_4VShift
= VEX_WShift
+ 1,
610 VEX_4V
= 1ULL << VEX_4VShift
,
612 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
613 /// instruction uses 256-bit wide registers. This is usually auto detected
614 /// if a VR256 register is used, but some AVX instructions also have this
615 /// field marked when using a f256 memory references.
616 VEX_LShift
= VEX_4VShift
+ 1,
617 VEX_L
= 1ULL << VEX_LShift
,
619 // EVEX_K - Set if this instruction requires masking
620 EVEX_KShift
= VEX_LShift
+ 1,
621 EVEX_K
= 1ULL << EVEX_KShift
,
623 // EVEX_Z - Set if this instruction has EVEX.Z field set.
624 EVEX_ZShift
= EVEX_KShift
+ 1,
625 EVEX_Z
= 1ULL << EVEX_ZShift
,
627 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
628 EVEX_L2Shift
= EVEX_ZShift
+ 1,
629 EVEX_L2
= 1ULL << EVEX_L2Shift
,
631 // EVEX_B - Set if this instruction has EVEX.B field set.
632 EVEX_BShift
= EVEX_L2Shift
+ 1,
633 EVEX_B
= 1ULL << EVEX_BShift
,
635 // The scaling factor for the AVX512's 8-bit compressed displacement.
636 CD8_Scale_Shift
= EVEX_BShift
+ 1,
637 CD8_Scale_Mask
= 127ULL << CD8_Scale_Shift
,
639 /// Explicitly specified rounding control
640 EVEX_RCShift
= CD8_Scale_Shift
+ 7,
641 EVEX_RC
= 1ULL << EVEX_RCShift
,
644 NoTrackShift
= EVEX_RCShift
+ 1,
645 NOTRACK
= 1ULL << NoTrackShift
648 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
649 // specified machine instruction.
651 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags
) {
652 return TSFlags
>> X86II::OpcodeShift
;
655 inline bool hasImm(uint64_t TSFlags
) {
656 return (TSFlags
& X86II::ImmMask
) != 0;
659 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
660 /// of the specified instruction.
661 inline unsigned getSizeOfImm(uint64_t TSFlags
) {
662 switch (TSFlags
& X86II::ImmMask
) {
663 default: llvm_unreachable("Unknown immediate size");
665 case X86II::Imm8PCRel
:
666 case X86II::Imm8Reg
: return 1;
668 case X86II::Imm16PCRel
: return 2;
671 case X86II::Imm32PCRel
: return 4;
672 case X86II::Imm64
: return 8;
676 /// isImmPCRel - Return true if the immediate of the specified instruction's
677 /// TSFlags indicates that it is pc relative.
678 inline unsigned isImmPCRel(uint64_t TSFlags
) {
679 switch (TSFlags
& X86II::ImmMask
) {
680 default: llvm_unreachable("Unknown immediate size");
681 case X86II::Imm8PCRel
:
682 case X86II::Imm16PCRel
:
683 case X86II::Imm32PCRel
:
695 /// isImmSigned - Return true if the immediate of the specified instruction's
696 /// TSFlags indicates that it is signed.
697 inline unsigned isImmSigned(uint64_t TSFlags
) {
698 switch (TSFlags
& X86II::ImmMask
) {
699 default: llvm_unreachable("Unknown immediate signedness");
703 case X86II::Imm8PCRel
:
706 case X86II::Imm16PCRel
:
708 case X86II::Imm32PCRel
:
714 /// getOperandBias - compute whether all of the def operands are repeated
715 /// in the uses and therefore should be skipped.
716 /// This determines the start of the unique operand list. We need to determine
717 /// if all of the defs have a corresponding tied operand in the uses.
718 /// Unfortunately, the tied operand information is encoded in the uses not
719 /// the defs so we have to use some heuristics to find which operands to
721 inline unsigned getOperandBias(const MCInstrDesc
& Desc
) {
722 unsigned NumDefs
= Desc
.getNumDefs();
723 unsigned NumOps
= Desc
.getNumOperands();
725 default: llvm_unreachable("Unexpected number of defs");
729 // Common two addr case.
730 if (NumOps
> 1 && Desc
.getOperandConstraint(1, MCOI::TIED_TO
) == 0)
732 // Check for AVX-512 scatter which has a TIED_TO in the second to last
735 Desc
.getOperandConstraint(6, MCOI::TIED_TO
) == 0)
739 // XCHG/XADD have two destinations and two sources.
740 if (NumOps
>= 4 && Desc
.getOperandConstraint(2, MCOI::TIED_TO
) == 0 &&
741 Desc
.getOperandConstraint(3, MCOI::TIED_TO
) == 1)
743 // Check for gather. AVX-512 has the second tied operand early. AVX2
744 // has it as the last op.
745 if (NumOps
== 9 && Desc
.getOperandConstraint(2, MCOI::TIED_TO
) == 0 &&
746 (Desc
.getOperandConstraint(3, MCOI::TIED_TO
) == 1 ||
747 Desc
.getOperandConstraint(8, MCOI::TIED_TO
) == 1))
753 /// getMemoryOperandNo - The function returns the MCInst operand # for the
754 /// first field of the memory operand. If the instruction doesn't have a
755 /// memory operand, this returns -1.
757 /// Note that this ignores tied operands. If there is a tied register which
758 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
759 /// counted as one operand.
761 inline int getMemoryOperandNo(uint64_t TSFlags
) {
762 bool HasVEX_4V
= TSFlags
& X86II::VEX_4V
;
763 bool HasEVEX_K
= TSFlags
& X86II::EVEX_K
;
765 switch (TSFlags
& X86II::FormMask
) {
766 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
769 case X86II::AddRegFrm
:
770 case X86II::RawFrmImm8
:
771 case X86II::RawFrmImm16
:
772 case X86II::RawFrmMemOffs
:
773 case X86II::RawFrmSrc
:
774 case X86II::RawFrmDst
:
775 case X86II::RawFrmDstSrc
:
776 case X86II::AddCCFrm
:
778 case X86II::MRMDestMem
:
780 case X86II::MRMSrcMem
:
781 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
783 return 1 + HasVEX_4V
+ HasEVEX_K
;
784 case X86II::MRMSrcMem4VOp3
:
785 // Skip registers encoded in reg.
786 return 1 + HasEVEX_K
;
787 case X86II::MRMSrcMemOp4
:
788 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
790 case X86II::MRMSrcMemCC
:
791 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
794 case X86II::MRMDestReg
:
795 case X86II::MRMSrcReg
:
796 case X86II::MRMSrcReg4VOp3
:
797 case X86II::MRMSrcRegOp4
:
798 case X86II::MRMSrcRegCC
:
801 case X86II::MRM0r
: case X86II::MRM1r
:
802 case X86II::MRM2r
: case X86II::MRM3r
:
803 case X86II::MRM4r
: case X86II::MRM5r
:
804 case X86II::MRM6r
: case X86II::MRM7r
:
808 case X86II::MRM0m
: case X86II::MRM1m
:
809 case X86II::MRM2m
: case X86II::MRM3m
:
810 case X86II::MRM4m
: case X86II::MRM5m
:
811 case X86II::MRM6m
: case X86II::MRM7m
:
812 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
813 return 0 + HasVEX_4V
+ HasEVEX_K
;
814 case X86II::MRM_C0
: case X86II::MRM_C1
: case X86II::MRM_C2
:
815 case X86II::MRM_C3
: case X86II::MRM_C4
: case X86II::MRM_C5
:
816 case X86II::MRM_C6
: case X86II::MRM_C7
: case X86II::MRM_C8
:
817 case X86II::MRM_C9
: case X86II::MRM_CA
: case X86II::MRM_CB
:
818 case X86II::MRM_CC
: case X86II::MRM_CD
: case X86II::MRM_CE
:
819 case X86II::MRM_CF
: case X86II::MRM_D0
: case X86II::MRM_D1
:
820 case X86II::MRM_D2
: case X86II::MRM_D3
: case X86II::MRM_D4
:
821 case X86II::MRM_D5
: case X86II::MRM_D6
: case X86II::MRM_D7
:
822 case X86II::MRM_D8
: case X86II::MRM_D9
: case X86II::MRM_DA
:
823 case X86II::MRM_DB
: case X86II::MRM_DC
: case X86II::MRM_DD
:
824 case X86II::MRM_DE
: case X86II::MRM_DF
: case X86II::MRM_E0
:
825 case X86II::MRM_E1
: case X86II::MRM_E2
: case X86II::MRM_E3
:
826 case X86II::MRM_E4
: case X86II::MRM_E5
: case X86II::MRM_E6
:
827 case X86II::MRM_E7
: case X86II::MRM_E8
: case X86II::MRM_E9
:
828 case X86II::MRM_EA
: case X86II::MRM_EB
: case X86II::MRM_EC
:
829 case X86II::MRM_ED
: case X86II::MRM_EE
: case X86II::MRM_EF
:
830 case X86II::MRM_F0
: case X86II::MRM_F1
: case X86II::MRM_F2
:
831 case X86II::MRM_F3
: case X86II::MRM_F4
: case X86II::MRM_F5
:
832 case X86II::MRM_F6
: case X86II::MRM_F7
: case X86II::MRM_F8
:
833 case X86II::MRM_F9
: case X86II::MRM_FA
: case X86II::MRM_FB
:
834 case X86II::MRM_FC
: case X86II::MRM_FD
: case X86II::MRM_FE
:
840 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
841 /// higher) register? e.g. r8, xmm8, xmm13, etc.
842 inline bool isX86_64ExtendedReg(unsigned RegNo
) {
843 if ((RegNo
>= X86::XMM8
&& RegNo
<= X86::XMM31
) ||
844 (RegNo
>= X86::YMM8
&& RegNo
<= X86::YMM31
) ||
845 (RegNo
>= X86::ZMM8
&& RegNo
<= X86::ZMM31
))
850 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
851 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
852 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
853 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
854 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
855 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
856 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
857 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
858 case X86::CR8
: case X86::CR9
: case X86::CR10
: case X86::CR11
:
859 case X86::CR12
: case X86::CR13
: case X86::CR14
: case X86::CR15
:
860 case X86::DR8
: case X86::DR9
: case X86::DR10
: case X86::DR11
:
861 case X86::DR12
: case X86::DR13
: case X86::DR14
: case X86::DR15
:
867 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
868 /// registers? e.g. zmm21, etc.
869 static inline bool is32ExtendedReg(unsigned RegNo
) {
870 return ((RegNo
>= X86::XMM16
&& RegNo
<= X86::XMM31
) ||
871 (RegNo
>= X86::YMM16
&& RegNo
<= X86::YMM31
) ||
872 (RegNo
>= X86::ZMM16
&& RegNo
<= X86::ZMM31
));
876 inline bool isX86_64NonExtLowByteReg(unsigned reg
) {
877 return (reg
== X86::SPL
|| reg
== X86::BPL
||
878 reg
== X86::SIL
|| reg
== X86::DIL
);
881 /// isKMasked - Is this a masked instruction.
882 inline bool isKMasked(uint64_t TSFlags
) {
883 return (TSFlags
& X86II::EVEX_K
) != 0;
886 /// isKMergedMasked - Is this a merge masked instruction.
887 inline bool isKMergeMasked(uint64_t TSFlags
) {
888 return isKMasked(TSFlags
) && (TSFlags
& X86II::EVEX_Z
) == 0;
892 } // end namespace llvm;