1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
14 /// Thus, the optimization applies under the following conditions:
15 /// 1. Consider as candidates only CMOVs in innermost loops (assume that
16 /// most hotspots are represented by these loops).
17 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def
19 /// a. Consider them as candidates only if all have the same code condition
20 /// or the opposite one to prevent generating more than one conditional
21 /// jump per EFLAGS def instruction.
22 /// b. Consider them as candidates only if all are profitable to be
23 /// converted (assume that one bad conversion may cause a degradation).
24 /// 3. Apply conversion only for loops that are found profitable and only for
25 /// CMOV candidates that were found profitable.
26 /// a. A loop is considered profitable only if conversion will reduce its
27 /// depth cost by some threshold.
28 /// b. CMOV is considered profitable if the cost of its condition is higher
29 /// than the average cost of its true-value and false-value by 25% of
30 /// branch-misprediction-penalty. This assures no degradation even with
31 /// 25% branch misprediction.
33 /// Note: This pass is assumed to run on SSA machine code.
35 //===----------------------------------------------------------------------===//
37 // External interfaces:
38 // FunctionPass *llvm::createX86CmovConverterPass();
39 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
41 //===----------------------------------------------------------------------===//
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/MC/MCSchedule.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
76 #define DEBUG_TYPE "x86-cmov-conversion"
78 STATISTIC(NumOfSkippedCmovGroups
, "Number of unsupported CMOV-groups");
79 STATISTIC(NumOfCmovGroupCandidate
, "Number of CMOV-group candidates");
80 STATISTIC(NumOfLoopCandidate
, "Number of CMOV-conversion profitable loops");
81 STATISTIC(NumOfOptimizedCmovGroups
, "Number of optimized CMOV-groups");
83 // This internal switch can be used to turn off the cmov/branch optimization.
85 EnableCmovConverter("x86-cmov-converter",
86 cl::desc("Enable the X86 cmov-to-branch optimization."),
87 cl::init(true), cl::Hidden
);
89 static cl::opt
<unsigned>
90 GainCycleThreshold("x86-cmov-converter-threshold",
91 cl::desc("Minimum gain per loop (in cycles) threshold."),
92 cl::init(4), cl::Hidden
);
94 static cl::opt
<bool> ForceMemOperand(
95 "x86-cmov-converter-force-mem-operand",
96 cl::desc("Convert cmovs to branches whenever they have memory operands."),
97 cl::init(true), cl::Hidden
);
101 /// Converts X86 cmov instructions into branches when profitable.
102 class X86CmovConverterPass
: public MachineFunctionPass
{
104 X86CmovConverterPass() : MachineFunctionPass(ID
) { }
106 StringRef
getPassName() const override
{ return "X86 cmov Conversion"; }
107 bool runOnMachineFunction(MachineFunction
&MF
) override
;
108 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
110 /// Pass identification, replacement for typeid.
114 MachineRegisterInfo
*MRI
;
115 const TargetInstrInfo
*TII
;
116 const TargetRegisterInfo
*TRI
;
117 TargetSchedModel TSchedModel
;
119 /// List of consecutive CMOV instructions.
120 using CmovGroup
= SmallVector
<MachineInstr
*, 2>;
121 using CmovGroups
= SmallVector
<CmovGroup
, 2>;
123 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
124 /// CmovInstGroups accordingly.
126 /// \param Blocks List of blocks to process.
127 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
128 /// \returns true iff it found any CMOV-group-candidate.
129 bool collectCmovCandidates(ArrayRef
<MachineBasicBlock
*> Blocks
,
130 CmovGroups
&CmovInstGroups
,
131 bool IncludeLoads
= false);
133 /// Check if it is profitable to transform each CMOV-group-candidates into
134 /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
136 /// \param Blocks List of blocks to process.
137 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
138 /// \returns true iff any CMOV-group-candidate remain.
139 bool checkForProfitableCmovCandidates(ArrayRef
<MachineBasicBlock
*> Blocks
,
140 CmovGroups
&CmovInstGroups
);
142 /// Convert the given list of consecutive CMOV instructions into a branch.
144 /// \param Group Consecutive CMOV instructions to be converted into branch.
145 void convertCmovInstsToBranches(SmallVectorImpl
<MachineInstr
*> &Group
) const;
148 } // end anonymous namespace
150 char X86CmovConverterPass::ID
= 0;
152 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
153 MachineFunctionPass::getAnalysisUsage(AU
);
154 AU
.addRequired
<MachineLoopInfo
>();
157 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction
&MF
) {
158 if (skipFunction(MF
.getFunction()))
160 if (!EnableCmovConverter
)
163 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF
.getName()
166 bool Changed
= false;
167 MachineLoopInfo
&MLI
= getAnalysis
<MachineLoopInfo
>();
168 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
169 MRI
= &MF
.getRegInfo();
170 TII
= STI
.getInstrInfo();
171 TRI
= STI
.getRegisterInfo();
172 TSchedModel
.init(&STI
);
174 // Before we handle the more subtle cases of register-register CMOVs inside
175 // of potentially hot loops, we want to quickly remove all CMOVs with
176 // a memory operand. The CMOV will risk a stall waiting for the load to
177 // complete that speculative execution behind a branch is better suited to
178 // handle on modern x86 chips.
179 if (ForceMemOperand
) {
180 CmovGroups AllCmovGroups
;
181 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
183 Blocks
.push_back(&MBB
);
184 if (collectCmovCandidates(Blocks
, AllCmovGroups
, /*IncludeLoads*/ true)) {
185 for (auto &Group
: AllCmovGroups
) {
186 // Skip any group that doesn't do at least one memory operand cmov.
187 if (!llvm::any_of(Group
, [&](MachineInstr
*I
) { return I
->mayLoad(); }))
190 // For CMOV groups which we can rewrite and which contain a memory load,
191 // always rewrite them. On x86, a CMOV will dramatically amplify any
192 // memory latency by blocking speculative execution.
194 convertCmovInstsToBranches(Group
);
199 //===--------------------------------------------------------------------===//
200 // Register-operand Conversion Algorithm
202 // For each inner most loop
203 // collectCmovCandidates() {
204 // Find all CMOV-group-candidates.
207 // checkForProfitableCmovCandidates() {
208 // * Calculate both loop-depth and optimized-loop-depth.
209 // * Use these depth to check for loop transformation profitability.
210 // * Check for CMOV-group-candidate transformation profitability.
213 // For each profitable CMOV-group-candidate
214 // convertCmovInstsToBranches() {
215 // * Create FalseBB, SinkBB, Conditional branch to SinkBB.
216 // * Replace each CMOV instruction with a PHI instruction in SinkBB.
219 // Note: For more details, see each function description.
220 //===--------------------------------------------------------------------===//
222 // Build up the loops in pre-order.
223 SmallVector
<MachineLoop
*, 4> Loops(MLI
.begin(), MLI
.end());
224 // Note that we need to check size on each iteration as we accumulate child
226 for (int i
= 0; i
< (int)Loops
.size(); ++i
)
227 for (MachineLoop
*Child
: Loops
[i
]->getSubLoops())
228 Loops
.push_back(Child
);
230 for (MachineLoop
*CurrLoop
: Loops
) {
231 // Optimize only inner most loops.
232 if (!CurrLoop
->getSubLoops().empty())
235 // List of consecutive CMOV instructions to be processed.
236 CmovGroups CmovInstGroups
;
238 if (!collectCmovCandidates(CurrLoop
->getBlocks(), CmovInstGroups
))
241 if (!checkForProfitableCmovCandidates(CurrLoop
->getBlocks(),
246 for (auto &Group
: CmovInstGroups
)
247 convertCmovInstsToBranches(Group
);
253 bool X86CmovConverterPass::collectCmovCandidates(
254 ArrayRef
<MachineBasicBlock
*> Blocks
, CmovGroups
&CmovInstGroups
,
256 //===--------------------------------------------------------------------===//
257 // Collect all CMOV-group-candidates and add them into CmovInstGroups.
260 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
262 // CMOV-group-candidate:
263 // CMOV-group where all the CMOV instructions are
265 // 2. have same condition code or opposite one.
266 // 3. have only operand registers (X86::CMOVrr).
267 //===--------------------------------------------------------------------===//
268 // List of possible improvement (TODO's):
269 // --------------------------------------
270 // TODO: Add support for X86::CMOVrm instructions.
271 // TODO: Add support for X86::SETcc instructions.
272 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
273 //===--------------------------------------------------------------------===//
275 // Current processed CMOV-Group.
277 for (auto *MBB
: Blocks
) {
279 // Condition code of first CMOV instruction current processed range and its
280 // opposite condition code.
281 X86::CondCode FirstCC
= X86::COND_INVALID
, FirstOppCC
= X86::COND_INVALID
,
282 MemOpCC
= X86::COND_INVALID
;
283 // Indicator of a non CMOVrr instruction in the current processed range.
284 bool FoundNonCMOVInst
= false;
285 // Indicator for current processed CMOV-group if it should be skipped.
286 bool SkipGroup
= false;
288 for (auto &I
: *MBB
) {
289 // Skip debug instructions.
290 if (I
.isDebugInstr())
292 X86::CondCode CC
= X86::getCondFromCMov(I
);
293 // Check if we found a X86::CMOVrr instruction.
294 if (CC
!= X86::COND_INVALID
&& (IncludeLoads
|| !I
.mayLoad())) {
296 // We found first CMOV in the range, reset flags.
298 FirstOppCC
= X86::GetOppositeBranchCondition(CC
);
299 // Clear out the prior group's memory operand CC.
300 MemOpCC
= X86::COND_INVALID
;
301 FoundNonCMOVInst
= false;
305 // Check if it is a non-consecutive CMOV instruction or it has different
306 // condition code than FirstCC or FirstOppCC.
307 if (FoundNonCMOVInst
|| (CC
!= FirstCC
&& CC
!= FirstOppCC
))
308 // Mark the SKipGroup indicator to skip current processed CMOV-Group.
311 if (MemOpCC
== X86::COND_INVALID
)
312 // The first memory operand CMOV.
314 else if (CC
!= MemOpCC
)
315 // Can't handle mixed conditions with memory operands.
318 // Check if we were relying on zero-extending behavior of the CMOV.
321 MRI
->use_nodbg_instructions(I
.defs().begin()->getReg()),
322 [&](MachineInstr
&UseI
) {
323 return UseI
.getOpcode() == X86::SUBREG_TO_REG
;
325 // FIXME: We should model the cost of using an explicit MOV to handle
326 // the zero-extension rather than just refusing to handle this.
330 // If Group is empty, keep looking for first CMOV in the range.
334 // We found a non X86::CMOVrr instruction.
335 FoundNonCMOVInst
= true;
336 // Check if this instruction define EFLAGS, to determine end of processed
337 // range, as there would be no more instructions using current EFLAGS def.
338 if (I
.definesRegister(X86::EFLAGS
)) {
339 // Check if current processed CMOV-group should not be skipped and add
340 // it as a CMOV-group-candidate.
342 CmovInstGroups
.push_back(Group
);
344 ++NumOfSkippedCmovGroups
;
348 // End of basic block is considered end of range, check if current processed
349 // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
353 CmovInstGroups
.push_back(Group
);
355 ++NumOfSkippedCmovGroups
;
358 NumOfCmovGroupCandidate
+= CmovInstGroups
.size();
359 return !CmovInstGroups
.empty();
362 /// \returns Depth of CMOV instruction as if it was converted into branch.
363 /// \param TrueOpDepth depth cost of CMOV true value operand.
364 /// \param FalseOpDepth depth cost of CMOV false value operand.
365 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth
, unsigned FalseOpDepth
) {
366 //===--------------------------------------------------------------------===//
367 // With no info about branch weight, we assume 50% for each value operand.
368 // Thus, depth of optimized CMOV instruction is the rounded up average of
369 // its True-Operand-Value-Depth and False-Operand-Value-Depth.
370 //===--------------------------------------------------------------------===//
371 return (TrueOpDepth
+ FalseOpDepth
+ 1) / 2;
374 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
375 ArrayRef
<MachineBasicBlock
*> Blocks
, CmovGroups
&CmovInstGroups
) {
377 /// Depth of original loop.
379 /// Depth of optimized loop.
382 /// Number of loop iterations to calculate depth for ?!
383 static const unsigned LoopIterations
= 2;
384 DenseMap
<MachineInstr
*, DepthInfo
> DepthMap
;
385 DepthInfo LoopDepth
[LoopIterations
] = {{0, 0}, {0, 0}};
386 enum { PhyRegType
= 0, VirRegType
= 1, RegTypeNum
= 2 };
387 /// For each register type maps the register to its last def instruction.
388 DenseMap
<unsigned, MachineInstr
*> RegDefMaps
[RegTypeNum
];
389 /// Maps register operand to its def instruction, which can be nullptr if it
390 /// is unknown (e.g., operand is defined outside the loop).
391 DenseMap
<MachineOperand
*, MachineInstr
*> OperandToDefMap
;
393 // Set depth of unknown instruction (i.e., nullptr) to zero.
394 DepthMap
[nullptr] = {0, 0};
396 SmallPtrSet
<MachineInstr
*, 4> CmovInstructions
;
397 for (auto &Group
: CmovInstGroups
)
398 CmovInstructions
.insert(Group
.begin(), Group
.end());
400 //===--------------------------------------------------------------------===//
401 // Step 1: Calculate instruction depth and loop depth.
403 // loop with CMOV-group-candidates converted into branches.
405 // Instruction-Depth:
406 // instruction latency + max operand depth.
407 // * For CMOV instruction in optimized loop the depth is calculated as:
408 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
409 // TODO: Find a better way to estimate the latency of the branch instruction
410 // rather than using the CMOV latency.
413 // max instruction depth of all instructions in the loop.
414 // Note: instruction with max depth represents the critical-path in the loop.
417 // Loop-Depth calculated for first `i` iterations.
418 // Note: it is enough to calculate depth for up to two iterations.
421 // Number of cycles saved in first 'i` iterations by optimizing the loop.
422 //===--------------------------------------------------------------------===//
423 for (unsigned I
= 0; I
< LoopIterations
; ++I
) {
424 DepthInfo
&MaxDepth
= LoopDepth
[I
];
425 for (auto *MBB
: Blocks
) {
426 // Clear physical registers Def map.
427 RegDefMaps
[PhyRegType
].clear();
428 for (MachineInstr
&MI
: *MBB
) {
429 // Skip debug instructions.
430 if (MI
.isDebugInstr())
432 unsigned MIDepth
= 0;
433 unsigned MIDepthOpt
= 0;
434 bool IsCMOV
= CmovInstructions
.count(&MI
);
435 for (auto &MO
: MI
.uses()) {
436 // Checks for "isUse()" as "uses()" returns also implicit definitions.
437 if (!MO
.isReg() || !MO
.isUse())
439 Register Reg
= MO
.getReg();
440 auto &RDM
= RegDefMaps
[Register::isVirtualRegister(Reg
)];
441 if (MachineInstr
*DefMI
= RDM
.lookup(Reg
)) {
442 OperandToDefMap
[&MO
] = DefMI
;
443 DepthInfo Info
= DepthMap
.lookup(DefMI
);
444 MIDepth
= std::max(MIDepth
, Info
.Depth
);
446 MIDepthOpt
= std::max(MIDepthOpt
, Info
.OptDepth
);
451 MIDepthOpt
= getDepthOfOptCmov(
452 DepthMap
[OperandToDefMap
.lookup(&MI
.getOperand(1))].OptDepth
,
453 DepthMap
[OperandToDefMap
.lookup(&MI
.getOperand(2))].OptDepth
);
455 // Iterates over all operands to handle implicit definitions as well.
456 for (auto &MO
: MI
.operands()) {
457 if (!MO
.isReg() || !MO
.isDef())
459 Register Reg
= MO
.getReg();
460 RegDefMaps
[Register::isVirtualRegister(Reg
)][Reg
] = &MI
;
463 unsigned Latency
= TSchedModel
.computeInstrLatency(&MI
);
464 DepthMap
[&MI
] = {MIDepth
+= Latency
, MIDepthOpt
+= Latency
};
465 MaxDepth
.Depth
= std::max(MaxDepth
.Depth
, MIDepth
);
466 MaxDepth
.OptDepth
= std::max(MaxDepth
.OptDepth
, MIDepthOpt
);
471 unsigned Diff
[LoopIterations
] = {LoopDepth
[0].Depth
- LoopDepth
[0].OptDepth
,
472 LoopDepth
[1].Depth
- LoopDepth
[1].OptDepth
};
474 //===--------------------------------------------------------------------===//
475 // Step 2: Check if Loop worth to be optimized.
476 // Worth-Optimize-Loop:
477 // case 1: Diff[1] == Diff[0]
478 // Critical-path is iteration independent - there is no dependency
479 // of critical-path instructions on critical-path instructions of
480 // previous iteration.
481 // Thus, it is enough to check gain percent of 1st iteration -
482 // To be conservative, the optimized loop need to have a depth of
483 // 12.5% cycles less than original loop, per iteration.
485 // case 2: Diff[1] > Diff[0]
486 // Critical-path is iteration dependent - there is dependency of
487 // critical-path instructions on critical-path instructions of
488 // previous iteration.
489 // Thus, check the gain percent of the 2nd iteration (similar to the
490 // previous case), but it is also required to check the gradient of
491 // the gain - the change in Depth-Diff compared to the change in
492 // Loop-Depth between 1st and 2nd iterations.
493 // To be conservative, the gradient need to be at least 50%.
495 // In addition, In order not to optimize loops with very small gain, the
496 // gain (in cycles) after 2nd iteration should not be less than a given
497 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
499 // If loop is not worth optimizing, remove all CMOV-group-candidates.
500 //===--------------------------------------------------------------------===//
501 if (Diff
[1] < GainCycleThreshold
)
504 bool WorthOptLoop
= false;
505 if (Diff
[1] == Diff
[0])
506 WorthOptLoop
= Diff
[0] * 8 >= LoopDepth
[0].Depth
;
507 else if (Diff
[1] > Diff
[0])
509 (Diff
[1] - Diff
[0]) * 2 >= (LoopDepth
[1].Depth
- LoopDepth
[0].Depth
) &&
510 (Diff
[1] * 8 >= LoopDepth
[1].Depth
);
515 ++NumOfLoopCandidate
;
517 //===--------------------------------------------------------------------===//
518 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
519 // Worth-Optimize-Group:
520 // Iff it worths to optimize all CMOV instructions in the group.
522 // Worth-Optimize-CMOV:
523 // Predicted branch is faster than CMOV by the difference between depth of
524 // condition operand and depth of taken (predicted) value operand.
525 // To be conservative, the gain of such CMOV transformation should cover at
526 // at least 25% of branch-misprediction-penalty.
527 //===--------------------------------------------------------------------===//
528 unsigned MispredictPenalty
= TSchedModel
.getMCSchedModel()->MispredictPenalty
;
529 CmovGroups TempGroups
;
530 std::swap(TempGroups
, CmovInstGroups
);
531 for (auto &Group
: TempGroups
) {
532 bool WorthOpGroup
= true;
533 for (auto *MI
: Group
) {
534 // Avoid CMOV instruction which value is used as a pointer to load from.
535 // This is another conservative check to avoid converting CMOV instruction
536 // used with tree-search like algorithm, where the branch is unpredicted.
537 auto UIs
= MRI
->use_instructions(MI
->defs().begin()->getReg());
538 if (UIs
.begin() != UIs
.end() && ++UIs
.begin() == UIs
.end()) {
539 unsigned Op
= UIs
.begin()->getOpcode();
540 if (Op
== X86::MOV64rm
|| Op
== X86::MOV32rm
) {
541 WorthOpGroup
= false;
547 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(4))].Depth
;
548 unsigned ValCost
= getDepthOfOptCmov(
549 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(1))].Depth
,
550 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(2))].Depth
);
551 if (ValCost
> CondCost
|| (CondCost
- ValCost
) * 4 < MispredictPenalty
) {
552 WorthOpGroup
= false;
558 CmovInstGroups
.push_back(Group
);
561 return !CmovInstGroups
.empty();
564 static bool checkEFLAGSLive(MachineInstr
*MI
) {
565 if (MI
->killsRegister(X86::EFLAGS
))
568 // The EFLAGS operand of MI might be missing a kill marker.
569 // Figure out whether EFLAGS operand should LIVE after MI instruction.
570 MachineBasicBlock
*BB
= MI
->getParent();
571 MachineBasicBlock::iterator ItrMI
= MI
;
573 // Scan forward through BB for a use/def of EFLAGS.
574 for (auto I
= std::next(ItrMI
), E
= BB
->end(); I
!= E
; ++I
) {
575 if (I
->readsRegister(X86::EFLAGS
))
577 if (I
->definesRegister(X86::EFLAGS
))
581 // We hit the end of the block, check whether EFLAGS is live into a successor.
582 for (auto I
= BB
->succ_begin(), E
= BB
->succ_end(); I
!= E
; ++I
) {
583 if ((*I
)->isLiveIn(X86::EFLAGS
))
590 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
591 /// group of CMOV instructions, which may contain debug instructions in between,
592 /// move all debug instructions to after the last CMOV instruction, making the
593 /// CMOV group consecutive.
594 static void packCmovGroup(MachineInstr
*First
, MachineInstr
*Last
) {
595 assert(X86::getCondFromCMov(*Last
) != X86::COND_INVALID
&&
596 "Last instruction in a CMOV group must be a CMOV instruction");
598 SmallVector
<MachineInstr
*, 2> DBGInstructions
;
599 for (auto I
= First
->getIterator(), E
= Last
->getIterator(); I
!= E
; I
++) {
600 if (I
->isDebugInstr())
601 DBGInstructions
.push_back(&*I
);
604 // Splice the debug instruction after the cmov group.
605 MachineBasicBlock
*MBB
= First
->getParent();
606 for (auto *MI
: DBGInstructions
)
607 MBB
->insertAfter(Last
, MI
->removeFromParent());
610 void X86CmovConverterPass::convertCmovInstsToBranches(
611 SmallVectorImpl
<MachineInstr
*> &Group
) const {
612 assert(!Group
.empty() && "No CMOV instructions to convert");
613 ++NumOfOptimizedCmovGroups
;
615 // If the CMOV group is not packed, e.g., there are debug instructions between
616 // first CMOV and last CMOV, then pack the group and make the CMOV instruction
617 // consecutive by moving the debug instructions to after the last CMOV.
618 packCmovGroup(Group
.front(), Group
.back());
620 // To convert a CMOVcc instruction, we actually have to insert the diamond
621 // control-flow pattern. The incoming instruction knows the destination vreg
622 // to set, the condition code register to branch on, the true/false values to
623 // select between, and a branch opcode to use.
629 // v1 = CMOVge t1, f1, cond
630 // v2 = CMOVlt t2, f2, cond
631 // v3 = CMOVge v1, f3, cond
643 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
644 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
645 // ; true-value with false-value
646 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
647 // ; previous Phi instruction result
649 MachineInstr
&MI
= *Group
.front();
650 MachineInstr
*LastCMOV
= Group
.back();
651 DebugLoc DL
= MI
.getDebugLoc();
653 X86::CondCode CC
= X86::CondCode(X86::getCondFromCMov(MI
));
654 X86::CondCode OppCC
= X86::GetOppositeBranchCondition(CC
);
655 // Potentially swap the condition codes so that any memory operand to a CMOV
656 // is in the *false* position instead of the *true* position. We can invert
657 // any non-memory operand CMOV instructions to cope with this and we ensure
658 // memory operand CMOVs are only included with a single condition code.
659 if (llvm::any_of(Group
, [&](MachineInstr
*I
) {
660 return I
->mayLoad() && X86::getCondFromCMov(*I
) == CC
;
662 std::swap(CC
, OppCC
);
664 MachineBasicBlock
*MBB
= MI
.getParent();
665 MachineFunction::iterator It
= ++MBB
->getIterator();
666 MachineFunction
*F
= MBB
->getParent();
667 const BasicBlock
*BB
= MBB
->getBasicBlock();
669 MachineBasicBlock
*FalseMBB
= F
->CreateMachineBasicBlock(BB
);
670 MachineBasicBlock
*SinkMBB
= F
->CreateMachineBasicBlock(BB
);
671 F
->insert(It
, FalseMBB
);
672 F
->insert(It
, SinkMBB
);
674 // If the EFLAGS register isn't dead in the terminator, then claim that it's
675 // live into the sink and copy blocks.
676 if (checkEFLAGSLive(LastCMOV
)) {
677 FalseMBB
->addLiveIn(X86::EFLAGS
);
678 SinkMBB
->addLiveIn(X86::EFLAGS
);
681 // Transfer the remainder of BB and its successor edges to SinkMBB.
682 SinkMBB
->splice(SinkMBB
->begin(), MBB
,
683 std::next(MachineBasicBlock::iterator(LastCMOV
)), MBB
->end());
684 SinkMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
686 // Add the false and sink blocks as its successors.
687 MBB
->addSuccessor(FalseMBB
);
688 MBB
->addSuccessor(SinkMBB
);
690 // Create the conditional branch instruction.
691 BuildMI(MBB
, DL
, TII
->get(X86::JCC_1
)).addMBB(SinkMBB
).addImm(CC
);
693 // Add the sink block to the false block successors.
694 FalseMBB
->addSuccessor(SinkMBB
);
696 MachineInstrBuilder MIB
;
697 MachineBasicBlock::iterator MIItBegin
= MachineBasicBlock::iterator(MI
);
698 MachineBasicBlock::iterator MIItEnd
=
699 std::next(MachineBasicBlock::iterator(LastCMOV
));
700 MachineBasicBlock::iterator FalseInsertionPoint
= FalseMBB
->begin();
701 MachineBasicBlock::iterator SinkInsertionPoint
= SinkMBB
->begin();
703 // First we need to insert an explicit load on the false path for any memory
704 // operand. We also need to potentially do register rewriting here, but it is
705 // simpler as the memory operands are always on the false path so we can
706 // simply take that input, whatever it is.
707 DenseMap
<unsigned, unsigned> FalseBBRegRewriteTable
;
708 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
;) {
710 // Skip any CMOVs in this group which don't load from memory.
712 // Remember the false-side register input.
714 MI
.getOperand(X86::getCondFromCMov(MI
) == CC
? 1 : 2).getReg();
715 // Walk back through any intermediate cmovs referenced.
717 auto FRIt
= FalseBBRegRewriteTable
.find(FalseReg
);
718 if (FRIt
== FalseBBRegRewriteTable
.end())
720 FalseReg
= FRIt
->second
;
722 FalseBBRegRewriteTable
[MI
.getOperand(0).getReg()] = FalseReg
;
726 // The condition must be the *opposite* of the one we've decided to branch
727 // on as the branch will go *around* the load and the load should happen
728 // when the CMOV condition is false.
729 assert(X86::getCondFromCMov(MI
) == OppCC
&&
730 "Can only handle memory-operand cmov instructions with a condition "
731 "opposite to the selected branch direction.");
733 // The goal is to rewrite the cmov from:
736 // %A = CMOVcc %B (tied), (mem)
741 // %A = CMOVcc %B (tied), %C
745 // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
752 // %A = PHI [ %C, FalseMBB ], [ %B, MBB]
754 // Get a fresh register to use as the destination of the MOV.
755 const TargetRegisterClass
*RC
= MRI
->getRegClass(MI
.getOperand(0).getReg());
756 Register TmpReg
= MRI
->createVirtualRegister(RC
);
758 SmallVector
<MachineInstr
*, 4> NewMIs
;
759 bool Unfolded
= TII
->unfoldMemoryOperand(*MBB
->getParent(), MI
, TmpReg
,
761 /*UnfoldStore*/ false, NewMIs
);
763 assert(Unfolded
&& "Should never fail to unfold a loading cmov!");
765 // Move the new CMOV to just before the old one and reset any impacted
767 auto *NewCMOV
= NewMIs
.pop_back_val();
768 assert(X86::getCondFromCMov(*NewCMOV
) == OppCC
&&
769 "Last new instruction isn't the expected CMOV!");
770 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV
->dump());
771 MBB
->insert(MachineBasicBlock::iterator(MI
), NewCMOV
);
772 if (&*MIItBegin
== &MI
)
773 MIItBegin
= MachineBasicBlock::iterator(NewCMOV
);
775 // Sink whatever instructions were needed to produce the unfolded operand
776 // into the false block.
777 for (auto *NewMI
: NewMIs
) {
778 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI
->dump());
779 FalseMBB
->insert(FalseInsertionPoint
, NewMI
);
780 // Re-map any operands that are from other cmovs to the inputs for this block.
781 for (auto &MOp
: NewMI
->uses()) {
784 auto It
= FalseBBRegRewriteTable
.find(MOp
.getReg());
785 if (It
== FalseBBRegRewriteTable
.end())
788 MOp
.setReg(It
->second
);
789 // This might have been a kill when it referenced the cmov result, but
790 // it won't necessarily be once rewritten.
791 // FIXME: We could potentially improve this by tracking whether the
792 // operand to the cmov was also a kill, and then skipping the PHI node
793 // construction below.
794 MOp
.setIsKill(false);
797 MBB
->erase(MachineBasicBlock::iterator(MI
),
798 std::next(MachineBasicBlock::iterator(MI
)));
800 // Add this PHI to the rewrite table.
801 FalseBBRegRewriteTable
[NewCMOV
->getOperand(0).getReg()] = TmpReg
;
804 // As we are creating the PHIs, we have to be careful if there is more than
805 // one. Later CMOVs may reference the results of earlier CMOVs, but later
806 // PHIs have to reference the individual true/false inputs from earlier PHIs.
807 // That also means that PHI construction must work forward from earlier to
808 // later, and that the code must maintain a mapping from earlier PHI's
809 // destination registers, and the registers that went into the PHI.
810 DenseMap
<unsigned, std::pair
<unsigned, unsigned>> RegRewriteTable
;
812 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
; ++MIIt
) {
813 Register DestReg
= MIIt
->getOperand(0).getReg();
814 Register Op1Reg
= MIIt
->getOperand(1).getReg();
815 Register Op2Reg
= MIIt
->getOperand(2).getReg();
817 // If this CMOV we are processing is the opposite condition from the jump we
818 // generated, then we have to swap the operands for the PHI that is going to
820 if (X86::getCondFromCMov(*MIIt
) == OppCC
)
821 std::swap(Op1Reg
, Op2Reg
);
823 auto Op1Itr
= RegRewriteTable
.find(Op1Reg
);
824 if (Op1Itr
!= RegRewriteTable
.end())
825 Op1Reg
= Op1Itr
->second
.first
;
827 auto Op2Itr
= RegRewriteTable
.find(Op2Reg
);
828 if (Op2Itr
!= RegRewriteTable
.end())
829 Op2Reg
= Op2Itr
->second
.second
;
832 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
834 MIB
= BuildMI(*SinkMBB
, SinkInsertionPoint
, DL
, TII
->get(X86::PHI
), DestReg
)
840 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt
->dump());
841 LLVM_DEBUG(dbgs() << "\tTo: "; MIB
->dump());
843 // Add this PHI to the rewrite table.
844 RegRewriteTable
[DestReg
] = std::make_pair(Op1Reg
, Op2Reg
);
847 // Now remove the CMOV(s).
848 MBB
->erase(MIItBegin
, MIItEnd
);
851 INITIALIZE_PASS_BEGIN(X86CmovConverterPass
, DEBUG_TYPE
, "X86 cmov Conversion",
853 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
854 INITIALIZE_PASS_END(X86CmovConverterPass
, DEBUG_TYPE
, "X86 cmov Conversion",
857 FunctionPass
*llvm::createX86CmovConverterPass() {
858 return new X86CmovConverterPass();