[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / X86 / X86TargetMachine.cpp
blobd33a7a0b96309e9e1c51d089db67d0ff8b17b8c3
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <memory>
50 #include <string>
52 using namespace llvm;
54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
55 cl::desc("Enable the machine combiner pass"),
56 cl::init(true), cl::Hidden);
58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
59 cl::desc("Enable the conditional branch "
60 "folding pass"),
61 cl::init(false), cl::Hidden);
63 extern "C" void LLVMInitializeX86Target() {
64 // Register the target.
65 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
66 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68 PassRegistry &PR = *PassRegistry::getPassRegistry();
69 initializeGlobalISel(PR);
70 initializeWinEHStatePassPass(PR);
71 initializeFixupBWInstPassPass(PR);
72 initializeEvexToVexInstPassPass(PR);
73 initializeFixupLEAPassPass(PR);
74 initializeFPSPass(PR);
75 initializeX86CallFrameOptimizationPass(PR);
76 initializeX86CmovConverterPassPass(PR);
77 initializeX86ExpandPseudoPass(PR);
78 initializeX86ExecutionDomainFixPass(PR);
79 initializeX86DomainReassignmentPass(PR);
80 initializeX86AvoidSFBPassPass(PR);
81 initializeX86SpeculativeLoadHardeningPassPass(PR);
82 initializeX86FlagsCopyLoweringPassPass(PR);
83 initializeX86CondBrFoldingPassPass(PR);
84 initializeX86OptimizeLEAPassPass(PR);
87 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
88 if (TT.isOSBinFormatMachO()) {
89 if (TT.getArch() == Triple::x86_64)
90 return std::make_unique<X86_64MachoTargetObjectFile>();
91 return std::make_unique<TargetLoweringObjectFileMachO>();
94 if (TT.isOSFreeBSD())
95 return std::make_unique<X86FreeBSDTargetObjectFile>();
96 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
97 return std::make_unique<X86LinuxNaClTargetObjectFile>();
98 if (TT.isOSSolaris())
99 return std::make_unique<X86SolarisTargetObjectFile>();
100 if (TT.isOSFuchsia())
101 return std::make_unique<X86FuchsiaTargetObjectFile>();
102 if (TT.isOSBinFormatELF())
103 return std::make_unique<X86ELFTargetObjectFile>();
104 if (TT.isOSBinFormatCOFF())
105 return std::make_unique<TargetLoweringObjectFileCOFF>();
106 llvm_unreachable("unknown subtarget type");
109 static std::string computeDataLayout(const Triple &TT) {
110 // X86 is little endian
111 std::string Ret = "e";
113 Ret += DataLayout::getManglingComponent(TT);
114 // X86 and x32 have 32 bit pointers.
115 if ((TT.isArch64Bit() &&
116 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
117 !TT.isArch64Bit())
118 Ret += "-p:32:32";
120 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
121 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
122 Ret += "-i64:64";
123 else if (TT.isOSIAMCU())
124 Ret += "-i64:32-f64:32";
125 else
126 Ret += "-f64:32:64";
128 // Some ABIs align long double to 128 bits, others to 32.
129 if (TT.isOSNaCl() || TT.isOSIAMCU())
130 ; // No f80
131 else if (TT.isArch64Bit() || TT.isOSDarwin())
132 Ret += "-f80:128";
133 else
134 Ret += "-f80:32";
136 if (TT.isOSIAMCU())
137 Ret += "-f128:32";
139 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
140 if (TT.isArch64Bit())
141 Ret += "-n8:16:32:64";
142 else
143 Ret += "-n8:16:32";
145 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
146 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
147 Ret += "-a:0:32-S32";
148 else
149 Ret += "-S128";
151 return Ret;
154 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
155 bool JIT,
156 Optional<Reloc::Model> RM) {
157 bool is64Bit = TT.getArch() == Triple::x86_64;
158 if (!RM.hasValue()) {
159 // JIT codegen should use static relocations by default, since it's
160 // typically executed in process and not relocatable.
161 if (JIT)
162 return Reloc::Static;
164 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
165 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
166 // use static relocation model by default.
167 if (TT.isOSDarwin()) {
168 if (is64Bit)
169 return Reloc::PIC_;
170 return Reloc::DynamicNoPIC;
172 if (TT.isOSWindows() && is64Bit)
173 return Reloc::PIC_;
174 return Reloc::Static;
177 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
178 // is defined as a model for code which may be used in static or dynamic
179 // executables but not necessarily a shared library. On X86-32 we just
180 // compile in -static mode, in x86-64 we use PIC.
181 if (*RM == Reloc::DynamicNoPIC) {
182 if (is64Bit)
183 return Reloc::PIC_;
184 if (!TT.isOSDarwin())
185 return Reloc::Static;
188 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
189 // the Mach-O file format doesn't support it.
190 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
191 return Reloc::PIC_;
193 return *RM;
196 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
197 bool JIT, bool Is64Bit) {
198 if (CM) {
199 if (*CM == CodeModel::Tiny)
200 report_fatal_error("Target does not support the tiny CodeModel", false);
201 return *CM;
203 if (JIT)
204 return Is64Bit ? CodeModel::Large : CodeModel::Small;
205 return CodeModel::Small;
208 /// Create an X86 target.
210 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
211 StringRef CPU, StringRef FS,
212 const TargetOptions &Options,
213 Optional<Reloc::Model> RM,
214 Optional<CodeModel::Model> CM,
215 CodeGenOpt::Level OL, bool JIT)
216 : LLVMTargetMachine(
217 T, computeDataLayout(TT), TT, CPU, FS, Options,
218 getEffectiveRelocModel(TT, JIT, RM),
219 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
220 OL),
221 TLOF(createTLOF(getTargetTriple())) {
222 // Windows stack unwinder gets confused when execution flow "falls through"
223 // after a call to 'noreturn' function.
224 // To prevent that, we emit a trap for 'unreachable' IR instructions.
225 // (which on X86, happens to be the 'ud2' instruction)
226 // On PS4, the "return address" of a 'noreturn' call must still be within
227 // the calling function, and TrapUnreachable is an easy way to get that.
228 // The check here for 64-bit windows is a bit icky, but as we're unlikely
229 // to ever want to mix 32 and 64-bit windows code in a single module
230 // this should be fine.
231 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
232 TT.isOSBinFormatMachO()) {
233 this->Options.TrapUnreachable = true;
234 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
237 // Outlining is available for x86-64.
238 if (TT.getArch() == Triple::x86_64)
239 setMachineOutliner(true);
241 initAsmInfo();
244 X86TargetMachine::~X86TargetMachine() = default;
246 const X86Subtarget *
247 X86TargetMachine::getSubtargetImpl(const Function &F) const {
248 Attribute CPUAttr = F.getFnAttribute("target-cpu");
249 Attribute FSAttr = F.getFnAttribute("target-features");
251 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
252 ? CPUAttr.getValueAsString()
253 : (StringRef)TargetCPU;
254 StringRef FS = !FSAttr.hasAttribute(Attribute::None)
255 ? FSAttr.getValueAsString()
256 : (StringRef)TargetFS;
258 SmallString<512> Key;
259 Key.reserve(CPU.size() + FS.size());
260 Key += CPU;
261 Key += FS;
263 // FIXME: This is related to the code below to reset the target options,
264 // we need to know whether or not the soft float flag is set on the
265 // function before we can generate a subtarget. We also need to use
266 // it as a key for the subtarget since that can be the only difference
267 // between two functions.
268 bool SoftFloat =
269 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
270 // If the soft float attribute is set on the function turn on the soft float
271 // subtarget feature.
272 if (SoftFloat)
273 Key += FS.empty() ? "+soft-float" : ",+soft-float";
275 // Keep track of the key width after all features are added so we can extract
276 // the feature string out later.
277 unsigned CPUFSWidth = Key.size();
279 // Extract prefer-vector-width attribute.
280 unsigned PreferVectorWidthOverride = 0;
281 if (F.hasFnAttribute("prefer-vector-width")) {
282 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
283 unsigned Width;
284 if (!Val.getAsInteger(0, Width)) {
285 Key += ",prefer-vector-width=";
286 Key += Val;
287 PreferVectorWidthOverride = Width;
291 // Extract min-legal-vector-width attribute.
292 unsigned RequiredVectorWidth = UINT32_MAX;
293 if (F.hasFnAttribute("min-legal-vector-width")) {
294 StringRef Val =
295 F.getFnAttribute("min-legal-vector-width").getValueAsString();
296 unsigned Width;
297 if (!Val.getAsInteger(0, Width)) {
298 Key += ",min-legal-vector-width=";
299 Key += Val;
300 RequiredVectorWidth = Width;
304 // Extracted here so that we make sure there is backing for the StringRef. If
305 // we assigned earlier, its possible the SmallString reallocated leaving a
306 // dangling StringRef.
307 FS = Key.slice(CPU.size(), CPUFSWidth);
309 auto &I = SubtargetMap[Key];
310 if (!I) {
311 // This needs to be done before we create a new subtarget since any
312 // creation will depend on the TM and the code generation flags on the
313 // function that reside in TargetOptions.
314 resetTargetOptions(F);
315 I = std::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
316 Options.StackAlignmentOverride,
317 PreferVectorWidthOverride,
318 RequiredVectorWidth);
320 return I.get();
323 //===----------------------------------------------------------------------===//
324 // Command line options for x86
325 //===----------------------------------------------------------------------===//
326 static cl::opt<bool>
327 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
328 cl::desc("Minimize AVX to SSE transition penalty"),
329 cl::init(true));
331 //===----------------------------------------------------------------------===//
332 // X86 TTI query.
333 //===----------------------------------------------------------------------===//
335 TargetTransformInfo
336 X86TargetMachine::getTargetTransformInfo(const Function &F) {
337 return TargetTransformInfo(X86TTIImpl(this, F));
340 //===----------------------------------------------------------------------===//
341 // Pass Pipeline Configuration
342 //===----------------------------------------------------------------------===//
344 namespace {
346 /// X86 Code Generator Pass Configuration Options.
347 class X86PassConfig : public TargetPassConfig {
348 public:
349 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
350 : TargetPassConfig(TM, PM) {}
352 X86TargetMachine &getX86TargetMachine() const {
353 return getTM<X86TargetMachine>();
356 ScheduleDAGInstrs *
357 createMachineScheduler(MachineSchedContext *C) const override {
358 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
359 DAG->addMutation(createX86MacroFusionDAGMutation());
360 return DAG;
363 ScheduleDAGInstrs *
364 createPostMachineScheduler(MachineSchedContext *C) const override {
365 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
366 DAG->addMutation(createX86MacroFusionDAGMutation());
367 return DAG;
370 void addIRPasses() override;
371 bool addInstSelector() override;
372 bool addIRTranslator() override;
373 bool addLegalizeMachineIR() override;
374 bool addRegBankSelect() override;
375 bool addGlobalInstructionSelect() override;
376 bool addILPOpts() override;
377 bool addPreISel() override;
378 void addMachineSSAOptimization() override;
379 void addPreRegAlloc() override;
380 void addPostRegAlloc() override;
381 void addPreEmitPass() override;
382 void addPreEmitPass2() override;
383 void addPreSched2() override;
385 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
388 class X86ExecutionDomainFix : public ExecutionDomainFix {
389 public:
390 static char ID;
391 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
392 StringRef getPassName() const override {
393 return "X86 Execution Dependency Fix";
396 char X86ExecutionDomainFix::ID;
398 } // end anonymous namespace
400 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
401 "X86 Execution Domain Fix", false, false)
402 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
403 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
404 "X86 Execution Domain Fix", false, false)
406 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
407 return new X86PassConfig(*this, PM);
410 void X86PassConfig::addIRPasses() {
411 addPass(createAtomicExpandPass());
413 TargetPassConfig::addIRPasses();
415 if (TM->getOptLevel() != CodeGenOpt::None)
416 addPass(createInterleavedAccessPass());
418 // Add passes that handle indirect branch removal and insertion of a retpoline
419 // thunk. These will be a no-op unless a function subtarget has the retpoline
420 // feature enabled.
421 addPass(createIndirectBrExpandPass());
424 bool X86PassConfig::addInstSelector() {
425 // Install an instruction selector.
426 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
428 // For ELF, cleanup any local-dynamic TLS accesses.
429 if (TM->getTargetTriple().isOSBinFormatELF() &&
430 getOptLevel() != CodeGenOpt::None)
431 addPass(createCleanupLocalDynamicTLSPass());
433 addPass(createX86GlobalBaseRegPass());
434 return false;
437 bool X86PassConfig::addIRTranslator() {
438 addPass(new IRTranslator());
439 return false;
442 bool X86PassConfig::addLegalizeMachineIR() {
443 addPass(new Legalizer());
444 return false;
447 bool X86PassConfig::addRegBankSelect() {
448 addPass(new RegBankSelect());
449 return false;
452 bool X86PassConfig::addGlobalInstructionSelect() {
453 addPass(new InstructionSelect());
454 return false;
457 bool X86PassConfig::addILPOpts() {
458 if (EnableCondBrFoldingPass)
459 addPass(createX86CondBrFolding());
460 addPass(&EarlyIfConverterID);
461 if (EnableMachineCombinerPass)
462 addPass(&MachineCombinerID);
463 addPass(createX86CmovConverterPass());
464 return true;
467 bool X86PassConfig::addPreISel() {
468 // Only add this pass for 32-bit x86 Windows.
469 const Triple &TT = TM->getTargetTriple();
470 if (TT.isOSWindows() && TT.getArch() == Triple::x86)
471 addPass(createX86WinEHStatePass());
472 return true;
475 void X86PassConfig::addPreRegAlloc() {
476 if (getOptLevel() != CodeGenOpt::None) {
477 addPass(&LiveRangeShrinkID);
478 addPass(createX86FixupSetCC());
479 addPass(createX86OptimizeLEAs());
480 addPass(createX86CallFrameOptimization());
481 addPass(createX86AvoidStoreForwardingBlocks());
484 addPass(createX86SpeculativeLoadHardeningPass());
485 addPass(createX86FlagsCopyLoweringPass());
486 addPass(createX86WinAllocaExpander());
488 void X86PassConfig::addMachineSSAOptimization() {
489 addPass(createX86DomainReassignmentPass());
490 TargetPassConfig::addMachineSSAOptimization();
493 void X86PassConfig::addPostRegAlloc() {
494 addPass(createX86FloatingPointStackifierPass());
497 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
499 void X86PassConfig::addPreEmitPass() {
500 if (getOptLevel() != CodeGenOpt::None) {
501 addPass(new X86ExecutionDomainFix());
502 addPass(createBreakFalseDeps());
505 addPass(createX86IndirectBranchTrackingPass());
507 if (UseVZeroUpper)
508 addPass(createX86IssueVZeroUpperPass());
510 if (getOptLevel() != CodeGenOpt::None) {
511 addPass(createX86FixupBWInsts());
512 addPass(createX86PadShortFunctions());
513 addPass(createX86FixupLEAs());
514 addPass(createX86EvexToVexInsts());
516 addPass(createX86DiscriminateMemOpsPass());
517 addPass(createX86InsertPrefetchPass());
520 void X86PassConfig::addPreEmitPass2() {
521 addPass(createX86RetpolineThunksPass());
522 // Verify basic block incoming and outgoing cfa offset and register values and
523 // correct CFA calculation rule where needed by inserting appropriate CFI
524 // instructions.
525 const Triple &TT = TM->getTargetTriple();
526 const MCAsmInfo *MAI = TM->getMCAsmInfo();
527 if (!TT.isOSDarwin() &&
528 (!TT.isOSWindows() ||
529 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
530 addPass(createCFIInstrInserter());
533 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
534 return getStandardCSEConfigForOpt(TM->getOptLevel());