[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-core.git] / lib / Bitcode / Reader / BitcodeReader.cpp
blob15eead1de31a1c47a0d06d8aaaf97e8f73dec057
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
88 using namespace llvm;
90 static cl::opt<bool> PrintSummaryGUIDs(
91 "print-summary-global-ids", cl::init(false), cl::Hidden,
92 cl::desc(
93 "Print the global id for each value when reading the module summary"));
95 namespace {
97 enum {
98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
101 } // end anonymous namespace
103 static Error error(const Twine &Message) {
104 return make_error<StringError>(
105 Message, make_error_code(BitcodeError::CorruptedBitcode));
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109 if (!Stream.canSkipToPos(4))
110 return createStringError(std::errc::illegal_byte_sequence,
111 "file too small to contain bitcode header");
112 for (unsigned C : {'B', 'C'})
113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114 if (Res.get() != C)
115 return createStringError(std::errc::illegal_byte_sequence,
116 "file doesn't start with bitcode header");
117 } else
118 return Res.takeError();
119 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121 if (Res.get() != C)
122 return createStringError(std::errc::illegal_byte_sequence,
123 "file doesn't start with bitcode header");
124 } else
125 return Res.takeError();
126 return Error::success();
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
133 if (Buffer.getBufferSize() & 3)
134 return error("Invalid bitcode signature");
136 // If we have a wrapper header, parse it and ignore the non-bc file contents.
137 // The magic number is 0x0B17C0DE stored in little endian.
138 if (isBitcodeWrapper(BufPtr, BufEnd))
139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140 return error("Invalid bitcode wrapper header");
142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143 if (Error Err = hasInvalidBitcodeHeader(Stream))
144 return std::move(Err);
146 return std::move(Stream);
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152 StrTy &Result) {
153 if (Idx > Record.size())
154 return true;
156 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157 Result += (char)Record[i];
158 return false;
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163 for (auto &F : *M) {
164 if (F.isMaterializable())
165 continue;
166 for (auto &I : instructions(F))
167 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175 return std::move(Err);
177 // Read all the records.
178 SmallVector<uint64_t, 64> Record;
180 std::string ProducerIdentification;
182 while (true) {
183 BitstreamEntry Entry;
184 if (Expected<BitstreamEntry> Res = Stream.advance())
185 Entry = Res.get();
186 else
187 return Res.takeError();
189 switch (Entry.Kind) {
190 default:
191 case BitstreamEntry::Error:
192 return error("Malformed block");
193 case BitstreamEntry::EndBlock:
194 return ProducerIdentification;
195 case BitstreamEntry::Record:
196 // The interesting case.
197 break;
200 // Read a record.
201 Record.clear();
202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203 if (!MaybeBitCode)
204 return MaybeBitCode.takeError();
205 switch (MaybeBitCode.get()) {
206 default: // Default behavior: reject
207 return error("Invalid value");
208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209 convertToString(Record, 0, ProducerIdentification);
210 break;
211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212 unsigned epoch = (unsigned)Record[0];
213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214 return error(
215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224 // We expect a number of well-defined blocks, though we don't necessarily
225 // need to understand them all.
226 while (true) {
227 if (Stream.AtEndOfStream())
228 return "";
230 BitstreamEntry Entry;
231 if (Expected<BitstreamEntry> Res = Stream.advance())
232 Entry = std::move(Res.get());
233 else
234 return Res.takeError();
236 switch (Entry.Kind) {
237 case BitstreamEntry::EndBlock:
238 case BitstreamEntry::Error:
239 return error("Malformed block");
241 case BitstreamEntry::SubBlock:
242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243 return readIdentificationBlock(Stream);
245 // Ignore other sub-blocks.
246 if (Error Err = Stream.SkipBlock())
247 return std::move(Err);
248 continue;
249 case BitstreamEntry::Record:
250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251 continue;
252 else
253 return Skipped.takeError();
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260 return std::move(Err);
262 SmallVector<uint64_t, 64> Record;
263 // Read all the records for this module.
265 while (true) {
266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267 if (!MaybeEntry)
268 return MaybeEntry.takeError();
269 BitstreamEntry Entry = MaybeEntry.get();
271 switch (Entry.Kind) {
272 case BitstreamEntry::SubBlock: // Handled for us already.
273 case BitstreamEntry::Error:
274 return error("Malformed block");
275 case BitstreamEntry::EndBlock:
276 return false;
277 case BitstreamEntry::Record:
278 // The interesting case.
279 break;
282 // Read a record.
283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284 if (!MaybeRecord)
285 return MaybeRecord.takeError();
286 switch (MaybeRecord.get()) {
287 default:
288 break; // Default behavior, ignore unknown content.
289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290 std::string S;
291 if (convertToString(Record, 0, S))
292 return error("Invalid record");
293 // Check for the i386 and other (x86_64, ARM) conventions
294 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295 S.find("__OBJC,__category") != std::string::npos)
296 return true;
297 break;
300 Record.clear();
302 llvm_unreachable("Exit infinite loop");
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306 // We expect a number of well-defined blocks, though we don't necessarily
307 // need to understand them all.
308 while (true) {
309 BitstreamEntry Entry;
310 if (Expected<BitstreamEntry> Res = Stream.advance())
311 Entry = std::move(Res.get());
312 else
313 return Res.takeError();
315 switch (Entry.Kind) {
316 case BitstreamEntry::Error:
317 return error("Malformed block");
318 case BitstreamEntry::EndBlock:
319 return false;
321 case BitstreamEntry::SubBlock:
322 if (Entry.ID == bitc::MODULE_BLOCK_ID)
323 return hasObjCCategoryInModule(Stream);
325 // Ignore other sub-blocks.
326 if (Error Err = Stream.SkipBlock())
327 return std::move(Err);
328 continue;
330 case BitstreamEntry::Record:
331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332 continue;
333 else
334 return Skipped.takeError();
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341 return std::move(Err);
343 SmallVector<uint64_t, 64> Record;
345 std::string Triple;
347 // Read all the records for this module.
348 while (true) {
349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350 if (!MaybeEntry)
351 return MaybeEntry.takeError();
352 BitstreamEntry Entry = MaybeEntry.get();
354 switch (Entry.Kind) {
355 case BitstreamEntry::SubBlock: // Handled for us already.
356 case BitstreamEntry::Error:
357 return error("Malformed block");
358 case BitstreamEntry::EndBlock:
359 return Triple;
360 case BitstreamEntry::Record:
361 // The interesting case.
362 break;
365 // Read a record.
366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367 if (!MaybeRecord)
368 return MaybeRecord.takeError();
369 switch (MaybeRecord.get()) {
370 default: break; // Default behavior, ignore unknown content.
371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
372 std::string S;
373 if (convertToString(Record, 0, S))
374 return error("Invalid record");
375 Triple = S;
376 break;
379 Record.clear();
381 llvm_unreachable("Exit infinite loop");
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385 // We expect a number of well-defined blocks, though we don't necessarily
386 // need to understand them all.
387 while (true) {
388 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389 if (!MaybeEntry)
390 return MaybeEntry.takeError();
391 BitstreamEntry Entry = MaybeEntry.get();
393 switch (Entry.Kind) {
394 case BitstreamEntry::Error:
395 return error("Malformed block");
396 case BitstreamEntry::EndBlock:
397 return "";
399 case BitstreamEntry::SubBlock:
400 if (Entry.ID == bitc::MODULE_BLOCK_ID)
401 return readModuleTriple(Stream);
403 // Ignore other sub-blocks.
404 if (Error Err = Stream.SkipBlock())
405 return std::move(Err);
406 continue;
408 case BitstreamEntry::Record:
409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410 continue;
411 else
412 return Skipped.takeError();
417 namespace {
419 class BitcodeReaderBase {
420 protected:
421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422 : Stream(std::move(Stream)), Strtab(Strtab) {
423 this->Stream.setBlockInfo(&BlockInfo);
426 BitstreamBlockInfo BlockInfo;
427 BitstreamCursor Stream;
428 StringRef Strtab;
430 /// In version 2 of the bitcode we store names of global values and comdats in
431 /// a string table rather than in the VST.
432 bool UseStrtab = false;
434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
436 /// If this module uses a string table, pop the reference to the string table
437 /// and return the referenced string and the rest of the record. Otherwise
438 /// just return the record itself.
439 std::pair<StringRef, ArrayRef<uint64_t>>
440 readNameFromStrtab(ArrayRef<uint64_t> Record);
442 bool readBlockInfo();
444 // Contains an arbitrary and optional string identifying the bitcode producer
445 std::string ProducerIdentification;
447 Error error(const Twine &Message);
450 } // end anonymous namespace
452 Error BitcodeReaderBase::error(const Twine &Message) {
453 std::string FullMsg = Message.str();
454 if (!ProducerIdentification.empty())
455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456 LLVM_VERSION_STRING "')";
457 return ::error(FullMsg);
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462 if (Record.empty())
463 return error("Invalid record");
464 unsigned ModuleVersion = Record[0];
465 if (ModuleVersion > 2)
466 return error("Invalid value");
467 UseStrtab = ModuleVersion >= 2;
468 return ModuleVersion;
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473 if (!UseStrtab)
474 return {"", Record};
475 // Invalid reference. Let the caller complain about the record being empty.
476 if (Record[0] + Record[1] > Strtab.size())
477 return {"", {}};
478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
481 namespace {
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484 LLVMContext &Context;
485 Module *TheModule = nullptr;
486 // Next offset to start scanning for lazy parsing of function bodies.
487 uint64_t NextUnreadBit = 0;
488 // Last function offset found in the VST.
489 uint64_t LastFunctionBlockBit = 0;
490 bool SeenValueSymbolTable = false;
491 uint64_t VSTOffset = 0;
493 std::vector<std::string> SectionTable;
494 std::vector<std::string> GCTable;
496 std::vector<Type*> TypeList;
497 DenseMap<Function *, FunctionType *> FunctionTypes;
498 BitcodeReaderValueList ValueList;
499 Optional<MetadataLoader> MDLoader;
500 std::vector<Comdat *> ComdatList;
501 SmallVector<Instruction *, 64> InstructionList;
503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
509 /// The set of attributes by index. Index zero in the file is for null, and
510 /// is thus not represented here. As such all indices are off by one.
511 std::vector<AttributeList> MAttributes;
513 /// The set of attribute groups.
514 std::map<unsigned, AttributeList> MAttributeGroups;
516 /// While parsing a function body, this is a list of the basic blocks for the
517 /// function.
518 std::vector<BasicBlock*> FunctionBBs;
520 // When reading the module header, this list is populated with functions that
521 // have bodies later in the file.
522 std::vector<Function*> FunctionsWithBodies;
524 // When intrinsic functions are encountered which require upgrading they are
525 // stored here with their replacement function.
526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527 UpdatedIntrinsicMap UpgradedIntrinsics;
528 // Intrinsics which were remangled because of types rename
529 UpdatedIntrinsicMap RemangledIntrinsics;
531 // Several operations happen after the module header has been read, but
532 // before function bodies are processed. This keeps track of whether
533 // we've done this yet.
534 bool SeenFirstFunctionBody = false;
536 /// When function bodies are initially scanned, this map contains info about
537 /// where to find deferred function body in the stream.
538 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
540 /// When Metadata block is initially scanned when parsing the module, we may
541 /// choose to defer parsing of the metadata. This vector contains info about
542 /// which Metadata blocks are deferred.
543 std::vector<uint64_t> DeferredMetadataInfo;
545 /// These are basic blocks forward-referenced by block addresses. They are
546 /// inserted lazily into functions when they're loaded. The basic block ID is
547 /// its index into the vector.
548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549 std::deque<Function *> BasicBlockFwdRefQueue;
551 /// Indicates that we are using a new encoding for instruction operands where
552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553 /// instruction number, for a more compact encoding. Some instruction
554 /// operands are not relative to the instruction ID: basic block numbers, and
555 /// types. Once the old style function blocks have been phased out, we would
556 /// not need this flag.
557 bool UseRelativeIDs = false;
559 /// True if all functions will be materialized, negating the need to process
560 /// (e.g.) blockaddress forward references.
561 bool WillMaterializeAllForwardRefs = false;
563 bool StripDebugInfo = false;
564 TBAAVerifier TBAAVerifyHelper;
566 std::vector<std::string> BundleTags;
567 SmallVector<SyncScope::ID, 8> SSIDs;
569 public:
570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571 StringRef ProducerIdentification, LLVMContext &Context);
573 Error materializeForwardReferencedFunctions();
575 Error materialize(GlobalValue *GV) override;
576 Error materializeModule() override;
577 std::vector<StructType *> getIdentifiedStructTypes() const override;
579 /// Main interface to parsing a bitcode buffer.
580 /// \returns true if an error occurred.
581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582 bool IsImporting = false);
584 static uint64_t decodeSignRotatedValue(uint64_t V);
586 /// Materialize any deferred Metadata block.
587 Error materializeMetadata() override;
589 void setStripDebugInfo() override;
591 private:
592 std::vector<StructType *> IdentifiedStructTypes;
593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594 StructType *createIdentifiedStructType(LLVMContext &Context);
596 /// Map all pointer types within \param Ty to the opaque pointer
597 /// type in the same address space if opaque pointers are being
598 /// used, otherwise nop. This converts a bitcode-reader internal
599 /// type into one suitable for use in a Value.
600 Type *flattenPointerTypes(Type *Ty) {
601 return Ty;
604 /// Given a fully structured pointer type (i.e. not opaque), return
605 /// the flattened form of its element, suitable for use in a Value.
606 Type *getPointerElementFlatType(Type *Ty) {
607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
610 /// Given a fully structured pointer type, get its element type in
611 /// both fully structured form, and flattened form suitable for use
612 /// in a Value.
613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614 Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615 return std::make_pair(ElTy, flattenPointerTypes(ElTy));
618 /// Return the flattened type (suitable for use in a Value)
619 /// specified by the given \param ID .
620 Type *getTypeByID(unsigned ID) {
621 return flattenPointerTypes(getFullyStructuredTypeByID(ID));
624 /// Return the fully structured (bitcode-reader internal) type
625 /// corresponding to the given \param ID .
626 Type *getFullyStructuredTypeByID(unsigned ID);
628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629 if (Ty && Ty->isMetadataTy())
630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631 return ValueList.getValueFwdRef(ID, Ty, FullTy);
634 Metadata *getFnMetadataByID(unsigned ID) {
635 return MDLoader->getMetadataFwdRefOrLoad(ID);
638 BasicBlock *getBasicBlock(unsigned ID) const {
639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640 return FunctionBBs[ID];
643 AttributeList getAttributes(unsigned i) const {
644 if (i-1 < MAttributes.size())
645 return MAttributes[i-1];
646 return AttributeList();
649 /// Read a value/type pair out of the specified record from slot 'Slot'.
650 /// Increment Slot past the number of slots used in the record. Return true on
651 /// failure.
652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653 unsigned InstNum, Value *&ResVal,
654 Type **FullTy = nullptr) {
655 if (Slot == Record.size()) return true;
656 unsigned ValNo = (unsigned)Record[Slot++];
657 // Adjust the ValNo, if it was encoded relative to the InstNum.
658 if (UseRelativeIDs)
659 ValNo = InstNum - ValNo;
660 if (ValNo < InstNum) {
661 // If this is not a forward reference, just return the value we already
662 // have.
663 ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664 return ResVal == nullptr;
666 if (Slot == Record.size())
667 return true;
669 unsigned TypeNo = (unsigned)Record[Slot++];
670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671 if (FullTy)
672 *FullTy = getFullyStructuredTypeByID(TypeNo);
673 return ResVal == nullptr;
676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677 /// past the number of slots used by the value in the record. Return true if
678 /// there is an error.
679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680 unsigned InstNum, Type *Ty, Value *&ResVal) {
681 if (getValue(Record, Slot, InstNum, Ty, ResVal))
682 return true;
683 // All values currently take a single record slot.
684 ++Slot;
685 return false;
688 /// Like popValue, but does not increment the Slot number.
689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690 unsigned InstNum, Type *Ty, Value *&ResVal) {
691 ResVal = getValue(Record, Slot, InstNum, Ty);
692 return ResVal == nullptr;
695 /// Version of getValue that returns ResVal directly, or 0 if there is an
696 /// error.
697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698 unsigned InstNum, Type *Ty) {
699 if (Slot == Record.size()) return nullptr;
700 unsigned ValNo = (unsigned)Record[Slot];
701 // Adjust the ValNo, if it was encoded relative to the InstNum.
702 if (UseRelativeIDs)
703 ValNo = InstNum - ValNo;
704 return getFnValueByID(ValNo, Ty);
707 /// Like getValue, but decodes signed VBRs.
708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709 unsigned InstNum, Type *Ty) {
710 if (Slot == Record.size()) return nullptr;
711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712 // Adjust the ValNo, if it was encoded relative to the InstNum.
713 if (UseRelativeIDs)
714 ValNo = InstNum - ValNo;
715 return getFnValueByID(ValNo, Ty);
718 /// Upgrades old-style typeless byval attributes by adding the corresponding
719 /// argument's pointee type.
720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
722 /// Converts alignment exponent (i.e. power of two (or zero)) to the
723 /// corresponding alignment to use. If alignment is too large, returns
724 /// a corresponding error code.
725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
729 Error parseComdatRecord(ArrayRef<uint64_t> Record);
730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733 ArrayRef<uint64_t> Record);
735 Error parseAttributeBlock();
736 Error parseAttributeGroupBlock();
737 Error parseTypeTable();
738 Error parseTypeTableBody();
739 Error parseOperandBundleTags();
740 Error parseSyncScopeNames();
742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743 unsigned NameIndex, Triple &TT);
744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745 ArrayRef<uint64_t> Record);
746 Error parseValueSymbolTable(uint64_t Offset = 0);
747 Error parseGlobalValueSymbolTable();
748 Error parseConstants();
749 Error rememberAndSkipFunctionBodies();
750 Error rememberAndSkipFunctionBody();
751 /// Save the positions of the Metadata blocks and skip parsing the blocks.
752 Error rememberAndSkipMetadata();
753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754 Error parseFunctionBody(Function *F);
755 Error globalCleanup();
756 Error resolveGlobalAndIndirectSymbolInits();
757 Error parseUseLists();
758 Error findFunctionInStream(
759 Function *F,
760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
762 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768 /// The module index built during parsing.
769 ModuleSummaryIndex &TheIndex;
771 /// Indicates whether we have encountered a global value summary section
772 /// yet during parsing.
773 bool SeenGlobalValSummary = false;
775 /// Indicates whether we have already parsed the VST, used for error checking.
776 bool SeenValueSymbolTable = false;
778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779 /// Used to enable on-demand parsing of the VST.
780 uint64_t VSTOffset = 0;
782 // Map to save ValueId to ValueInfo association that was recorded in the
783 // ValueSymbolTable. It is used after the VST is parsed to convert
784 // call graph edges read from the function summary from referencing
785 // callees by their ValueId to using the ValueInfo instead, which is how
786 // they are recorded in the summary index being built.
787 // We save a GUID which refers to the same global as the ValueInfo, but
788 // ignoring the linkage, i.e. for values other than local linkage they are
789 // identical.
790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791 ValueIdToValueInfoMap;
793 /// Map populated during module path string table parsing, from the
794 /// module ID to a string reference owned by the index's module
795 /// path string table, used to correlate with combined index
796 /// summary records.
797 DenseMap<uint64_t, StringRef> ModuleIdMap;
799 /// Original source file name recorded in a bitcode record.
800 std::string SourceFileName;
802 /// The string identifier given to this module by the client, normally the
803 /// path to the bitcode file.
804 StringRef ModulePath;
806 /// For per-module summary indexes, the unique numerical identifier given to
807 /// this module by the client.
808 unsigned ModuleId;
810 public:
811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812 ModuleSummaryIndex &TheIndex,
813 StringRef ModulePath, unsigned ModuleId);
815 Error parseModule();
817 private:
818 void setValueGUID(uint64_t ValueID, StringRef ValueName,
819 GlobalValue::LinkageTypes Linkage,
820 StringRef SourceFileName);
821 Error parseValueSymbolTable(
822 uint64_t Offset,
823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826 bool IsOldProfileFormat,
827 bool HasProfile,
828 bool HasRelBF);
829 Error parseEntireSummary(unsigned ID);
830 Error parseModuleStringTable();
831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833 TypeIdCompatibleVtableInfo &TypeId);
835 std::pair<ValueInfo, GlobalValue::GUID>
836 getValueInfoFromValueId(unsigned ValueId);
838 void addThisModule();
839 ModuleSummaryIndex::ModuleInfo *getThisModule();
842 } // end anonymous namespace
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845 Error Err) {
846 if (Err) {
847 std::error_code EC;
848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849 EC = EIB.convertToErrorCode();
850 Ctx.emitError(EIB.message());
852 return EC;
854 return std::error_code();
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858 StringRef ProducerIdentification,
859 LLVMContext &Context)
860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861 ValueList(Context, Stream.SizeInBytes()) {
862 this->ProducerIdentification = ProducerIdentification;
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866 if (WillMaterializeAllForwardRefs)
867 return Error::success();
869 // Prevent recursion.
870 WillMaterializeAllForwardRefs = true;
872 while (!BasicBlockFwdRefQueue.empty()) {
873 Function *F = BasicBlockFwdRefQueue.front();
874 BasicBlockFwdRefQueue.pop_front();
875 assert(F && "Expected valid function");
876 if (!BasicBlockFwdRefs.count(F))
877 // Already materialized.
878 continue;
880 // Check for a function that isn't materializable to prevent an infinite
881 // loop. When parsing a blockaddress stored in a global variable, there
882 // isn't a trivial way to check if a function will have a body without a
883 // linear search through FunctionsWithBodies, so just check it here.
884 if (!F->isMaterializable())
885 return error("Never resolved function from blockaddress");
887 // Try to materialize F.
888 if (Error Err = materialize(F))
889 return Err;
891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
893 // Reset state.
894 WillMaterializeAllForwardRefs = false;
895 return Error::success();
898 //===----------------------------------------------------------------------===//
899 // Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
902 static bool hasImplicitComdat(size_t Val) {
903 switch (Val) {
904 default:
905 return false;
906 case 1: // Old WeakAnyLinkage
907 case 4: // Old LinkOnceAnyLinkage
908 case 10: // Old WeakODRLinkage
909 case 11: // Old LinkOnceODRLinkage
910 return true;
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915 switch (Val) {
916 default: // Map unknown/new linkages to external
917 case 0:
918 return GlobalValue::ExternalLinkage;
919 case 2:
920 return GlobalValue::AppendingLinkage;
921 case 3:
922 return GlobalValue::InternalLinkage;
923 case 5:
924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925 case 6:
926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927 case 7:
928 return GlobalValue::ExternalWeakLinkage;
929 case 8:
930 return GlobalValue::CommonLinkage;
931 case 9:
932 return GlobalValue::PrivateLinkage;
933 case 12:
934 return GlobalValue::AvailableExternallyLinkage;
935 case 13:
936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937 case 14:
938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939 case 15:
940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941 case 1: // Old value with implicit comdat.
942 case 16:
943 return GlobalValue::WeakAnyLinkage;
944 case 10: // Old value with implicit comdat.
945 case 17:
946 return GlobalValue::WeakODRLinkage;
947 case 4: // Old value with implicit comdat.
948 case 18:
949 return GlobalValue::LinkOnceAnyLinkage;
950 case 11: // Old value with implicit comdat.
951 case 19:
952 return GlobalValue::LinkOnceODRLinkage;
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957 FunctionSummary::FFlags Flags;
958 Flags.ReadNone = RawFlags & 0x1;
959 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962 Flags.NoInline = (RawFlags >> 4) & 0x1;
963 return Flags;
966 /// Decode the flags for GlobalValue in the summary.
967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
968 uint64_t Version) {
969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
970 // like getDecodedLinkage() above. Any future change to the linkage enum and
971 // to getDecodedLinkage() will need to be taken into account here as above.
972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
973 RawFlags = RawFlags >> 4;
974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975 // The Live flag wasn't introduced until version 3. For dead stripping
976 // to work correctly on earlier versions, we must conservatively treat all
977 // values as live.
978 bool Live = (RawFlags & 0x2) || Version < 3;
979 bool Local = (RawFlags & 0x4);
980 bool AutoHide = (RawFlags & 0x8);
982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
988 (RawFlags & 0x2) ? true : false);
991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
992 switch (Val) {
993 default: // Map unknown visibilities to default.
994 case 0: return GlobalValue::DefaultVisibility;
995 case 1: return GlobalValue::HiddenVisibility;
996 case 2: return GlobalValue::ProtectedVisibility;
1000 static GlobalValue::DLLStorageClassTypes
1001 getDecodedDLLStorageClass(unsigned Val) {
1002 switch (Val) {
1003 default: // Map unknown values to default.
1004 case 0: return GlobalValue::DefaultStorageClass;
1005 case 1: return GlobalValue::DLLImportStorageClass;
1006 case 2: return GlobalValue::DLLExportStorageClass;
1010 static bool getDecodedDSOLocal(unsigned Val) {
1011 switch(Val) {
1012 default: // Map unknown values to preemptable.
1013 case 0: return false;
1014 case 1: return true;
1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1019 switch (Val) {
1020 case 0: return GlobalVariable::NotThreadLocal;
1021 default: // Map unknown non-zero value to general dynamic.
1022 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1023 case 2: return GlobalVariable::LocalDynamicTLSModel;
1024 case 3: return GlobalVariable::InitialExecTLSModel;
1025 case 4: return GlobalVariable::LocalExecTLSModel;
1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1030 switch (Val) {
1031 default: // Map unknown to UnnamedAddr::None.
1032 case 0: return GlobalVariable::UnnamedAddr::None;
1033 case 1: return GlobalVariable::UnnamedAddr::Global;
1034 case 2: return GlobalVariable::UnnamedAddr::Local;
1038 static int getDecodedCastOpcode(unsigned Val) {
1039 switch (Val) {
1040 default: return -1;
1041 case bitc::CAST_TRUNC : return Instruction::Trunc;
1042 case bitc::CAST_ZEXT : return Instruction::ZExt;
1043 case bitc::CAST_SEXT : return Instruction::SExt;
1044 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1045 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1046 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1047 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1048 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1049 case bitc::CAST_FPEXT : return Instruction::FPExt;
1050 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1051 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1052 case bitc::CAST_BITCAST : return Instruction::BitCast;
1053 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1058 bool IsFP = Ty->isFPOrFPVectorTy();
1059 // UnOps are only valid for int/fp or vector of int/fp types
1060 if (!IsFP && !Ty->isIntOrIntVectorTy())
1061 return -1;
1063 switch (Val) {
1064 default:
1065 return -1;
1066 case bitc::UNOP_FNEG:
1067 return IsFP ? Instruction::FNeg : -1;
1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1072 bool IsFP = Ty->isFPOrFPVectorTy();
1073 // BinOps are only valid for int/fp or vector of int/fp types
1074 if (!IsFP && !Ty->isIntOrIntVectorTy())
1075 return -1;
1077 switch (Val) {
1078 default:
1079 return -1;
1080 case bitc::BINOP_ADD:
1081 return IsFP ? Instruction::FAdd : Instruction::Add;
1082 case bitc::BINOP_SUB:
1083 return IsFP ? Instruction::FSub : Instruction::Sub;
1084 case bitc::BINOP_MUL:
1085 return IsFP ? Instruction::FMul : Instruction::Mul;
1086 case bitc::BINOP_UDIV:
1087 return IsFP ? -1 : Instruction::UDiv;
1088 case bitc::BINOP_SDIV:
1089 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1090 case bitc::BINOP_UREM:
1091 return IsFP ? -1 : Instruction::URem;
1092 case bitc::BINOP_SREM:
1093 return IsFP ? Instruction::FRem : Instruction::SRem;
1094 case bitc::BINOP_SHL:
1095 return IsFP ? -1 : Instruction::Shl;
1096 case bitc::BINOP_LSHR:
1097 return IsFP ? -1 : Instruction::LShr;
1098 case bitc::BINOP_ASHR:
1099 return IsFP ? -1 : Instruction::AShr;
1100 case bitc::BINOP_AND:
1101 return IsFP ? -1 : Instruction::And;
1102 case bitc::BINOP_OR:
1103 return IsFP ? -1 : Instruction::Or;
1104 case bitc::BINOP_XOR:
1105 return IsFP ? -1 : Instruction::Xor;
1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1110 switch (Val) {
1111 default: return AtomicRMWInst::BAD_BINOP;
1112 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1113 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1114 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1115 case bitc::RMW_AND: return AtomicRMWInst::And;
1116 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1117 case bitc::RMW_OR: return AtomicRMWInst::Or;
1118 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1119 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1120 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1121 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1122 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1123 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1124 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1128 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1129 switch (Val) {
1130 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1131 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1132 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1133 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1134 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1135 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1136 default: // Map unknown orderings to sequentially-consistent.
1137 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1142 switch (Val) {
1143 default: // Map unknown selection kinds to any.
1144 case bitc::COMDAT_SELECTION_KIND_ANY:
1145 return Comdat::Any;
1146 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1147 return Comdat::ExactMatch;
1148 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1149 return Comdat::Largest;
1150 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1151 return Comdat::NoDuplicates;
1152 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1153 return Comdat::SameSize;
1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1158 FastMathFlags FMF;
1159 if (0 != (Val & bitc::UnsafeAlgebra))
1160 FMF.setFast();
1161 if (0 != (Val & bitc::AllowReassoc))
1162 FMF.setAllowReassoc();
1163 if (0 != (Val & bitc::NoNaNs))
1164 FMF.setNoNaNs();
1165 if (0 != (Val & bitc::NoInfs))
1166 FMF.setNoInfs();
1167 if (0 != (Val & bitc::NoSignedZeros))
1168 FMF.setNoSignedZeros();
1169 if (0 != (Val & bitc::AllowReciprocal))
1170 FMF.setAllowReciprocal();
1171 if (0 != (Val & bitc::AllowContract))
1172 FMF.setAllowContract(true);
1173 if (0 != (Val & bitc::ApproxFunc))
1174 FMF.setApproxFunc();
1175 return FMF;
1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1179 switch (Val) {
1180 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1181 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1186 // The type table size is always specified correctly.
1187 if (ID >= TypeList.size())
1188 return nullptr;
1190 if (Type *Ty = TypeList[ID])
1191 return Ty;
1193 // If we have a forward reference, the only possible case is when it is to a
1194 // named struct. Just create a placeholder for now.
1195 return TypeList[ID] = createIdentifiedStructType(Context);
1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1199 StringRef Name) {
1200 auto *Ret = StructType::create(Context, Name);
1201 IdentifiedStructTypes.push_back(Ret);
1202 return Ret;
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1206 auto *Ret = StructType::create(Context);
1207 IdentifiedStructTypes.push_back(Ret);
1208 return Ret;
1211 //===----------------------------------------------------------------------===//
1212 // Functions for parsing blocks from the bitcode file
1213 //===----------------------------------------------------------------------===//
1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1216 switch (Val) {
1217 case Attribute::EndAttrKinds:
1218 llvm_unreachable("Synthetic enumerators which should never get here");
1220 case Attribute::None: return 0;
1221 case Attribute::ZExt: return 1 << 0;
1222 case Attribute::SExt: return 1 << 1;
1223 case Attribute::NoReturn: return 1 << 2;
1224 case Attribute::InReg: return 1 << 3;
1225 case Attribute::StructRet: return 1 << 4;
1226 case Attribute::NoUnwind: return 1 << 5;
1227 case Attribute::NoAlias: return 1 << 6;
1228 case Attribute::ByVal: return 1 << 7;
1229 case Attribute::Nest: return 1 << 8;
1230 case Attribute::ReadNone: return 1 << 9;
1231 case Attribute::ReadOnly: return 1 << 10;
1232 case Attribute::NoInline: return 1 << 11;
1233 case Attribute::AlwaysInline: return 1 << 12;
1234 case Attribute::OptimizeForSize: return 1 << 13;
1235 case Attribute::StackProtect: return 1 << 14;
1236 case Attribute::StackProtectReq: return 1 << 15;
1237 case Attribute::Alignment: return 31 << 16;
1238 case Attribute::NoCapture: return 1 << 21;
1239 case Attribute::NoRedZone: return 1 << 22;
1240 case Attribute::NoImplicitFloat: return 1 << 23;
1241 case Attribute::Naked: return 1 << 24;
1242 case Attribute::InlineHint: return 1 << 25;
1243 case Attribute::StackAlignment: return 7 << 26;
1244 case Attribute::ReturnsTwice: return 1 << 29;
1245 case Attribute::UWTable: return 1 << 30;
1246 case Attribute::NonLazyBind: return 1U << 31;
1247 case Attribute::SanitizeAddress: return 1ULL << 32;
1248 case Attribute::MinSize: return 1ULL << 33;
1249 case Attribute::NoDuplicate: return 1ULL << 34;
1250 case Attribute::StackProtectStrong: return 1ULL << 35;
1251 case Attribute::SanitizeThread: return 1ULL << 36;
1252 case Attribute::SanitizeMemory: return 1ULL << 37;
1253 case Attribute::NoBuiltin: return 1ULL << 38;
1254 case Attribute::Returned: return 1ULL << 39;
1255 case Attribute::Cold: return 1ULL << 40;
1256 case Attribute::Builtin: return 1ULL << 41;
1257 case Attribute::OptimizeNone: return 1ULL << 42;
1258 case Attribute::InAlloca: return 1ULL << 43;
1259 case Attribute::NonNull: return 1ULL << 44;
1260 case Attribute::JumpTable: return 1ULL << 45;
1261 case Attribute::Convergent: return 1ULL << 46;
1262 case Attribute::SafeStack: return 1ULL << 47;
1263 case Attribute::NoRecurse: return 1ULL << 48;
1264 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1265 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1266 case Attribute::SwiftSelf: return 1ULL << 51;
1267 case Attribute::SwiftError: return 1ULL << 52;
1268 case Attribute::WriteOnly: return 1ULL << 53;
1269 case Attribute::Speculatable: return 1ULL << 54;
1270 case Attribute::StrictFP: return 1ULL << 55;
1271 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1272 case Attribute::NoCfCheck: return 1ULL << 57;
1273 case Attribute::OptForFuzzing: return 1ULL << 58;
1274 case Attribute::ShadowCallStack: return 1ULL << 59;
1275 case Attribute::SpeculativeLoadHardening:
1276 return 1ULL << 60;
1277 case Attribute::ImmArg:
1278 return 1ULL << 61;
1279 case Attribute::WillReturn:
1280 return 1ULL << 62;
1281 case Attribute::NoFree:
1282 return 1ULL << 63;
1283 case Attribute::NoSync:
1284 llvm_unreachable("nosync attribute not supported in raw format");
1285 break;
1286 case Attribute::Dereferenceable:
1287 llvm_unreachable("dereferenceable attribute not supported in raw format");
1288 break;
1289 case Attribute::DereferenceableOrNull:
1290 llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1291 "format");
1292 break;
1293 case Attribute::ArgMemOnly:
1294 llvm_unreachable("argmemonly attribute not supported in raw format");
1295 break;
1296 case Attribute::AllocSize:
1297 llvm_unreachable("allocsize not supported in raw format");
1298 break;
1299 case Attribute::SanitizeMemTag:
1300 llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1301 break;
1303 llvm_unreachable("Unsupported attribute type");
1306 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1307 if (!Val) return;
1309 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1310 I = Attribute::AttrKind(I + 1)) {
1311 if (I == Attribute::SanitizeMemTag ||
1312 I == Attribute::Dereferenceable ||
1313 I == Attribute::DereferenceableOrNull ||
1314 I == Attribute::ArgMemOnly ||
1315 I == Attribute::AllocSize ||
1316 I == Attribute::NoSync)
1317 continue;
1318 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1319 if (I == Attribute::Alignment)
1320 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1321 else if (I == Attribute::StackAlignment)
1322 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1323 else
1324 B.addAttribute(I);
1329 /// This fills an AttrBuilder object with the LLVM attributes that have
1330 /// been decoded from the given integer. This function must stay in sync with
1331 /// 'encodeLLVMAttributesForBitcode'.
1332 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1333 uint64_t EncodedAttrs) {
1334 // FIXME: Remove in 4.0.
1336 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1337 // the bits above 31 down by 11 bits.
1338 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1339 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1340 "Alignment must be a power of two.");
1342 if (Alignment)
1343 B.addAlignmentAttr(Alignment);
1344 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1345 (EncodedAttrs & 0xffff));
1348 Error BitcodeReader::parseAttributeBlock() {
1349 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1350 return Err;
1352 if (!MAttributes.empty())
1353 return error("Invalid multiple blocks");
1355 SmallVector<uint64_t, 64> Record;
1357 SmallVector<AttributeList, 8> Attrs;
1359 // Read all the records.
1360 while (true) {
1361 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1362 if (!MaybeEntry)
1363 return MaybeEntry.takeError();
1364 BitstreamEntry Entry = MaybeEntry.get();
1366 switch (Entry.Kind) {
1367 case BitstreamEntry::SubBlock: // Handled for us already.
1368 case BitstreamEntry::Error:
1369 return error("Malformed block");
1370 case BitstreamEntry::EndBlock:
1371 return Error::success();
1372 case BitstreamEntry::Record:
1373 // The interesting case.
1374 break;
1377 // Read a record.
1378 Record.clear();
1379 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1380 if (!MaybeRecord)
1381 return MaybeRecord.takeError();
1382 switch (MaybeRecord.get()) {
1383 default: // Default behavior: ignore.
1384 break;
1385 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1386 // FIXME: Remove in 4.0.
1387 if (Record.size() & 1)
1388 return error("Invalid record");
1390 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1391 AttrBuilder B;
1392 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1393 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1396 MAttributes.push_back(AttributeList::get(Context, Attrs));
1397 Attrs.clear();
1398 break;
1399 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1400 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1401 Attrs.push_back(MAttributeGroups[Record[i]]);
1403 MAttributes.push_back(AttributeList::get(Context, Attrs));
1404 Attrs.clear();
1405 break;
1410 // Returns Attribute::None on unrecognized codes.
1411 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1412 switch (Code) {
1413 default:
1414 return Attribute::None;
1415 case bitc::ATTR_KIND_ALIGNMENT:
1416 return Attribute::Alignment;
1417 case bitc::ATTR_KIND_ALWAYS_INLINE:
1418 return Attribute::AlwaysInline;
1419 case bitc::ATTR_KIND_ARGMEMONLY:
1420 return Attribute::ArgMemOnly;
1421 case bitc::ATTR_KIND_BUILTIN:
1422 return Attribute::Builtin;
1423 case bitc::ATTR_KIND_BY_VAL:
1424 return Attribute::ByVal;
1425 case bitc::ATTR_KIND_IN_ALLOCA:
1426 return Attribute::InAlloca;
1427 case bitc::ATTR_KIND_COLD:
1428 return Attribute::Cold;
1429 case bitc::ATTR_KIND_CONVERGENT:
1430 return Attribute::Convergent;
1431 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1432 return Attribute::InaccessibleMemOnly;
1433 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1434 return Attribute::InaccessibleMemOrArgMemOnly;
1435 case bitc::ATTR_KIND_INLINE_HINT:
1436 return Attribute::InlineHint;
1437 case bitc::ATTR_KIND_IN_REG:
1438 return Attribute::InReg;
1439 case bitc::ATTR_KIND_JUMP_TABLE:
1440 return Attribute::JumpTable;
1441 case bitc::ATTR_KIND_MIN_SIZE:
1442 return Attribute::MinSize;
1443 case bitc::ATTR_KIND_NAKED:
1444 return Attribute::Naked;
1445 case bitc::ATTR_KIND_NEST:
1446 return Attribute::Nest;
1447 case bitc::ATTR_KIND_NO_ALIAS:
1448 return Attribute::NoAlias;
1449 case bitc::ATTR_KIND_NO_BUILTIN:
1450 return Attribute::NoBuiltin;
1451 case bitc::ATTR_KIND_NO_CAPTURE:
1452 return Attribute::NoCapture;
1453 case bitc::ATTR_KIND_NO_DUPLICATE:
1454 return Attribute::NoDuplicate;
1455 case bitc::ATTR_KIND_NOFREE:
1456 return Attribute::NoFree;
1457 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1458 return Attribute::NoImplicitFloat;
1459 case bitc::ATTR_KIND_NO_INLINE:
1460 return Attribute::NoInline;
1461 case bitc::ATTR_KIND_NO_RECURSE:
1462 return Attribute::NoRecurse;
1463 case bitc::ATTR_KIND_NON_LAZY_BIND:
1464 return Attribute::NonLazyBind;
1465 case bitc::ATTR_KIND_NON_NULL:
1466 return Attribute::NonNull;
1467 case bitc::ATTR_KIND_DEREFERENCEABLE:
1468 return Attribute::Dereferenceable;
1469 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1470 return Attribute::DereferenceableOrNull;
1471 case bitc::ATTR_KIND_ALLOC_SIZE:
1472 return Attribute::AllocSize;
1473 case bitc::ATTR_KIND_NO_RED_ZONE:
1474 return Attribute::NoRedZone;
1475 case bitc::ATTR_KIND_NO_RETURN:
1476 return Attribute::NoReturn;
1477 case bitc::ATTR_KIND_NOSYNC:
1478 return Attribute::NoSync;
1479 case bitc::ATTR_KIND_NOCF_CHECK:
1480 return Attribute::NoCfCheck;
1481 case bitc::ATTR_KIND_NO_UNWIND:
1482 return Attribute::NoUnwind;
1483 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1484 return Attribute::OptForFuzzing;
1485 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1486 return Attribute::OptimizeForSize;
1487 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1488 return Attribute::OptimizeNone;
1489 case bitc::ATTR_KIND_READ_NONE:
1490 return Attribute::ReadNone;
1491 case bitc::ATTR_KIND_READ_ONLY:
1492 return Attribute::ReadOnly;
1493 case bitc::ATTR_KIND_RETURNED:
1494 return Attribute::Returned;
1495 case bitc::ATTR_KIND_RETURNS_TWICE:
1496 return Attribute::ReturnsTwice;
1497 case bitc::ATTR_KIND_S_EXT:
1498 return Attribute::SExt;
1499 case bitc::ATTR_KIND_SPECULATABLE:
1500 return Attribute::Speculatable;
1501 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1502 return Attribute::StackAlignment;
1503 case bitc::ATTR_KIND_STACK_PROTECT:
1504 return Attribute::StackProtect;
1505 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1506 return Attribute::StackProtectReq;
1507 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1508 return Attribute::StackProtectStrong;
1509 case bitc::ATTR_KIND_SAFESTACK:
1510 return Attribute::SafeStack;
1511 case bitc::ATTR_KIND_SHADOWCALLSTACK:
1512 return Attribute::ShadowCallStack;
1513 case bitc::ATTR_KIND_STRICT_FP:
1514 return Attribute::StrictFP;
1515 case bitc::ATTR_KIND_STRUCT_RET:
1516 return Attribute::StructRet;
1517 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1518 return Attribute::SanitizeAddress;
1519 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1520 return Attribute::SanitizeHWAddress;
1521 case bitc::ATTR_KIND_SANITIZE_THREAD:
1522 return Attribute::SanitizeThread;
1523 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1524 return Attribute::SanitizeMemory;
1525 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1526 return Attribute::SpeculativeLoadHardening;
1527 case bitc::ATTR_KIND_SWIFT_ERROR:
1528 return Attribute::SwiftError;
1529 case bitc::ATTR_KIND_SWIFT_SELF:
1530 return Attribute::SwiftSelf;
1531 case bitc::ATTR_KIND_UW_TABLE:
1532 return Attribute::UWTable;
1533 case bitc::ATTR_KIND_WILLRETURN:
1534 return Attribute::WillReturn;
1535 case bitc::ATTR_KIND_WRITEONLY:
1536 return Attribute::WriteOnly;
1537 case bitc::ATTR_KIND_Z_EXT:
1538 return Attribute::ZExt;
1539 case bitc::ATTR_KIND_IMMARG:
1540 return Attribute::ImmArg;
1541 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1542 return Attribute::SanitizeMemTag;
1546 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1547 MaybeAlign &Alignment) {
1548 // Note: Alignment in bitcode files is incremented by 1, so that zero
1549 // can be used for default alignment.
1550 if (Exponent > Value::MaxAlignmentExponent + 1)
1551 return error("Invalid alignment value");
1552 Alignment = decodeMaybeAlign(Exponent);
1553 return Error::success();
1556 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1557 *Kind = getAttrFromCode(Code);
1558 if (*Kind == Attribute::None)
1559 return error("Unknown attribute kind (" + Twine(Code) + ")");
1560 return Error::success();
1563 Error BitcodeReader::parseAttributeGroupBlock() {
1564 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1565 return Err;
1567 if (!MAttributeGroups.empty())
1568 return error("Invalid multiple blocks");
1570 SmallVector<uint64_t, 64> Record;
1572 // Read all the records.
1573 while (true) {
1574 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1575 if (!MaybeEntry)
1576 return MaybeEntry.takeError();
1577 BitstreamEntry Entry = MaybeEntry.get();
1579 switch (Entry.Kind) {
1580 case BitstreamEntry::SubBlock: // Handled for us already.
1581 case BitstreamEntry::Error:
1582 return error("Malformed block");
1583 case BitstreamEntry::EndBlock:
1584 return Error::success();
1585 case BitstreamEntry::Record:
1586 // The interesting case.
1587 break;
1590 // Read a record.
1591 Record.clear();
1592 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1593 if (!MaybeRecord)
1594 return MaybeRecord.takeError();
1595 switch (MaybeRecord.get()) {
1596 default: // Default behavior: ignore.
1597 break;
1598 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1599 if (Record.size() < 3)
1600 return error("Invalid record");
1602 uint64_t GrpID = Record[0];
1603 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1605 AttrBuilder B;
1606 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1607 if (Record[i] == 0) { // Enum attribute
1608 Attribute::AttrKind Kind;
1609 if (Error Err = parseAttrKind(Record[++i], &Kind))
1610 return Err;
1612 // Upgrade old-style byval attribute to one with a type, even if it's
1613 // nullptr. We will have to insert the real type when we associate
1614 // this AttributeList with a function.
1615 if (Kind == Attribute::ByVal)
1616 B.addByValAttr(nullptr);
1618 B.addAttribute(Kind);
1619 } else if (Record[i] == 1) { // Integer attribute
1620 Attribute::AttrKind Kind;
1621 if (Error Err = parseAttrKind(Record[++i], &Kind))
1622 return Err;
1623 if (Kind == Attribute::Alignment)
1624 B.addAlignmentAttr(Record[++i]);
1625 else if (Kind == Attribute::StackAlignment)
1626 B.addStackAlignmentAttr(Record[++i]);
1627 else if (Kind == Attribute::Dereferenceable)
1628 B.addDereferenceableAttr(Record[++i]);
1629 else if (Kind == Attribute::DereferenceableOrNull)
1630 B.addDereferenceableOrNullAttr(Record[++i]);
1631 else if (Kind == Attribute::AllocSize)
1632 B.addAllocSizeAttrFromRawRepr(Record[++i]);
1633 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1634 bool HasValue = (Record[i++] == 4);
1635 SmallString<64> KindStr;
1636 SmallString<64> ValStr;
1638 while (Record[i] != 0 && i != e)
1639 KindStr += Record[i++];
1640 assert(Record[i] == 0 && "Kind string not null terminated");
1642 if (HasValue) {
1643 // Has a value associated with it.
1644 ++i; // Skip the '0' that terminates the "kind" string.
1645 while (Record[i] != 0 && i != e)
1646 ValStr += Record[i++];
1647 assert(Record[i] == 0 && "Value string not null terminated");
1650 B.addAttribute(KindStr.str(), ValStr.str());
1651 } else {
1652 assert((Record[i] == 5 || Record[i] == 6) &&
1653 "Invalid attribute group entry");
1654 bool HasType = Record[i] == 6;
1655 Attribute::AttrKind Kind;
1656 if (Error Err = parseAttrKind(Record[++i], &Kind))
1657 return Err;
1658 if (Kind == Attribute::ByVal)
1659 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1663 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1664 break;
1670 Error BitcodeReader::parseTypeTable() {
1671 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1672 return Err;
1674 return parseTypeTableBody();
1677 Error BitcodeReader::parseTypeTableBody() {
1678 if (!TypeList.empty())
1679 return error("Invalid multiple blocks");
1681 SmallVector<uint64_t, 64> Record;
1682 unsigned NumRecords = 0;
1684 SmallString<64> TypeName;
1686 // Read all the records for this type table.
1687 while (true) {
1688 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1689 if (!MaybeEntry)
1690 return MaybeEntry.takeError();
1691 BitstreamEntry Entry = MaybeEntry.get();
1693 switch (Entry.Kind) {
1694 case BitstreamEntry::SubBlock: // Handled for us already.
1695 case BitstreamEntry::Error:
1696 return error("Malformed block");
1697 case BitstreamEntry::EndBlock:
1698 if (NumRecords != TypeList.size())
1699 return error("Malformed block");
1700 return Error::success();
1701 case BitstreamEntry::Record:
1702 // The interesting case.
1703 break;
1706 // Read a record.
1707 Record.clear();
1708 Type *ResultTy = nullptr;
1709 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1710 if (!MaybeRecord)
1711 return MaybeRecord.takeError();
1712 switch (MaybeRecord.get()) {
1713 default:
1714 return error("Invalid value");
1715 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1716 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1717 // type list. This allows us to reserve space.
1718 if (Record.size() < 1)
1719 return error("Invalid record");
1720 TypeList.resize(Record[0]);
1721 continue;
1722 case bitc::TYPE_CODE_VOID: // VOID
1723 ResultTy = Type::getVoidTy(Context);
1724 break;
1725 case bitc::TYPE_CODE_HALF: // HALF
1726 ResultTy = Type::getHalfTy(Context);
1727 break;
1728 case bitc::TYPE_CODE_FLOAT: // FLOAT
1729 ResultTy = Type::getFloatTy(Context);
1730 break;
1731 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1732 ResultTy = Type::getDoubleTy(Context);
1733 break;
1734 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1735 ResultTy = Type::getX86_FP80Ty(Context);
1736 break;
1737 case bitc::TYPE_CODE_FP128: // FP128
1738 ResultTy = Type::getFP128Ty(Context);
1739 break;
1740 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1741 ResultTy = Type::getPPC_FP128Ty(Context);
1742 break;
1743 case bitc::TYPE_CODE_LABEL: // LABEL
1744 ResultTy = Type::getLabelTy(Context);
1745 break;
1746 case bitc::TYPE_CODE_METADATA: // METADATA
1747 ResultTy = Type::getMetadataTy(Context);
1748 break;
1749 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1750 ResultTy = Type::getX86_MMXTy(Context);
1751 break;
1752 case bitc::TYPE_CODE_TOKEN: // TOKEN
1753 ResultTy = Type::getTokenTy(Context);
1754 break;
1755 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1756 if (Record.size() < 1)
1757 return error("Invalid record");
1759 uint64_t NumBits = Record[0];
1760 if (NumBits < IntegerType::MIN_INT_BITS ||
1761 NumBits > IntegerType::MAX_INT_BITS)
1762 return error("Bitwidth for integer type out of range");
1763 ResultTy = IntegerType::get(Context, NumBits);
1764 break;
1766 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1767 // [pointee type, address space]
1768 if (Record.size() < 1)
1769 return error("Invalid record");
1770 unsigned AddressSpace = 0;
1771 if (Record.size() == 2)
1772 AddressSpace = Record[1];
1773 ResultTy = getTypeByID(Record[0]);
1774 if (!ResultTy ||
1775 !PointerType::isValidElementType(ResultTy))
1776 return error("Invalid type");
1777 ResultTy = PointerType::get(ResultTy, AddressSpace);
1778 break;
1780 case bitc::TYPE_CODE_FUNCTION_OLD: {
1781 // FIXME: attrid is dead, remove it in LLVM 4.0
1782 // FUNCTION: [vararg, attrid, retty, paramty x N]
1783 if (Record.size() < 3)
1784 return error("Invalid record");
1785 SmallVector<Type*, 8> ArgTys;
1786 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1787 if (Type *T = getTypeByID(Record[i]))
1788 ArgTys.push_back(T);
1789 else
1790 break;
1793 ResultTy = getTypeByID(Record[2]);
1794 if (!ResultTy || ArgTys.size() < Record.size()-3)
1795 return error("Invalid type");
1797 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1798 break;
1800 case bitc::TYPE_CODE_FUNCTION: {
1801 // FUNCTION: [vararg, retty, paramty x N]
1802 if (Record.size() < 2)
1803 return error("Invalid record");
1804 SmallVector<Type*, 8> ArgTys;
1805 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1806 if (Type *T = getTypeByID(Record[i])) {
1807 if (!FunctionType::isValidArgumentType(T))
1808 return error("Invalid function argument type");
1809 ArgTys.push_back(T);
1811 else
1812 break;
1815 ResultTy = getTypeByID(Record[1]);
1816 if (!ResultTy || ArgTys.size() < Record.size()-2)
1817 return error("Invalid type");
1819 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1820 break;
1822 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1823 if (Record.size() < 1)
1824 return error("Invalid record");
1825 SmallVector<Type*, 8> EltTys;
1826 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1827 if (Type *T = getTypeByID(Record[i]))
1828 EltTys.push_back(T);
1829 else
1830 break;
1832 if (EltTys.size() != Record.size()-1)
1833 return error("Invalid type");
1834 ResultTy = StructType::get(Context, EltTys, Record[0]);
1835 break;
1837 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1838 if (convertToString(Record, 0, TypeName))
1839 return error("Invalid record");
1840 continue;
1842 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1843 if (Record.size() < 1)
1844 return error("Invalid record");
1846 if (NumRecords >= TypeList.size())
1847 return error("Invalid TYPE table");
1849 // Check to see if this was forward referenced, if so fill in the temp.
1850 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1851 if (Res) {
1852 Res->setName(TypeName);
1853 TypeList[NumRecords] = nullptr;
1854 } else // Otherwise, create a new struct.
1855 Res = createIdentifiedStructType(Context, TypeName);
1856 TypeName.clear();
1858 SmallVector<Type*, 8> EltTys;
1859 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1860 if (Type *T = getTypeByID(Record[i]))
1861 EltTys.push_back(T);
1862 else
1863 break;
1865 if (EltTys.size() != Record.size()-1)
1866 return error("Invalid record");
1867 Res->setBody(EltTys, Record[0]);
1868 ResultTy = Res;
1869 break;
1871 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1872 if (Record.size() != 1)
1873 return error("Invalid record");
1875 if (NumRecords >= TypeList.size())
1876 return error("Invalid TYPE table");
1878 // Check to see if this was forward referenced, if so fill in the temp.
1879 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1880 if (Res) {
1881 Res->setName(TypeName);
1882 TypeList[NumRecords] = nullptr;
1883 } else // Otherwise, create a new struct with no body.
1884 Res = createIdentifiedStructType(Context, TypeName);
1885 TypeName.clear();
1886 ResultTy = Res;
1887 break;
1889 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1890 if (Record.size() < 2)
1891 return error("Invalid record");
1892 ResultTy = getTypeByID(Record[1]);
1893 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1894 return error("Invalid type");
1895 ResultTy = ArrayType::get(ResultTy, Record[0]);
1896 break;
1897 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
1898 // [numelts, eltty, scalable]
1899 if (Record.size() < 2)
1900 return error("Invalid record");
1901 if (Record[0] == 0)
1902 return error("Invalid vector length");
1903 ResultTy = getTypeByID(Record[1]);
1904 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1905 return error("Invalid type");
1906 bool Scalable = Record.size() > 2 ? Record[2] : false;
1907 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1908 break;
1911 if (NumRecords >= TypeList.size())
1912 return error("Invalid TYPE table");
1913 if (TypeList[NumRecords])
1914 return error(
1915 "Invalid TYPE table: Only named structs can be forward referenced");
1916 assert(ResultTy && "Didn't read a type?");
1917 TypeList[NumRecords++] = ResultTy;
1921 Error BitcodeReader::parseOperandBundleTags() {
1922 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1923 return Err;
1925 if (!BundleTags.empty())
1926 return error("Invalid multiple blocks");
1928 SmallVector<uint64_t, 64> Record;
1930 while (true) {
1931 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1932 if (!MaybeEntry)
1933 return MaybeEntry.takeError();
1934 BitstreamEntry Entry = MaybeEntry.get();
1936 switch (Entry.Kind) {
1937 case BitstreamEntry::SubBlock: // Handled for us already.
1938 case BitstreamEntry::Error:
1939 return error("Malformed block");
1940 case BitstreamEntry::EndBlock:
1941 return Error::success();
1942 case BitstreamEntry::Record:
1943 // The interesting case.
1944 break;
1947 // Tags are implicitly mapped to integers by their order.
1949 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1950 if (!MaybeRecord)
1951 return MaybeRecord.takeError();
1952 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1953 return error("Invalid record");
1955 // OPERAND_BUNDLE_TAG: [strchr x N]
1956 BundleTags.emplace_back();
1957 if (convertToString(Record, 0, BundleTags.back()))
1958 return error("Invalid record");
1959 Record.clear();
1963 Error BitcodeReader::parseSyncScopeNames() {
1964 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1965 return Err;
1967 if (!SSIDs.empty())
1968 return error("Invalid multiple synchronization scope names blocks");
1970 SmallVector<uint64_t, 64> Record;
1971 while (true) {
1972 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1973 if (!MaybeEntry)
1974 return MaybeEntry.takeError();
1975 BitstreamEntry Entry = MaybeEntry.get();
1977 switch (Entry.Kind) {
1978 case BitstreamEntry::SubBlock: // Handled for us already.
1979 case BitstreamEntry::Error:
1980 return error("Malformed block");
1981 case BitstreamEntry::EndBlock:
1982 if (SSIDs.empty())
1983 return error("Invalid empty synchronization scope names block");
1984 return Error::success();
1985 case BitstreamEntry::Record:
1986 // The interesting case.
1987 break;
1990 // Synchronization scope names are implicitly mapped to synchronization
1991 // scope IDs by their order.
1993 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1994 if (!MaybeRecord)
1995 return MaybeRecord.takeError();
1996 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1997 return error("Invalid record");
1999 SmallString<16> SSN;
2000 if (convertToString(Record, 0, SSN))
2001 return error("Invalid record");
2003 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2004 Record.clear();
2008 /// Associate a value with its name from the given index in the provided record.
2009 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2010 unsigned NameIndex, Triple &TT) {
2011 SmallString<128> ValueName;
2012 if (convertToString(Record, NameIndex, ValueName))
2013 return error("Invalid record");
2014 unsigned ValueID = Record[0];
2015 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2016 return error("Invalid record");
2017 Value *V = ValueList[ValueID];
2019 StringRef NameStr(ValueName.data(), ValueName.size());
2020 if (NameStr.find_first_of(0) != StringRef::npos)
2021 return error("Invalid value name");
2022 V->setName(NameStr);
2023 auto *GO = dyn_cast<GlobalObject>(V);
2024 if (GO) {
2025 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2026 if (TT.supportsCOMDAT())
2027 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2028 else
2029 GO->setComdat(nullptr);
2032 return V;
2035 /// Helper to note and return the current location, and jump to the given
2036 /// offset.
2037 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2038 BitstreamCursor &Stream) {
2039 // Save the current parsing location so we can jump back at the end
2040 // of the VST read.
2041 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2042 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2043 return std::move(JumpFailed);
2044 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2045 if (!MaybeEntry)
2046 return MaybeEntry.takeError();
2047 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2048 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2049 return CurrentBit;
2052 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2053 Function *F,
2054 ArrayRef<uint64_t> Record) {
2055 // Note that we subtract 1 here because the offset is relative to one word
2056 // before the start of the identification or module block, which was
2057 // historically always the start of the regular bitcode header.
2058 uint64_t FuncWordOffset = Record[1] - 1;
2059 uint64_t FuncBitOffset = FuncWordOffset * 32;
2060 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2061 // Set the LastFunctionBlockBit to point to the last function block.
2062 // Later when parsing is resumed after function materialization,
2063 // we can simply skip that last function block.
2064 if (FuncBitOffset > LastFunctionBlockBit)
2065 LastFunctionBlockBit = FuncBitOffset;
2068 /// Read a new-style GlobalValue symbol table.
2069 Error BitcodeReader::parseGlobalValueSymbolTable() {
2070 unsigned FuncBitcodeOffsetDelta =
2071 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2073 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2074 return Err;
2076 SmallVector<uint64_t, 64> Record;
2077 while (true) {
2078 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2079 if (!MaybeEntry)
2080 return MaybeEntry.takeError();
2081 BitstreamEntry Entry = MaybeEntry.get();
2083 switch (Entry.Kind) {
2084 case BitstreamEntry::SubBlock:
2085 case BitstreamEntry::Error:
2086 return error("Malformed block");
2087 case BitstreamEntry::EndBlock:
2088 return Error::success();
2089 case BitstreamEntry::Record:
2090 break;
2093 Record.clear();
2094 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2095 if (!MaybeRecord)
2096 return MaybeRecord.takeError();
2097 switch (MaybeRecord.get()) {
2098 case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2099 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2100 cast<Function>(ValueList[Record[0]]), Record);
2101 break;
2106 /// Parse the value symbol table at either the current parsing location or
2107 /// at the given bit offset if provided.
2108 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2109 uint64_t CurrentBit;
2110 // Pass in the Offset to distinguish between calling for the module-level
2111 // VST (where we want to jump to the VST offset) and the function-level
2112 // VST (where we don't).
2113 if (Offset > 0) {
2114 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2115 if (!MaybeCurrentBit)
2116 return MaybeCurrentBit.takeError();
2117 CurrentBit = MaybeCurrentBit.get();
2118 // If this module uses a string table, read this as a module-level VST.
2119 if (UseStrtab) {
2120 if (Error Err = parseGlobalValueSymbolTable())
2121 return Err;
2122 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2123 return JumpFailed;
2124 return Error::success();
2126 // Otherwise, the VST will be in a similar format to a function-level VST,
2127 // and will contain symbol names.
2130 // Compute the delta between the bitcode indices in the VST (the word offset
2131 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2132 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2133 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2134 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2135 // just before entering the VST subblock because: 1) the EnterSubBlock
2136 // changes the AbbrevID width; 2) the VST block is nested within the same
2137 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2138 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2139 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2140 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2141 unsigned FuncBitcodeOffsetDelta =
2142 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2144 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2145 return Err;
2147 SmallVector<uint64_t, 64> Record;
2149 Triple TT(TheModule->getTargetTriple());
2151 // Read all the records for this value table.
2152 SmallString<128> ValueName;
2154 while (true) {
2155 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2156 if (!MaybeEntry)
2157 return MaybeEntry.takeError();
2158 BitstreamEntry Entry = MaybeEntry.get();
2160 switch (Entry.Kind) {
2161 case BitstreamEntry::SubBlock: // Handled for us already.
2162 case BitstreamEntry::Error:
2163 return error("Malformed block");
2164 case BitstreamEntry::EndBlock:
2165 if (Offset > 0)
2166 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2167 return JumpFailed;
2168 return Error::success();
2169 case BitstreamEntry::Record:
2170 // The interesting case.
2171 break;
2174 // Read a record.
2175 Record.clear();
2176 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2177 if (!MaybeRecord)
2178 return MaybeRecord.takeError();
2179 switch (MaybeRecord.get()) {
2180 default: // Default behavior: unknown type.
2181 break;
2182 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2183 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2184 if (Error Err = ValOrErr.takeError())
2185 return Err;
2186 ValOrErr.get();
2187 break;
2189 case bitc::VST_CODE_FNENTRY: {
2190 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2191 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2192 if (Error Err = ValOrErr.takeError())
2193 return Err;
2194 Value *V = ValOrErr.get();
2196 // Ignore function offsets emitted for aliases of functions in older
2197 // versions of LLVM.
2198 if (auto *F = dyn_cast<Function>(V))
2199 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2200 break;
2202 case bitc::VST_CODE_BBENTRY: {
2203 if (convertToString(Record, 1, ValueName))
2204 return error("Invalid record");
2205 BasicBlock *BB = getBasicBlock(Record[0]);
2206 if (!BB)
2207 return error("Invalid record");
2209 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2210 ValueName.clear();
2211 break;
2217 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2218 /// encoding.
2219 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2220 if ((V & 1) == 0)
2221 return V >> 1;
2222 if (V != 1)
2223 return -(V >> 1);
2224 // There is no such thing as -0 with integers. "-0" really means MININT.
2225 return 1ULL << 63;
2228 /// Resolve all of the initializers for global values and aliases that we can.
2229 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2230 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2231 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2232 IndirectSymbolInitWorklist;
2233 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2234 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2235 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2237 GlobalInitWorklist.swap(GlobalInits);
2238 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2239 FunctionPrefixWorklist.swap(FunctionPrefixes);
2240 FunctionPrologueWorklist.swap(FunctionPrologues);
2241 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2243 while (!GlobalInitWorklist.empty()) {
2244 unsigned ValID = GlobalInitWorklist.back().second;
2245 if (ValID >= ValueList.size()) {
2246 // Not ready to resolve this yet, it requires something later in the file.
2247 GlobalInits.push_back(GlobalInitWorklist.back());
2248 } else {
2249 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2250 GlobalInitWorklist.back().first->setInitializer(C);
2251 else
2252 return error("Expected a constant");
2254 GlobalInitWorklist.pop_back();
2257 while (!IndirectSymbolInitWorklist.empty()) {
2258 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2259 if (ValID >= ValueList.size()) {
2260 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2261 } else {
2262 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2263 if (!C)
2264 return error("Expected a constant");
2265 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2266 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2267 return error("Alias and aliasee types don't match");
2268 GIS->setIndirectSymbol(C);
2270 IndirectSymbolInitWorklist.pop_back();
2273 while (!FunctionPrefixWorklist.empty()) {
2274 unsigned ValID = FunctionPrefixWorklist.back().second;
2275 if (ValID >= ValueList.size()) {
2276 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2277 } else {
2278 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2279 FunctionPrefixWorklist.back().first->setPrefixData(C);
2280 else
2281 return error("Expected a constant");
2283 FunctionPrefixWorklist.pop_back();
2286 while (!FunctionPrologueWorklist.empty()) {
2287 unsigned ValID = FunctionPrologueWorklist.back().second;
2288 if (ValID >= ValueList.size()) {
2289 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2290 } else {
2291 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2292 FunctionPrologueWorklist.back().first->setPrologueData(C);
2293 else
2294 return error("Expected a constant");
2296 FunctionPrologueWorklist.pop_back();
2299 while (!FunctionPersonalityFnWorklist.empty()) {
2300 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2301 if (ValID >= ValueList.size()) {
2302 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2303 } else {
2304 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2305 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2306 else
2307 return error("Expected a constant");
2309 FunctionPersonalityFnWorklist.pop_back();
2312 return Error::success();
2315 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2316 SmallVector<uint64_t, 8> Words(Vals.size());
2317 transform(Vals, Words.begin(),
2318 BitcodeReader::decodeSignRotatedValue);
2320 return APInt(TypeBits, Words);
2323 Error BitcodeReader::parseConstants() {
2324 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2325 return Err;
2327 SmallVector<uint64_t, 64> Record;
2329 // Read all the records for this value table.
2330 Type *CurTy = Type::getInt32Ty(Context);
2331 Type *CurFullTy = Type::getInt32Ty(Context);
2332 unsigned NextCstNo = ValueList.size();
2334 while (true) {
2335 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2336 if (!MaybeEntry)
2337 return MaybeEntry.takeError();
2338 BitstreamEntry Entry = MaybeEntry.get();
2340 switch (Entry.Kind) {
2341 case BitstreamEntry::SubBlock: // Handled for us already.
2342 case BitstreamEntry::Error:
2343 return error("Malformed block");
2344 case BitstreamEntry::EndBlock:
2345 if (NextCstNo != ValueList.size())
2346 return error("Invalid constant reference");
2348 // Once all the constants have been read, go through and resolve forward
2349 // references.
2350 ValueList.resolveConstantForwardRefs();
2351 return Error::success();
2352 case BitstreamEntry::Record:
2353 // The interesting case.
2354 break;
2357 // Read a record.
2358 Record.clear();
2359 Type *VoidType = Type::getVoidTy(Context);
2360 Value *V = nullptr;
2361 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2362 if (!MaybeBitCode)
2363 return MaybeBitCode.takeError();
2364 switch (unsigned BitCode = MaybeBitCode.get()) {
2365 default: // Default behavior: unknown constant
2366 case bitc::CST_CODE_UNDEF: // UNDEF
2367 V = UndefValue::get(CurTy);
2368 break;
2369 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2370 if (Record.empty())
2371 return error("Invalid record");
2372 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2373 return error("Invalid record");
2374 if (TypeList[Record[0]] == VoidType)
2375 return error("Invalid constant type");
2376 CurFullTy = TypeList[Record[0]];
2377 CurTy = flattenPointerTypes(CurFullTy);
2378 continue; // Skip the ValueList manipulation.
2379 case bitc::CST_CODE_NULL: // NULL
2380 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2381 return error("Invalid type for a constant null value");
2382 V = Constant::getNullValue(CurTy);
2383 break;
2384 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2385 if (!CurTy->isIntegerTy() || Record.empty())
2386 return error("Invalid record");
2387 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2388 break;
2389 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2390 if (!CurTy->isIntegerTy() || Record.empty())
2391 return error("Invalid record");
2393 APInt VInt =
2394 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2395 V = ConstantInt::get(Context, VInt);
2397 break;
2399 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2400 if (Record.empty())
2401 return error("Invalid record");
2402 if (CurTy->isHalfTy())
2403 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2404 APInt(16, (uint16_t)Record[0])));
2405 else if (CurTy->isFloatTy())
2406 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2407 APInt(32, (uint32_t)Record[0])));
2408 else if (CurTy->isDoubleTy())
2409 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2410 APInt(64, Record[0])));
2411 else if (CurTy->isX86_FP80Ty()) {
2412 // Bits are not stored the same way as a normal i80 APInt, compensate.
2413 uint64_t Rearrange[2];
2414 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2415 Rearrange[1] = Record[0] >> 48;
2416 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2417 APInt(80, Rearrange)));
2418 } else if (CurTy->isFP128Ty())
2419 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2420 APInt(128, Record)));
2421 else if (CurTy->isPPC_FP128Ty())
2422 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2423 APInt(128, Record)));
2424 else
2425 V = UndefValue::get(CurTy);
2426 break;
2429 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2430 if (Record.empty())
2431 return error("Invalid record");
2433 unsigned Size = Record.size();
2434 SmallVector<Constant*, 16> Elts;
2436 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2437 for (unsigned i = 0; i != Size; ++i)
2438 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2439 STy->getElementType(i)));
2440 V = ConstantStruct::get(STy, Elts);
2441 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2442 Type *EltTy = ATy->getElementType();
2443 for (unsigned i = 0; i != Size; ++i)
2444 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2445 V = ConstantArray::get(ATy, Elts);
2446 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2447 Type *EltTy = VTy->getElementType();
2448 for (unsigned i = 0; i != Size; ++i)
2449 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2450 V = ConstantVector::get(Elts);
2451 } else {
2452 V = UndefValue::get(CurTy);
2454 break;
2456 case bitc::CST_CODE_STRING: // STRING: [values]
2457 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2458 if (Record.empty())
2459 return error("Invalid record");
2461 SmallString<16> Elts(Record.begin(), Record.end());
2462 V = ConstantDataArray::getString(Context, Elts,
2463 BitCode == bitc::CST_CODE_CSTRING);
2464 break;
2466 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2467 if (Record.empty())
2468 return error("Invalid record");
2470 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2471 if (EltTy->isIntegerTy(8)) {
2472 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2473 if (isa<VectorType>(CurTy))
2474 V = ConstantDataVector::get(Context, Elts);
2475 else
2476 V = ConstantDataArray::get(Context, Elts);
2477 } else if (EltTy->isIntegerTy(16)) {
2478 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2479 if (isa<VectorType>(CurTy))
2480 V = ConstantDataVector::get(Context, Elts);
2481 else
2482 V = ConstantDataArray::get(Context, Elts);
2483 } else if (EltTy->isIntegerTy(32)) {
2484 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2485 if (isa<VectorType>(CurTy))
2486 V = ConstantDataVector::get(Context, Elts);
2487 else
2488 V = ConstantDataArray::get(Context, Elts);
2489 } else if (EltTy->isIntegerTy(64)) {
2490 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2491 if (isa<VectorType>(CurTy))
2492 V = ConstantDataVector::get(Context, Elts);
2493 else
2494 V = ConstantDataArray::get(Context, Elts);
2495 } else if (EltTy->isHalfTy()) {
2496 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2497 if (isa<VectorType>(CurTy))
2498 V = ConstantDataVector::getFP(Context, Elts);
2499 else
2500 V = ConstantDataArray::getFP(Context, Elts);
2501 } else if (EltTy->isFloatTy()) {
2502 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2503 if (isa<VectorType>(CurTy))
2504 V = ConstantDataVector::getFP(Context, Elts);
2505 else
2506 V = ConstantDataArray::getFP(Context, Elts);
2507 } else if (EltTy->isDoubleTy()) {
2508 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2509 if (isa<VectorType>(CurTy))
2510 V = ConstantDataVector::getFP(Context, Elts);
2511 else
2512 V = ConstantDataArray::getFP(Context, Elts);
2513 } else {
2514 return error("Invalid type for value");
2516 break;
2518 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2519 if (Record.size() < 2)
2520 return error("Invalid record");
2521 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2522 if (Opc < 0) {
2523 V = UndefValue::get(CurTy); // Unknown unop.
2524 } else {
2525 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2526 unsigned Flags = 0;
2527 V = ConstantExpr::get(Opc, LHS, Flags);
2529 break;
2531 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2532 if (Record.size() < 3)
2533 return error("Invalid record");
2534 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2535 if (Opc < 0) {
2536 V = UndefValue::get(CurTy); // Unknown binop.
2537 } else {
2538 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2539 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2540 unsigned Flags = 0;
2541 if (Record.size() >= 4) {
2542 if (Opc == Instruction::Add ||
2543 Opc == Instruction::Sub ||
2544 Opc == Instruction::Mul ||
2545 Opc == Instruction::Shl) {
2546 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2547 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2548 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2549 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2550 } else if (Opc == Instruction::SDiv ||
2551 Opc == Instruction::UDiv ||
2552 Opc == Instruction::LShr ||
2553 Opc == Instruction::AShr) {
2554 if (Record[3] & (1 << bitc::PEO_EXACT))
2555 Flags |= SDivOperator::IsExact;
2558 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2560 break;
2562 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2563 if (Record.size() < 3)
2564 return error("Invalid record");
2565 int Opc = getDecodedCastOpcode(Record[0]);
2566 if (Opc < 0) {
2567 V = UndefValue::get(CurTy); // Unknown cast.
2568 } else {
2569 Type *OpTy = getTypeByID(Record[1]);
2570 if (!OpTy)
2571 return error("Invalid record");
2572 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2573 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2574 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2576 break;
2578 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2579 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2580 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2581 // operands]
2582 unsigned OpNum = 0;
2583 Type *PointeeType = nullptr;
2584 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2585 Record.size() % 2)
2586 PointeeType = getTypeByID(Record[OpNum++]);
2588 bool InBounds = false;
2589 Optional<unsigned> InRangeIndex;
2590 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2591 uint64_t Op = Record[OpNum++];
2592 InBounds = Op & 1;
2593 InRangeIndex = Op >> 1;
2594 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2595 InBounds = true;
2597 SmallVector<Constant*, 16> Elts;
2598 Type *Elt0FullTy = nullptr;
2599 while (OpNum != Record.size()) {
2600 if (!Elt0FullTy)
2601 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2602 Type *ElTy = getTypeByID(Record[OpNum++]);
2603 if (!ElTy)
2604 return error("Invalid record");
2605 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2608 if (Elts.size() < 1)
2609 return error("Invalid gep with no operands");
2611 Type *ImplicitPointeeType =
2612 getPointerElementFlatType(Elt0FullTy->getScalarType());
2613 if (!PointeeType)
2614 PointeeType = ImplicitPointeeType;
2615 else if (PointeeType != ImplicitPointeeType)
2616 return error("Explicit gep operator type does not match pointee type "
2617 "of pointer operand");
2619 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2620 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2621 InBounds, InRangeIndex);
2622 break;
2624 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2625 if (Record.size() < 3)
2626 return error("Invalid record");
2628 Type *SelectorTy = Type::getInt1Ty(Context);
2630 // The selector might be an i1 or an <n x i1>
2631 // Get the type from the ValueList before getting a forward ref.
2632 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2633 if (Value *V = ValueList[Record[0]])
2634 if (SelectorTy != V->getType())
2635 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2637 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2638 SelectorTy),
2639 ValueList.getConstantFwdRef(Record[1],CurTy),
2640 ValueList.getConstantFwdRef(Record[2],CurTy));
2641 break;
2643 case bitc::CST_CODE_CE_EXTRACTELT
2644 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2645 if (Record.size() < 3)
2646 return error("Invalid record");
2647 VectorType *OpTy =
2648 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2649 if (!OpTy)
2650 return error("Invalid record");
2651 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2652 Constant *Op1 = nullptr;
2653 if (Record.size() == 4) {
2654 Type *IdxTy = getTypeByID(Record[2]);
2655 if (!IdxTy)
2656 return error("Invalid record");
2657 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2658 } else // TODO: Remove with llvm 4.0
2659 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2660 if (!Op1)
2661 return error("Invalid record");
2662 V = ConstantExpr::getExtractElement(Op0, Op1);
2663 break;
2665 case bitc::CST_CODE_CE_INSERTELT
2666 : { // CE_INSERTELT: [opval, opval, opty, opval]
2667 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2668 if (Record.size() < 3 || !OpTy)
2669 return error("Invalid record");
2670 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2671 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2672 OpTy->getElementType());
2673 Constant *Op2 = nullptr;
2674 if (Record.size() == 4) {
2675 Type *IdxTy = getTypeByID(Record[2]);
2676 if (!IdxTy)
2677 return error("Invalid record");
2678 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2679 } else // TODO: Remove with llvm 4.0
2680 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2681 if (!Op2)
2682 return error("Invalid record");
2683 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2684 break;
2686 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2687 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2688 if (Record.size() < 3 || !OpTy)
2689 return error("Invalid record");
2690 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2691 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2692 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2693 OpTy->getNumElements());
2694 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2695 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2696 break;
2698 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2699 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2700 VectorType *OpTy =
2701 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2702 if (Record.size() < 4 || !RTy || !OpTy)
2703 return error("Invalid record");
2704 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2705 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2706 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2707 RTy->getNumElements());
2708 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2709 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2710 break;
2712 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2713 if (Record.size() < 4)
2714 return error("Invalid record");
2715 Type *OpTy = getTypeByID(Record[0]);
2716 if (!OpTy)
2717 return error("Invalid record");
2718 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2719 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2721 if (OpTy->isFPOrFPVectorTy())
2722 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2723 else
2724 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2725 break;
2727 // This maintains backward compatibility, pre-asm dialect keywords.
2728 // FIXME: Remove with the 4.0 release.
2729 case bitc::CST_CODE_INLINEASM_OLD: {
2730 if (Record.size() < 2)
2731 return error("Invalid record");
2732 std::string AsmStr, ConstrStr;
2733 bool HasSideEffects = Record[0] & 1;
2734 bool IsAlignStack = Record[0] >> 1;
2735 unsigned AsmStrSize = Record[1];
2736 if (2+AsmStrSize >= Record.size())
2737 return error("Invalid record");
2738 unsigned ConstStrSize = Record[2+AsmStrSize];
2739 if (3+AsmStrSize+ConstStrSize > Record.size())
2740 return error("Invalid record");
2742 for (unsigned i = 0; i != AsmStrSize; ++i)
2743 AsmStr += (char)Record[2+i];
2744 for (unsigned i = 0; i != ConstStrSize; ++i)
2745 ConstrStr += (char)Record[3+AsmStrSize+i];
2746 UpgradeInlineAsmString(&AsmStr);
2747 V = InlineAsm::get(
2748 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2749 ConstrStr, HasSideEffects, IsAlignStack);
2750 break;
2752 // This version adds support for the asm dialect keywords (e.g.,
2753 // inteldialect).
2754 case bitc::CST_CODE_INLINEASM: {
2755 if (Record.size() < 2)
2756 return error("Invalid record");
2757 std::string AsmStr, ConstrStr;
2758 bool HasSideEffects = Record[0] & 1;
2759 bool IsAlignStack = (Record[0] >> 1) & 1;
2760 unsigned AsmDialect = Record[0] >> 2;
2761 unsigned AsmStrSize = Record[1];
2762 if (2+AsmStrSize >= Record.size())
2763 return error("Invalid record");
2764 unsigned ConstStrSize = Record[2+AsmStrSize];
2765 if (3+AsmStrSize+ConstStrSize > Record.size())
2766 return error("Invalid record");
2768 for (unsigned i = 0; i != AsmStrSize; ++i)
2769 AsmStr += (char)Record[2+i];
2770 for (unsigned i = 0; i != ConstStrSize; ++i)
2771 ConstrStr += (char)Record[3+AsmStrSize+i];
2772 UpgradeInlineAsmString(&AsmStr);
2773 V = InlineAsm::get(
2774 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2775 ConstrStr, HasSideEffects, IsAlignStack,
2776 InlineAsm::AsmDialect(AsmDialect));
2777 break;
2779 case bitc::CST_CODE_BLOCKADDRESS:{
2780 if (Record.size() < 3)
2781 return error("Invalid record");
2782 Type *FnTy = getTypeByID(Record[0]);
2783 if (!FnTy)
2784 return error("Invalid record");
2785 Function *Fn =
2786 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2787 if (!Fn)
2788 return error("Invalid record");
2790 // If the function is already parsed we can insert the block address right
2791 // away.
2792 BasicBlock *BB;
2793 unsigned BBID = Record[2];
2794 if (!BBID)
2795 // Invalid reference to entry block.
2796 return error("Invalid ID");
2797 if (!Fn->empty()) {
2798 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2799 for (size_t I = 0, E = BBID; I != E; ++I) {
2800 if (BBI == BBE)
2801 return error("Invalid ID");
2802 ++BBI;
2804 BB = &*BBI;
2805 } else {
2806 // Otherwise insert a placeholder and remember it so it can be inserted
2807 // when the function is parsed.
2808 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2809 if (FwdBBs.empty())
2810 BasicBlockFwdRefQueue.push_back(Fn);
2811 if (FwdBBs.size() < BBID + 1)
2812 FwdBBs.resize(BBID + 1);
2813 if (!FwdBBs[BBID])
2814 FwdBBs[BBID] = BasicBlock::Create(Context);
2815 BB = FwdBBs[BBID];
2817 V = BlockAddress::get(Fn, BB);
2818 break;
2822 assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2823 "Incorrect fully structured type provided for Constant");
2824 ValueList.assignValue(V, NextCstNo, CurFullTy);
2825 ++NextCstNo;
2829 Error BitcodeReader::parseUseLists() {
2830 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2831 return Err;
2833 // Read all the records.
2834 SmallVector<uint64_t, 64> Record;
2836 while (true) {
2837 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2838 if (!MaybeEntry)
2839 return MaybeEntry.takeError();
2840 BitstreamEntry Entry = MaybeEntry.get();
2842 switch (Entry.Kind) {
2843 case BitstreamEntry::SubBlock: // Handled for us already.
2844 case BitstreamEntry::Error:
2845 return error("Malformed block");
2846 case BitstreamEntry::EndBlock:
2847 return Error::success();
2848 case BitstreamEntry::Record:
2849 // The interesting case.
2850 break;
2853 // Read a use list record.
2854 Record.clear();
2855 bool IsBB = false;
2856 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2857 if (!MaybeRecord)
2858 return MaybeRecord.takeError();
2859 switch (MaybeRecord.get()) {
2860 default: // Default behavior: unknown type.
2861 break;
2862 case bitc::USELIST_CODE_BB:
2863 IsBB = true;
2864 LLVM_FALLTHROUGH;
2865 case bitc::USELIST_CODE_DEFAULT: {
2866 unsigned RecordLength = Record.size();
2867 if (RecordLength < 3)
2868 // Records should have at least an ID and two indexes.
2869 return error("Invalid record");
2870 unsigned ID = Record.back();
2871 Record.pop_back();
2873 Value *V;
2874 if (IsBB) {
2875 assert(ID < FunctionBBs.size() && "Basic block not found");
2876 V = FunctionBBs[ID];
2877 } else
2878 V = ValueList[ID];
2879 unsigned NumUses = 0;
2880 SmallDenseMap<const Use *, unsigned, 16> Order;
2881 for (const Use &U : V->materialized_uses()) {
2882 if (++NumUses > Record.size())
2883 break;
2884 Order[&U] = Record[NumUses - 1];
2886 if (Order.size() != Record.size() || NumUses > Record.size())
2887 // Mismatches can happen if the functions are being materialized lazily
2888 // (out-of-order), or a value has been upgraded.
2889 break;
2891 V->sortUseList([&](const Use &L, const Use &R) {
2892 return Order.lookup(&L) < Order.lookup(&R);
2894 break;
2900 /// When we see the block for metadata, remember where it is and then skip it.
2901 /// This lets us lazily deserialize the metadata.
2902 Error BitcodeReader::rememberAndSkipMetadata() {
2903 // Save the current stream state.
2904 uint64_t CurBit = Stream.GetCurrentBitNo();
2905 DeferredMetadataInfo.push_back(CurBit);
2907 // Skip over the block for now.
2908 if (Error Err = Stream.SkipBlock())
2909 return Err;
2910 return Error::success();
2913 Error BitcodeReader::materializeMetadata() {
2914 for (uint64_t BitPos : DeferredMetadataInfo) {
2915 // Move the bit stream to the saved position.
2916 if (Error JumpFailed = Stream.JumpToBit(BitPos))
2917 return JumpFailed;
2918 if (Error Err = MDLoader->parseModuleMetadata())
2919 return Err;
2922 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2923 // metadata.
2924 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2925 NamedMDNode *LinkerOpts =
2926 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2927 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2928 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2931 DeferredMetadataInfo.clear();
2932 return Error::success();
2935 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2937 /// When we see the block for a function body, remember where it is and then
2938 /// skip it. This lets us lazily deserialize the functions.
2939 Error BitcodeReader::rememberAndSkipFunctionBody() {
2940 // Get the function we are talking about.
2941 if (FunctionsWithBodies.empty())
2942 return error("Insufficient function protos");
2944 Function *Fn = FunctionsWithBodies.back();
2945 FunctionsWithBodies.pop_back();
2947 // Save the current stream state.
2948 uint64_t CurBit = Stream.GetCurrentBitNo();
2949 assert(
2950 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2951 "Mismatch between VST and scanned function offsets");
2952 DeferredFunctionInfo[Fn] = CurBit;
2954 // Skip over the function block for now.
2955 if (Error Err = Stream.SkipBlock())
2956 return Err;
2957 return Error::success();
2960 Error BitcodeReader::globalCleanup() {
2961 // Patch the initializers for globals and aliases up.
2962 if (Error Err = resolveGlobalAndIndirectSymbolInits())
2963 return Err;
2964 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2965 return error("Malformed global initializer set");
2967 // Look for intrinsic functions which need to be upgraded at some point
2968 for (Function &F : *TheModule) {
2969 MDLoader->upgradeDebugIntrinsics(F);
2970 Function *NewFn;
2971 if (UpgradeIntrinsicFunction(&F, NewFn))
2972 UpgradedIntrinsics[&F] = NewFn;
2973 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2974 // Some types could be renamed during loading if several modules are
2975 // loaded in the same LLVMContext (LTO scenario). In this case we should
2976 // remangle intrinsics names as well.
2977 RemangledIntrinsics[&F] = Remangled.getValue();
2980 // Look for global variables which need to be renamed.
2981 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2982 for (GlobalVariable &GV : TheModule->globals())
2983 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2984 UpgradedVariables.emplace_back(&GV, Upgraded);
2985 for (auto &Pair : UpgradedVariables) {
2986 Pair.first->eraseFromParent();
2987 TheModule->getGlobalList().push_back(Pair.second);
2990 // Force deallocation of memory for these vectors to favor the client that
2991 // want lazy deserialization.
2992 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2993 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2994 IndirectSymbolInits);
2995 return Error::success();
2998 /// Support for lazy parsing of function bodies. This is required if we
2999 /// either have an old bitcode file without a VST forward declaration record,
3000 /// or if we have an anonymous function being materialized, since anonymous
3001 /// functions do not have a name and are therefore not in the VST.
3002 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3003 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3004 return JumpFailed;
3006 if (Stream.AtEndOfStream())
3007 return error("Could not find function in stream");
3009 if (!SeenFirstFunctionBody)
3010 return error("Trying to materialize functions before seeing function blocks");
3012 // An old bitcode file with the symbol table at the end would have
3013 // finished the parse greedily.
3014 assert(SeenValueSymbolTable);
3016 SmallVector<uint64_t, 64> Record;
3018 while (true) {
3019 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3020 if (!MaybeEntry)
3021 return MaybeEntry.takeError();
3022 llvm::BitstreamEntry Entry = MaybeEntry.get();
3024 switch (Entry.Kind) {
3025 default:
3026 return error("Expect SubBlock");
3027 case BitstreamEntry::SubBlock:
3028 switch (Entry.ID) {
3029 default:
3030 return error("Expect function block");
3031 case bitc::FUNCTION_BLOCK_ID:
3032 if (Error Err = rememberAndSkipFunctionBody())
3033 return Err;
3034 NextUnreadBit = Stream.GetCurrentBitNo();
3035 return Error::success();
3041 bool BitcodeReaderBase::readBlockInfo() {
3042 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3043 Stream.ReadBlockInfoBlock();
3044 if (!MaybeNewBlockInfo)
3045 return true; // FIXME Handle the error.
3046 Optional<BitstreamBlockInfo> NewBlockInfo =
3047 std::move(MaybeNewBlockInfo.get());
3048 if (!NewBlockInfo)
3049 return true;
3050 BlockInfo = std::move(*NewBlockInfo);
3051 return false;
3054 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3055 // v1: [selection_kind, name]
3056 // v2: [strtab_offset, strtab_size, selection_kind]
3057 StringRef Name;
3058 std::tie(Name, Record) = readNameFromStrtab(Record);
3060 if (Record.empty())
3061 return error("Invalid record");
3062 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3063 std::string OldFormatName;
3064 if (!UseStrtab) {
3065 if (Record.size() < 2)
3066 return error("Invalid record");
3067 unsigned ComdatNameSize = Record[1];
3068 OldFormatName.reserve(ComdatNameSize);
3069 for (unsigned i = 0; i != ComdatNameSize; ++i)
3070 OldFormatName += (char)Record[2 + i];
3071 Name = OldFormatName;
3073 Comdat *C = TheModule->getOrInsertComdat(Name);
3074 C->setSelectionKind(SK);
3075 ComdatList.push_back(C);
3076 return Error::success();
3079 static void inferDSOLocal(GlobalValue *GV) {
3080 // infer dso_local from linkage and visibility if it is not encoded.
3081 if (GV->hasLocalLinkage() ||
3082 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3083 GV->setDSOLocal(true);
3086 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3087 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3088 // visibility, threadlocal, unnamed_addr, externally_initialized,
3089 // dllstorageclass, comdat, attributes, preemption specifier,
3090 // partition strtab offset, partition strtab size] (name in VST)
3091 // v2: [strtab_offset, strtab_size, v1]
3092 StringRef Name;
3093 std::tie(Name, Record) = readNameFromStrtab(Record);
3095 if (Record.size() < 6)
3096 return error("Invalid record");
3097 Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3098 Type *Ty = flattenPointerTypes(FullTy);
3099 if (!Ty)
3100 return error("Invalid record");
3101 bool isConstant = Record[1] & 1;
3102 bool explicitType = Record[1] & 2;
3103 unsigned AddressSpace;
3104 if (explicitType) {
3105 AddressSpace = Record[1] >> 2;
3106 } else {
3107 if (!Ty->isPointerTy())
3108 return error("Invalid type for value");
3109 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3110 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3113 uint64_t RawLinkage = Record[3];
3114 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3115 MaybeAlign Alignment;
3116 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3117 return Err;
3118 std::string Section;
3119 if (Record[5]) {
3120 if (Record[5] - 1 >= SectionTable.size())
3121 return error("Invalid ID");
3122 Section = SectionTable[Record[5] - 1];
3124 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3125 // Local linkage must have default visibility.
3126 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3127 // FIXME: Change to an error if non-default in 4.0.
3128 Visibility = getDecodedVisibility(Record[6]);
3130 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3131 if (Record.size() > 7)
3132 TLM = getDecodedThreadLocalMode(Record[7]);
3134 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3135 if (Record.size() > 8)
3136 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3138 bool ExternallyInitialized = false;
3139 if (Record.size() > 9)
3140 ExternallyInitialized = Record[9];
3142 GlobalVariable *NewGV =
3143 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3144 nullptr, TLM, AddressSpace, ExternallyInitialized);
3145 NewGV->setAlignment(Alignment);
3146 if (!Section.empty())
3147 NewGV->setSection(Section);
3148 NewGV->setVisibility(Visibility);
3149 NewGV->setUnnamedAddr(UnnamedAddr);
3151 if (Record.size() > 10)
3152 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3153 else
3154 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3156 FullTy = PointerType::get(FullTy, AddressSpace);
3157 assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3158 "Incorrect fully specified type for GlobalVariable");
3159 ValueList.push_back(NewGV, FullTy);
3161 // Remember which value to use for the global initializer.
3162 if (unsigned InitID = Record[2])
3163 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3165 if (Record.size() > 11) {
3166 if (unsigned ComdatID = Record[11]) {
3167 if (ComdatID > ComdatList.size())
3168 return error("Invalid global variable comdat ID");
3169 NewGV->setComdat(ComdatList[ComdatID - 1]);
3171 } else if (hasImplicitComdat(RawLinkage)) {
3172 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3175 if (Record.size() > 12) {
3176 auto AS = getAttributes(Record[12]).getFnAttributes();
3177 NewGV->setAttributes(AS);
3180 if (Record.size() > 13) {
3181 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3183 inferDSOLocal(NewGV);
3185 // Check whether we have enough values to read a partition name.
3186 if (Record.size() > 15)
3187 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3189 return Error::success();
3192 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3193 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3194 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3195 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3196 // v2: [strtab_offset, strtab_size, v1]
3197 StringRef Name;
3198 std::tie(Name, Record) = readNameFromStrtab(Record);
3200 if (Record.size() < 8)
3201 return error("Invalid record");
3202 Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3203 Type *FTy = flattenPointerTypes(FullFTy);
3204 if (!FTy)
3205 return error("Invalid record");
3206 if (isa<PointerType>(FTy))
3207 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3209 if (!isa<FunctionType>(FTy))
3210 return error("Invalid type for value");
3211 auto CC = static_cast<CallingConv::ID>(Record[1]);
3212 if (CC & ~CallingConv::MaxID)
3213 return error("Invalid calling convention ID");
3215 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3216 if (Record.size() > 16)
3217 AddrSpace = Record[16];
3219 Function *Func =
3220 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3221 AddrSpace, Name, TheModule);
3223 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3224 "Incorrect fully specified type provided for function");
3225 FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3227 Func->setCallingConv(CC);
3228 bool isProto = Record[2];
3229 uint64_t RawLinkage = Record[3];
3230 Func->setLinkage(getDecodedLinkage(RawLinkage));
3231 Func->setAttributes(getAttributes(Record[4]));
3233 // Upgrade any old-style byval without a type by propagating the argument's
3234 // pointee type. There should be no opaque pointers where the byval type is
3235 // implicit.
3236 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3237 if (!Func->hasParamAttribute(i, Attribute::ByVal))
3238 continue;
3240 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3241 Func->removeParamAttr(i, Attribute::ByVal);
3242 Func->addParamAttr(i, Attribute::getWithByValType(
3243 Context, getPointerElementFlatType(PTy)));
3246 MaybeAlign Alignment;
3247 if (Error Err = parseAlignmentValue(Record[5], Alignment))
3248 return Err;
3249 Func->setAlignment(Alignment);
3250 if (Record[6]) {
3251 if (Record[6] - 1 >= SectionTable.size())
3252 return error("Invalid ID");
3253 Func->setSection(SectionTable[Record[6] - 1]);
3255 // Local linkage must have default visibility.
3256 if (!Func->hasLocalLinkage())
3257 // FIXME: Change to an error if non-default in 4.0.
3258 Func->setVisibility(getDecodedVisibility(Record[7]));
3259 if (Record.size() > 8 && Record[8]) {
3260 if (Record[8] - 1 >= GCTable.size())
3261 return error("Invalid ID");
3262 Func->setGC(GCTable[Record[8] - 1]);
3264 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3265 if (Record.size() > 9)
3266 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3267 Func->setUnnamedAddr(UnnamedAddr);
3268 if (Record.size() > 10 && Record[10] != 0)
3269 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3271 if (Record.size() > 11)
3272 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3273 else
3274 upgradeDLLImportExportLinkage(Func, RawLinkage);
3276 if (Record.size() > 12) {
3277 if (unsigned ComdatID = Record[12]) {
3278 if (ComdatID > ComdatList.size())
3279 return error("Invalid function comdat ID");
3280 Func->setComdat(ComdatList[ComdatID - 1]);
3282 } else if (hasImplicitComdat(RawLinkage)) {
3283 Func->setComdat(reinterpret_cast<Comdat *>(1));
3286 if (Record.size() > 13 && Record[13] != 0)
3287 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3289 if (Record.size() > 14 && Record[14] != 0)
3290 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3292 if (Record.size() > 15) {
3293 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3295 inferDSOLocal(Func);
3297 // Record[16] is the address space number.
3299 // Check whether we have enough values to read a partition name.
3300 if (Record.size() > 18)
3301 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3303 Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3304 assert(Func->getType() == flattenPointerTypes(FullTy) &&
3305 "Incorrect fully specified type provided for Function");
3306 ValueList.push_back(Func, FullTy);
3308 // If this is a function with a body, remember the prototype we are
3309 // creating now, so that we can match up the body with them later.
3310 if (!isProto) {
3311 Func->setIsMaterializable(true);
3312 FunctionsWithBodies.push_back(Func);
3313 DeferredFunctionInfo[Func] = 0;
3315 return Error::success();
3318 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3319 unsigned BitCode, ArrayRef<uint64_t> Record) {
3320 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3321 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3322 // dllstorageclass, threadlocal, unnamed_addr,
3323 // preemption specifier] (name in VST)
3324 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3325 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3326 // preemption specifier] (name in VST)
3327 // v2: [strtab_offset, strtab_size, v1]
3328 StringRef Name;
3329 std::tie(Name, Record) = readNameFromStrtab(Record);
3331 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3332 if (Record.size() < (3 + (unsigned)NewRecord))
3333 return error("Invalid record");
3334 unsigned OpNum = 0;
3335 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3336 Type *Ty = flattenPointerTypes(FullTy);
3337 if (!Ty)
3338 return error("Invalid record");
3340 unsigned AddrSpace;
3341 if (!NewRecord) {
3342 auto *PTy = dyn_cast<PointerType>(Ty);
3343 if (!PTy)
3344 return error("Invalid type for value");
3345 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3346 AddrSpace = PTy->getAddressSpace();
3347 } else {
3348 AddrSpace = Record[OpNum++];
3351 auto Val = Record[OpNum++];
3352 auto Linkage = Record[OpNum++];
3353 GlobalIndirectSymbol *NewGA;
3354 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3355 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3356 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3357 TheModule);
3358 else
3359 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3360 nullptr, TheModule);
3362 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3363 "Incorrect fully structured type provided for GlobalIndirectSymbol");
3364 // Old bitcode files didn't have visibility field.
3365 // Local linkage must have default visibility.
3366 if (OpNum != Record.size()) {
3367 auto VisInd = OpNum++;
3368 if (!NewGA->hasLocalLinkage())
3369 // FIXME: Change to an error if non-default in 4.0.
3370 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3372 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3373 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3374 if (OpNum != Record.size())
3375 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3376 else
3377 upgradeDLLImportExportLinkage(NewGA, Linkage);
3378 if (OpNum != Record.size())
3379 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3380 if (OpNum != Record.size())
3381 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3383 if (OpNum != Record.size())
3384 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3385 inferDSOLocal(NewGA);
3387 // Check whether we have enough values to read a partition name.
3388 if (OpNum + 1 < Record.size()) {
3389 NewGA->setPartition(
3390 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3391 OpNum += 2;
3394 FullTy = PointerType::get(FullTy, AddrSpace);
3395 assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3396 "Incorrect fully structured type provided for GlobalIndirectSymbol");
3397 ValueList.push_back(NewGA, FullTy);
3398 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3399 return Error::success();
3402 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3403 bool ShouldLazyLoadMetadata) {
3404 if (ResumeBit) {
3405 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3406 return JumpFailed;
3407 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3408 return Err;
3410 SmallVector<uint64_t, 64> Record;
3412 // Read all the records for this module.
3413 while (true) {
3414 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3415 if (!MaybeEntry)
3416 return MaybeEntry.takeError();
3417 llvm::BitstreamEntry Entry = MaybeEntry.get();
3419 switch (Entry.Kind) {
3420 case BitstreamEntry::Error:
3421 return error("Malformed block");
3422 case BitstreamEntry::EndBlock:
3423 return globalCleanup();
3425 case BitstreamEntry::SubBlock:
3426 switch (Entry.ID) {
3427 default: // Skip unknown content.
3428 if (Error Err = Stream.SkipBlock())
3429 return Err;
3430 break;
3431 case bitc::BLOCKINFO_BLOCK_ID:
3432 if (readBlockInfo())
3433 return error("Malformed block");
3434 break;
3435 case bitc::PARAMATTR_BLOCK_ID:
3436 if (Error Err = parseAttributeBlock())
3437 return Err;
3438 break;
3439 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3440 if (Error Err = parseAttributeGroupBlock())
3441 return Err;
3442 break;
3443 case bitc::TYPE_BLOCK_ID_NEW:
3444 if (Error Err = parseTypeTable())
3445 return Err;
3446 break;
3447 case bitc::VALUE_SYMTAB_BLOCK_ID:
3448 if (!SeenValueSymbolTable) {
3449 // Either this is an old form VST without function index and an
3450 // associated VST forward declaration record (which would have caused
3451 // the VST to be jumped to and parsed before it was encountered
3452 // normally in the stream), or there were no function blocks to
3453 // trigger an earlier parsing of the VST.
3454 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3455 if (Error Err = parseValueSymbolTable())
3456 return Err;
3457 SeenValueSymbolTable = true;
3458 } else {
3459 // We must have had a VST forward declaration record, which caused
3460 // the parser to jump to and parse the VST earlier.
3461 assert(VSTOffset > 0);
3462 if (Error Err = Stream.SkipBlock())
3463 return Err;
3465 break;
3466 case bitc::CONSTANTS_BLOCK_ID:
3467 if (Error Err = parseConstants())
3468 return Err;
3469 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3470 return Err;
3471 break;
3472 case bitc::METADATA_BLOCK_ID:
3473 if (ShouldLazyLoadMetadata) {
3474 if (Error Err = rememberAndSkipMetadata())
3475 return Err;
3476 break;
3478 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3479 if (Error Err = MDLoader->parseModuleMetadata())
3480 return Err;
3481 break;
3482 case bitc::METADATA_KIND_BLOCK_ID:
3483 if (Error Err = MDLoader->parseMetadataKinds())
3484 return Err;
3485 break;
3486 case bitc::FUNCTION_BLOCK_ID:
3487 // If this is the first function body we've seen, reverse the
3488 // FunctionsWithBodies list.
3489 if (!SeenFirstFunctionBody) {
3490 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3491 if (Error Err = globalCleanup())
3492 return Err;
3493 SeenFirstFunctionBody = true;
3496 if (VSTOffset > 0) {
3497 // If we have a VST forward declaration record, make sure we
3498 // parse the VST now if we haven't already. It is needed to
3499 // set up the DeferredFunctionInfo vector for lazy reading.
3500 if (!SeenValueSymbolTable) {
3501 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3502 return Err;
3503 SeenValueSymbolTable = true;
3504 // Fall through so that we record the NextUnreadBit below.
3505 // This is necessary in case we have an anonymous function that
3506 // is later materialized. Since it will not have a VST entry we
3507 // need to fall back to the lazy parse to find its offset.
3508 } else {
3509 // If we have a VST forward declaration record, but have already
3510 // parsed the VST (just above, when the first function body was
3511 // encountered here), then we are resuming the parse after
3512 // materializing functions. The ResumeBit points to the
3513 // start of the last function block recorded in the
3514 // DeferredFunctionInfo map. Skip it.
3515 if (Error Err = Stream.SkipBlock())
3516 return Err;
3517 continue;
3521 // Support older bitcode files that did not have the function
3522 // index in the VST, nor a VST forward declaration record, as
3523 // well as anonymous functions that do not have VST entries.
3524 // Build the DeferredFunctionInfo vector on the fly.
3525 if (Error Err = rememberAndSkipFunctionBody())
3526 return Err;
3528 // Suspend parsing when we reach the function bodies. Subsequent
3529 // materialization calls will resume it when necessary. If the bitcode
3530 // file is old, the symbol table will be at the end instead and will not
3531 // have been seen yet. In this case, just finish the parse now.
3532 if (SeenValueSymbolTable) {
3533 NextUnreadBit = Stream.GetCurrentBitNo();
3534 // After the VST has been parsed, we need to make sure intrinsic name
3535 // are auto-upgraded.
3536 return globalCleanup();
3538 break;
3539 case bitc::USELIST_BLOCK_ID:
3540 if (Error Err = parseUseLists())
3541 return Err;
3542 break;
3543 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3544 if (Error Err = parseOperandBundleTags())
3545 return Err;
3546 break;
3547 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3548 if (Error Err = parseSyncScopeNames())
3549 return Err;
3550 break;
3552 continue;
3554 case BitstreamEntry::Record:
3555 // The interesting case.
3556 break;
3559 // Read a record.
3560 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3561 if (!MaybeBitCode)
3562 return MaybeBitCode.takeError();
3563 switch (unsigned BitCode = MaybeBitCode.get()) {
3564 default: break; // Default behavior, ignore unknown content.
3565 case bitc::MODULE_CODE_VERSION: {
3566 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3567 if (!VersionOrErr)
3568 return VersionOrErr.takeError();
3569 UseRelativeIDs = *VersionOrErr >= 1;
3570 break;
3572 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3573 std::string S;
3574 if (convertToString(Record, 0, S))
3575 return error("Invalid record");
3576 TheModule->setTargetTriple(S);
3577 break;
3579 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3580 std::string S;
3581 if (convertToString(Record, 0, S))
3582 return error("Invalid record");
3583 TheModule->setDataLayout(S);
3584 break;
3586 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3587 std::string S;
3588 if (convertToString(Record, 0, S))
3589 return error("Invalid record");
3590 TheModule->setModuleInlineAsm(S);
3591 break;
3593 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3594 // FIXME: Remove in 4.0.
3595 std::string S;
3596 if (convertToString(Record, 0, S))
3597 return error("Invalid record");
3598 // Ignore value.
3599 break;
3601 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3602 std::string S;
3603 if (convertToString(Record, 0, S))
3604 return error("Invalid record");
3605 SectionTable.push_back(S);
3606 break;
3608 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3609 std::string S;
3610 if (convertToString(Record, 0, S))
3611 return error("Invalid record");
3612 GCTable.push_back(S);
3613 break;
3615 case bitc::MODULE_CODE_COMDAT:
3616 if (Error Err = parseComdatRecord(Record))
3617 return Err;
3618 break;
3619 case bitc::MODULE_CODE_GLOBALVAR:
3620 if (Error Err = parseGlobalVarRecord(Record))
3621 return Err;
3622 break;
3623 case bitc::MODULE_CODE_FUNCTION:
3624 if (Error Err = parseFunctionRecord(Record))
3625 return Err;
3626 break;
3627 case bitc::MODULE_CODE_IFUNC:
3628 case bitc::MODULE_CODE_ALIAS:
3629 case bitc::MODULE_CODE_ALIAS_OLD:
3630 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3631 return Err;
3632 break;
3633 /// MODULE_CODE_VSTOFFSET: [offset]
3634 case bitc::MODULE_CODE_VSTOFFSET:
3635 if (Record.size() < 1)
3636 return error("Invalid record");
3637 // Note that we subtract 1 here because the offset is relative to one word
3638 // before the start of the identification or module block, which was
3639 // historically always the start of the regular bitcode header.
3640 VSTOffset = Record[0] - 1;
3641 break;
3642 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3643 case bitc::MODULE_CODE_SOURCE_FILENAME:
3644 SmallString<128> ValueName;
3645 if (convertToString(Record, 0, ValueName))
3646 return error("Invalid record");
3647 TheModule->setSourceFileName(ValueName);
3648 break;
3650 Record.clear();
3652 // Upgrade data layout string.
3653 std::string DL = llvm::UpgradeDataLayoutString(
3654 TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3655 TheModule->setDataLayout(DL);
3659 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3660 bool IsImporting) {
3661 TheModule = M;
3662 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3663 [&](unsigned ID) { return getTypeByID(ID); });
3664 return parseModule(0, ShouldLazyLoadMetadata);
3667 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3668 if (!isa<PointerType>(PtrType))
3669 return error("Load/Store operand is not a pointer type");
3670 Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3672 if (ValType && ValType != ElemType)
3673 return error("Explicit load/store type does not match pointee "
3674 "type of pointer operand");
3675 if (!PointerType::isLoadableOrStorableType(ElemType))
3676 return error("Cannot load/store from pointer");
3677 return Error::success();
3680 void BitcodeReader::propagateByValTypes(CallBase *CB,
3681 ArrayRef<Type *> ArgsFullTys) {
3682 for (unsigned i = 0; i != CB->arg_size(); ++i) {
3683 if (!CB->paramHasAttr(i, Attribute::ByVal))
3684 continue;
3686 CB->removeParamAttr(i, Attribute::ByVal);
3687 CB->addParamAttr(
3688 i, Attribute::getWithByValType(
3689 Context, getPointerElementFlatType(ArgsFullTys[i])));
3693 /// Lazily parse the specified function body block.
3694 Error BitcodeReader::parseFunctionBody(Function *F) {
3695 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3696 return Err;
3698 // Unexpected unresolved metadata when parsing function.
3699 if (MDLoader->hasFwdRefs())
3700 return error("Invalid function metadata: incoming forward references");
3702 InstructionList.clear();
3703 unsigned ModuleValueListSize = ValueList.size();
3704 unsigned ModuleMDLoaderSize = MDLoader->size();
3706 // Add all the function arguments to the value table.
3707 unsigned ArgNo = 0;
3708 FunctionType *FullFTy = FunctionTypes[F];
3709 for (Argument &I : F->args()) {
3710 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3711 "Incorrect fully specified type for Function Argument");
3712 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3714 unsigned NextValueNo = ValueList.size();
3715 BasicBlock *CurBB = nullptr;
3716 unsigned CurBBNo = 0;
3718 DebugLoc LastLoc;
3719 auto getLastInstruction = [&]() -> Instruction * {
3720 if (CurBB && !CurBB->empty())
3721 return &CurBB->back();
3722 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3723 !FunctionBBs[CurBBNo - 1]->empty())
3724 return &FunctionBBs[CurBBNo - 1]->back();
3725 return nullptr;
3728 std::vector<OperandBundleDef> OperandBundles;
3730 // Read all the records.
3731 SmallVector<uint64_t, 64> Record;
3733 while (true) {
3734 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3735 if (!MaybeEntry)
3736 return MaybeEntry.takeError();
3737 llvm::BitstreamEntry Entry = MaybeEntry.get();
3739 switch (Entry.Kind) {
3740 case BitstreamEntry::Error:
3741 return error("Malformed block");
3742 case BitstreamEntry::EndBlock:
3743 goto OutOfRecordLoop;
3745 case BitstreamEntry::SubBlock:
3746 switch (Entry.ID) {
3747 default: // Skip unknown content.
3748 if (Error Err = Stream.SkipBlock())
3749 return Err;
3750 break;
3751 case bitc::CONSTANTS_BLOCK_ID:
3752 if (Error Err = parseConstants())
3753 return Err;
3754 NextValueNo = ValueList.size();
3755 break;
3756 case bitc::VALUE_SYMTAB_BLOCK_ID:
3757 if (Error Err = parseValueSymbolTable())
3758 return Err;
3759 break;
3760 case bitc::METADATA_ATTACHMENT_ID:
3761 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3762 return Err;
3763 break;
3764 case bitc::METADATA_BLOCK_ID:
3765 assert(DeferredMetadataInfo.empty() &&
3766 "Must read all module-level metadata before function-level");
3767 if (Error Err = MDLoader->parseFunctionMetadata())
3768 return Err;
3769 break;
3770 case bitc::USELIST_BLOCK_ID:
3771 if (Error Err = parseUseLists())
3772 return Err;
3773 break;
3775 continue;
3777 case BitstreamEntry::Record:
3778 // The interesting case.
3779 break;
3782 // Read a record.
3783 Record.clear();
3784 Instruction *I = nullptr;
3785 Type *FullTy = nullptr;
3786 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3787 if (!MaybeBitCode)
3788 return MaybeBitCode.takeError();
3789 switch (unsigned BitCode = MaybeBitCode.get()) {
3790 default: // Default behavior: reject
3791 return error("Invalid value");
3792 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3793 if (Record.size() < 1 || Record[0] == 0)
3794 return error("Invalid record");
3795 // Create all the basic blocks for the function.
3796 FunctionBBs.resize(Record[0]);
3798 // See if anything took the address of blocks in this function.
3799 auto BBFRI = BasicBlockFwdRefs.find(F);
3800 if (BBFRI == BasicBlockFwdRefs.end()) {
3801 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3802 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3803 } else {
3804 auto &BBRefs = BBFRI->second;
3805 // Check for invalid basic block references.
3806 if (BBRefs.size() > FunctionBBs.size())
3807 return error("Invalid ID");
3808 assert(!BBRefs.empty() && "Unexpected empty array");
3809 assert(!BBRefs.front() && "Invalid reference to entry block");
3810 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3811 ++I)
3812 if (I < RE && BBRefs[I]) {
3813 BBRefs[I]->insertInto(F);
3814 FunctionBBs[I] = BBRefs[I];
3815 } else {
3816 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3819 // Erase from the table.
3820 BasicBlockFwdRefs.erase(BBFRI);
3823 CurBB = FunctionBBs[0];
3824 continue;
3827 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3828 // This record indicates that the last instruction is at the same
3829 // location as the previous instruction with a location.
3830 I = getLastInstruction();
3832 if (!I)
3833 return error("Invalid record");
3834 I->setDebugLoc(LastLoc);
3835 I = nullptr;
3836 continue;
3838 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3839 I = getLastInstruction();
3840 if (!I || Record.size() < 4)
3841 return error("Invalid record");
3843 unsigned Line = Record[0], Col = Record[1];
3844 unsigned ScopeID = Record[2], IAID = Record[3];
3845 bool isImplicitCode = Record.size() == 5 && Record[4];
3847 MDNode *Scope = nullptr, *IA = nullptr;
3848 if (ScopeID) {
3849 Scope = dyn_cast_or_null<MDNode>(
3850 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3851 if (!Scope)
3852 return error("Invalid record");
3854 if (IAID) {
3855 IA = dyn_cast_or_null<MDNode>(
3856 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3857 if (!IA)
3858 return error("Invalid record");
3860 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3861 I->setDebugLoc(LastLoc);
3862 I = nullptr;
3863 continue;
3865 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
3866 unsigned OpNum = 0;
3867 Value *LHS;
3868 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3869 OpNum+1 > Record.size())
3870 return error("Invalid record");
3872 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3873 if (Opc == -1)
3874 return error("Invalid record");
3875 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3876 InstructionList.push_back(I);
3877 if (OpNum < Record.size()) {
3878 if (isa<FPMathOperator>(I)) {
3879 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3880 if (FMF.any())
3881 I->setFastMathFlags(FMF);
3884 break;
3886 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3887 unsigned OpNum = 0;
3888 Value *LHS, *RHS;
3889 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3890 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3891 OpNum+1 > Record.size())
3892 return error("Invalid record");
3894 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3895 if (Opc == -1)
3896 return error("Invalid record");
3897 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3898 InstructionList.push_back(I);
3899 if (OpNum < Record.size()) {
3900 if (Opc == Instruction::Add ||
3901 Opc == Instruction::Sub ||
3902 Opc == Instruction::Mul ||
3903 Opc == Instruction::Shl) {
3904 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3905 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3906 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3907 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3908 } else if (Opc == Instruction::SDiv ||
3909 Opc == Instruction::UDiv ||
3910 Opc == Instruction::LShr ||
3911 Opc == Instruction::AShr) {
3912 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3913 cast<BinaryOperator>(I)->setIsExact(true);
3914 } else if (isa<FPMathOperator>(I)) {
3915 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3916 if (FMF.any())
3917 I->setFastMathFlags(FMF);
3921 break;
3923 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3924 unsigned OpNum = 0;
3925 Value *Op;
3926 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3927 OpNum+2 != Record.size())
3928 return error("Invalid record");
3930 FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3931 Type *ResTy = flattenPointerTypes(FullTy);
3932 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3933 if (Opc == -1 || !ResTy)
3934 return error("Invalid record");
3935 Instruction *Temp = nullptr;
3936 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3937 if (Temp) {
3938 InstructionList.push_back(Temp);
3939 CurBB->getInstList().push_back(Temp);
3941 } else {
3942 auto CastOp = (Instruction::CastOps)Opc;
3943 if (!CastInst::castIsValid(CastOp, Op, ResTy))
3944 return error("Invalid cast");
3945 I = CastInst::Create(CastOp, Op, ResTy);
3947 InstructionList.push_back(I);
3948 break;
3950 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3951 case bitc::FUNC_CODE_INST_GEP_OLD:
3952 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3953 unsigned OpNum = 0;
3955 Type *Ty;
3956 bool InBounds;
3958 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3959 InBounds = Record[OpNum++];
3960 FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3961 Ty = flattenPointerTypes(FullTy);
3962 } else {
3963 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3964 Ty = nullptr;
3967 Value *BasePtr;
3968 Type *FullBaseTy = nullptr;
3969 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3970 return error("Invalid record");
3972 if (!Ty) {
3973 std::tie(FullTy, Ty) =
3974 getPointerElementTypes(FullBaseTy->getScalarType());
3975 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3976 return error(
3977 "Explicit gep type does not match pointee type of pointer operand");
3979 SmallVector<Value*, 16> GEPIdx;
3980 while (OpNum != Record.size()) {
3981 Value *Op;
3982 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3983 return error("Invalid record");
3984 GEPIdx.push_back(Op);
3987 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3988 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3990 InstructionList.push_back(I);
3991 if (InBounds)
3992 cast<GetElementPtrInst>(I)->setIsInBounds(true);
3993 break;
3996 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3997 // EXTRACTVAL: [opty, opval, n x indices]
3998 unsigned OpNum = 0;
3999 Value *Agg;
4000 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4001 return error("Invalid record");
4003 unsigned RecSize = Record.size();
4004 if (OpNum == RecSize)
4005 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4007 SmallVector<unsigned, 4> EXTRACTVALIdx;
4008 for (; OpNum != RecSize; ++OpNum) {
4009 bool IsArray = FullTy->isArrayTy();
4010 bool IsStruct = FullTy->isStructTy();
4011 uint64_t Index = Record[OpNum];
4013 if (!IsStruct && !IsArray)
4014 return error("EXTRACTVAL: Invalid type");
4015 if ((unsigned)Index != Index)
4016 return error("Invalid value");
4017 if (IsStruct && Index >= FullTy->getStructNumElements())
4018 return error("EXTRACTVAL: Invalid struct index");
4019 if (IsArray && Index >= FullTy->getArrayNumElements())
4020 return error("EXTRACTVAL: Invalid array index");
4021 EXTRACTVALIdx.push_back((unsigned)Index);
4023 if (IsStruct)
4024 FullTy = FullTy->getStructElementType(Index);
4025 else
4026 FullTy = FullTy->getArrayElementType();
4029 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4030 InstructionList.push_back(I);
4031 break;
4034 case bitc::FUNC_CODE_INST_INSERTVAL: {
4035 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4036 unsigned OpNum = 0;
4037 Value *Agg;
4038 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4039 return error("Invalid record");
4040 Value *Val;
4041 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4042 return error("Invalid record");
4044 unsigned RecSize = Record.size();
4045 if (OpNum == RecSize)
4046 return error("INSERTVAL: Invalid instruction with 0 indices");
4048 SmallVector<unsigned, 4> INSERTVALIdx;
4049 Type *CurTy = Agg->getType();
4050 for (; OpNum != RecSize; ++OpNum) {
4051 bool IsArray = CurTy->isArrayTy();
4052 bool IsStruct = CurTy->isStructTy();
4053 uint64_t Index = Record[OpNum];
4055 if (!IsStruct && !IsArray)
4056 return error("INSERTVAL: Invalid type");
4057 if ((unsigned)Index != Index)
4058 return error("Invalid value");
4059 if (IsStruct && Index >= CurTy->getStructNumElements())
4060 return error("INSERTVAL: Invalid struct index");
4061 if (IsArray && Index >= CurTy->getArrayNumElements())
4062 return error("INSERTVAL: Invalid array index");
4064 INSERTVALIdx.push_back((unsigned)Index);
4065 if (IsStruct)
4066 CurTy = CurTy->getStructElementType(Index);
4067 else
4068 CurTy = CurTy->getArrayElementType();
4071 if (CurTy != Val->getType())
4072 return error("Inserted value type doesn't match aggregate type");
4074 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4075 InstructionList.push_back(I);
4076 break;
4079 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4080 // obsolete form of select
4081 // handles select i1 ... in old bitcode
4082 unsigned OpNum = 0;
4083 Value *TrueVal, *FalseVal, *Cond;
4084 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4085 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4086 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4087 return error("Invalid record");
4089 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4090 InstructionList.push_back(I);
4091 break;
4094 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4095 // new form of select
4096 // handles select i1 or select [N x i1]
4097 unsigned OpNum = 0;
4098 Value *TrueVal, *FalseVal, *Cond;
4099 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4100 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4101 getValueTypePair(Record, OpNum, NextValueNo, Cond))
4102 return error("Invalid record");
4104 // select condition can be either i1 or [N x i1]
4105 if (VectorType* vector_type =
4106 dyn_cast<VectorType>(Cond->getType())) {
4107 // expect <n x i1>
4108 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4109 return error("Invalid type for value");
4110 } else {
4111 // expect i1
4112 if (Cond->getType() != Type::getInt1Ty(Context))
4113 return error("Invalid type for value");
4116 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4117 InstructionList.push_back(I);
4118 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4119 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4120 if (FMF.any())
4121 I->setFastMathFlags(FMF);
4123 break;
4126 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4127 unsigned OpNum = 0;
4128 Value *Vec, *Idx;
4129 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4130 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4131 return error("Invalid record");
4132 if (!Vec->getType()->isVectorTy())
4133 return error("Invalid type for value");
4134 I = ExtractElementInst::Create(Vec, Idx);
4135 FullTy = FullTy->getVectorElementType();
4136 InstructionList.push_back(I);
4137 break;
4140 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4141 unsigned OpNum = 0;
4142 Value *Vec, *Elt, *Idx;
4143 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4144 return error("Invalid record");
4145 if (!Vec->getType()->isVectorTy())
4146 return error("Invalid type for value");
4147 if (popValue(Record, OpNum, NextValueNo,
4148 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4149 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4150 return error("Invalid record");
4151 I = InsertElementInst::Create(Vec, Elt, Idx);
4152 InstructionList.push_back(I);
4153 break;
4156 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4157 unsigned OpNum = 0;
4158 Value *Vec1, *Vec2, *Mask;
4159 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4160 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4161 return error("Invalid record");
4163 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4164 return error("Invalid record");
4165 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4166 return error("Invalid type for value");
4167 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4168 FullTy = VectorType::get(FullTy->getVectorElementType(),
4169 Mask->getType()->getVectorNumElements());
4170 InstructionList.push_back(I);
4171 break;
4174 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4175 // Old form of ICmp/FCmp returning bool
4176 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4177 // both legal on vectors but had different behaviour.
4178 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4179 // FCmp/ICmp returning bool or vector of bool
4181 unsigned OpNum = 0;
4182 Value *LHS, *RHS;
4183 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4184 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4185 return error("Invalid record");
4187 if (OpNum >= Record.size())
4188 return error(
4189 "Invalid record: operand number exceeded available operands");
4191 unsigned PredVal = Record[OpNum];
4192 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4193 FastMathFlags FMF;
4194 if (IsFP && Record.size() > OpNum+1)
4195 FMF = getDecodedFastMathFlags(Record[++OpNum]);
4197 if (OpNum+1 != Record.size())
4198 return error("Invalid record");
4200 if (LHS->getType()->isFPOrFPVectorTy())
4201 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4202 else
4203 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4205 if (FMF.any())
4206 I->setFastMathFlags(FMF);
4207 InstructionList.push_back(I);
4208 break;
4211 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4213 unsigned Size = Record.size();
4214 if (Size == 0) {
4215 I = ReturnInst::Create(Context);
4216 InstructionList.push_back(I);
4217 break;
4220 unsigned OpNum = 0;
4221 Value *Op = nullptr;
4222 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4223 return error("Invalid record");
4224 if (OpNum != Record.size())
4225 return error("Invalid record");
4227 I = ReturnInst::Create(Context, Op);
4228 InstructionList.push_back(I);
4229 break;
4231 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4232 if (Record.size() != 1 && Record.size() != 3)
4233 return error("Invalid record");
4234 BasicBlock *TrueDest = getBasicBlock(Record[0]);
4235 if (!TrueDest)
4236 return error("Invalid record");
4238 if (Record.size() == 1) {
4239 I = BranchInst::Create(TrueDest);
4240 InstructionList.push_back(I);
4242 else {
4243 BasicBlock *FalseDest = getBasicBlock(Record[1]);
4244 Value *Cond = getValue(Record, 2, NextValueNo,
4245 Type::getInt1Ty(Context));
4246 if (!FalseDest || !Cond)
4247 return error("Invalid record");
4248 I = BranchInst::Create(TrueDest, FalseDest, Cond);
4249 InstructionList.push_back(I);
4251 break;
4253 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4254 if (Record.size() != 1 && Record.size() != 2)
4255 return error("Invalid record");
4256 unsigned Idx = 0;
4257 Value *CleanupPad =
4258 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4259 if (!CleanupPad)
4260 return error("Invalid record");
4261 BasicBlock *UnwindDest = nullptr;
4262 if (Record.size() == 2) {
4263 UnwindDest = getBasicBlock(Record[Idx++]);
4264 if (!UnwindDest)
4265 return error("Invalid record");
4268 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4269 InstructionList.push_back(I);
4270 break;
4272 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4273 if (Record.size() != 2)
4274 return error("Invalid record");
4275 unsigned Idx = 0;
4276 Value *CatchPad =
4277 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4278 if (!CatchPad)
4279 return error("Invalid record");
4280 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4281 if (!BB)
4282 return error("Invalid record");
4284 I = CatchReturnInst::Create(CatchPad, BB);
4285 InstructionList.push_back(I);
4286 break;
4288 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4289 // We must have, at minimum, the outer scope and the number of arguments.
4290 if (Record.size() < 2)
4291 return error("Invalid record");
4293 unsigned Idx = 0;
4295 Value *ParentPad =
4296 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4298 unsigned NumHandlers = Record[Idx++];
4300 SmallVector<BasicBlock *, 2> Handlers;
4301 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4302 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4303 if (!BB)
4304 return error("Invalid record");
4305 Handlers.push_back(BB);
4308 BasicBlock *UnwindDest = nullptr;
4309 if (Idx + 1 == Record.size()) {
4310 UnwindDest = getBasicBlock(Record[Idx++]);
4311 if (!UnwindDest)
4312 return error("Invalid record");
4315 if (Record.size() != Idx)
4316 return error("Invalid record");
4318 auto *CatchSwitch =
4319 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4320 for (BasicBlock *Handler : Handlers)
4321 CatchSwitch->addHandler(Handler);
4322 I = CatchSwitch;
4323 InstructionList.push_back(I);
4324 break;
4326 case bitc::FUNC_CODE_INST_CATCHPAD:
4327 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4328 // We must have, at minimum, the outer scope and the number of arguments.
4329 if (Record.size() < 2)
4330 return error("Invalid record");
4332 unsigned Idx = 0;
4334 Value *ParentPad =
4335 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4337 unsigned NumArgOperands = Record[Idx++];
4339 SmallVector<Value *, 2> Args;
4340 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4341 Value *Val;
4342 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4343 return error("Invalid record");
4344 Args.push_back(Val);
4347 if (Record.size() != Idx)
4348 return error("Invalid record");
4350 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4351 I = CleanupPadInst::Create(ParentPad, Args);
4352 else
4353 I = CatchPadInst::Create(ParentPad, Args);
4354 InstructionList.push_back(I);
4355 break;
4357 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4358 // Check magic
4359 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4360 // "New" SwitchInst format with case ranges. The changes to write this
4361 // format were reverted but we still recognize bitcode that uses it.
4362 // Hopefully someday we will have support for case ranges and can use
4363 // this format again.
4365 Type *OpTy = getTypeByID(Record[1]);
4366 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4368 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4369 BasicBlock *Default = getBasicBlock(Record[3]);
4370 if (!OpTy || !Cond || !Default)
4371 return error("Invalid record");
4373 unsigned NumCases = Record[4];
4375 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4376 InstructionList.push_back(SI);
4378 unsigned CurIdx = 5;
4379 for (unsigned i = 0; i != NumCases; ++i) {
4380 SmallVector<ConstantInt*, 1> CaseVals;
4381 unsigned NumItems = Record[CurIdx++];
4382 for (unsigned ci = 0; ci != NumItems; ++ci) {
4383 bool isSingleNumber = Record[CurIdx++];
4385 APInt Low;
4386 unsigned ActiveWords = 1;
4387 if (ValueBitWidth > 64)
4388 ActiveWords = Record[CurIdx++];
4389 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4390 ValueBitWidth);
4391 CurIdx += ActiveWords;
4393 if (!isSingleNumber) {
4394 ActiveWords = 1;
4395 if (ValueBitWidth > 64)
4396 ActiveWords = Record[CurIdx++];
4397 APInt High = readWideAPInt(
4398 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4399 CurIdx += ActiveWords;
4401 // FIXME: It is not clear whether values in the range should be
4402 // compared as signed or unsigned values. The partially
4403 // implemented changes that used this format in the past used
4404 // unsigned comparisons.
4405 for ( ; Low.ule(High); ++Low)
4406 CaseVals.push_back(ConstantInt::get(Context, Low));
4407 } else
4408 CaseVals.push_back(ConstantInt::get(Context, Low));
4410 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4411 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4412 cve = CaseVals.end(); cvi != cve; ++cvi)
4413 SI->addCase(*cvi, DestBB);
4415 I = SI;
4416 break;
4419 // Old SwitchInst format without case ranges.
4421 if (Record.size() < 3 || (Record.size() & 1) == 0)
4422 return error("Invalid record");
4423 Type *OpTy = getTypeByID(Record[0]);
4424 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4425 BasicBlock *Default = getBasicBlock(Record[2]);
4426 if (!OpTy || !Cond || !Default)
4427 return error("Invalid record");
4428 unsigned NumCases = (Record.size()-3)/2;
4429 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4430 InstructionList.push_back(SI);
4431 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4432 ConstantInt *CaseVal =
4433 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4434 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4435 if (!CaseVal || !DestBB) {
4436 delete SI;
4437 return error("Invalid record");
4439 SI->addCase(CaseVal, DestBB);
4441 I = SI;
4442 break;
4444 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4445 if (Record.size() < 2)
4446 return error("Invalid record");
4447 Type *OpTy = getTypeByID(Record[0]);
4448 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4449 if (!OpTy || !Address)
4450 return error("Invalid record");
4451 unsigned NumDests = Record.size()-2;
4452 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4453 InstructionList.push_back(IBI);
4454 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4455 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4456 IBI->addDestination(DestBB);
4457 } else {
4458 delete IBI;
4459 return error("Invalid record");
4462 I = IBI;
4463 break;
4466 case bitc::FUNC_CODE_INST_INVOKE: {
4467 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4468 if (Record.size() < 4)
4469 return error("Invalid record");
4470 unsigned OpNum = 0;
4471 AttributeList PAL = getAttributes(Record[OpNum++]);
4472 unsigned CCInfo = Record[OpNum++];
4473 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4474 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4476 FunctionType *FTy = nullptr;
4477 FunctionType *FullFTy = nullptr;
4478 if ((CCInfo >> 13) & 1) {
4479 FullFTy =
4480 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4481 if (!FullFTy)
4482 return error("Explicit invoke type is not a function type");
4483 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4486 Value *Callee;
4487 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4488 return error("Invalid record");
4490 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4491 if (!CalleeTy)
4492 return error("Callee is not a pointer");
4493 if (!FTy) {
4494 FullFTy =
4495 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4496 if (!FullFTy)
4497 return error("Callee is not of pointer to function type");
4498 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4499 } else if (getPointerElementFlatType(FullTy) != FTy)
4500 return error("Explicit invoke type does not match pointee type of "
4501 "callee operand");
4502 if (Record.size() < FTy->getNumParams() + OpNum)
4503 return error("Insufficient operands to call");
4505 SmallVector<Value*, 16> Ops;
4506 SmallVector<Type *, 16> ArgsFullTys;
4507 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4508 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4509 FTy->getParamType(i)));
4510 ArgsFullTys.push_back(FullFTy->getParamType(i));
4511 if (!Ops.back())
4512 return error("Invalid record");
4515 if (!FTy->isVarArg()) {
4516 if (Record.size() != OpNum)
4517 return error("Invalid record");
4518 } else {
4519 // Read type/value pairs for varargs params.
4520 while (OpNum != Record.size()) {
4521 Value *Op;
4522 Type *FullTy;
4523 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4524 return error("Invalid record");
4525 Ops.push_back(Op);
4526 ArgsFullTys.push_back(FullTy);
4530 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4531 OperandBundles);
4532 FullTy = FullFTy->getReturnType();
4533 OperandBundles.clear();
4534 InstructionList.push_back(I);
4535 cast<InvokeInst>(I)->setCallingConv(
4536 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4537 cast<InvokeInst>(I)->setAttributes(PAL);
4538 propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4540 break;
4542 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4543 unsigned Idx = 0;
4544 Value *Val = nullptr;
4545 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4546 return error("Invalid record");
4547 I = ResumeInst::Create(Val);
4548 InstructionList.push_back(I);
4549 break;
4551 case bitc::FUNC_CODE_INST_CALLBR: {
4552 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4553 unsigned OpNum = 0;
4554 AttributeList PAL = getAttributes(Record[OpNum++]);
4555 unsigned CCInfo = Record[OpNum++];
4557 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4558 unsigned NumIndirectDests = Record[OpNum++];
4559 SmallVector<BasicBlock *, 16> IndirectDests;
4560 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4561 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4563 FunctionType *FTy = nullptr;
4564 FunctionType *FullFTy = nullptr;
4565 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4566 FullFTy =
4567 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4568 if (!FullFTy)
4569 return error("Explicit call type is not a function type");
4570 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4573 Value *Callee;
4574 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4575 return error("Invalid record");
4577 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4578 if (!OpTy)
4579 return error("Callee is not a pointer type");
4580 if (!FTy) {
4581 FullFTy =
4582 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4583 if (!FullFTy)
4584 return error("Callee is not of pointer to function type");
4585 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4586 } else if (getPointerElementFlatType(FullTy) != FTy)
4587 return error("Explicit call type does not match pointee type of "
4588 "callee operand");
4589 if (Record.size() < FTy->getNumParams() + OpNum)
4590 return error("Insufficient operands to call");
4592 SmallVector<Value*, 16> Args;
4593 // Read the fixed params.
4594 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4595 if (FTy->getParamType(i)->isLabelTy())
4596 Args.push_back(getBasicBlock(Record[OpNum]));
4597 else
4598 Args.push_back(getValue(Record, OpNum, NextValueNo,
4599 FTy->getParamType(i)));
4600 if (!Args.back())
4601 return error("Invalid record");
4604 // Read type/value pairs for varargs params.
4605 if (!FTy->isVarArg()) {
4606 if (OpNum != Record.size())
4607 return error("Invalid record");
4608 } else {
4609 while (OpNum != Record.size()) {
4610 Value *Op;
4611 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4612 return error("Invalid record");
4613 Args.push_back(Op);
4617 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4618 OperandBundles);
4619 FullTy = FullFTy->getReturnType();
4620 OperandBundles.clear();
4621 InstructionList.push_back(I);
4622 cast<CallBrInst>(I)->setCallingConv(
4623 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4624 cast<CallBrInst>(I)->setAttributes(PAL);
4625 break;
4627 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4628 I = new UnreachableInst(Context);
4629 InstructionList.push_back(I);
4630 break;
4631 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4632 if (Record.size() < 1)
4633 return error("Invalid record");
4634 // The first record specifies the type.
4635 FullTy = getFullyStructuredTypeByID(Record[0]);
4636 Type *Ty = flattenPointerTypes(FullTy);
4637 if (!Ty)
4638 return error("Invalid record");
4640 // Phi arguments are pairs of records of [value, basic block].
4641 // There is an optional final record for fast-math-flags if this phi has a
4642 // floating-point type.
4643 size_t NumArgs = (Record.size() - 1) / 2;
4644 if ((Record.size() - 1) % 2 == 1 && !Ty->isFPOrFPVectorTy())
4645 return error("Invalid record");
4647 PHINode *PN = PHINode::Create(Ty, NumArgs);
4648 InstructionList.push_back(PN);
4650 for (unsigned i = 0; i != NumArgs; i++) {
4651 Value *V;
4652 // With the new function encoding, it is possible that operands have
4653 // negative IDs (for forward references). Use a signed VBR
4654 // representation to keep the encoding small.
4655 if (UseRelativeIDs)
4656 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4657 else
4658 V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4659 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4660 if (!V || !BB)
4661 return error("Invalid record");
4662 PN->addIncoming(V, BB);
4664 I = PN;
4666 // If there are an even number of records, the final record must be FMF.
4667 if (Record.size() % 2 == 0) {
4668 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4669 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4670 if (FMF.any())
4671 I->setFastMathFlags(FMF);
4674 break;
4677 case bitc::FUNC_CODE_INST_LANDINGPAD:
4678 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4679 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4680 unsigned Idx = 0;
4681 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4682 if (Record.size() < 3)
4683 return error("Invalid record");
4684 } else {
4685 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4686 if (Record.size() < 4)
4687 return error("Invalid record");
4689 FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4690 Type *Ty = flattenPointerTypes(FullTy);
4691 if (!Ty)
4692 return error("Invalid record");
4693 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4694 Value *PersFn = nullptr;
4695 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4696 return error("Invalid record");
4698 if (!F->hasPersonalityFn())
4699 F->setPersonalityFn(cast<Constant>(PersFn));
4700 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4701 return error("Personality function mismatch");
4704 bool IsCleanup = !!Record[Idx++];
4705 unsigned NumClauses = Record[Idx++];
4706 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4707 LP->setCleanup(IsCleanup);
4708 for (unsigned J = 0; J != NumClauses; ++J) {
4709 LandingPadInst::ClauseType CT =
4710 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4711 Value *Val;
4713 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4714 delete LP;
4715 return error("Invalid record");
4718 assert((CT != LandingPadInst::Catch ||
4719 !isa<ArrayType>(Val->getType())) &&
4720 "Catch clause has a invalid type!");
4721 assert((CT != LandingPadInst::Filter ||
4722 isa<ArrayType>(Val->getType())) &&
4723 "Filter clause has invalid type!");
4724 LP->addClause(cast<Constant>(Val));
4727 I = LP;
4728 InstructionList.push_back(I);
4729 break;
4732 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4733 if (Record.size() != 4)
4734 return error("Invalid record");
4735 uint64_t AlignRecord = Record[3];
4736 const uint64_t InAllocaMask = uint64_t(1) << 5;
4737 const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4738 const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4739 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4740 SwiftErrorMask;
4741 bool InAlloca = AlignRecord & InAllocaMask;
4742 bool SwiftError = AlignRecord & SwiftErrorMask;
4743 FullTy = getFullyStructuredTypeByID(Record[0]);
4744 Type *Ty = flattenPointerTypes(FullTy);
4745 if ((AlignRecord & ExplicitTypeMask) == 0) {
4746 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4747 if (!PTy)
4748 return error("Old-style alloca with a non-pointer type");
4749 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4751 Type *OpTy = getTypeByID(Record[1]);
4752 Value *Size = getFnValueByID(Record[2], OpTy);
4753 MaybeAlign Align;
4754 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4755 return Err;
4757 if (!Ty || !Size)
4758 return error("Invalid record");
4760 // FIXME: Make this an optional field.
4761 const DataLayout &DL = TheModule->getDataLayout();
4762 unsigned AS = DL.getAllocaAddrSpace();
4764 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align ? Align->value() : 0);
4765 AI->setUsedWithInAlloca(InAlloca);
4766 AI->setSwiftError(SwiftError);
4767 I = AI;
4768 FullTy = PointerType::get(FullTy, AS);
4769 InstructionList.push_back(I);
4770 break;
4772 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4773 unsigned OpNum = 0;
4774 Value *Op;
4775 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4776 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4777 return error("Invalid record");
4779 if (!isa<PointerType>(Op->getType()))
4780 return error("Load operand is not a pointer type");
4782 Type *Ty = nullptr;
4783 if (OpNum + 3 == Record.size()) {
4784 FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4785 Ty = flattenPointerTypes(FullTy);
4786 } else
4787 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4789 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4790 return Err;
4792 MaybeAlign Align;
4793 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4794 return Err;
4795 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4796 InstructionList.push_back(I);
4797 break;
4799 case bitc::FUNC_CODE_INST_LOADATOMIC: {
4800 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4801 unsigned OpNum = 0;
4802 Value *Op;
4803 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4804 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4805 return error("Invalid record");
4807 if (!isa<PointerType>(Op->getType()))
4808 return error("Load operand is not a pointer type");
4810 Type *Ty = nullptr;
4811 if (OpNum + 5 == Record.size()) {
4812 FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4813 Ty = flattenPointerTypes(FullTy);
4814 } else
4815 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4817 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4818 return Err;
4820 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4821 if (Ordering == AtomicOrdering::NotAtomic ||
4822 Ordering == AtomicOrdering::Release ||
4823 Ordering == AtomicOrdering::AcquireRelease)
4824 return error("Invalid record");
4825 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4826 return error("Invalid record");
4827 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4829 MaybeAlign Align;
4830 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4831 return Err;
4832 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4833 InstructionList.push_back(I);
4834 break;
4836 case bitc::FUNC_CODE_INST_STORE:
4837 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4838 unsigned OpNum = 0;
4839 Value *Val, *Ptr;
4840 Type *FullTy;
4841 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4842 (BitCode == bitc::FUNC_CODE_INST_STORE
4843 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4844 : popValue(Record, OpNum, NextValueNo,
4845 getPointerElementFlatType(FullTy), Val)) ||
4846 OpNum + 2 != Record.size())
4847 return error("Invalid record");
4849 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4850 return Err;
4851 MaybeAlign Align;
4852 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4853 return Err;
4854 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4855 InstructionList.push_back(I);
4856 break;
4858 case bitc::FUNC_CODE_INST_STOREATOMIC:
4859 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4860 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4861 unsigned OpNum = 0;
4862 Value *Val, *Ptr;
4863 Type *FullTy;
4864 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4865 !isa<PointerType>(Ptr->getType()) ||
4866 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4867 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4868 : popValue(Record, OpNum, NextValueNo,
4869 getPointerElementFlatType(FullTy), Val)) ||
4870 OpNum + 4 != Record.size())
4871 return error("Invalid record");
4873 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4874 return Err;
4875 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4876 if (Ordering == AtomicOrdering::NotAtomic ||
4877 Ordering == AtomicOrdering::Acquire ||
4878 Ordering == AtomicOrdering::AcquireRelease)
4879 return error("Invalid record");
4880 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4881 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4882 return error("Invalid record");
4884 MaybeAlign Align;
4885 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4886 return Err;
4887 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4888 InstructionList.push_back(I);
4889 break;
4891 case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4892 case bitc::FUNC_CODE_INST_CMPXCHG: {
4893 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4894 // failureordering?, isweak?]
4895 unsigned OpNum = 0;
4896 Value *Ptr, *Cmp, *New;
4897 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4898 return error("Invalid record");
4900 if (!isa<PointerType>(Ptr->getType()))
4901 return error("Cmpxchg operand is not a pointer type");
4903 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4904 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4905 return error("Invalid record");
4906 } else if (popValue(Record, OpNum, NextValueNo,
4907 getPointerElementFlatType(FullTy), Cmp))
4908 return error("Invalid record");
4909 else
4910 FullTy = cast<PointerType>(FullTy)->getElementType();
4912 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4913 Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4914 return error("Invalid record");
4916 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4917 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4918 SuccessOrdering == AtomicOrdering::Unordered)
4919 return error("Invalid record");
4920 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4922 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4923 return Err;
4924 AtomicOrdering FailureOrdering;
4925 if (Record.size() < 7)
4926 FailureOrdering =
4927 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4928 else
4929 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4931 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4932 SSID);
4933 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4934 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4936 if (Record.size() < 8) {
4937 // Before weak cmpxchgs existed, the instruction simply returned the
4938 // value loaded from memory, so bitcode files from that era will be
4939 // expecting the first component of a modern cmpxchg.
4940 CurBB->getInstList().push_back(I);
4941 I = ExtractValueInst::Create(I, 0);
4942 FullTy = cast<StructType>(FullTy)->getElementType(0);
4943 } else {
4944 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4947 InstructionList.push_back(I);
4948 break;
4950 case bitc::FUNC_CODE_INST_ATOMICRMW: {
4951 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4952 unsigned OpNum = 0;
4953 Value *Ptr, *Val;
4954 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4955 !isa<PointerType>(Ptr->getType()) ||
4956 popValue(Record, OpNum, NextValueNo,
4957 getPointerElementFlatType(FullTy), Val) ||
4958 OpNum + 4 != Record.size())
4959 return error("Invalid record");
4960 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4961 if (Operation < AtomicRMWInst::FIRST_BINOP ||
4962 Operation > AtomicRMWInst::LAST_BINOP)
4963 return error("Invalid record");
4964 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4965 if (Ordering == AtomicOrdering::NotAtomic ||
4966 Ordering == AtomicOrdering::Unordered)
4967 return error("Invalid record");
4968 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4969 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4970 FullTy = getPointerElementFlatType(FullTy);
4971 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4972 InstructionList.push_back(I);
4973 break;
4975 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4976 if (2 != Record.size())
4977 return error("Invalid record");
4978 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4979 if (Ordering == AtomicOrdering::NotAtomic ||
4980 Ordering == AtomicOrdering::Unordered ||
4981 Ordering == AtomicOrdering::Monotonic)
4982 return error("Invalid record");
4983 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4984 I = new FenceInst(Context, Ordering, SSID);
4985 InstructionList.push_back(I);
4986 break;
4988 case bitc::FUNC_CODE_INST_CALL: {
4989 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4990 if (Record.size() < 3)
4991 return error("Invalid record");
4993 unsigned OpNum = 0;
4994 AttributeList PAL = getAttributes(Record[OpNum++]);
4995 unsigned CCInfo = Record[OpNum++];
4997 FastMathFlags FMF;
4998 if ((CCInfo >> bitc::CALL_FMF) & 1) {
4999 FMF = getDecodedFastMathFlags(Record[OpNum++]);
5000 if (!FMF.any())
5001 return error("Fast math flags indicator set for call with no FMF");
5004 FunctionType *FTy = nullptr;
5005 FunctionType *FullFTy = nullptr;
5006 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5007 FullFTy =
5008 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5009 if (!FullFTy)
5010 return error("Explicit call type is not a function type");
5011 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5014 Value *Callee;
5015 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5016 return error("Invalid record");
5018 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5019 if (!OpTy)
5020 return error("Callee is not a pointer type");
5021 if (!FTy) {
5022 FullFTy =
5023 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5024 if (!FullFTy)
5025 return error("Callee is not of pointer to function type");
5026 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5027 } else if (getPointerElementFlatType(FullTy) != FTy)
5028 return error("Explicit call type does not match pointee type of "
5029 "callee operand");
5030 if (Record.size() < FTy->getNumParams() + OpNum)
5031 return error("Insufficient operands to call");
5033 SmallVector<Value*, 16> Args;
5034 SmallVector<Type*, 16> ArgsFullTys;
5035 // Read the fixed params.
5036 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5037 if (FTy->getParamType(i)->isLabelTy())
5038 Args.push_back(getBasicBlock(Record[OpNum]));
5039 else
5040 Args.push_back(getValue(Record, OpNum, NextValueNo,
5041 FTy->getParamType(i)));
5042 ArgsFullTys.push_back(FullFTy->getParamType(i));
5043 if (!Args.back())
5044 return error("Invalid record");
5047 // Read type/value pairs for varargs params.
5048 if (!FTy->isVarArg()) {
5049 if (OpNum != Record.size())
5050 return error("Invalid record");
5051 } else {
5052 while (OpNum != Record.size()) {
5053 Value *Op;
5054 Type *FullTy;
5055 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5056 return error("Invalid record");
5057 Args.push_back(Op);
5058 ArgsFullTys.push_back(FullTy);
5062 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5063 FullTy = FullFTy->getReturnType();
5064 OperandBundles.clear();
5065 InstructionList.push_back(I);
5066 cast<CallInst>(I)->setCallingConv(
5067 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5068 CallInst::TailCallKind TCK = CallInst::TCK_None;
5069 if (CCInfo & 1 << bitc::CALL_TAIL)
5070 TCK = CallInst::TCK_Tail;
5071 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5072 TCK = CallInst::TCK_MustTail;
5073 if (CCInfo & (1 << bitc::CALL_NOTAIL))
5074 TCK = CallInst::TCK_NoTail;
5075 cast<CallInst>(I)->setTailCallKind(TCK);
5076 cast<CallInst>(I)->setAttributes(PAL);
5077 propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5078 if (FMF.any()) {
5079 if (!isa<FPMathOperator>(I))
5080 return error("Fast-math-flags specified for call without "
5081 "floating-point scalar or vector return type");
5082 I->setFastMathFlags(FMF);
5084 break;
5086 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5087 if (Record.size() < 3)
5088 return error("Invalid record");
5089 Type *OpTy = getTypeByID(Record[0]);
5090 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5091 FullTy = getFullyStructuredTypeByID(Record[2]);
5092 Type *ResTy = flattenPointerTypes(FullTy);
5093 if (!OpTy || !Op || !ResTy)
5094 return error("Invalid record");
5095 I = new VAArgInst(Op, ResTy);
5096 InstructionList.push_back(I);
5097 break;
5100 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5101 // A call or an invoke can be optionally prefixed with some variable
5102 // number of operand bundle blocks. These blocks are read into
5103 // OperandBundles and consumed at the next call or invoke instruction.
5105 if (Record.size() < 1 || Record[0] >= BundleTags.size())
5106 return error("Invalid record");
5108 std::vector<Value *> Inputs;
5110 unsigned OpNum = 1;
5111 while (OpNum != Record.size()) {
5112 Value *Op;
5113 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5114 return error("Invalid record");
5115 Inputs.push_back(Op);
5118 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5119 continue;
5123 // Add instruction to end of current BB. If there is no current BB, reject
5124 // this file.
5125 if (!CurBB) {
5126 I->deleteValue();
5127 return error("Invalid instruction with no BB");
5129 if (!OperandBundles.empty()) {
5130 I->deleteValue();
5131 return error("Operand bundles found with no consumer");
5133 CurBB->getInstList().push_back(I);
5135 // If this was a terminator instruction, move to the next block.
5136 if (I->isTerminator()) {
5137 ++CurBBNo;
5138 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5141 // Non-void values get registered in the value table for future use.
5142 if (I && !I->getType()->isVoidTy()) {
5143 if (!FullTy) {
5144 FullTy = I->getType();
5145 assert(
5146 !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5147 !isa<ArrayType>(FullTy) &&
5148 (!isa<VectorType>(FullTy) ||
5149 FullTy->getVectorElementType()->isFloatingPointTy() ||
5150 FullTy->getVectorElementType()->isIntegerTy()) &&
5151 "Structured types must be assigned with corresponding non-opaque "
5152 "pointer type");
5155 assert(I->getType() == flattenPointerTypes(FullTy) &&
5156 "Incorrect fully structured type provided for Instruction");
5157 ValueList.assignValue(I, NextValueNo++, FullTy);
5161 OutOfRecordLoop:
5163 if (!OperandBundles.empty())
5164 return error("Operand bundles found with no consumer");
5166 // Check the function list for unresolved values.
5167 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5168 if (!A->getParent()) {
5169 // We found at least one unresolved value. Nuke them all to avoid leaks.
5170 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5171 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5172 A->replaceAllUsesWith(UndefValue::get(A->getType()));
5173 delete A;
5176 return error("Never resolved value found in function");
5180 // Unexpected unresolved metadata about to be dropped.
5181 if (MDLoader->hasFwdRefs())
5182 return error("Invalid function metadata: outgoing forward refs");
5184 // Trim the value list down to the size it was before we parsed this function.
5185 ValueList.shrinkTo(ModuleValueListSize);
5186 MDLoader->shrinkTo(ModuleMDLoaderSize);
5187 std::vector<BasicBlock*>().swap(FunctionBBs);
5188 return Error::success();
5191 /// Find the function body in the bitcode stream
5192 Error BitcodeReader::findFunctionInStream(
5193 Function *F,
5194 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5195 while (DeferredFunctionInfoIterator->second == 0) {
5196 // This is the fallback handling for the old format bitcode that
5197 // didn't contain the function index in the VST, or when we have
5198 // an anonymous function which would not have a VST entry.
5199 // Assert that we have one of those two cases.
5200 assert(VSTOffset == 0 || !F->hasName());
5201 // Parse the next body in the stream and set its position in the
5202 // DeferredFunctionInfo map.
5203 if (Error Err = rememberAndSkipFunctionBodies())
5204 return Err;
5206 return Error::success();
5209 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5210 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5211 return SyncScope::ID(Val);
5212 if (Val >= SSIDs.size())
5213 return SyncScope::System; // Map unknown synchronization scopes to system.
5214 return SSIDs[Val];
5217 //===----------------------------------------------------------------------===//
5218 // GVMaterializer implementation
5219 //===----------------------------------------------------------------------===//
5221 Error BitcodeReader::materialize(GlobalValue *GV) {
5222 Function *F = dyn_cast<Function>(GV);
5223 // If it's not a function or is already material, ignore the request.
5224 if (!F || !F->isMaterializable())
5225 return Error::success();
5227 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5228 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5229 // If its position is recorded as 0, its body is somewhere in the stream
5230 // but we haven't seen it yet.
5231 if (DFII->second == 0)
5232 if (Error Err = findFunctionInStream(F, DFII))
5233 return Err;
5235 // Materialize metadata before parsing any function bodies.
5236 if (Error Err = materializeMetadata())
5237 return Err;
5239 // Move the bit stream to the saved position of the deferred function body.
5240 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5241 return JumpFailed;
5242 if (Error Err = parseFunctionBody(F))
5243 return Err;
5244 F->setIsMaterializable(false);
5246 if (StripDebugInfo)
5247 stripDebugInfo(*F);
5249 // Upgrade any old intrinsic calls in the function.
5250 for (auto &I : UpgradedIntrinsics) {
5251 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5252 UI != UE;) {
5253 User *U = *UI;
5254 ++UI;
5255 if (CallInst *CI = dyn_cast<CallInst>(U))
5256 UpgradeIntrinsicCall(CI, I.second);
5260 // Update calls to the remangled intrinsics
5261 for (auto &I : RemangledIntrinsics)
5262 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5263 UI != UE;)
5264 // Don't expect any other users than call sites
5265 CallSite(*UI++).setCalledFunction(I.second);
5267 // Finish fn->subprogram upgrade for materialized functions.
5268 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5269 F->setSubprogram(SP);
5271 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5272 if (!MDLoader->isStrippingTBAA()) {
5273 for (auto &I : instructions(F)) {
5274 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5275 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5276 continue;
5277 MDLoader->setStripTBAA(true);
5278 stripTBAA(F->getParent());
5282 // Bring in any functions that this function forward-referenced via
5283 // blockaddresses.
5284 return materializeForwardReferencedFunctions();
5287 Error BitcodeReader::materializeModule() {
5288 if (Error Err = materializeMetadata())
5289 return Err;
5291 // Promise to materialize all forward references.
5292 WillMaterializeAllForwardRefs = true;
5294 // Iterate over the module, deserializing any functions that are still on
5295 // disk.
5296 for (Function &F : *TheModule) {
5297 if (Error Err = materialize(&F))
5298 return Err;
5300 // At this point, if there are any function bodies, parse the rest of
5301 // the bits in the module past the last function block we have recorded
5302 // through either lazy scanning or the VST.
5303 if (LastFunctionBlockBit || NextUnreadBit)
5304 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5305 ? LastFunctionBlockBit
5306 : NextUnreadBit))
5307 return Err;
5309 // Check that all block address forward references got resolved (as we
5310 // promised above).
5311 if (!BasicBlockFwdRefs.empty())
5312 return error("Never resolved function from blockaddress");
5314 // Upgrade any intrinsic calls that slipped through (should not happen!) and
5315 // delete the old functions to clean up. We can't do this unless the entire
5316 // module is materialized because there could always be another function body
5317 // with calls to the old function.
5318 for (auto &I : UpgradedIntrinsics) {
5319 for (auto *U : I.first->users()) {
5320 if (CallInst *CI = dyn_cast<CallInst>(U))
5321 UpgradeIntrinsicCall(CI, I.second);
5323 if (!I.first->use_empty())
5324 I.first->replaceAllUsesWith(I.second);
5325 I.first->eraseFromParent();
5327 UpgradedIntrinsics.clear();
5328 // Do the same for remangled intrinsics
5329 for (auto &I : RemangledIntrinsics) {
5330 I.first->replaceAllUsesWith(I.second);
5331 I.first->eraseFromParent();
5333 RemangledIntrinsics.clear();
5335 UpgradeDebugInfo(*TheModule);
5337 UpgradeModuleFlags(*TheModule);
5339 UpgradeARCRuntime(*TheModule);
5341 return Error::success();
5344 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5345 return IdentifiedStructTypes;
5348 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5349 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5350 StringRef ModulePath, unsigned ModuleId)
5351 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5352 ModulePath(ModulePath), ModuleId(ModuleId) {}
5354 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5355 TheIndex.addModule(ModulePath, ModuleId);
5358 ModuleSummaryIndex::ModuleInfo *
5359 ModuleSummaryIndexBitcodeReader::getThisModule() {
5360 return TheIndex.getModule(ModulePath);
5363 std::pair<ValueInfo, GlobalValue::GUID>
5364 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5365 auto VGI = ValueIdToValueInfoMap[ValueId];
5366 assert(VGI.first);
5367 return VGI;
5370 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5371 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5372 StringRef SourceFileName) {
5373 std::string GlobalId =
5374 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5375 auto ValueGUID = GlobalValue::getGUID(GlobalId);
5376 auto OriginalNameID = ValueGUID;
5377 if (GlobalValue::isLocalLinkage(Linkage))
5378 OriginalNameID = GlobalValue::getGUID(ValueName);
5379 if (PrintSummaryGUIDs)
5380 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5381 << ValueName << "\n";
5383 // UseStrtab is false for legacy summary formats and value names are
5384 // created on stack. In that case we save the name in a string saver in
5385 // the index so that the value name can be recorded.
5386 ValueIdToValueInfoMap[ValueID] = std::make_pair(
5387 TheIndex.getOrInsertValueInfo(
5388 ValueGUID,
5389 UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5390 OriginalNameID);
5393 // Specialized value symbol table parser used when reading module index
5394 // blocks where we don't actually create global values. The parsed information
5395 // is saved in the bitcode reader for use when later parsing summaries.
5396 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5397 uint64_t Offset,
5398 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5399 // With a strtab the VST is not required to parse the summary.
5400 if (UseStrtab)
5401 return Error::success();
5403 assert(Offset > 0 && "Expected non-zero VST offset");
5404 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5405 if (!MaybeCurrentBit)
5406 return MaybeCurrentBit.takeError();
5407 uint64_t CurrentBit = MaybeCurrentBit.get();
5409 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5410 return Err;
5412 SmallVector<uint64_t, 64> Record;
5414 // Read all the records for this value table.
5415 SmallString<128> ValueName;
5417 while (true) {
5418 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5419 if (!MaybeEntry)
5420 return MaybeEntry.takeError();
5421 BitstreamEntry Entry = MaybeEntry.get();
5423 switch (Entry.Kind) {
5424 case BitstreamEntry::SubBlock: // Handled for us already.
5425 case BitstreamEntry::Error:
5426 return error("Malformed block");
5427 case BitstreamEntry::EndBlock:
5428 // Done parsing VST, jump back to wherever we came from.
5429 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5430 return JumpFailed;
5431 return Error::success();
5432 case BitstreamEntry::Record:
5433 // The interesting case.
5434 break;
5437 // Read a record.
5438 Record.clear();
5439 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5440 if (!MaybeRecord)
5441 return MaybeRecord.takeError();
5442 switch (MaybeRecord.get()) {
5443 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5444 break;
5445 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5446 if (convertToString(Record, 1, ValueName))
5447 return error("Invalid record");
5448 unsigned ValueID = Record[0];
5449 assert(!SourceFileName.empty());
5450 auto VLI = ValueIdToLinkageMap.find(ValueID);
5451 assert(VLI != ValueIdToLinkageMap.end() &&
5452 "No linkage found for VST entry?");
5453 auto Linkage = VLI->second;
5454 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5455 ValueName.clear();
5456 break;
5458 case bitc::VST_CODE_FNENTRY: {
5459 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5460 if (convertToString(Record, 2, ValueName))
5461 return error("Invalid record");
5462 unsigned ValueID = Record[0];
5463 assert(!SourceFileName.empty());
5464 auto VLI = ValueIdToLinkageMap.find(ValueID);
5465 assert(VLI != ValueIdToLinkageMap.end() &&
5466 "No linkage found for VST entry?");
5467 auto Linkage = VLI->second;
5468 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5469 ValueName.clear();
5470 break;
5472 case bitc::VST_CODE_COMBINED_ENTRY: {
5473 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5474 unsigned ValueID = Record[0];
5475 GlobalValue::GUID RefGUID = Record[1];
5476 // The "original name", which is the second value of the pair will be
5477 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5478 ValueIdToValueInfoMap[ValueID] =
5479 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5480 break;
5486 // Parse just the blocks needed for building the index out of the module.
5487 // At the end of this routine the module Index is populated with a map
5488 // from global value id to GlobalValueSummary objects.
5489 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5490 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5491 return Err;
5493 SmallVector<uint64_t, 64> Record;
5494 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5495 unsigned ValueId = 0;
5497 // Read the index for this module.
5498 while (true) {
5499 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5500 if (!MaybeEntry)
5501 return MaybeEntry.takeError();
5502 llvm::BitstreamEntry Entry = MaybeEntry.get();
5504 switch (Entry.Kind) {
5505 case BitstreamEntry::Error:
5506 return error("Malformed block");
5507 case BitstreamEntry::EndBlock:
5508 return Error::success();
5510 case BitstreamEntry::SubBlock:
5511 switch (Entry.ID) {
5512 default: // Skip unknown content.
5513 if (Error Err = Stream.SkipBlock())
5514 return Err;
5515 break;
5516 case bitc::BLOCKINFO_BLOCK_ID:
5517 // Need to parse these to get abbrev ids (e.g. for VST)
5518 if (readBlockInfo())
5519 return error("Malformed block");
5520 break;
5521 case bitc::VALUE_SYMTAB_BLOCK_ID:
5522 // Should have been parsed earlier via VSTOffset, unless there
5523 // is no summary section.
5524 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5525 !SeenGlobalValSummary) &&
5526 "Expected early VST parse via VSTOffset record");
5527 if (Error Err = Stream.SkipBlock())
5528 return Err;
5529 break;
5530 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5531 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5532 // Add the module if it is a per-module index (has a source file name).
5533 if (!SourceFileName.empty())
5534 addThisModule();
5535 assert(!SeenValueSymbolTable &&
5536 "Already read VST when parsing summary block?");
5537 // We might not have a VST if there were no values in the
5538 // summary. An empty summary block generated when we are
5539 // performing ThinLTO compiles so we don't later invoke
5540 // the regular LTO process on them.
5541 if (VSTOffset > 0) {
5542 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5543 return Err;
5544 SeenValueSymbolTable = true;
5546 SeenGlobalValSummary = true;
5547 if (Error Err = parseEntireSummary(Entry.ID))
5548 return Err;
5549 break;
5550 case bitc::MODULE_STRTAB_BLOCK_ID:
5551 if (Error Err = parseModuleStringTable())
5552 return Err;
5553 break;
5555 continue;
5557 case BitstreamEntry::Record: {
5558 Record.clear();
5559 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5560 if (!MaybeBitCode)
5561 return MaybeBitCode.takeError();
5562 switch (MaybeBitCode.get()) {
5563 default:
5564 break; // Default behavior, ignore unknown content.
5565 case bitc::MODULE_CODE_VERSION: {
5566 if (Error Err = parseVersionRecord(Record).takeError())
5567 return Err;
5568 break;
5570 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5571 case bitc::MODULE_CODE_SOURCE_FILENAME: {
5572 SmallString<128> ValueName;
5573 if (convertToString(Record, 0, ValueName))
5574 return error("Invalid record");
5575 SourceFileName = ValueName.c_str();
5576 break;
5578 /// MODULE_CODE_HASH: [5*i32]
5579 case bitc::MODULE_CODE_HASH: {
5580 if (Record.size() != 5)
5581 return error("Invalid hash length " + Twine(Record.size()).str());
5582 auto &Hash = getThisModule()->second.second;
5583 int Pos = 0;
5584 for (auto &Val : Record) {
5585 assert(!(Val >> 32) && "Unexpected high bits set");
5586 Hash[Pos++] = Val;
5588 break;
5590 /// MODULE_CODE_VSTOFFSET: [offset]
5591 case bitc::MODULE_CODE_VSTOFFSET:
5592 if (Record.size() < 1)
5593 return error("Invalid record");
5594 // Note that we subtract 1 here because the offset is relative to one
5595 // word before the start of the identification or module block, which
5596 // was historically always the start of the regular bitcode header.
5597 VSTOffset = Record[0] - 1;
5598 break;
5599 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5600 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5601 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5602 // v2: [strtab offset, strtab size, v1]
5603 case bitc::MODULE_CODE_GLOBALVAR:
5604 case bitc::MODULE_CODE_FUNCTION:
5605 case bitc::MODULE_CODE_ALIAS: {
5606 StringRef Name;
5607 ArrayRef<uint64_t> GVRecord;
5608 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5609 if (GVRecord.size() <= 3)
5610 return error("Invalid record");
5611 uint64_t RawLinkage = GVRecord[3];
5612 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5613 if (!UseStrtab) {
5614 ValueIdToLinkageMap[ValueId++] = Linkage;
5615 break;
5618 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5619 break;
5623 continue;
5628 std::vector<ValueInfo>
5629 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5630 std::vector<ValueInfo> Ret;
5631 Ret.reserve(Record.size());
5632 for (uint64_t RefValueId : Record)
5633 Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5634 return Ret;
5637 std::vector<FunctionSummary::EdgeTy>
5638 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5639 bool IsOldProfileFormat,
5640 bool HasProfile, bool HasRelBF) {
5641 std::vector<FunctionSummary::EdgeTy> Ret;
5642 Ret.reserve(Record.size());
5643 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5644 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5645 uint64_t RelBF = 0;
5646 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5647 if (IsOldProfileFormat) {
5648 I += 1; // Skip old callsitecount field
5649 if (HasProfile)
5650 I += 1; // Skip old profilecount field
5651 } else if (HasProfile)
5652 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5653 else if (HasRelBF)
5654 RelBF = Record[++I];
5655 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5657 return Ret;
5660 static void
5661 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5662 WholeProgramDevirtResolution &Wpd) {
5663 uint64_t ArgNum = Record[Slot++];
5664 WholeProgramDevirtResolution::ByArg &B =
5665 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5666 Slot += ArgNum;
5668 B.TheKind =
5669 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5670 B.Info = Record[Slot++];
5671 B.Byte = Record[Slot++];
5672 B.Bit = Record[Slot++];
5675 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5676 StringRef Strtab, size_t &Slot,
5677 TypeIdSummary &TypeId) {
5678 uint64_t Id = Record[Slot++];
5679 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5681 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5682 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5683 static_cast<size_t>(Record[Slot + 1])};
5684 Slot += 2;
5686 uint64_t ResByArgNum = Record[Slot++];
5687 for (uint64_t I = 0; I != ResByArgNum; ++I)
5688 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5691 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5692 StringRef Strtab,
5693 ModuleSummaryIndex &TheIndex) {
5694 size_t Slot = 0;
5695 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5696 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5697 Slot += 2;
5699 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5700 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5701 TypeId.TTRes.AlignLog2 = Record[Slot++];
5702 TypeId.TTRes.SizeM1 = Record[Slot++];
5703 TypeId.TTRes.BitMask = Record[Slot++];
5704 TypeId.TTRes.InlineBits = Record[Slot++];
5706 while (Slot < Record.size())
5707 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5710 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5711 ArrayRef<uint64_t> Record, size_t &Slot,
5712 TypeIdCompatibleVtableInfo &TypeId) {
5713 uint64_t Offset = Record[Slot++];
5714 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5715 TypeId.push_back({Offset, Callee});
5718 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5719 ArrayRef<uint64_t> Record) {
5720 size_t Slot = 0;
5721 TypeIdCompatibleVtableInfo &TypeId =
5722 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5723 {Strtab.data() + Record[Slot],
5724 static_cast<size_t>(Record[Slot + 1])});
5725 Slot += 2;
5727 while (Slot < Record.size())
5728 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5731 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5732 unsigned WOCnt) {
5733 // Readonly and writeonly refs are in the end of the refs list.
5734 assert(ROCnt + WOCnt <= Refs.size());
5735 unsigned FirstWORef = Refs.size() - WOCnt;
5736 unsigned RefNo = FirstWORef - ROCnt;
5737 for (; RefNo < FirstWORef; ++RefNo)
5738 Refs[RefNo].setReadOnly();
5739 for (; RefNo < Refs.size(); ++RefNo)
5740 Refs[RefNo].setWriteOnly();
5743 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5744 // objects in the index.
5745 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5746 if (Error Err = Stream.EnterSubBlock(ID))
5747 return Err;
5748 SmallVector<uint64_t, 64> Record;
5750 // Parse version
5752 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5753 if (!MaybeEntry)
5754 return MaybeEntry.takeError();
5755 BitstreamEntry Entry = MaybeEntry.get();
5757 if (Entry.Kind != BitstreamEntry::Record)
5758 return error("Invalid Summary Block: record for version expected");
5759 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5760 if (!MaybeRecord)
5761 return MaybeRecord.takeError();
5762 if (MaybeRecord.get() != bitc::FS_VERSION)
5763 return error("Invalid Summary Block: version expected");
5765 const uint64_t Version = Record[0];
5766 const bool IsOldProfileFormat = Version == 1;
5767 if (Version < 1 || Version > 7)
5768 return error("Invalid summary version " + Twine(Version) +
5769 ". Version should be in the range [1-7].");
5770 Record.clear();
5772 // Keep around the last seen summary to be used when we see an optional
5773 // "OriginalName" attachement.
5774 GlobalValueSummary *LastSeenSummary = nullptr;
5775 GlobalValue::GUID LastSeenGUID = 0;
5777 // We can expect to see any number of type ID information records before
5778 // each function summary records; these variables store the information
5779 // collected so far so that it can be used to create the summary object.
5780 std::vector<GlobalValue::GUID> PendingTypeTests;
5781 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5782 PendingTypeCheckedLoadVCalls;
5783 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5784 PendingTypeCheckedLoadConstVCalls;
5786 while (true) {
5787 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5788 if (!MaybeEntry)
5789 return MaybeEntry.takeError();
5790 BitstreamEntry Entry = MaybeEntry.get();
5792 switch (Entry.Kind) {
5793 case BitstreamEntry::SubBlock: // Handled for us already.
5794 case BitstreamEntry::Error:
5795 return error("Malformed block");
5796 case BitstreamEntry::EndBlock:
5797 return Error::success();
5798 case BitstreamEntry::Record:
5799 // The interesting case.
5800 break;
5803 // Read a record. The record format depends on whether this
5804 // is a per-module index or a combined index file. In the per-module
5805 // case the records contain the associated value's ID for correlation
5806 // with VST entries. In the combined index the correlation is done
5807 // via the bitcode offset of the summary records (which were saved
5808 // in the combined index VST entries). The records also contain
5809 // information used for ThinLTO renaming and importing.
5810 Record.clear();
5811 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5812 if (!MaybeBitCode)
5813 return MaybeBitCode.takeError();
5814 switch (unsigned BitCode = MaybeBitCode.get()) {
5815 default: // Default behavior: ignore.
5816 break;
5817 case bitc::FS_FLAGS: { // [flags]
5818 uint64_t Flags = Record[0];
5819 // Scan flags.
5820 assert(Flags <= 0x1f && "Unexpected bits in flag");
5822 // 1 bit: WithGlobalValueDeadStripping flag.
5823 // Set on combined index only.
5824 if (Flags & 0x1)
5825 TheIndex.setWithGlobalValueDeadStripping();
5826 // 1 bit: SkipModuleByDistributedBackend flag.
5827 // Set on combined index only.
5828 if (Flags & 0x2)
5829 TheIndex.setSkipModuleByDistributedBackend();
5830 // 1 bit: HasSyntheticEntryCounts flag.
5831 // Set on combined index only.
5832 if (Flags & 0x4)
5833 TheIndex.setHasSyntheticEntryCounts();
5834 // 1 bit: DisableSplitLTOUnit flag.
5835 // Set on per module indexes. It is up to the client to validate
5836 // the consistency of this flag across modules being linked.
5837 if (Flags & 0x8)
5838 TheIndex.setEnableSplitLTOUnit();
5839 // 1 bit: PartiallySplitLTOUnits flag.
5840 // Set on combined index only.
5841 if (Flags & 0x10)
5842 TheIndex.setPartiallySplitLTOUnits();
5843 break;
5845 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5846 uint64_t ValueID = Record[0];
5847 GlobalValue::GUID RefGUID = Record[1];
5848 ValueIdToValueInfoMap[ValueID] =
5849 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5850 break;
5852 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5853 // numrefs x valueid, n x (valueid)]
5854 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5855 // numrefs x valueid,
5856 // n x (valueid, hotness)]
5857 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5858 // numrefs x valueid,
5859 // n x (valueid, relblockfreq)]
5860 case bitc::FS_PERMODULE:
5861 case bitc::FS_PERMODULE_RELBF:
5862 case bitc::FS_PERMODULE_PROFILE: {
5863 unsigned ValueID = Record[0];
5864 uint64_t RawFlags = Record[1];
5865 unsigned InstCount = Record[2];
5866 uint64_t RawFunFlags = 0;
5867 unsigned NumRefs = Record[3];
5868 unsigned NumRORefs = 0, NumWORefs = 0;
5869 int RefListStartIndex = 4;
5870 if (Version >= 4) {
5871 RawFunFlags = Record[3];
5872 NumRefs = Record[4];
5873 RefListStartIndex = 5;
5874 if (Version >= 5) {
5875 NumRORefs = Record[5];
5876 RefListStartIndex = 6;
5877 if (Version >= 7) {
5878 NumWORefs = Record[6];
5879 RefListStartIndex = 7;
5884 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5885 // The module path string ref set in the summary must be owned by the
5886 // index's module string table. Since we don't have a module path
5887 // string table section in the per-module index, we create a single
5888 // module path string table entry with an empty (0) ID to take
5889 // ownership.
5890 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5891 assert(Record.size() >= RefListStartIndex + NumRefs &&
5892 "Record size inconsistent with number of references");
5893 std::vector<ValueInfo> Refs = makeRefList(
5894 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5895 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5896 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5897 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5898 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5899 IsOldProfileFormat, HasProfile, HasRelBF);
5900 setSpecialRefs(Refs, NumRORefs, NumWORefs);
5901 auto FS = std::make_unique<FunctionSummary>(
5902 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5903 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5904 std::move(PendingTypeTestAssumeVCalls),
5905 std::move(PendingTypeCheckedLoadVCalls),
5906 std::move(PendingTypeTestAssumeConstVCalls),
5907 std::move(PendingTypeCheckedLoadConstVCalls));
5908 PendingTypeTests.clear();
5909 PendingTypeTestAssumeVCalls.clear();
5910 PendingTypeCheckedLoadVCalls.clear();
5911 PendingTypeTestAssumeConstVCalls.clear();
5912 PendingTypeCheckedLoadConstVCalls.clear();
5913 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5914 FS->setModulePath(getThisModule()->first());
5915 FS->setOriginalName(VIAndOriginalGUID.second);
5916 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5917 break;
5919 // FS_ALIAS: [valueid, flags, valueid]
5920 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5921 // they expect all aliasee summaries to be available.
5922 case bitc::FS_ALIAS: {
5923 unsigned ValueID = Record[0];
5924 uint64_t RawFlags = Record[1];
5925 unsigned AliaseeID = Record[2];
5926 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5927 auto AS = std::make_unique<AliasSummary>(Flags);
5928 // The module path string ref set in the summary must be owned by the
5929 // index's module string table. Since we don't have a module path
5930 // string table section in the per-module index, we create a single
5931 // module path string table entry with an empty (0) ID to take
5932 // ownership.
5933 AS->setModulePath(getThisModule()->first());
5935 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5936 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5937 if (!AliaseeInModule)
5938 return error("Alias expects aliasee summary to be parsed");
5939 AS->setAliasee(AliaseeVI, AliaseeInModule);
5941 auto GUID = getValueInfoFromValueId(ValueID);
5942 AS->setOriginalName(GUID.second);
5943 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5944 break;
5946 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5947 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5948 unsigned ValueID = Record[0];
5949 uint64_t RawFlags = Record[1];
5950 unsigned RefArrayStart = 2;
5951 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5952 /* WriteOnly */ false);
5953 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5954 if (Version >= 5) {
5955 GVF = getDecodedGVarFlags(Record[2]);
5956 RefArrayStart = 3;
5958 std::vector<ValueInfo> Refs =
5959 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5960 auto FS =
5961 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5962 FS->setModulePath(getThisModule()->first());
5963 auto GUID = getValueInfoFromValueId(ValueID);
5964 FS->setOriginalName(GUID.second);
5965 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5966 break;
5968 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5969 // numrefs, numrefs x valueid,
5970 // n x (valueid, offset)]
5971 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5972 unsigned ValueID = Record[0];
5973 uint64_t RawFlags = Record[1];
5974 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5975 unsigned NumRefs = Record[3];
5976 unsigned RefListStartIndex = 4;
5977 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5978 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5979 std::vector<ValueInfo> Refs = makeRefList(
5980 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5981 VTableFuncList VTableFuncs;
5982 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5983 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5984 uint64_t Offset = Record[++I];
5985 VTableFuncs.push_back({Callee, Offset});
5987 auto VS =
5988 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5989 VS->setModulePath(getThisModule()->first());
5990 VS->setVTableFuncs(VTableFuncs);
5991 auto GUID = getValueInfoFromValueId(ValueID);
5992 VS->setOriginalName(GUID.second);
5993 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5994 break;
5996 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5997 // numrefs x valueid, n x (valueid)]
5998 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5999 // numrefs x valueid, n x (valueid, hotness)]
6000 case bitc::FS_COMBINED:
6001 case bitc::FS_COMBINED_PROFILE: {
6002 unsigned ValueID = Record[0];
6003 uint64_t ModuleId = Record[1];
6004 uint64_t RawFlags = Record[2];
6005 unsigned InstCount = Record[3];
6006 uint64_t RawFunFlags = 0;
6007 uint64_t EntryCount = 0;
6008 unsigned NumRefs = Record[4];
6009 unsigned NumRORefs = 0, NumWORefs = 0;
6010 int RefListStartIndex = 5;
6012 if (Version >= 4) {
6013 RawFunFlags = Record[4];
6014 RefListStartIndex = 6;
6015 size_t NumRefsIndex = 5;
6016 if (Version >= 5) {
6017 unsigned NumRORefsOffset = 1;
6018 RefListStartIndex = 7;
6019 if (Version >= 6) {
6020 NumRefsIndex = 6;
6021 EntryCount = Record[5];
6022 RefListStartIndex = 8;
6023 if (Version >= 7) {
6024 RefListStartIndex = 9;
6025 NumWORefs = Record[8];
6026 NumRORefsOffset = 2;
6029 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6031 NumRefs = Record[NumRefsIndex];
6034 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6035 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6036 assert(Record.size() >= RefListStartIndex + NumRefs &&
6037 "Record size inconsistent with number of references");
6038 std::vector<ValueInfo> Refs = makeRefList(
6039 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6040 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6041 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6042 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6043 IsOldProfileFormat, HasProfile, false);
6044 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6045 setSpecialRefs(Refs, NumRORefs, NumWORefs);
6046 auto FS = std::make_unique<FunctionSummary>(
6047 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6048 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6049 std::move(PendingTypeTestAssumeVCalls),
6050 std::move(PendingTypeCheckedLoadVCalls),
6051 std::move(PendingTypeTestAssumeConstVCalls),
6052 std::move(PendingTypeCheckedLoadConstVCalls));
6053 PendingTypeTests.clear();
6054 PendingTypeTestAssumeVCalls.clear();
6055 PendingTypeCheckedLoadVCalls.clear();
6056 PendingTypeTestAssumeConstVCalls.clear();
6057 PendingTypeCheckedLoadConstVCalls.clear();
6058 LastSeenSummary = FS.get();
6059 LastSeenGUID = VI.getGUID();
6060 FS->setModulePath(ModuleIdMap[ModuleId]);
6061 TheIndex.addGlobalValueSummary(VI, std::move(FS));
6062 break;
6064 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6065 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6066 // they expect all aliasee summaries to be available.
6067 case bitc::FS_COMBINED_ALIAS: {
6068 unsigned ValueID = Record[0];
6069 uint64_t ModuleId = Record[1];
6070 uint64_t RawFlags = Record[2];
6071 unsigned AliaseeValueId = Record[3];
6072 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6073 auto AS = std::make_unique<AliasSummary>(Flags);
6074 LastSeenSummary = AS.get();
6075 AS->setModulePath(ModuleIdMap[ModuleId]);
6077 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6078 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6079 AS->setAliasee(AliaseeVI, AliaseeInModule);
6081 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6082 LastSeenGUID = VI.getGUID();
6083 TheIndex.addGlobalValueSummary(VI, std::move(AS));
6084 break;
6086 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6087 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6088 unsigned ValueID = Record[0];
6089 uint64_t ModuleId = Record[1];
6090 uint64_t RawFlags = Record[2];
6091 unsigned RefArrayStart = 3;
6092 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6093 /* WriteOnly */ false);
6094 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6095 if (Version >= 5) {
6096 GVF = getDecodedGVarFlags(Record[3]);
6097 RefArrayStart = 4;
6099 std::vector<ValueInfo> Refs =
6100 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6101 auto FS =
6102 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6103 LastSeenSummary = FS.get();
6104 FS->setModulePath(ModuleIdMap[ModuleId]);
6105 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6106 LastSeenGUID = VI.getGUID();
6107 TheIndex.addGlobalValueSummary(VI, std::move(FS));
6108 break;
6110 // FS_COMBINED_ORIGINAL_NAME: [original_name]
6111 case bitc::FS_COMBINED_ORIGINAL_NAME: {
6112 uint64_t OriginalName = Record[0];
6113 if (!LastSeenSummary)
6114 return error("Name attachment that does not follow a combined record");
6115 LastSeenSummary->setOriginalName(OriginalName);
6116 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6117 // Reset the LastSeenSummary
6118 LastSeenSummary = nullptr;
6119 LastSeenGUID = 0;
6120 break;
6122 case bitc::FS_TYPE_TESTS:
6123 assert(PendingTypeTests.empty());
6124 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6125 Record.end());
6126 break;
6128 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6129 assert(PendingTypeTestAssumeVCalls.empty());
6130 for (unsigned I = 0; I != Record.size(); I += 2)
6131 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6132 break;
6134 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6135 assert(PendingTypeCheckedLoadVCalls.empty());
6136 for (unsigned I = 0; I != Record.size(); I += 2)
6137 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6138 break;
6140 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6141 PendingTypeTestAssumeConstVCalls.push_back(
6142 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6143 break;
6145 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6146 PendingTypeCheckedLoadConstVCalls.push_back(
6147 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6148 break;
6150 case bitc::FS_CFI_FUNCTION_DEFS: {
6151 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6152 for (unsigned I = 0; I != Record.size(); I += 2)
6153 CfiFunctionDefs.insert(
6154 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6155 break;
6158 case bitc::FS_CFI_FUNCTION_DECLS: {
6159 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6160 for (unsigned I = 0; I != Record.size(); I += 2)
6161 CfiFunctionDecls.insert(
6162 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6163 break;
6166 case bitc::FS_TYPE_ID:
6167 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6168 break;
6170 case bitc::FS_TYPE_ID_METADATA:
6171 parseTypeIdCompatibleVtableSummaryRecord(Record);
6172 break;
6175 llvm_unreachable("Exit infinite loop");
6178 // Parse the module string table block into the Index.
6179 // This populates the ModulePathStringTable map in the index.
6180 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6181 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6182 return Err;
6184 SmallVector<uint64_t, 64> Record;
6186 SmallString<128> ModulePath;
6187 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6189 while (true) {
6190 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6191 if (!MaybeEntry)
6192 return MaybeEntry.takeError();
6193 BitstreamEntry Entry = MaybeEntry.get();
6195 switch (Entry.Kind) {
6196 case BitstreamEntry::SubBlock: // Handled for us already.
6197 case BitstreamEntry::Error:
6198 return error("Malformed block");
6199 case BitstreamEntry::EndBlock:
6200 return Error::success();
6201 case BitstreamEntry::Record:
6202 // The interesting case.
6203 break;
6206 Record.clear();
6207 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6208 if (!MaybeRecord)
6209 return MaybeRecord.takeError();
6210 switch (MaybeRecord.get()) {
6211 default: // Default behavior: ignore.
6212 break;
6213 case bitc::MST_CODE_ENTRY: {
6214 // MST_ENTRY: [modid, namechar x N]
6215 uint64_t ModuleId = Record[0];
6217 if (convertToString(Record, 1, ModulePath))
6218 return error("Invalid record");
6220 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6221 ModuleIdMap[ModuleId] = LastSeenModule->first();
6223 ModulePath.clear();
6224 break;
6226 /// MST_CODE_HASH: [5*i32]
6227 case bitc::MST_CODE_HASH: {
6228 if (Record.size() != 5)
6229 return error("Invalid hash length " + Twine(Record.size()).str());
6230 if (!LastSeenModule)
6231 return error("Invalid hash that does not follow a module path");
6232 int Pos = 0;
6233 for (auto &Val : Record) {
6234 assert(!(Val >> 32) && "Unexpected high bits set");
6235 LastSeenModule->second.second[Pos++] = Val;
6237 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6238 LastSeenModule = nullptr;
6239 break;
6243 llvm_unreachable("Exit infinite loop");
6246 namespace {
6248 // FIXME: This class is only here to support the transition to llvm::Error. It
6249 // will be removed once this transition is complete. Clients should prefer to
6250 // deal with the Error value directly, rather than converting to error_code.
6251 class BitcodeErrorCategoryType : public std::error_category {
6252 const char *name() const noexcept override {
6253 return "llvm.bitcode";
6256 std::string message(int IE) const override {
6257 BitcodeError E = static_cast<BitcodeError>(IE);
6258 switch (E) {
6259 case BitcodeError::CorruptedBitcode:
6260 return "Corrupted bitcode";
6262 llvm_unreachable("Unknown error type!");
6266 } // end anonymous namespace
6268 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6270 const std::error_category &llvm::BitcodeErrorCategory() {
6271 return *ErrorCategory;
6274 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6275 unsigned Block, unsigned RecordID) {
6276 if (Error Err = Stream.EnterSubBlock(Block))
6277 return std::move(Err);
6279 StringRef Strtab;
6280 while (true) {
6281 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6282 if (!MaybeEntry)
6283 return MaybeEntry.takeError();
6284 llvm::BitstreamEntry Entry = MaybeEntry.get();
6286 switch (Entry.Kind) {
6287 case BitstreamEntry::EndBlock:
6288 return Strtab;
6290 case BitstreamEntry::Error:
6291 return error("Malformed block");
6293 case BitstreamEntry::SubBlock:
6294 if (Error Err = Stream.SkipBlock())
6295 return std::move(Err);
6296 break;
6298 case BitstreamEntry::Record:
6299 StringRef Blob;
6300 SmallVector<uint64_t, 1> Record;
6301 Expected<unsigned> MaybeRecord =
6302 Stream.readRecord(Entry.ID, Record, &Blob);
6303 if (!MaybeRecord)
6304 return MaybeRecord.takeError();
6305 if (MaybeRecord.get() == RecordID)
6306 Strtab = Blob;
6307 break;
6312 //===----------------------------------------------------------------------===//
6313 // External interface
6314 //===----------------------------------------------------------------------===//
6316 Expected<std::vector<BitcodeModule>>
6317 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6318 auto FOrErr = getBitcodeFileContents(Buffer);
6319 if (!FOrErr)
6320 return FOrErr.takeError();
6321 return std::move(FOrErr->Mods);
6324 Expected<BitcodeFileContents>
6325 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6326 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6327 if (!StreamOrErr)
6328 return StreamOrErr.takeError();
6329 BitstreamCursor &Stream = *StreamOrErr;
6331 BitcodeFileContents F;
6332 while (true) {
6333 uint64_t BCBegin = Stream.getCurrentByteNo();
6335 // We may be consuming bitcode from a client that leaves garbage at the end
6336 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6337 // the end that there cannot possibly be another module, stop looking.
6338 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6339 return F;
6341 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6342 if (!MaybeEntry)
6343 return MaybeEntry.takeError();
6344 llvm::BitstreamEntry Entry = MaybeEntry.get();
6346 switch (Entry.Kind) {
6347 case BitstreamEntry::EndBlock:
6348 case BitstreamEntry::Error:
6349 return error("Malformed block");
6351 case BitstreamEntry::SubBlock: {
6352 uint64_t IdentificationBit = -1ull;
6353 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6354 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6355 if (Error Err = Stream.SkipBlock())
6356 return std::move(Err);
6359 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6360 if (!MaybeEntry)
6361 return MaybeEntry.takeError();
6362 Entry = MaybeEntry.get();
6365 if (Entry.Kind != BitstreamEntry::SubBlock ||
6366 Entry.ID != bitc::MODULE_BLOCK_ID)
6367 return error("Malformed block");
6370 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6371 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6372 if (Error Err = Stream.SkipBlock())
6373 return std::move(Err);
6375 F.Mods.push_back({Stream.getBitcodeBytes().slice(
6376 BCBegin, Stream.getCurrentByteNo() - BCBegin),
6377 Buffer.getBufferIdentifier(), IdentificationBit,
6378 ModuleBit});
6379 continue;
6382 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6383 Expected<StringRef> Strtab =
6384 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6385 if (!Strtab)
6386 return Strtab.takeError();
6387 // This string table is used by every preceding bitcode module that does
6388 // not have its own string table. A bitcode file may have multiple
6389 // string tables if it was created by binary concatenation, for example
6390 // with "llvm-cat -b".
6391 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6392 if (!I->Strtab.empty())
6393 break;
6394 I->Strtab = *Strtab;
6396 // Similarly, the string table is used by every preceding symbol table;
6397 // normally there will be just one unless the bitcode file was created
6398 // by binary concatenation.
6399 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6400 F.StrtabForSymtab = *Strtab;
6401 continue;
6404 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6405 Expected<StringRef> SymtabOrErr =
6406 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6407 if (!SymtabOrErr)
6408 return SymtabOrErr.takeError();
6410 // We can expect the bitcode file to have multiple symbol tables if it
6411 // was created by binary concatenation. In that case we silently
6412 // ignore any subsequent symbol tables, which is fine because this is a
6413 // low level function. The client is expected to notice that the number
6414 // of modules in the symbol table does not match the number of modules
6415 // in the input file and regenerate the symbol table.
6416 if (F.Symtab.empty())
6417 F.Symtab = *SymtabOrErr;
6418 continue;
6421 if (Error Err = Stream.SkipBlock())
6422 return std::move(Err);
6423 continue;
6425 case BitstreamEntry::Record:
6426 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6427 continue;
6428 else
6429 return StreamFailed.takeError();
6434 /// Get a lazy one-at-time loading module from bitcode.
6436 /// This isn't always used in a lazy context. In particular, it's also used by
6437 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
6438 /// in forward-referenced functions from block address references.
6440 /// \param[in] MaterializeAll Set to \c true if we should materialize
6441 /// everything.
6442 Expected<std::unique_ptr<Module>>
6443 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6444 bool ShouldLazyLoadMetadata, bool IsImporting) {
6445 BitstreamCursor Stream(Buffer);
6447 std::string ProducerIdentification;
6448 if (IdentificationBit != -1ull) {
6449 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6450 return std::move(JumpFailed);
6451 Expected<std::string> ProducerIdentificationOrErr =
6452 readIdentificationBlock(Stream);
6453 if (!ProducerIdentificationOrErr)
6454 return ProducerIdentificationOrErr.takeError();
6456 ProducerIdentification = *ProducerIdentificationOrErr;
6459 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6460 return std::move(JumpFailed);
6461 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6462 Context);
6464 std::unique_ptr<Module> M =
6465 std::make_unique<Module>(ModuleIdentifier, Context);
6466 M->setMaterializer(R);
6468 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6469 if (Error Err =
6470 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6471 return std::move(Err);
6473 if (MaterializeAll) {
6474 // Read in the entire module, and destroy the BitcodeReader.
6475 if (Error Err = M->materializeAll())
6476 return std::move(Err);
6477 } else {
6478 // Resolve forward references from blockaddresses.
6479 if (Error Err = R->materializeForwardReferencedFunctions())
6480 return std::move(Err);
6482 return std::move(M);
6485 Expected<std::unique_ptr<Module>>
6486 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6487 bool IsImporting) {
6488 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6491 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6492 // We don't use ModuleIdentifier here because the client may need to control the
6493 // module path used in the combined summary (e.g. when reading summaries for
6494 // regular LTO modules).
6495 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6496 StringRef ModulePath, uint64_t ModuleId) {
6497 BitstreamCursor Stream(Buffer);
6498 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6499 return JumpFailed;
6501 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6502 ModulePath, ModuleId);
6503 return R.parseModule();
6506 // Parse the specified bitcode buffer, returning the function info index.
6507 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6508 BitstreamCursor Stream(Buffer);
6509 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6510 return std::move(JumpFailed);
6512 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6513 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6514 ModuleIdentifier, 0);
6516 if (Error Err = R.parseModule())
6517 return std::move(Err);
6519 return std::move(Index);
6522 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6523 unsigned ID) {
6524 if (Error Err = Stream.EnterSubBlock(ID))
6525 return std::move(Err);
6526 SmallVector<uint64_t, 64> Record;
6528 while (true) {
6529 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6530 if (!MaybeEntry)
6531 return MaybeEntry.takeError();
6532 BitstreamEntry Entry = MaybeEntry.get();
6534 switch (Entry.Kind) {
6535 case BitstreamEntry::SubBlock: // Handled for us already.
6536 case BitstreamEntry::Error:
6537 return error("Malformed block");
6538 case BitstreamEntry::EndBlock:
6539 // If no flags record found, conservatively return true to mimic
6540 // behavior before this flag was added.
6541 return true;
6542 case BitstreamEntry::Record:
6543 // The interesting case.
6544 break;
6547 // Look for the FS_FLAGS record.
6548 Record.clear();
6549 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6550 if (!MaybeBitCode)
6551 return MaybeBitCode.takeError();
6552 switch (MaybeBitCode.get()) {
6553 default: // Default behavior: ignore.
6554 break;
6555 case bitc::FS_FLAGS: { // [flags]
6556 uint64_t Flags = Record[0];
6557 // Scan flags.
6558 assert(Flags <= 0x1f && "Unexpected bits in flag");
6560 return Flags & 0x8;
6564 llvm_unreachable("Exit infinite loop");
6567 // Check if the given bitcode buffer contains a global value summary block.
6568 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6569 BitstreamCursor Stream(Buffer);
6570 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6571 return std::move(JumpFailed);
6573 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6574 return std::move(Err);
6576 while (true) {
6577 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6578 if (!MaybeEntry)
6579 return MaybeEntry.takeError();
6580 llvm::BitstreamEntry Entry = MaybeEntry.get();
6582 switch (Entry.Kind) {
6583 case BitstreamEntry::Error:
6584 return error("Malformed block");
6585 case BitstreamEntry::EndBlock:
6586 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6587 /*EnableSplitLTOUnit=*/false};
6589 case BitstreamEntry::SubBlock:
6590 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6591 Expected<bool> EnableSplitLTOUnit =
6592 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6593 if (!EnableSplitLTOUnit)
6594 return EnableSplitLTOUnit.takeError();
6595 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6596 *EnableSplitLTOUnit};
6599 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6600 Expected<bool> EnableSplitLTOUnit =
6601 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6602 if (!EnableSplitLTOUnit)
6603 return EnableSplitLTOUnit.takeError();
6604 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6605 *EnableSplitLTOUnit};
6608 // Ignore other sub-blocks.
6609 if (Error Err = Stream.SkipBlock())
6610 return std::move(Err);
6611 continue;
6613 case BitstreamEntry::Record:
6614 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6615 continue;
6616 else
6617 return StreamFailed.takeError();
6622 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6623 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6624 if (!MsOrErr)
6625 return MsOrErr.takeError();
6627 if (MsOrErr->size() != 1)
6628 return error("Expected a single module");
6630 return (*MsOrErr)[0];
6633 Expected<std::unique_ptr<Module>>
6634 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6635 bool ShouldLazyLoadMetadata, bool IsImporting) {
6636 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6637 if (!BM)
6638 return BM.takeError();
6640 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6643 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6644 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6645 bool ShouldLazyLoadMetadata, bool IsImporting) {
6646 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6647 IsImporting);
6648 if (MOrErr)
6649 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6650 return MOrErr;
6653 Expected<std::unique_ptr<Module>>
6654 BitcodeModule::parseModule(LLVMContext &Context) {
6655 return getModuleImpl(Context, true, false, false);
6656 // TODO: Restore the use-lists to the in-memory state when the bitcode was
6657 // written. We must defer until the Module has been fully materialized.
6660 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6661 LLVMContext &Context) {
6662 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6663 if (!BM)
6664 return BM.takeError();
6666 return BM->parseModule(Context);
6669 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6670 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6671 if (!StreamOrErr)
6672 return StreamOrErr.takeError();
6674 return readTriple(*StreamOrErr);
6677 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6678 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6679 if (!StreamOrErr)
6680 return StreamOrErr.takeError();
6682 return hasObjCCategory(*StreamOrErr);
6685 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6686 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6687 if (!StreamOrErr)
6688 return StreamOrErr.takeError();
6690 return readIdentificationCode(*StreamOrErr);
6693 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6694 ModuleSummaryIndex &CombinedIndex,
6695 uint64_t ModuleId) {
6696 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6697 if (!BM)
6698 return BM.takeError();
6700 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6703 Expected<std::unique_ptr<ModuleSummaryIndex>>
6704 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6705 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6706 if (!BM)
6707 return BM.takeError();
6709 return BM->getSummary();
6712 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6713 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6714 if (!BM)
6715 return BM.takeError();
6717 return BM->getLTOInfo();
6720 Expected<std::unique_ptr<ModuleSummaryIndex>>
6721 llvm::getModuleSummaryIndexForFile(StringRef Path,
6722 bool IgnoreEmptyThinLTOIndexFile) {
6723 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6724 MemoryBuffer::getFileOrSTDIN(Path);
6725 if (!FileOrErr)
6726 return errorCodeToError(FileOrErr.getError());
6727 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6728 return nullptr;
6729 return getModuleSummaryIndex(**FileOrErr);