1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/Error.h"
14 #include "llvm/Support/ErrorHandling.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "KaleidoscopeJIT.h"
31 using namespace llvm::orc
;
33 //===----------------------------------------------------------------------===//
35 //===----------------------------------------------------------------------===//
37 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
38 // of these for known things.
65 static std::string IdentifierStr
; // Filled in if tok_identifier
66 static double NumVal
; // Filled in if tok_number
68 /// gettok - Return the next token from standard input.
70 static int LastChar
= ' ';
72 // Skip any whitespace.
73 while (isspace(LastChar
))
76 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
77 IdentifierStr
= LastChar
;
78 while (isalnum((LastChar
= getchar())))
79 IdentifierStr
+= LastChar
;
81 if (IdentifierStr
== "def")
83 if (IdentifierStr
== "extern")
85 if (IdentifierStr
== "if")
87 if (IdentifierStr
== "then")
89 if (IdentifierStr
== "else")
91 if (IdentifierStr
== "for")
93 if (IdentifierStr
== "in")
95 if (IdentifierStr
== "binary")
97 if (IdentifierStr
== "unary")
99 if (IdentifierStr
== "var")
101 return tok_identifier
;
104 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
108 LastChar
= getchar();
109 } while (isdigit(LastChar
) || LastChar
== '.');
111 NumVal
= strtod(NumStr
.c_str(), nullptr);
115 if (LastChar
== '#') {
116 // Comment until end of line.
118 LastChar
= getchar();
119 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
125 // Check for end of file. Don't eat the EOF.
129 // Otherwise, just return the character as its ascii value.
130 int ThisChar
= LastChar
;
131 LastChar
= getchar();
135 //===----------------------------------------------------------------------===//
136 // Abstract Syntax Tree (aka Parse Tree)
137 //===----------------------------------------------------------------------===//
139 /// ExprAST - Base class for all expression nodes.
142 virtual ~ExprAST() = default;
144 virtual Value
*codegen() = 0;
147 /// NumberExprAST - Expression class for numeric literals like "1.0".
148 class NumberExprAST
: public ExprAST
{
152 NumberExprAST(double Val
) : Val(Val
) {}
154 Value
*codegen() override
;
157 /// VariableExprAST - Expression class for referencing a variable, like "a".
158 class VariableExprAST
: public ExprAST
{
162 VariableExprAST(const std::string
&Name
) : Name(Name
) {}
164 Value
*codegen() override
;
165 const std::string
&getName() const { return Name
; }
168 /// UnaryExprAST - Expression class for a unary operator.
169 class UnaryExprAST
: public ExprAST
{
171 std::unique_ptr
<ExprAST
> Operand
;
174 UnaryExprAST(char Opcode
, std::unique_ptr
<ExprAST
> Operand
)
175 : Opcode(Opcode
), Operand(std::move(Operand
)) {}
177 Value
*codegen() override
;
180 /// BinaryExprAST - Expression class for a binary operator.
181 class BinaryExprAST
: public ExprAST
{
183 std::unique_ptr
<ExprAST
> LHS
, RHS
;
186 BinaryExprAST(char Op
, std::unique_ptr
<ExprAST
> LHS
,
187 std::unique_ptr
<ExprAST
> RHS
)
188 : Op(Op
), LHS(std::move(LHS
)), RHS(std::move(RHS
)) {}
190 Value
*codegen() override
;
193 /// CallExprAST - Expression class for function calls.
194 class CallExprAST
: public ExprAST
{
196 std::vector
<std::unique_ptr
<ExprAST
>> Args
;
199 CallExprAST(const std::string
&Callee
,
200 std::vector
<std::unique_ptr
<ExprAST
>> Args
)
201 : Callee(Callee
), Args(std::move(Args
)) {}
203 Value
*codegen() override
;
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST
: public ExprAST
{
208 std::unique_ptr
<ExprAST
> Cond
, Then
, Else
;
211 IfExprAST(std::unique_ptr
<ExprAST
> Cond
, std::unique_ptr
<ExprAST
> Then
,
212 std::unique_ptr
<ExprAST
> Else
)
213 : Cond(std::move(Cond
)), Then(std::move(Then
)), Else(std::move(Else
)) {}
215 Value
*codegen() override
;
218 /// ForExprAST - Expression class for for/in.
219 class ForExprAST
: public ExprAST
{
221 std::unique_ptr
<ExprAST
> Start
, End
, Step
, Body
;
224 ForExprAST(const std::string
&VarName
, std::unique_ptr
<ExprAST
> Start
,
225 std::unique_ptr
<ExprAST
> End
, std::unique_ptr
<ExprAST
> Step
,
226 std::unique_ptr
<ExprAST
> Body
)
227 : VarName(VarName
), Start(std::move(Start
)), End(std::move(End
)),
228 Step(std::move(Step
)), Body(std::move(Body
)) {}
230 Value
*codegen() override
;
233 /// VarExprAST - Expression class for var/in
234 class VarExprAST
: public ExprAST
{
235 std::vector
<std::pair
<std::string
, std::unique_ptr
<ExprAST
>>> VarNames
;
236 std::unique_ptr
<ExprAST
> Body
;
240 std::vector
<std::pair
<std::string
, std::unique_ptr
<ExprAST
>>> VarNames
,
241 std::unique_ptr
<ExprAST
> Body
)
242 : VarNames(std::move(VarNames
)), Body(std::move(Body
)) {}
244 Value
*codegen() override
;
247 /// PrototypeAST - This class represents the "prototype" for a function,
248 /// which captures its name, and its argument names (thus implicitly the number
249 /// of arguments the function takes), as well as if it is an operator.
252 std::vector
<std::string
> Args
;
254 unsigned Precedence
; // Precedence if a binary op.
257 PrototypeAST(const std::string
&Name
, std::vector
<std::string
> Args
,
258 bool IsOperator
= false, unsigned Prec
= 0)
259 : Name(Name
), Args(std::move(Args
)), IsOperator(IsOperator
),
263 const std::string
&getName() const { return Name
; }
265 bool isUnaryOp() const { return IsOperator
&& Args
.size() == 1; }
266 bool isBinaryOp() const { return IsOperator
&& Args
.size() == 2; }
268 char getOperatorName() const {
269 assert(isUnaryOp() || isBinaryOp());
270 return Name
[Name
.size() - 1];
273 unsigned getBinaryPrecedence() const { return Precedence
; }
276 //===----------------------------------------------------------------------===//
278 //===----------------------------------------------------------------------===//
280 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
281 /// token the parser is looking at. getNextToken reads another token from the
282 /// lexer and updates CurTok with its results.
284 static int getNextToken() { return CurTok
= gettok(); }
286 /// BinopPrecedence - This holds the precedence for each binary operator that is
288 static std::map
<char, int> BinopPrecedence
;
290 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
291 static int GetTokPrecedence() {
292 if (!isascii(CurTok
))
295 // Make sure it's a declared binop.
296 int TokPrec
= BinopPrecedence
[CurTok
];
302 /// LogError* - These are little helper functions for error handling.
303 std::unique_ptr
<ExprAST
> LogError(const char *Str
) {
304 fprintf(stderr
, "Error: %s\n", Str
);
308 std::unique_ptr
<PrototypeAST
> LogErrorP(const char *Str
) {
313 static std::unique_ptr
<ExprAST
> ParseExpression();
315 /// numberexpr ::= number
316 static std::unique_ptr
<ExprAST
> ParseNumberExpr() {
317 auto Result
= std::make_unique
<NumberExprAST
>(NumVal
);
318 getNextToken(); // consume the number
319 return std::move(Result
);
322 /// parenexpr ::= '(' expression ')'
323 static std::unique_ptr
<ExprAST
> ParseParenExpr() {
324 getNextToken(); // eat (.
325 auto V
= ParseExpression();
330 return LogError("expected ')'");
331 getNextToken(); // eat ).
337 /// ::= identifier '(' expression* ')'
338 static std::unique_ptr
<ExprAST
> ParseIdentifierExpr() {
339 std::string IdName
= IdentifierStr
;
341 getNextToken(); // eat identifier.
343 if (CurTok
!= '(') // Simple variable ref.
344 return std::make_unique
<VariableExprAST
>(IdName
);
347 getNextToken(); // eat (
348 std::vector
<std::unique_ptr
<ExprAST
>> Args
;
351 if (auto Arg
= ParseExpression())
352 Args
.push_back(std::move(Arg
));
360 return LogError("Expected ')' or ',' in argument list");
368 return std::make_unique
<CallExprAST
>(IdName
, std::move(Args
));
371 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
372 static std::unique_ptr
<ExprAST
> ParseIfExpr() {
373 getNextToken(); // eat the if.
376 auto Cond
= ParseExpression();
380 if (CurTok
!= tok_then
)
381 return LogError("expected then");
382 getNextToken(); // eat the then
384 auto Then
= ParseExpression();
388 if (CurTok
!= tok_else
)
389 return LogError("expected else");
393 auto Else
= ParseExpression();
397 return std::make_unique
<IfExprAST
>(std::move(Cond
), std::move(Then
),
401 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
402 static std::unique_ptr
<ExprAST
> ParseForExpr() {
403 getNextToken(); // eat the for.
405 if (CurTok
!= tok_identifier
)
406 return LogError("expected identifier after for");
408 std::string IdName
= IdentifierStr
;
409 getNextToken(); // eat identifier.
412 return LogError("expected '=' after for");
413 getNextToken(); // eat '='.
415 auto Start
= ParseExpression();
419 return LogError("expected ',' after for start value");
422 auto End
= ParseExpression();
426 // The step value is optional.
427 std::unique_ptr
<ExprAST
> Step
;
430 Step
= ParseExpression();
435 if (CurTok
!= tok_in
)
436 return LogError("expected 'in' after for");
437 getNextToken(); // eat 'in'.
439 auto Body
= ParseExpression();
443 return std::make_unique
<ForExprAST
>(IdName
, std::move(Start
), std::move(End
),
444 std::move(Step
), std::move(Body
));
447 /// varexpr ::= 'var' identifier ('=' expression)?
448 // (',' identifier ('=' expression)?)* 'in' expression
449 static std::unique_ptr
<ExprAST
> ParseVarExpr() {
450 getNextToken(); // eat the var.
452 std::vector
<std::pair
<std::string
, std::unique_ptr
<ExprAST
>>> VarNames
;
454 // At least one variable name is required.
455 if (CurTok
!= tok_identifier
)
456 return LogError("expected identifier after var");
459 std::string Name
= IdentifierStr
;
460 getNextToken(); // eat identifier.
462 // Read the optional initializer.
463 std::unique_ptr
<ExprAST
> Init
= nullptr;
465 getNextToken(); // eat the '='.
467 Init
= ParseExpression();
472 VarNames
.push_back(std::make_pair(Name
, std::move(Init
)));
474 // End of var list, exit loop.
477 getNextToken(); // eat the ','.
479 if (CurTok
!= tok_identifier
)
480 return LogError("expected identifier list after var");
483 // At this point, we have to have 'in'.
484 if (CurTok
!= tok_in
)
485 return LogError("expected 'in' keyword after 'var'");
486 getNextToken(); // eat 'in'.
488 auto Body
= ParseExpression();
492 return std::make_unique
<VarExprAST
>(std::move(VarNames
), std::move(Body
));
496 /// ::= identifierexpr
502 static std::unique_ptr
<ExprAST
> ParsePrimary() {
505 return LogError("unknown token when expecting an expression");
507 return ParseIdentifierExpr();
509 return ParseNumberExpr();
511 return ParseParenExpr();
513 return ParseIfExpr();
515 return ParseForExpr();
517 return ParseVarExpr();
524 static std::unique_ptr
<ExprAST
> ParseUnary() {
525 // If the current token is not an operator, it must be a primary expr.
526 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
527 return ParsePrimary();
529 // If this is a unary operator, read it.
532 if (auto Operand
= ParseUnary())
533 return std::make_unique
<UnaryExprAST
>(Opc
, std::move(Operand
));
539 static std::unique_ptr
<ExprAST
> ParseBinOpRHS(int ExprPrec
,
540 std::unique_ptr
<ExprAST
> LHS
) {
541 // If this is a binop, find its precedence.
543 int TokPrec
= GetTokPrecedence();
545 // If this is a binop that binds at least as tightly as the current binop,
546 // consume it, otherwise we are done.
547 if (TokPrec
< ExprPrec
)
550 // Okay, we know this is a binop.
552 getNextToken(); // eat binop
554 // Parse the unary expression after the binary operator.
555 auto RHS
= ParseUnary();
559 // If BinOp binds less tightly with RHS than the operator after RHS, let
560 // the pending operator take RHS as its LHS.
561 int NextPrec
= GetTokPrecedence();
562 if (TokPrec
< NextPrec
) {
563 RHS
= ParseBinOpRHS(TokPrec
+ 1, std::move(RHS
));
570 std::make_unique
<BinaryExprAST
>(BinOp
, std::move(LHS
), std::move(RHS
));
575 /// ::= unary binoprhs
577 static std::unique_ptr
<ExprAST
> ParseExpression() {
578 auto LHS
= ParseUnary();
582 return ParseBinOpRHS(0, std::move(LHS
));
586 /// ::= id '(' id* ')'
587 /// ::= binary LETTER number? (id, id)
588 /// ::= unary LETTER (id)
589 static std::unique_ptr
<PrototypeAST
> ParsePrototype() {
592 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
593 unsigned BinaryPrecedence
= 30;
597 return LogErrorP("Expected function name in prototype");
599 FnName
= IdentifierStr
;
605 if (!isascii(CurTok
))
606 return LogErrorP("Expected unary operator");
608 FnName
+= (char)CurTok
;
614 if (!isascii(CurTok
))
615 return LogErrorP("Expected binary operator");
617 FnName
+= (char)CurTok
;
621 // Read the precedence if present.
622 if (CurTok
== tok_number
) {
623 if (NumVal
< 1 || NumVal
> 100)
624 return LogErrorP("Invalid precedecnce: must be 1..100");
625 BinaryPrecedence
= (unsigned)NumVal
;
632 return LogErrorP("Expected '(' in prototype");
634 std::vector
<std::string
> ArgNames
;
635 while (getNextToken() == tok_identifier
)
636 ArgNames
.push_back(IdentifierStr
);
638 return LogErrorP("Expected ')' in prototype");
641 getNextToken(); // eat ')'.
643 // Verify right number of names for operator.
644 if (Kind
&& ArgNames
.size() != Kind
)
645 return LogErrorP("Invalid number of operands for operator");
647 return std::make_unique
<PrototypeAST
>(FnName
, ArgNames
, Kind
!= 0,
651 /// definition ::= 'def' prototype expression
652 static std::unique_ptr
<FunctionAST
> ParseDefinition() {
653 getNextToken(); // eat def.
654 auto Proto
= ParsePrototype();
658 if (auto E
= ParseExpression())
659 return std::make_unique
<FunctionAST
>(std::move(Proto
), std::move(E
));
663 /// toplevelexpr ::= expression
664 static std::unique_ptr
<FunctionAST
> ParseTopLevelExpr() {
665 if (auto E
= ParseExpression()) {
666 // Make an anonymous proto.
667 auto Proto
= std::make_unique
<PrototypeAST
>("__anon_expr",
668 std::vector
<std::string
>());
669 return std::make_unique
<FunctionAST
>(std::move(Proto
), std::move(E
));
674 /// external ::= 'extern' prototype
675 static std::unique_ptr
<PrototypeAST
> ParseExtern() {
676 getNextToken(); // eat extern.
677 return ParsePrototype();
680 //===----------------------------------------------------------------------===//
682 //===----------------------------------------------------------------------===//
684 static LLVMContext TheContext
;
685 static IRBuilder
<> Builder(TheContext
);
686 static std::unique_ptr
<Module
> TheModule
;
687 static std::map
<std::string
, AllocaInst
*> NamedValues
;
688 static std::unique_ptr
<KaleidoscopeJIT
> TheJIT
;
689 static std::map
<std::string
, std::unique_ptr
<PrototypeAST
>> FunctionProtos
;
690 static ExitOnError ExitOnErr
;
692 Value
*LogErrorV(const char *Str
) {
697 Function
*getFunction(std::string Name
) {
698 // First, see if the function has already been added to the current module.
699 if (auto *F
= TheModule
->getFunction(Name
))
702 // If not, check whether we can codegen the declaration from some existing
704 auto FI
= FunctionProtos
.find(Name
);
705 if (FI
!= FunctionProtos
.end())
706 return FI
->second
->codegen();
708 // If no existing prototype exists, return null.
712 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
713 /// the function. This is used for mutable variables etc.
714 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
715 const std::string
&VarName
) {
716 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
717 TheFunction
->getEntryBlock().begin());
718 return TmpB
.CreateAlloca(Type::getDoubleTy(TheContext
), nullptr, VarName
);
721 Value
*NumberExprAST::codegen() {
722 return ConstantFP::get(TheContext
, APFloat(Val
));
725 Value
*VariableExprAST::codegen() {
726 // Look this variable up in the function.
727 Value
*V
= NamedValues
[Name
];
729 return LogErrorV("Unknown variable name");
732 return Builder
.CreateLoad(V
, Name
.c_str());
735 Value
*UnaryExprAST::codegen() {
736 Value
*OperandV
= Operand
->codegen();
740 Function
*F
= getFunction(std::string("unary") + Opcode
);
742 return LogErrorV("Unknown unary operator");
744 return Builder
.CreateCall(F
, OperandV
, "unop");
747 Value
*BinaryExprAST::codegen() {
748 // Special case '=' because we don't want to emit the LHS as an expression.
750 // Assignment requires the LHS to be an identifier.
751 // This assume we're building without RTTI because LLVM builds that way by
752 // default. If you build LLVM with RTTI this can be changed to a
753 // dynamic_cast for automatic error checking.
754 VariableExprAST
*LHSE
= static_cast<VariableExprAST
*>(LHS
.get());
756 return LogErrorV("destination of '=' must be a variable");
758 Value
*Val
= RHS
->codegen();
763 Value
*Variable
= NamedValues
[LHSE
->getName()];
765 return LogErrorV("Unknown variable name");
767 Builder
.CreateStore(Val
, Variable
);
771 Value
*L
= LHS
->codegen();
772 Value
*R
= RHS
->codegen();
778 return Builder
.CreateFAdd(L
, R
, "addtmp");
780 return Builder
.CreateFSub(L
, R
, "subtmp");
782 return Builder
.CreateFMul(L
, R
, "multmp");
784 L
= Builder
.CreateFCmpULT(L
, R
, "cmptmp");
785 // Convert bool 0/1 to double 0.0 or 1.0
786 return Builder
.CreateUIToFP(L
, Type::getDoubleTy(TheContext
), "booltmp");
791 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
793 Function
*F
= getFunction(std::string("binary") + Op
);
794 assert(F
&& "binary operator not found!");
796 Value
*Ops
[] = {L
, R
};
797 return Builder
.CreateCall(F
, Ops
, "binop");
800 Value
*CallExprAST::codegen() {
801 // Look up the name in the global module table.
802 Function
*CalleeF
= getFunction(Callee
);
804 return LogErrorV("Unknown function referenced");
806 // If argument mismatch error.
807 if (CalleeF
->arg_size() != Args
.size())
808 return LogErrorV("Incorrect # arguments passed");
810 std::vector
<Value
*> ArgsV
;
811 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
812 ArgsV
.push_back(Args
[i
]->codegen());
817 return Builder
.CreateCall(CalleeF
, ArgsV
, "calltmp");
820 Value
*IfExprAST::codegen() {
821 Value
*CondV
= Cond
->codegen();
825 // Convert condition to a bool by comparing equal to 0.0.
826 CondV
= Builder
.CreateFCmpONE(
827 CondV
, ConstantFP::get(TheContext
, APFloat(0.0)), "ifcond");
829 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
831 // Create blocks for the then and else cases. Insert the 'then' block at the
832 // end of the function.
833 BasicBlock
*ThenBB
= BasicBlock::Create(TheContext
, "then", TheFunction
);
834 BasicBlock
*ElseBB
= BasicBlock::Create(TheContext
, "else");
835 BasicBlock
*MergeBB
= BasicBlock::Create(TheContext
, "ifcont");
837 Builder
.CreateCondBr(CondV
, ThenBB
, ElseBB
);
840 Builder
.SetInsertPoint(ThenBB
);
842 Value
*ThenV
= Then
->codegen();
846 Builder
.CreateBr(MergeBB
);
847 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
848 ThenBB
= Builder
.GetInsertBlock();
851 TheFunction
->getBasicBlockList().push_back(ElseBB
);
852 Builder
.SetInsertPoint(ElseBB
);
854 Value
*ElseV
= Else
->codegen();
858 Builder
.CreateBr(MergeBB
);
859 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
860 ElseBB
= Builder
.GetInsertBlock();
863 TheFunction
->getBasicBlockList().push_back(MergeBB
);
864 Builder
.SetInsertPoint(MergeBB
);
865 PHINode
*PN
= Builder
.CreatePHI(Type::getDoubleTy(TheContext
), 2, "iftmp");
867 PN
->addIncoming(ThenV
, ThenBB
);
868 PN
->addIncoming(ElseV
, ElseBB
);
872 // Output for-loop as:
873 // var = alloca double
876 // store start -> var
887 // nextvar = curvar + step
888 // store nextvar -> var
889 // br endcond, loop, endloop
891 Value
*ForExprAST::codegen() {
892 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
894 // Create an alloca for the variable in the entry block.
895 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
897 // Emit the start code first, without 'variable' in scope.
898 Value
*StartVal
= Start
->codegen();
902 // Store the value into the alloca.
903 Builder
.CreateStore(StartVal
, Alloca
);
905 // Make the new basic block for the loop header, inserting after current
907 BasicBlock
*LoopBB
= BasicBlock::Create(TheContext
, "loop", TheFunction
);
909 // Insert an explicit fall through from the current block to the LoopBB.
910 Builder
.CreateBr(LoopBB
);
912 // Start insertion in LoopBB.
913 Builder
.SetInsertPoint(LoopBB
);
915 // Within the loop, the variable is defined equal to the PHI node. If it
916 // shadows an existing variable, we have to restore it, so save it now.
917 AllocaInst
*OldVal
= NamedValues
[VarName
];
918 NamedValues
[VarName
] = Alloca
;
920 // Emit the body of the loop. This, like any other expr, can change the
921 // current BB. Note that we ignore the value computed by the body, but don't
923 if (!Body
->codegen())
926 // Emit the step value.
927 Value
*StepVal
= nullptr;
929 StepVal
= Step
->codegen();
933 // If not specified, use 1.0.
934 StepVal
= ConstantFP::get(TheContext
, APFloat(1.0));
937 // Compute the end condition.
938 Value
*EndCond
= End
->codegen();
942 // Reload, increment, and restore the alloca. This handles the case where
943 // the body of the loop mutates the variable.
944 Value
*CurVar
= Builder
.CreateLoad(Alloca
, VarName
.c_str());
945 Value
*NextVar
= Builder
.CreateFAdd(CurVar
, StepVal
, "nextvar");
946 Builder
.CreateStore(NextVar
, Alloca
);
948 // Convert condition to a bool by comparing equal to 0.0.
949 EndCond
= Builder
.CreateFCmpONE(
950 EndCond
, ConstantFP::get(TheContext
, APFloat(0.0)), "loopcond");
952 // Create the "after loop" block and insert it.
953 BasicBlock
*AfterBB
=
954 BasicBlock::Create(TheContext
, "afterloop", TheFunction
);
956 // Insert the conditional branch into the end of LoopEndBB.
957 Builder
.CreateCondBr(EndCond
, LoopBB
, AfterBB
);
959 // Any new code will be inserted in AfterBB.
960 Builder
.SetInsertPoint(AfterBB
);
962 // Restore the unshadowed variable.
964 NamedValues
[VarName
] = OldVal
;
966 NamedValues
.erase(VarName
);
968 // for expr always returns 0.0.
969 return Constant::getNullValue(Type::getDoubleTy(TheContext
));
972 Value
*VarExprAST::codegen() {
973 std::vector
<AllocaInst
*> OldBindings
;
975 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
977 // Register all variables and emit their initializer.
978 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
979 const std::string
&VarName
= VarNames
[i
].first
;
980 ExprAST
*Init
= VarNames
[i
].second
.get();
982 // Emit the initializer before adding the variable to scope, this prevents
983 // the initializer from referencing the variable itself, and permits stuff
986 // var a = a in ... # refers to outer 'a'.
989 InitVal
= Init
->codegen();
992 } else { // If not specified, use 0.0.
993 InitVal
= ConstantFP::get(TheContext
, APFloat(0.0));
996 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
997 Builder
.CreateStore(InitVal
, Alloca
);
999 // Remember the old variable binding so that we can restore the binding when
1001 OldBindings
.push_back(NamedValues
[VarName
]);
1003 // Remember this binding.
1004 NamedValues
[VarName
] = Alloca
;
1007 // Codegen the body, now that all vars are in scope.
1008 Value
*BodyVal
= Body
->codegen();
1012 // Pop all our variables from scope.
1013 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
1014 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
1016 // Return the body computation.
1020 Function
*PrototypeAST::codegen() {
1021 // Make the function type: double(double,double) etc.
1022 std::vector
<Type
*> Doubles(Args
.size(), Type::getDoubleTy(TheContext
));
1024 FunctionType::get(Type::getDoubleTy(TheContext
), Doubles
, false);
1027 Function::Create(FT
, Function::ExternalLinkage
, Name
, TheModule
.get());
1029 // Set names for all arguments.
1031 for (auto &Arg
: F
->args())
1032 Arg
.setName(Args
[Idx
++]);
1037 const PrototypeAST
& FunctionAST::getProto() const {
1041 const std::string
& FunctionAST::getName() const {
1042 return Proto
->getName();
1045 Function
*FunctionAST::codegen() {
1046 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1047 // reference to it for use below.
1049 Function
*TheFunction
= getFunction(P
.getName());
1053 // If this is an operator, install it.
1055 BinopPrecedence
[P
.getOperatorName()] = P
.getBinaryPrecedence();
1057 // Create a new basic block to start insertion into.
1058 BasicBlock
*BB
= BasicBlock::Create(TheContext
, "entry", TheFunction
);
1059 Builder
.SetInsertPoint(BB
);
1061 // Record the function arguments in the NamedValues map.
1062 NamedValues
.clear();
1063 for (auto &Arg
: TheFunction
->args()) {
1064 // Create an alloca for this variable.
1065 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, Arg
.getName());
1067 // Store the initial value into the alloca.
1068 Builder
.CreateStore(&Arg
, Alloca
);
1070 // Add arguments to variable symbol table.
1071 NamedValues
[Arg
.getName()] = Alloca
;
1074 if (Value
*RetVal
= Body
->codegen()) {
1075 // Finish off the function.
1076 Builder
.CreateRet(RetVal
);
1078 // Validate the generated code, checking for consistency.
1079 verifyFunction(*TheFunction
);
1084 // Error reading body, remove function.
1085 TheFunction
->eraseFromParent();
1088 BinopPrecedence
.erase(Proto
->getOperatorName());
1092 //===----------------------------------------------------------------------===//
1093 // Top-Level parsing and JIT Driver
1094 //===----------------------------------------------------------------------===//
1096 static void InitializeModule() {
1097 // Open a new module.
1098 TheModule
= std::make_unique
<Module
>("my cool jit", TheContext
);
1099 TheModule
->setDataLayout(TheJIT
->getTargetMachine().createDataLayout());
1102 std::unique_ptr
<llvm::Module
>
1103 irgenAndTakeOwnership(FunctionAST
&FnAST
, const std::string
&Suffix
) {
1104 if (auto *F
= FnAST
.codegen()) {
1105 F
->setName(F
->getName() + Suffix
);
1106 auto M
= std::move(TheModule
);
1107 // Start a new module.
1111 report_fatal_error("Couldn't compile lazily JIT'd function");
1114 static void HandleDefinition() {
1115 if (auto FnAST
= ParseDefinition()) {
1116 FunctionProtos
[FnAST
->getProto().getName()] =
1117 std::make_unique
<PrototypeAST
>(FnAST
->getProto());
1118 ExitOnErr(TheJIT
->addFunctionAST(std::move(FnAST
)));
1120 // Skip token for error recovery.
1125 static void HandleExtern() {
1126 if (auto ProtoAST
= ParseExtern()) {
1127 if (auto *FnIR
= ProtoAST
->codegen()) {
1128 fprintf(stderr
, "Read extern: ");
1129 FnIR
->print(errs());
1130 fprintf(stderr
, "\n");
1131 FunctionProtos
[ProtoAST
->getName()] = std::move(ProtoAST
);
1134 // Skip token for error recovery.
1139 static void HandleTopLevelExpression() {
1140 // Evaluate a top-level expression into an anonymous function.
1141 if (auto FnAST
= ParseTopLevelExpr()) {
1142 FunctionProtos
[FnAST
->getName()] =
1143 std::make_unique
<PrototypeAST
>(FnAST
->getProto());
1144 if (FnAST
->codegen()) {
1145 // JIT the module containing the anonymous expression, keeping a handle so
1146 // we can free it later.
1147 auto H
= TheJIT
->addModule(std::move(TheModule
));
1150 // Search the JIT for the __anon_expr symbol.
1151 auto ExprSymbol
= TheJIT
->findSymbol("__anon_expr");
1152 assert(ExprSymbol
&& "Function not found");
1154 // Get the symbol's address and cast it to the right type (takes no
1155 // arguments, returns a double) so we can call it as a native function.
1156 double (*FP
)() = (double (*)())(intptr_t)cantFail(ExprSymbol
.getAddress());
1157 fprintf(stderr
, "Evaluated to %f\n", FP());
1159 // Delete the anonymous expression module from the JIT.
1160 TheJIT
->removeModule(H
);
1163 // Skip token for error recovery.
1168 /// top ::= definition | external | expression | ';'
1169 static void MainLoop() {
1171 fprintf(stderr
, "ready> ");
1175 case ';': // ignore top-level semicolons.
1185 HandleTopLevelExpression();
1191 //===----------------------------------------------------------------------===//
1192 // "Library" functions that can be "extern'd" from user code.
1193 //===----------------------------------------------------------------------===//
1195 /// putchard - putchar that takes a double and returns 0.
1196 extern "C" double putchard(double X
) {
1197 fputc((char)X
, stderr
);
1201 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1202 extern "C" double printd(double X
) {
1203 fprintf(stderr
, "%f\n", X
);
1207 //===----------------------------------------------------------------------===//
1208 // Main driver code.
1209 //===----------------------------------------------------------------------===//
1212 InitializeNativeTarget();
1213 InitializeNativeTargetAsmPrinter();
1214 InitializeNativeTargetAsmParser();
1216 ExitOnErr
.setBanner("Kaleidoscope: ");
1218 // Install standard binary operators.
1219 // 1 is lowest precedence.
1220 BinopPrecedence
['='] = 2;
1221 BinopPrecedence
['<'] = 10;
1222 BinopPrecedence
['+'] = 20;
1223 BinopPrecedence
['-'] = 20;
1224 BinopPrecedence
['*'] = 40; // highest.
1226 // Prime the first token.
1227 fprintf(stderr
, "ready> ");
1230 TheJIT
= std::make_unique
<KaleidoscopeJIT
>();
1234 // Run the main "interpreter loop" now.