1 ; RUN: opt < %s -analyze -scalar-evolution | FileCheck %s
3 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
5 @A = weak global [1000 x i32] zeroinitializer, align 32
7 ; The resulting predicate is i16 {0,+,1} <nssw>, meanining
8 ; that the resulting backedge expression will be valid for:
9 ; (1 + (-1 smax %M)) <= MAX_INT16
11 ; At the limit condition for M (MAX_INT16 - 1) we have in the
16 ; and therefore no wrapping happend for i0 or i0.ext
17 ; throughout the execution of the loop. The resulting predicated
18 ; backedge taken count is correct.
20 ; CHECK: Classifying expressions for: @test1
21 ; CHECK: %i.0.ext = sext i16 %i.0 to i32
22 ; CHECK-NEXT: --> (sext i16 {0,+,1}<%bb3> to i32)
23 ; CHECK: Loop %bb3: Unpredictable backedge-taken count.
24 ; CHECK-NEXT: Loop %bb3: Unpredictable max backedge-taken count.
25 ; CHECK-NEXT: Loop %bb3: Predicated backedge-taken count is (1 + (-1 smax %M))
26 ; CHECK-NEXT: Predicates:
27 ; CHECK-NEXT: {0,+,1}<%bb3> Added Flags: <nssw>
28 define void @test1(i32 %N, i32 %M) {
33 %tmp = getelementptr [1000 x i32], [1000 x i32]* @A, i32 0, i16 %i.0 ; <i32*> [#uses=1]
34 store i32 123, i32* %tmp
35 %tmp2 = add i16 %i.0, 1 ; <i32> [#uses=1]
38 bb3: ; preds = %bb, %entry
39 %i.0 = phi i16 [ 0, %entry ], [ %tmp2, %bb ] ; <i32> [#uses=3]
40 %i.0.ext = sext i16 %i.0 to i32
41 %tmp3 = icmp sle i32 %i.0.ext, %M ; <i1> [#uses=1]
42 br i1 %tmp3, label %bb, label %bb5
47 return: ; preds = %bb5
51 ; The predicated backedge taken count is:
52 ; (2 + (zext i16 %Start to i32) + ((-2 + (-1 * (sext i16 %Start to i32)))
53 ; smax (-1 + (-1 * %M)))
56 ; -1 + (-1 * %M) <= (-2 + (-1 * (sext i16 %Start to i32))
57 ; The predicated backedge taken count is 0.
58 ; From the IR, this is correct since we will bail out at the
62 ; * -1 + (-1 * %M) > (-2 + (-1 * (sext i16 %Start to i32))
63 ; or: %M < 1 + (sext i16 %Start to i32)
65 ; The predicated backedge taken count is 1 + (zext i16 %Start to i32) - %M
67 ; If %M >= MIN_INT + 1, this predicated backedge taken count would be correct (even
68 ; without predicates). However, for %M < MIN_INT this would be an infinite loop.
69 ; In these cases, the {%Start,+,-1} <nusw> predicate would be false, as the
70 ; final value of the expression {%Start,+,-1} expression (%M - 1) would not be
71 ; representable as an i16.
73 ; There is also a limit case here where the value of %M is MIN_INT. In this case
74 ; we still have an infinite loop, since icmp sge %x, MIN_INT will always return
77 ; CHECK: Classifying expressions for: @test2
79 ; CHECK: %i.0.ext = sext i16 %i.0 to i32
80 ; CHECK-NEXT: --> (sext i16 {%Start,+,-1}<%bb3> to i32)
81 ; CHECK: Loop %bb3: Unpredictable backedge-taken count.
82 ; CHECK-NEXT: Loop %bb3: Unpredictable max backedge-taken count.
83 ; CHECK-NEXT: Loop %bb3: Predicated backedge-taken count is (1 + (sext i16 %Start to i32) + (-1 * ((1 + (sext i16 %Start to i32))<nsw> smin %M)))
84 ; CHECK-NEXT: Predicates:
85 ; CHECK-NEXT: {%Start,+,-1}<%bb3> Added Flags: <nssw>
87 define void @test2(i32 %N, i32 %M, i16 %Start) {
92 %tmp = getelementptr [1000 x i32], [1000 x i32]* @A, i32 0, i16 %i.0 ; <i32*> [#uses=1]
93 store i32 123, i32* %tmp
94 %tmp2 = sub i16 %i.0, 1 ; <i32> [#uses=1]
97 bb3: ; preds = %bb, %entry
98 %i.0 = phi i16 [ %Start, %entry ], [ %tmp2, %bb ] ; <i32> [#uses=3]
99 %i.0.ext = sext i16 %i.0 to i32
100 %tmp3 = icmp sge i32 %i.0.ext, %M ; <i1> [#uses=1]
101 br i1 %tmp3, label %bb, label %bb5
106 return: ; preds = %bb5