[ARM] Better OR's for MVE compares
[llvm-core.git] / test / Transforms / InstCombine / redundant-right-shift-input-masking.ll
blob0392026752504f05a58cb38b4b10324f8202a6a2
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt %s -instcombine -S | FileCheck %s
4 ; If we have:
5 ;   (data & (-1 << nbits)) outer>> nbits
6 ; Or
7 ;   ((data inner>> nbits) << nbits) outer>> nbits
8 ; The mask is redundant, and can be dropped:
9 ;   data outer>> nbits
10 ; This is valid for both lshr and ashr in both positions and any combination.
11 ; We must *not* preserve 'exact' on that final right-shift.
13 define i32 @t0_lshr(i32 %data, i32 %nbits) {
14 ; CHECK-LABEL: @t0_lshr(
15 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
16 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
17 ; CHECK-NEXT:    [[T2:%.*]] = lshr exact i32 [[T1]], [[NBITS]]
18 ; CHECK-NEXT:    ret i32 [[T2]]
20   %t0 = shl i32 -1, %nbits
21   %t1 = and i32 %t0, %data
22   %t2 = lshr exact i32 %t1, %nbits ; while there, test that we *don't* propagate 'exact'
23   ret i32 %t2
25 define i32 @t1_sshr(i32 %data, i32 %nbits) {
26 ; CHECK-LABEL: @t1_sshr(
27 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
28 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
29 ; CHECK-NEXT:    [[T2:%.*]] = ashr exact i32 [[T1]], [[NBITS]]
30 ; CHECK-NEXT:    ret i32 [[T2]]
32   %t0 = shl i32 -1, %nbits
33   %t1 = and i32 %t0, %data
34   %t2 = ashr exact i32 %t1, %nbits ; while there, test that we *don't* propagate 'exact'
35   ret i32 %t2
38 ; Vectors
40 define <4 x i32> @t2_vec(<4 x i32> %data, <4 x i32> %nbits) {
41 ; CHECK-LABEL: @t2_vec(
42 ; CHECK-NEXT:    [[T0:%.*]] = shl <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>, [[NBITS:%.*]]
43 ; CHECK-NEXT:    [[T1:%.*]] = and <4 x i32> [[T0]], [[DATA:%.*]]
44 ; CHECK-NEXT:    [[T2:%.*]] = lshr <4 x i32> [[T1]], [[NBITS]]
45 ; CHECK-NEXT:    ret <4 x i32> [[T2]]
47   %t0 = shl <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>, %nbits
48   %t1 = and <4 x i32> %t0, %data
49   %t2 = lshr <4 x i32> %t1, %nbits
50   ret <4 x i32> %t2
53 define <4 x i32> @t3_vec_undef(<4 x i32> %data, <4 x i32> %nbits) {
54 ; CHECK-LABEL: @t3_vec_undef(
55 ; CHECK-NEXT:    [[T0:%.*]] = shl <4 x i32> <i32 -1, i32 -1, i32 undef, i32 -1>, [[NBITS:%.*]]
56 ; CHECK-NEXT:    [[T1:%.*]] = and <4 x i32> [[T0]], [[DATA:%.*]]
57 ; CHECK-NEXT:    [[T2:%.*]] = lshr <4 x i32> [[T1]], [[NBITS]]
58 ; CHECK-NEXT:    ret <4 x i32> [[T2]]
60   %t0 = shl <4 x i32> <i32 -1, i32 -1, i32 undef, i32 -1>, %nbits
61   %t1 = and <4 x i32> %t0, %data
62   %t2 = lshr <4 x i32> %t1, %nbits
63   ret <4 x i32> %t2
66 ; Extra uses
68 declare void @use32(i32)
70 define i32 @t4_extrause0(i32 %data, i32 %nbits) {
71 ; CHECK-LABEL: @t4_extrause0(
72 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
73 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
74 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
75 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
76 ; CHECK-NEXT:    ret i32 [[T2]]
78   %t0 = shl i32 -1, %nbits
79   call void @use32(i32 %t0)
80   %t1 = and i32 %t0, %data
81   %t2 = lshr i32 %t1, %nbits
82   ret i32 %t2
85 define i32 @t5_extrause1(i32 %data, i32 %nbits) {
86 ; CHECK-LABEL: @t5_extrause1(
87 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
88 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
89 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
90 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
91 ; CHECK-NEXT:    ret i32 [[T2]]
93   %t0 = shl i32 -1, %nbits
94   %t1 = and i32 %t0, %data
95   call void @use32(i32 %t1)
96   %t2 = lshr i32 %t1, %nbits
97   ret i32 %t2
100 define i32 @t6_extrause2(i32 %data, i32 %nbits) {
101 ; CHECK-LABEL: @t6_extrause2(
102 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
103 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
104 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
105 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
106 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
107 ; CHECK-NEXT:    ret i32 [[T2]]
109   %t0 = shl i32 -1, %nbits
110   call void @use32(i32 %t0)
111   %t1 = and i32 %t0, %data
112   call void @use32(i32 %t1)
113   %t2 = lshr i32 %t1, %nbits
114   ret i32 %t2
117 ; Non-canonical mask pattern. Let's just test a single case with all-extra uses.
119 define i32 @t7_noncanonical_lshr_lshr_extrauses(i32 %data, i32 %nbits) {
120 ; CHECK-LABEL: @t7_noncanonical_lshr_lshr_extrauses(
121 ; CHECK-NEXT:    [[T0:%.*]] = lshr i32 [[DATA:%.*]], [[NBITS:%.*]]
122 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
123 ; CHECK-NEXT:    [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
124 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
125 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
126 ; CHECK-NEXT:    ret i32 [[T2]]
128   %t0 = lshr i32 %data, %nbits
129   call void @use32(i32 %t0)
130   %t1 = shl i32 %t0, %nbits
131   call void @use32(i32 %t1)
132   %t2 = lshr i32 %t1, %nbits
133   ret i32 %t2
136 define i32 @t8_noncanonical_lshr_ashr_extrauses(i32 %data, i32 %nbits) {
137 ; CHECK-LABEL: @t8_noncanonical_lshr_ashr_extrauses(
138 ; CHECK-NEXT:    [[T0:%.*]] = lshr i32 [[DATA:%.*]], [[NBITS:%.*]]
139 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
140 ; CHECK-NEXT:    [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
141 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
142 ; CHECK-NEXT:    [[T2:%.*]] = ashr i32 [[T1]], [[NBITS]]
143 ; CHECK-NEXT:    ret i32 [[T2]]
145   %t0 = lshr i32 %data, %nbits
146   call void @use32(i32 %t0)
147   %t1 = shl i32 %t0, %nbits
148   call void @use32(i32 %t1)
149   %t2 = ashr i32 %t1, %nbits
150   ret i32 %t2
153 define i32 @t9_noncanonical_ashr_lshr_extrauses(i32 %data, i32 %nbits) {
154 ; CHECK-LABEL: @t9_noncanonical_ashr_lshr_extrauses(
155 ; CHECK-NEXT:    [[T0:%.*]] = ashr i32 [[DATA:%.*]], [[NBITS:%.*]]
156 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
157 ; CHECK-NEXT:    [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
158 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
159 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
160 ; CHECK-NEXT:    ret i32 [[T2]]
162   %t0 = ashr i32 %data, %nbits
163   call void @use32(i32 %t0)
164   %t1 = shl i32 %t0, %nbits
165   call void @use32(i32 %t1)
166   %t2 = lshr i32 %t1, %nbits
167   ret i32 %t2
170 define i32 @t10_noncanonical_ashr_ashr_extrauses(i32 %data, i32 %nbits) {
171 ; CHECK-LABEL: @t10_noncanonical_ashr_ashr_extrauses(
172 ; CHECK-NEXT:    [[T0:%.*]] = ashr i32 [[DATA:%.*]], [[NBITS:%.*]]
173 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
174 ; CHECK-NEXT:    [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
175 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
176 ; CHECK-NEXT:    [[T2:%.*]] = ashr i32 [[T1]], [[NBITS]]
177 ; CHECK-NEXT:    ret i32 [[T2]]
179   %t0 = ashr i32 %data, %nbits
180   call void @use32(i32 %t0)
181   %t1 = shl i32 %t0, %nbits
182   call void @use32(i32 %t1)
183   %t2 = ashr i32 %t1, %nbits
184   ret i32 %t2
187 ; Commutativity
189 declare i32 @gen32()
191 define i32 @t11_commutative(i32 %nbits) {
192 ; CHECK-LABEL: @t11_commutative(
193 ; CHECK-NEXT:    [[DATA:%.*]] = call i32 @gen32()
194 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
195 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[DATA]], [[T0]]
196 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
197 ; CHECK-NEXT:    ret i32 [[T2]]
199   %data = call i32 @gen32()
200   %t0 = shl i32 -1, %nbits
201   %t1 = and i32 %data, %t0 ; swapped
202   %t2 = lshr i32 %t1, %nbits
203   ret i32 %t2
206 ; Negative tests
208 define i32 @n12(i32 %data, i32 %nbits) {
209 ; CHECK-LABEL: @n12(
210 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 2147483647, [[NBITS:%.*]]
211 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
212 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
213 ; CHECK-NEXT:    ret i32 [[T2]]
215   %t0 = shl i32 2147483647, %nbits ; must be shifting -1
216   %t1 = and i32 %t0, %data
217   %t2 = lshr i32 %t1, %nbits
218   ret i32 %t2
221 define i32 @n13(i32 %data, i32 %nbits0, i32 %nbits1) {
222 ; CHECK-LABEL: @n13(
223 ; CHECK-NEXT:    [[T0:%.*]] = shl i32 -1, [[NBITS0:%.*]]
224 ; CHECK-NEXT:    [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
225 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS1:%.*]]
226 ; CHECK-NEXT:    ret i32 [[T2]]
228   %t0 = shl i32 -1, %nbits0
229   %t1 = and i32 %t0, %data
230   %t2 = lshr i32 %t1, %nbits1 ; different shift amounts
231   ret i32 %t2
234 define i32 @n14(i32 %data, i32 %nbits0, i32 %nbits1, i32 %nbits2) {
235 ; CHECK-LABEL: @n14(
236 ; CHECK-NEXT:    [[T0:%.*]] = lshr i32 [[DATA:%.*]], [[NBITS0:%.*]]
237 ; CHECK-NEXT:    call void @use32(i32 [[T0]])
238 ; CHECK-NEXT:    [[T1:%.*]] = shl i32 [[T0]], [[NBITS1:%.*]]
239 ; CHECK-NEXT:    call void @use32(i32 [[T1]])
240 ; CHECK-NEXT:    [[T2:%.*]] = lshr i32 [[T1]], [[NBITS2:%.*]]
241 ; CHECK-NEXT:    ret i32 [[T2]]
243   %t0 = lshr i32 %data, %nbits0
244   call void @use32(i32 %t0)
245   %t1 = shl i32 %t0, %nbits1 ; different shift amounts
246   call void @use32(i32 %t1)
247   %t2 = lshr i32 %t1, %nbits2 ; different shift amounts
248   ret i32 %t2