1 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
2 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
3 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL
4 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC
5 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE
7 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
9 ; Make sure that we can handle multiple integer induction variables.
11 ; CHECK-LABEL: @multi_int_induction(
13 ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
14 ; CHECK-NEXT: %vec.ind = phi <2 x i32> [ <i32 190, i32 191>, %vector.ph ], [ %vec.ind.next, %vector.body ]
15 ; CHECK: [[TMP3:%.*]] = add i64 %index, 0
16 ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %A, i64 [[TMP3]]
17 ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0
18 ; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>*
19 ; CHECK-NEXT: store <2 x i32> %vec.ind, <2 x i32>* [[TMP6]], align 4
20 ; CHECK: %index.next = add i64 %index, 2
21 ; CHECK-NEXT: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
22 ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
23 define void @multi_int_induction(i32* %A, i32 %N) {
28 %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
29 %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
30 %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
31 store i32 %count.09, i32* %arrayidx2, align 4
32 %inc = add nsw i32 %count.09, 1
33 %indvars.iv.next = add i64 %indvars.iv, 1
34 %lftr.wideiv = trunc i64 %indvars.iv.next to i32
35 %exitcond = icmp ne i32 %lftr.wideiv, %N
36 br i1 %exitcond, label %for.body, label %for.end
42 ; Make sure we remove unneeded vectorization of induction variables.
43 ; In order for instcombine to cleanup the vectorized induction variables that we
44 ; create in the loop vectorizer we need to perform some form of redundancy
45 ; elimination to get rid of multiple uses.
47 ; IND-LABEL: scalar_use
49 ; IND: br label %vector.body
51 ; Vectorized induction variable.
52 ; IND-NOT: insertelement <2 x i64>
53 ; IND-NOT: shufflevector <2 x i64>
54 ; IND: br {{.*}}, label %vector.body
56 define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
61 %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
62 %ind.sum = add i64 %iv, %offset
63 %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum
64 %l1 = load float, float* %arr.idx, align 4
65 %ind.sum2 = add i64 %iv, %offset2
66 %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2
67 %l2 = load float, float* %arr.idx2, align 4
68 %m = fmul fast float %b, %l2
69 %ad = fadd fast float %l1, %m
70 store float %ad, float* %arr.idx, align 4
71 %iv.next = add nuw nsw i64 %iv, 1
72 %exitcond = icmp eq i64 %iv.next, %n
73 br i1 %exitcond, label %loopexit, label %for.body
79 ; Make sure we don't create a vector induction phi node that is unused.
80 ; Scalarize the step vectors instead.
82 ; for (int i = 0; i < n; ++i)
85 ; CHECK-LABEL: @scalarize_induction_variable_01(
87 ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
88 ; CHECK: %[[i0:.+]] = add i64 %index, 0
89 ; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]]
91 ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01(
92 ; UNROLL-NO-IC: vector.body:
93 ; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
94 ; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0
95 ; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2
96 ; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]]
97 ; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]]
99 ; IND-LABEL: @scalarize_induction_variable_01(
101 ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
102 ; IND-NOT: add i64 {{.*}}, 2
103 ; IND: getelementptr inbounds i64, i64* %a, i64 %index
105 ; UNROLL-LABEL: @scalarize_induction_variable_01(
106 ; UNROLL: vector.body:
107 ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
108 ; UNROLL-NOT: add i64 {{.*}}, 4
109 ; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index
110 ; UNROLL: getelementptr inbounds i64, i64* %[[g1]], i64 2
112 define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) {
117 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
118 %sum = phi i64 [ %2, %for.body ], [ 0, %entry ]
119 %0 = getelementptr inbounds i64, i64* %a, i64 %i
120 %1 = load i64, i64* %0, align 8
121 %2 = add i64 %1, %sum
122 %i.next = add nuw nsw i64 %i, 1
123 %cond = icmp slt i64 %i.next, %n
124 br i1 %cond, label %for.body, label %for.end
127 %3 = phi i64 [ %2, %for.body ]
131 ; Make sure we scalarize the step vectors used for the pointer arithmetic. We
132 ; can't easily simplify vectorized step vectors.
135 ; for (int i ; 0; i < n; i += 8)
136 ; s += (a[i] + b[i] + 1.0f);
138 ; CHECK-LABEL: @scalarize_induction_variable_02(
139 ; CHECK: vector.body:
140 ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
141 ; CHECK: %offset.idx = mul i64 %index, 8
142 ; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0
143 ; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8
144 ; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]]
145 ; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]]
146 ; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]]
147 ; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]]
149 ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02(
150 ; UNROLL-NO-IC: vector.body:
151 ; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
152 ; UNROLL-NO-IC: %offset.idx = mul i64 %index, 8
153 ; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0
154 ; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8
155 ; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16
156 ; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24
157 ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]]
158 ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]]
159 ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]]
160 ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]]
161 ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]]
162 ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]]
163 ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]]
164 ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]]
166 ; IND-LABEL: @scalarize_induction_variable_02(
168 ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
169 ; IND: %[[i0:.+]] = shl i64 %index, 3
170 ; IND: %[[i1:.+]] = or i64 %[[i0]], 8
171 ; IND: getelementptr inbounds float, float* %a, i64 %[[i0]]
172 ; IND: getelementptr inbounds float, float* %a, i64 %[[i1]]
174 ; UNROLL-LABEL: @scalarize_induction_variable_02(
175 ; UNROLL: vector.body:
176 ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
177 ; UNROLL: %[[i0:.+]] = shl i64 %index, 3
178 ; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8
179 ; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16
180 ; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24
181 ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]]
182 ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]]
183 ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]]
184 ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]]
186 define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) {
191 %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
192 %s = phi float [ 0.0, %entry ], [ %6, %for.body ]
193 %0 = getelementptr inbounds float, float* %a, i64 %i
194 %1 = load float, float* %0, align 4
195 %2 = getelementptr inbounds float, float* %b, i64 %i
196 %3 = load float, float* %2, align 4
197 %4 = fadd fast float %s, 1.0
198 %5 = fadd fast float %4, %1
199 %6 = fadd fast float %5, %3
200 %i.next = add nuw nsw i64 %i, 8
201 %cond = icmp slt i64 %i.next, %n
202 br i1 %cond, label %for.body, label %for.end
205 %s.lcssa = phi float [ %6, %for.body ]
209 ; Make sure we scalarize the step vectors used for the pointer arithmetic. We
210 ; can't easily simplify vectorized step vectors. (Interleaved accesses.)
212 ; for (int i = 0; i < n; ++i)
215 ; INTERLEAVE-LABEL: @scalarize_induction_variable_03(
216 ; INTERLEAVE: vector.body:
217 ; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
218 ; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1
219 ; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2
220 ; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3
221 ; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4
222 ; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5
223 ; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6
224 ; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7
225 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1
226 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1
227 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1
228 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1
229 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1
230 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1
231 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1
232 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1
234 %pair.i32 = type { i32, i32 }
235 define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) {
240 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
241 %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1
242 %0 = load i32, i32* %f, align 8
244 store i32 %1, i32* %f, align 8
245 %i.next = add nuw nsw i64 %i, 1
246 %cond = icmp slt i64 %i.next, %n
247 br i1 %cond, label %for.body, label %for.end
253 ; Make sure we scalarize the step vectors used for the pointer arithmetic. We
254 ; can't easily simplify vectorized step vectors. (Interleaved accesses.)
256 ; for (int i = 0; i < n; ++i)
259 ; INTERLEAVE-LABEL: @scalarize_induction_variable_04(
260 ; INTERLEAVE: vector.body:
261 ; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
262 ; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1
263 ; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2
264 ; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3
265 ; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4
266 ; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5
267 ; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6
268 ; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7
269 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1
270 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1
271 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1
272 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1
273 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1
274 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1
275 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1
276 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1
278 define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) {
283 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry]
284 %0 = shl nsw i64 %i, 2
285 %1 = getelementptr inbounds i32, i32* %a, i64 %0
286 %2 = load i32, i32* %1, align 1
287 %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1
288 store i32 %2, i32* %3, align 1
289 %i.next = add nuw nsw i64 %i, 1
290 %4 = trunc i64 %i.next to i32
291 %cond = icmp eq i32 %4, %n
292 br i1 %cond, label %for.end, label %for.body
298 ; PR30542. Ensure we generate all the scalar steps for the induction variable.
299 ; The scalar induction variable is used by a getelementptr instruction
300 ; (uniform), and a udiv (non-uniform).
303 ; for (int i = 0; i < n; ++i) {
310 ; CHECK-LABEL: @scalarize_induction_variable_05(
311 ; CHECK: vector.body:
312 ; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
313 ; CHECK: %[[I0:.+]] = add i32 %index, 0
314 ; CHECK: getelementptr inbounds i32, i32* %a, i32 %[[I0]]
315 ; CHECK: pred.udiv.if:
316 ; CHECK: udiv i32 {{.*}}, %[[I0]]
317 ; CHECK: pred.udiv.if{{[0-9]+}}:
318 ; CHECK: %[[I1:.+]] = add i32 %index, 1
319 ; CHECK: udiv i32 {{.*}}, %[[I1]]
321 ; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05(
322 ; UNROLL-NO-IC: vector.body:
323 ; UNROLL-NO-IC: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
324 ; UNROLL-NO-IC: %[[I0:.+]] = add i32 %index, 0
325 ; UNROLL-NO-IC: %[[I2:.+]] = add i32 %index, 2
326 ; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I0]]
327 ; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I2]]
328 ; UNROLL-NO-IC: pred.udiv.if:
329 ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I0]]
330 ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}:
331 ; UNROLL-NO-IC: %[[I1:.+]] = add i32 %index, 1
332 ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I1]]
333 ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}:
334 ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I2]]
335 ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}:
336 ; UNROLL-NO-IC: %[[I3:.+]] = add i32 %index, 3
337 ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I3]]
339 ; IND-LABEL: @scalarize_induction_variable_05(
341 ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
342 ; IND: %[[E0:.+]] = sext i32 %index to i64
343 ; IND: getelementptr inbounds i32, i32* %a, i64 %[[E0]]
345 ; IND: udiv i32 {{.*}}, %index
346 ; IND: pred.udiv.if{{[0-9]+}}:
347 ; IND: %[[I1:.+]] = or i32 %index, 1
348 ; IND: udiv i32 {{.*}}, %[[I1]]
350 ; UNROLL-LABEL: @scalarize_induction_variable_05(
351 ; UNROLL: vector.body:
352 ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
353 ; UNROLL: %[[I2:.+]] = or i32 %index, 2
354 ; UNROLL: %[[E0:.+]] = sext i32 %index to i64
355 ; UNROLL: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]]
356 ; UNROLL: getelementptr inbounds i32, i32* %[[G0]], i64 2
357 ; UNROLL: pred.udiv.if:
358 ; UNROLL: udiv i32 {{.*}}, %index
359 ; UNROLL: pred.udiv.if{{[0-9]+}}:
360 ; UNROLL: %[[I1:.+]] = or i32 %index, 1
361 ; UNROLL: udiv i32 {{.*}}, %[[I1]]
362 ; UNROLL: pred.udiv.if{{[0-9]+}}:
363 ; UNROLL: udiv i32 {{.*}}, %[[I2]]
364 ; UNROLL: pred.udiv.if{{[0-9]+}}:
365 ; UNROLL: %[[I3:.+]] = or i32 %index, 3
366 ; UNROLL: udiv i32 {{.*}}, %[[I3]]
368 define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) {
373 %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ]
374 %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ]
375 %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i
376 %tmp1 = load i32, i32* %tmp0, align 4
377 br i1 %c, label %if.then, label %if.end
380 %tmp2 = udiv i32 %tmp1, %i
384 %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ]
385 %tmp4 = add i32 %tmp3, %sum
386 %i.next = add nuw nsw i32 %i, 1
387 %cond = icmp slt i32 %i.next, %n
388 br i1 %cond, label %for.body, label %for.end
391 %tmp5 = phi i32 [ %tmp4, %if.end ]
395 ; Ensure we generate both a vector and a scalar induction variable. In this
396 ; test, the induction variable is used by an instruction that will be
397 ; vectorized (trunc) as well as an instruction that will remain in scalar form
400 ; CHECK-LABEL: @iv_vector_and_scalar_users(
401 ; CHECK: vector.body:
402 ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
403 ; CHECK: %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
404 ; CHECK: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ]
405 ; CHECK: %[[i0:.+]] = add i64 %index, 0
406 ; CHECK: %[[i1:.+]] = add i64 %index, 1
407 ; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1
408 ; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
409 ; CHECK: %index.next = add i64 %index, 2
410 ; CHECK: %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2>
411 ; CHECK: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2>
413 ; IND-LABEL: @iv_vector_and_scalar_users(
415 ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
416 ; IND: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ]
417 ; IND: %[[i1:.+]] = or i64 %index, 1
418 ; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1
419 ; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
420 ; IND: %index.next = add i64 %index, 2
421 ; IND: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2>
423 ; UNROLL-LABEL: @iv_vector_and_scalar_users(
424 ; UNROLL: vector.body:
425 ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
426 ; UNROLL: %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ]
427 ; UNROLL: %[[i1:.+]] = or i64 %index, 1
428 ; UNROLL: %[[i2:.+]] = or i64 %index, 2
429 ; UNROLL: %[[i3:.+]] = or i64 %index, 3
430 ; UNROLL: %step.add3 = add <2 x i32> %vec.ind2, <i32 2, i32 2>
431 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1
432 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
433 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1
434 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1
435 ; UNROLL: %index.next = add i64 %index, 4
436 ; UNROLL: %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4>
438 %pair.i16 = type { i16, i16 }
439 define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) {
444 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
445 %0 = trunc i64 %i to i32
447 %2 = trunc i32 %1 to i16
448 %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1
449 store i16 %2, i16* %3, align 2
450 %i.next = add nuw nsw i64 %i, 1
451 %4 = trunc i64 %i.next to i32
452 %cond = icmp eq i32 %4, %n
453 br i1 %cond, label %for.end, label %for.body
459 ; Make sure that the loop exit count computation does not overflow for i8 and
460 ; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
461 ; induction variable to a bigger type the exit count computation will overflow
465 ; CHECK-LABEL: i8_loop
466 ; CHECK: icmp eq i32 {{.*}}, 256
467 define i32 @i8_loop() nounwind readnone ssp uwtable {
470 ; <label>:1 ; preds = %1, %0
471 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
472 %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
475 %4 = icmp eq i8 %3, 0
476 br i1 %4, label %5, label %1
478 ; <label>:5 ; preds = %1
482 ; CHECK-LABEL: i16_loop
483 ; CHECK: icmp eq i32 {{.*}}, 65536
485 define i32 @i16_loop() nounwind readnone ssp uwtable {
488 ; <label>:1 ; preds = %1, %0
489 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
490 %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
492 %3 = add i16 %b.0, -1
493 %4 = icmp eq i16 %3, 0
494 br i1 %4, label %5, label %1
496 ; <label>:5 ; preds = %1
500 ; This loop has a backedge taken count of i32_max. We need to check for this
501 ; condition and branch directly to the scalar loop.
503 ; CHECK-LABEL: max_i32_backedgetaken
504 ; CHECK: br i1 true, label %scalar.ph, label %vector.ph
506 ; CHECK: middle.block:
507 ; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0
509 ; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ]
510 ; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ %[[v9]], %middle.block ]
512 define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
516 ; <label>:1 ; preds = %1, %0
517 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
518 %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
520 %3 = add i32 %b.0, -1
521 %4 = icmp eq i32 %3, 0
522 br i1 %4, label %5, label %1
524 ; <label>:5 ; preds = %1
528 ; When generating the overflow check we must sure that the induction start value
529 ; is defined before the branch to the scalar preheader.
531 ; CHECK-LABEL: testoverflowcheck
533 ; CHECK: %[[LOAD:.*]] = load i8
537 ; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ]
539 @e = global i8 1, align 1
540 @d = common global i32 0, align 4
541 @c = common global i32 0, align 4
542 define i32 @testoverflowcheck() {
544 %.pr.i = load i8, i8* @e, align 1
545 %0 = load i32, i32* @d, align 4
546 %c.promoted.i = load i32, i32* @c, align 4
550 %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
551 %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
552 %and.i = and i32 %0, %and3.i
553 %inc.i = add i8 %inc4.i, 1
554 %tobool.i = icmp eq i8 %inc.i, 0
555 br i1 %tobool.i, label %loopexit, label %cond.end.i
561 ; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32)
562 ; In order to recognize %sphi as an induction PHI and vectorize this loop,
563 ; we need to convert the SCEV expression into an AddRecExpr.
564 ; The expression gets converted to {zext i8 %t to i32,+,1}.
566 ; CHECK-LABEL: wrappingindvars1
567 ; CHECK-LABEL: vector.scevcheck
568 ; CHECK-LABEL: vector.ph
569 ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1>
570 ; CHECK-LABEL: vector.body
571 ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
572 ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2>
573 define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) {
575 %st = zext i8 %t to i16
576 %ext = zext i8 %t to i32
577 %ecmp = icmp ult i16 %st, 42
578 br i1 %ecmp, label %loop, label %exit
582 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
583 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
584 %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop]
586 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx
587 store i32 %sphi, i32* %ptr
589 %idx.inc = add i8 %idx, 1
590 %idx.inc.ext = zext i8 %idx.inc to i32
591 %idx.b.inc = add nuw nsw i32 %idx.b, 1
593 %c = icmp ult i32 %idx.b, %len
594 br i1 %c, label %loop, label %exit
600 ; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32))
601 ; In order to recognize %sphi as an induction PHI and vectorize this loop,
602 ; we need to convert the SCEV expression into an AddRecExpr.
603 ; The expression gets converted to ({4 * (zext %t to i32),+,4}).
604 ; CHECK-LABEL: wrappingindvars2
605 ; CHECK-LABEL: vector.scevcheck
606 ; CHECK-LABEL: vector.ph
607 ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4>
608 ; CHECK-LABEL: vector.body
609 ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
610 ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8>
611 define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) {
614 %st = zext i8 %t to i16
615 %ext = zext i8 %t to i32
616 %ext.mul = mul i32 %ext, 4
618 %ecmp = icmp ult i16 %st, 42
619 br i1 %ecmp, label %loop, label %exit
623 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
624 %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop]
625 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
627 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx
628 store i32 %sphi, i32* %ptr
630 %idx.inc = add i8 %idx, 1
631 %idx.inc.ext = zext i8 %idx.inc to i32
632 %mul = mul i32 %idx.inc.ext, 4
633 %idx.b.inc = add nuw nsw i32 %idx.b, 1
635 %c = icmp ult i32 %idx.b, %len
636 br i1 %c, label %loop, label %exit
642 ; Check that we generate vectorized IVs in the pre-header
643 ; instead of widening the scalar IV inside the loop, when
644 ; we know how to do that.
647 ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
648 ; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
649 ; IND: %index.next = add i32 %index, 2
650 ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
651 ; IND: %[[CMP:.*]] = icmp eq i32 %index.next
652 ; IND: br i1 %[[CMP]]
653 ; UNROLL-LABEL: veciv
654 ; UNROLL: vector.body:
655 ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
656 ; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
657 ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
658 ; UNROLL: %index.next = add i32 %index, 4
659 ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4>
660 ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next
661 ; UNROLL: br i1 %[[CMP]]
662 define void @veciv(i32* nocapture %a, i32 %start, i32 %k) {
667 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
668 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
669 store i32 %indvars.iv, i32* %arrayidx, align 4
670 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
671 %exitcond = icmp eq i32 %indvars.iv.next, %k
672 br i1 %exitcond, label %exit, label %for.body
680 ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
681 ; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ]
682 ; IND: %index.next = add i64 %index, 2
683 ; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2>
684 ; IND: %[[CMP:.*]] = icmp eq i64 %index.next
685 ; IND: br i1 %[[CMP]]
686 define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) {
691 %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
692 %trunc.iv = trunc i64 %indvars.iv to i32
693 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv
694 store i32 %trunc.iv, i32* %arrayidx, align 4
695 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
696 %exitcond = icmp eq i64 %indvars.iv.next, %k
697 br i1 %exitcond, label %exit, label %for.body
703 ; CHECK-LABEL: @nonprimary(
705 ; CHECK: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
706 ; CHECK: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
707 ; CHECK: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
708 ; CHECK: vector.body:
709 ; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
710 ; CHECK: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
711 ; CHECK: %offset.idx = add i32 %i, %index
712 ; CHECK: %[[A1:.*]] = add i32 %offset.idx, 0
713 ; CHECK: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]]
714 ; CHECK: %[[G3:.*]] = getelementptr inbounds i32, i32* %[[G1]], i32 0
715 ; CHECK: %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>*
716 ; CHECK: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
717 ; CHECK: %index.next = add i32 %index, 2
718 ; CHECK: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
719 ; CHECK: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
720 ; CHECK: br i1 %[[CMP]]
722 ; IND-LABEL: @nonprimary(
724 ; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
725 ; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
726 ; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
728 ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
729 ; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
730 ; IND: %[[A1:.*]] = add i32 %index, %i
731 ; IND: %[[S1:.*]] = sext i32 %[[A1]] to i64
732 ; IND: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]]
733 ; IND: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>*
734 ; IND: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
735 ; IND: %index.next = add i32 %index, 2
736 ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
737 ; IND: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
738 ; IND: br i1 %[[CMP]]
740 ; UNROLL-LABEL: @nonprimary(
742 ; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
743 ; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
744 ; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
745 ; UNROLL: vector.body:
746 ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
747 ; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
748 ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
749 ; UNROLL: %[[A1:.*]] = add i32 %index, %i
750 ; UNROLL: %[[S1:.*]] = sext i32 %[[A1]] to i64
751 ; UNROLL: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]]
752 ; UNROLL: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>*
753 ; UNROLL: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
754 ; UNROLL: %[[G2:.*]] = getelementptr inbounds i32, i32* %[[G1]], i64 2
755 ; UNROLL: %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>*
756 ; UNROLL: store <2 x i32> %step.add, <2 x i32>* %[[B2]]
757 ; UNROLL: %index.next = add i32 %index, 4
758 ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4>
759 ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
760 ; UNROLL: br i1 %[[CMP]]
761 define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) {
766 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ]
767 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
768 store i32 %indvars.iv, i32* %arrayidx, align 4
769 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
770 %exitcond = icmp eq i32 %indvars.iv.next, %k
771 br i1 %exitcond, label %exit, label %for.body
777 ; CHECK-LABEL: @non_primary_iv_trunc(
778 ; CHECK: vector.body:
779 ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
780 ; CHECK: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 2>, %vector.ph ], [ [[VEC_IND_NEXT:%.*]], %vector.body ]
781 ; CHECK: [[TMP3:%.*]] = add i64 %index, 0
782 ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %a, i64 [[TMP3]]
783 ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0
784 ; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>*
785 ; CHECK-NEXT: store <2 x i32> [[VEC_IND]], <2 x i32>* [[TMP6]], align 4
786 ; CHECK-NEXT: %index.next = add i64 %index, 2
787 ; CHECK: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], <i32 4, i32 4>
788 ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
789 define void @non_primary_iv_trunc(i32* %a, i64 %n) {
794 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
795 %j = phi i64 [ %j.next, %for.body ], [ 0, %entry ]
796 %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
797 %tmp1 = trunc i64 %j to i32
798 store i32 %tmp1, i32* %tmp0, align 4
799 %i.next = add nuw nsw i64 %i, 1
800 %j.next = add nuw nsw i64 %j, 2
801 %cond = icmp slt i64 %i.next, %n
802 br i1 %cond, label %for.body, label %for.end
808 ; PR32419. Ensure we transform truncated non-primary induction variables. In
809 ; the test case below we replace %tmp1 with a new induction variable. Because
810 ; the truncated value is non-primary, we must compute an offset from the
811 ; primary induction variable.
813 ; CHECK-LABEL: @PR32419(
814 ; CHECK: vector.body:
815 ; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %[[PRED_UREM_CONTINUE4:.*]] ]
816 ; CHECK: [[OFFSET_IDX:%.*]] = add i32 -20, [[INDEX]]
817 ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[OFFSET_IDX]] to i16
818 ; CHECK: [[TMP8:%.*]] = add i16 [[TMP1]], 0
819 ; CHECK-NEXT: [[TMP9:%.*]] = urem i16 %b, [[TMP8]]
820 ; CHECK: [[TMP15:%.*]] = add i16 [[TMP1]], 1
821 ; CHECK-NEXT: [[TMP16:%.*]] = urem i16 %b, [[TMP15]]
822 ; CHECK: [[PRED_UREM_CONTINUE4]]:
823 ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
825 define i32 @PR32419(i32 %a, i16 %b) {
830 %i = phi i32 [ -20, %entry ], [ %i.next, %for.inc ]
831 %tmp0 = phi i32 [ %a, %entry ], [ %tmp6, %for.inc ]
832 %tmp1 = trunc i32 %i to i16
833 %tmp2 = icmp eq i16 %tmp1, 0
834 br i1 %tmp2, label %for.inc, label %for.cond
837 %tmp3 = urem i16 %b, %tmp1
841 %tmp4 = phi i16 [ %tmp3, %for.cond ], [ 0, %for.body ]
842 %tmp5 = sext i16 %tmp4 to i32
843 %tmp6 = or i32 %tmp0, %tmp5
844 %i.next = add nsw i32 %i, 1
845 %cond = icmp eq i32 %i.next, 0
846 br i1 %cond, label %for.end, label %for.body
849 %tmp7 = phi i32 [ %tmp6, %for.inc ]
853 ; Ensure that the shuffle vector for first order recurrence is inserted
854 ; correctly after all the phis. These new phis correspond to new IVs
855 ; that are generated by optimizing non-free truncs of IVs to IVs themselves
856 define i64 @trunc_with_first_order_recurrence() {
857 ; CHECK-LABEL: trunc_with_first_order_recurrence
858 ; CHECK-LABEL: vector.body:
859 ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
860 ; CHECK-NEXT: %vec.phi = phi <2 x i64>
861 ; CHECK-NEXT: %vec.ind = phi <2 x i64> [ <i64 1, i64 2>, %vector.ph ], [ %vec.ind.next, %vector.body ]
862 ; CHECK-NEXT: %vec.ind2 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next3, %vector.body ]
863 ; CHECK-NEXT: %vector.recur = phi <2 x i32> [ <i32 undef, i32 42>, %vector.ph ], [ %vec.ind5, %vector.body ]
864 ; CHECK-NEXT: %vec.ind5 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next6, %vector.body ]
865 ; CHECK-NEXT: %vec.ind7 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next8, %vector.body ]
866 ; CHECK-NEXT: shufflevector <2 x i32> %vector.recur, <2 x i32> %vec.ind5, <2 x i32> <i32 1, i32 2>
870 exit: ; preds = %loop
871 %.lcssa = phi i64 [ %c23, %loop ]
874 loop: ; preds = %loop, %entry
875 %c5 = phi i64 [ %c23, %loop ], [ 0, %entry ]
876 %indvars.iv = phi i64 [ %indvars.iv.next, %loop ], [ 1, %entry ]
877 %x = phi i32 [ %c24, %loop ], [ 1, %entry ]
878 %y = phi i32 [ %c6, %loop ], [ 42, %entry ]
879 %c6 = trunc i64 %indvars.iv to i32
880 %c8 = mul i32 %x, %c6
881 %c9 = add i32 %c8, 42
882 %c10 = add i32 %y, %c6
883 %c11 = add i32 %c10, %c9
884 %c12 = sext i32 %c11 to i64
885 %c13 = add i64 %c5, %c12
886 %indvars.iv.tr = trunc i64 %indvars.iv to i32
887 %c14 = shl i32 %indvars.iv.tr, 1
888 %c15 = add i32 %c9, %c14
889 %c16 = sext i32 %c15 to i64
890 %c23 = add i64 %c13, %c16
891 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
892 %c24 = add nuw nsw i32 %x, 1
893 %exitcond.i = icmp eq i64 %indvars.iv.next, 114
894 br i1 %exitcond.i, label %exit, label %loop