1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
36 using namespace llvm::PatternMatch
;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant
*BitCastConstantVector(Constant
*CV
, VectorType
*DstTy
) {
47 if (CV
->isAllOnesValue()) return Constant::getAllOnesValue(DstTy
);
48 if (CV
->isNullValue()) return Constant::getNullValue(DstTy
);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts
= DstTy
->getNumElements();
54 if (NumElts
!= CV
->getType()->getVectorNumElements())
57 Type
*DstEltTy
= DstTy
->getElementType();
59 SmallVector
<Constant
*, 16> Result
;
60 Type
*Ty
= IntegerType::get(CV
->getContext(), 32);
61 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
63 ConstantExpr::getExtractElement(CV
, ConstantInt::get(Ty
, i
));
64 C
= ConstantExpr::getBitCast(C
, DstEltTy
);
68 return ConstantVector::get(Result
);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
77 unsigned opc
, ///< opcode of the second cast constant expression
78 ConstantExpr
*Op
, ///< the first cast constant expression
79 Type
*DstTy
///< destination type of the first cast
81 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type
*SrcTy
= Op
->getOperand(0)->getType();
87 Type
*MidTy
= Op
->getType();
88 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
89 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
98 nullptr, FakeIntPtrTy
, nullptr);
101 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
102 Type
*SrcTy
= V
->getType();
104 return V
; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
109 if (PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
110 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()
111 && PTy
->getElementType()->isSized()) {
112 SmallVector
<Value
*, 8> IdxList
;
114 Constant::getNullValue(Type::getInt32Ty(DPTy
->getContext()));
115 IdxList
.push_back(Zero
);
116 Type
*ElTy
= PTy
->getElementType();
117 while (ElTy
!= DPTy
->getElementType()) {
118 if (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
119 if (STy
->getNumElements() == 0) break;
120 ElTy
= STy
->getElementType(0);
121 IdxList
.push_back(Zero
);
122 } else if (SequentialType
*STy
=
123 dyn_cast
<SequentialType
>(ElTy
)) {
124 ElTy
= STy
->getElementType();
125 IdxList
.push_back(Zero
);
131 if (ElTy
== DPTy
->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy
->getElementType(),
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
140 if (VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
141 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
142 "Not cast between same sized vectors!");
144 // First, check for null. Undef is already handled.
145 if (isa
<ConstantAggregateZero
>(V
))
146 return Constant::getNullValue(DestTy
);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V
, DestPTy
);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
156 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
159 // Finally, implement bitcast folding now. The code below doesn't handle
161 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
164 // Handle integral constant input.
165 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
166 if (DestTy
->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy
->getContext(),
174 APFloat(DestTy
->getFltSemantics(),
177 // Otherwise, can't fold this (vector?)
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP
->getType()->isPPC_FP128Ty())
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy
->isIntegerTy())
196 return ConstantInt::get(FP
->getContext(),
197 FP
->getValueAPF().bitcastToAPInt());
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant
*ExtractConstantBytes(Constant
*C
, unsigned ByteStart
,
214 assert(C
->getType()->isIntegerTy() &&
215 (cast
<IntegerType
>(C
->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize
= cast
<IntegerType
>(C
->getType())->getBitWidth()/8;
218 assert(ByteSize
&& "Must be accessing some piece");
219 assert(ByteStart
+ByteSize
<= CSize
&& "Extracting invalid piece from input");
220 assert(ByteSize
!= CSize
&& "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
224 APInt V
= CI
->getValue();
226 V
.lshrInPlace(ByteStart
*8);
227 V
= V
.trunc(ByteSize
*8);
228 return ConstantInt::get(CI
->getContext(), V
);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
234 if (!CE
) return nullptr;
236 switch (CE
->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or
: {
239 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
244 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
))
245 if (RHSC
->isMinusOne())
248 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
251 return ConstantExpr::getOr(LHS
, RHS
);
253 case Instruction::And
: {
254 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
259 if (RHS
->isNullValue())
262 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
265 return ConstantExpr::getAnd(LHS
, RHS
);
267 case Instruction::LShr
: {
268 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
271 APInt ShAmt
= Amt
->getValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt
& 7) != 0)
275 ShAmt
.lshrInPlace(3);
277 // If the extract is known to be all zeros, return zero.
278 if (ShAmt
.uge(CSize
- ByteStart
))
279 return Constant::getNullValue(
280 IntegerType::get(CE
->getContext(), ByteSize
* 8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ShAmt
.ule(CSize
- (ByteStart
+ ByteSize
)))
283 return ExtractConstantBytes(CE
->getOperand(0),
284 ByteStart
+ ShAmt
.getZExtValue(), ByteSize
);
286 // TODO: Handle the 'partially zero' case.
290 case Instruction::Shl
: {
291 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
294 APInt ShAmt
= Amt
->getValue();
295 // Cannot analyze non-byte shifts.
296 if ((ShAmt
& 7) != 0)
298 ShAmt
.lshrInPlace(3);
300 // If the extract is known to be all zeros, return zero.
301 if (ShAmt
.uge(ByteStart
+ ByteSize
))
302 return Constant::getNullValue(
303 IntegerType::get(CE
->getContext(), ByteSize
* 8));
304 // If the extract is known to be fully in the input, extract it.
305 if (ShAmt
.ule(ByteStart
))
306 return ExtractConstantBytes(CE
->getOperand(0),
307 ByteStart
- ShAmt
.getZExtValue(), ByteSize
);
309 // TODO: Handle the 'partially zero' case.
313 case Instruction::ZExt
: {
314 unsigned SrcBitSize
=
315 cast
<IntegerType
>(CE
->getOperand(0)->getType())->getBitWidth();
317 // If extracting something that is completely zero, return 0.
318 if (ByteStart
*8 >= SrcBitSize
)
319 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
322 // If exactly extracting the input, return it.
323 if (ByteStart
== 0 && ByteSize
*8 == SrcBitSize
)
324 return CE
->getOperand(0);
326 // If extracting something completely in the input, if the input is a
327 // multiple of 8 bits, recurse.
328 if ((SrcBitSize
&7) == 0 && (ByteStart
+ByteSize
)*8 <= SrcBitSize
)
329 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
, ByteSize
);
331 // Otherwise, if extracting a subset of the input, which is not multiple of
332 // 8 bits, do a shift and trunc to get the bits.
333 if ((ByteStart
+ByteSize
)*8 < SrcBitSize
) {
334 assert((SrcBitSize
&7) && "Shouldn't get byte sized case here");
335 Constant
*Res
= CE
->getOperand(0);
337 Res
= ConstantExpr::getLShr(Res
,
338 ConstantInt::get(Res
->getType(), ByteStart
*8));
339 return ConstantExpr::getTrunc(Res
, IntegerType::get(C
->getContext(),
343 // TODO: Handle the 'partially zero' case.
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant
*getFoldedSizeOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
354 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
355 Constant
*N
= ConstantInt::get(DestTy
, ATy
->getNumElements());
356 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
357 return ConstantExpr::getNUWMul(E
, N
);
360 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
361 if (!STy
->isPacked()) {
362 unsigned NumElems
= STy
->getNumElements();
363 // An empty struct has size zero.
365 return ConstantExpr::getNullValue(DestTy
);
366 // Check for a struct with all members having the same size.
367 Constant
*MemberSize
=
368 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
370 for (unsigned i
= 1; i
!= NumElems
; ++i
)
372 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
377 Constant
*N
= ConstantInt::get(DestTy
, NumElems
);
378 return ConstantExpr::getNUWMul(MemberSize
, N
);
382 // Pointer size doesn't depend on the pointee type, so canonicalize them
383 // to an arbitrary pointee.
384 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
385 if (!PTy
->getElementType()->isIntegerTy(1))
387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy
->getContext(), 1),
388 PTy
->getAddressSpace()),
391 // If there's no interesting folding happening, bail so that we don't create
392 // a constant that looks like it needs folding but really doesn't.
396 // Base case: Get a regular sizeof expression.
397 Constant
*C
= ConstantExpr::getSizeOf(Ty
);
398 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant
*getFoldedAlignOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
412 Constant
*C
= ConstantExpr::getAlignOf(ATy
->getElementType());
413 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
420 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
421 // Packed structs always have an alignment of 1.
423 return ConstantInt::get(DestTy
, 1);
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems
= STy
->getNumElements();
429 // An empty struct has minimal alignment.
431 return ConstantInt::get(DestTy
, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant
*MemberAlign
=
434 getFoldedAlignOf(STy
->getElementType(0), DestTy
, true);
436 for (unsigned i
= 1; i
!= NumElems
; ++i
)
437 if (MemberAlign
!= getFoldedAlignOf(STy
->getElementType(i
), DestTy
, true)) {
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
448 if (!PTy
->getElementType()->isIntegerTy(1))
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy
->getContext(),
452 PTy
->getAddressSpace()),
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
460 // Base case: Get a regular alignof expression.
461 Constant
*C
= ConstantExpr::getAlignOf(Ty
);
462 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant
*getFoldedOffsetOf(Type
*Ty
, Constant
*FieldNo
, Type
*DestTy
,
474 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
475 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
, false,
478 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
479 return ConstantExpr::getNUWMul(E
, N
);
482 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
483 if (!STy
->isPacked()) {
484 unsigned NumElems
= STy
->getNumElements();
485 // An empty struct has no members.
488 // Check for a struct with all members having the same size.
489 Constant
*MemberSize
=
490 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
492 for (unsigned i
= 1; i
!= NumElems
; ++i
)
494 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
499 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
,
504 return ConstantExpr::getNUWMul(MemberSize
, N
);
508 // If there's no interesting folding happening, bail so that we don't create
509 // a constant that looks like it needs folding but really doesn't.
513 // Base case: Get a regular offsetof expression.
514 Constant
*C
= ConstantExpr::getOffsetOf(Ty
, FieldNo
);
515 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
521 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
523 if (isa
<UndefValue
>(V
)) {
524 // zext(undef) = 0, because the top bits will be zero.
525 // sext(undef) = 0, because the top bits will all be the same.
526 // [us]itofp(undef) = 0, because the result value is bounded.
527 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
528 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
529 return Constant::getNullValue(DestTy
);
530 return UndefValue::get(DestTy
);
533 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() &&
534 opc
!= Instruction::AddrSpaceCast
)
535 return Constant::getNullValue(DestTy
);
537 // If the cast operand is a constant expression, there's a few things we can
538 // do to try to simplify it.
539 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
541 // Try hard to fold cast of cast because they are often eliminable.
542 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
543 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
544 } else if (CE
->getOpcode() == Instruction::GetElementPtr
&&
545 // Do not fold addrspacecast (gep 0, .., 0). It might make the
546 // addrspacecast uncanonicalized.
547 opc
!= Instruction::AddrSpaceCast
&&
548 // Do not fold bitcast (gep) with inrange index, as this loses
550 !cast
<GEPOperator
>(CE
)->getInRangeIndex().hasValue() &&
551 // Do not fold if the gep type is a vector, as bitcasting
552 // operand 0 of a vector gep will result in a bitcast between
554 !CE
->getType()->isVectorTy()) {
555 // If all of the indexes in the GEP are null values, there is no pointer
556 // adjustment going on. We might as well cast the source pointer.
557 bool isAllNull
= true;
558 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
559 if (!CE
->getOperand(i
)->isNullValue()) {
564 // This is casting one pointer type to another, always BitCast
565 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
569 // If the cast operand is a constant vector, perform the cast by
570 // operating on each element. In the cast of bitcasts, the element
571 // count may be mismatched; don't attempt to handle that here.
572 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
573 DestTy
->isVectorTy() &&
574 DestTy
->getVectorNumElements() == V
->getType()->getVectorNumElements()) {
575 SmallVector
<Constant
*, 16> res
;
576 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
577 Type
*DstEltTy
= DestVecTy
->getElementType();
578 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
579 for (unsigned i
= 0, e
= V
->getType()->getVectorNumElements(); i
!= e
; ++i
) {
581 ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
582 res
.push_back(ConstantExpr::getCast(opc
, C
, DstEltTy
));
584 return ConstantVector::get(res
);
587 // We actually have to do a cast now. Perform the cast according to the
591 llvm_unreachable("Failed to cast constant expression");
592 case Instruction::FPTrunc
:
593 case Instruction::FPExt
:
594 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
596 APFloat Val
= FPC
->getValueAPF();
597 Val
.convert(DestTy
->isHalfTy() ? APFloat::IEEEhalf() :
598 DestTy
->isFloatTy() ? APFloat::IEEEsingle() :
599 DestTy
->isDoubleTy() ? APFloat::IEEEdouble() :
600 DestTy
->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601 DestTy
->isFP128Ty() ? APFloat::IEEEquad() :
602 DestTy
->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
604 APFloat::rmNearestTiesToEven
, &ignored
);
605 return ConstantFP::get(V
->getContext(), Val
);
607 return nullptr; // Can't fold.
608 case Instruction::FPToUI
:
609 case Instruction::FPToSI
:
610 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
611 const APFloat
&V
= FPC
->getValueAPF();
613 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
614 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
615 if (APFloat::opInvalidOp
==
616 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
617 // Undefined behavior invoked - the destination type can't represent
618 // the input constant.
619 return UndefValue::get(DestTy
);
621 return ConstantInt::get(FPC
->getContext(), IntVal
);
623 return nullptr; // Can't fold.
624 case Instruction::IntToPtr
: //always treated as unsigned
625 if (V
->isNullValue()) // Is it an integral null value?
626 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
627 return nullptr; // Other pointer types cannot be casted
628 case Instruction::PtrToInt
: // always treated as unsigned
629 // Is it a null pointer value?
630 if (V
->isNullValue())
631 return ConstantInt::get(DestTy
, 0);
632 // If this is a sizeof-like expression, pull out multiplications by
633 // known factors to expose them to subsequent folding. If it's an
634 // alignof-like expression, factor out known factors.
635 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
636 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
637 CE
->getOperand(0)->isNullValue()) {
638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642 // happen in one "real" C-code test case, so it does not seem to be an
643 // important optimization to handle vectors here. For now, simply bail
645 if (DestTy
->isVectorTy())
647 GEPOperator
*GEPO
= cast
<GEPOperator
>(CE
);
648 Type
*Ty
= GEPO
->getSourceElementType();
649 if (CE
->getNumOperands() == 2) {
650 // Handle a sizeof-like expression.
651 Constant
*Idx
= CE
->getOperand(1);
652 bool isOne
= isa
<ConstantInt
>(Idx
) && cast
<ConstantInt
>(Idx
)->isOne();
653 if (Constant
*C
= getFoldedSizeOf(Ty
, DestTy
, !isOne
)) {
654 Idx
= ConstantExpr::getCast(CastInst::getCastOpcode(Idx
, true,
657 return ConstantExpr::getMul(C
, Idx
);
659 } else if (CE
->getNumOperands() == 3 &&
660 CE
->getOperand(1)->isNullValue()) {
661 // Handle an alignof-like expression.
662 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
663 if (!STy
->isPacked()) {
664 ConstantInt
*CI
= cast
<ConstantInt
>(CE
->getOperand(2));
666 STy
->getNumElements() == 2 &&
667 STy
->getElementType(0)->isIntegerTy(1)) {
668 return getFoldedAlignOf(STy
->getElementType(1), DestTy
, false);
671 // Handle an offsetof-like expression.
672 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
673 if (Constant
*C
= getFoldedOffsetOf(Ty
, CE
->getOperand(2),
679 // Other pointer types cannot be casted
681 case Instruction::UIToFP
:
682 case Instruction::SIToFP
:
683 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
684 const APInt
&api
= CI
->getValue();
685 APFloat
apf(DestTy
->getFltSemantics(),
686 APInt::getNullValue(DestTy
->getPrimitiveSizeInBits()));
687 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
688 APFloat::rmNearestTiesToEven
);
689 return ConstantFP::get(V
->getContext(), apf
);
692 case Instruction::ZExt
:
693 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
694 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
695 return ConstantInt::get(V
->getContext(),
696 CI
->getValue().zext(BitWidth
));
699 case Instruction::SExt
:
700 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
701 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
702 return ConstantInt::get(V
->getContext(),
703 CI
->getValue().sext(BitWidth
));
706 case Instruction::Trunc
: {
707 if (V
->getType()->isVectorTy())
710 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
711 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
712 return ConstantInt::get(V
->getContext(),
713 CI
->getValue().trunc(DestBitWidth
));
716 // The input must be a constantexpr. See if we can simplify this based on
717 // the bytes we are demanding. Only do this if the source and dest are an
718 // even multiple of a byte.
719 if ((DestBitWidth
& 7) == 0 &&
720 (cast
<IntegerType
>(V
->getType())->getBitWidth() & 7) == 0)
721 if (Constant
*Res
= ExtractConstantBytes(V
, 0, DestBitWidth
/ 8))
726 case Instruction::BitCast
:
727 return FoldBitCast(V
, DestTy
);
728 case Instruction::AddrSpaceCast
:
733 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
734 Constant
*V1
, Constant
*V2
) {
735 // Check for i1 and vector true/false conditions.
736 if (Cond
->isNullValue()) return V2
;
737 if (Cond
->isAllOnesValue()) return V1
;
739 // If the condition is a vector constant, fold the result elementwise.
740 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
741 SmallVector
<Constant
*, 16> Result
;
742 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
743 for (unsigned i
= 0, e
= V1
->getType()->getVectorNumElements(); i
!= e
;++i
){
745 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
746 ConstantInt::get(Ty
, i
));
747 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
748 ConstantInt::get(Ty
, i
));
749 Constant
*Cond
= dyn_cast
<Constant
>(CondV
->getOperand(i
));
750 if (V1Element
== V2Element
) {
752 } else if (isa
<UndefValue
>(Cond
)) {
753 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
755 if (!isa
<ConstantInt
>(Cond
)) break;
756 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
761 // If we were able to build the vector, return it.
762 if (Result
.size() == V1
->getType()->getVectorNumElements())
763 return ConstantVector::get(Result
);
766 if (isa
<UndefValue
>(Cond
)) {
767 if (isa
<UndefValue
>(V1
)) return V1
;
770 if (isa
<UndefValue
>(V1
)) return V2
;
771 if (isa
<UndefValue
>(V2
)) return V1
;
772 if (V1
== V2
) return V1
;
774 if (ConstantExpr
*TrueVal
= dyn_cast
<ConstantExpr
>(V1
)) {
775 if (TrueVal
->getOpcode() == Instruction::Select
)
776 if (TrueVal
->getOperand(0) == Cond
)
777 return ConstantExpr::getSelect(Cond
, TrueVal
->getOperand(1), V2
);
779 if (ConstantExpr
*FalseVal
= dyn_cast
<ConstantExpr
>(V2
)) {
780 if (FalseVal
->getOpcode() == Instruction::Select
)
781 if (FalseVal
->getOperand(0) == Cond
)
782 return ConstantExpr::getSelect(Cond
, V1
, FalseVal
->getOperand(2));
788 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
790 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
791 return UndefValue::get(Val
->getType()->getVectorElementType());
792 if (Val
->isNullValue()) // ee(zero, x) -> zero
793 return Constant::getNullValue(Val
->getType()->getVectorElementType());
794 // ee({w,x,y,z}, undef) -> undef
795 if (isa
<UndefValue
>(Idx
))
796 return UndefValue::get(Val
->getType()->getVectorElementType());
798 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
799 // ee({w,x,y,z}, wrong_value) -> undef
800 if (CIdx
->uge(Val
->getType()->getVectorNumElements()))
801 return UndefValue::get(Val
->getType()->getVectorElementType());
802 return Val
->getAggregateElement(CIdx
->getZExtValue());
807 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
810 if (isa
<UndefValue
>(Idx
))
811 return UndefValue::get(Val
->getType());
813 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
814 if (!CIdx
) return nullptr;
816 unsigned NumElts
= Val
->getType()->getVectorNumElements();
817 if (CIdx
->uge(NumElts
))
818 return UndefValue::get(Val
->getType());
820 SmallVector
<Constant
*, 16> Result
;
821 Result
.reserve(NumElts
);
822 auto *Ty
= Type::getInt32Ty(Val
->getContext());
823 uint64_t IdxVal
= CIdx
->getZExtValue();
824 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
826 Result
.push_back(Elt
);
830 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
834 return ConstantVector::get(Result
);
837 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
,
840 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
841 Type
*EltTy
= V1
->getType()->getVectorElementType();
843 // Undefined shuffle mask -> undefined value.
844 if (isa
<UndefValue
>(Mask
))
845 return UndefValue::get(VectorType::get(EltTy
, MaskNumElts
));
847 // Don't break the bitcode reader hack.
848 if (isa
<ConstantExpr
>(Mask
)) return nullptr;
850 unsigned SrcNumElts
= V1
->getType()->getVectorNumElements();
852 // Loop over the shuffle mask, evaluating each element.
853 SmallVector
<Constant
*, 32> Result
;
854 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
855 int Elt
= ShuffleVectorInst::getMaskValue(Mask
, i
);
857 Result
.push_back(UndefValue::get(EltTy
));
861 if (unsigned(Elt
) >= SrcNumElts
*2)
862 InElt
= UndefValue::get(EltTy
);
863 else if (unsigned(Elt
) >= SrcNumElts
) {
864 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
866 ConstantExpr::getExtractElement(V2
,
867 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
869 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
870 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
872 Result
.push_back(InElt
);
875 return ConstantVector::get(Result
);
878 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
879 ArrayRef
<unsigned> Idxs
) {
880 // Base case: no indices, so return the entire value.
884 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
885 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
890 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
892 ArrayRef
<unsigned> Idxs
) {
893 // Base case: no indices, so replace the entire value.
898 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
899 NumElts
= ST
->getNumElements();
901 NumElts
= cast
<SequentialType
>(Agg
->getType())->getNumElements();
903 SmallVector
<Constant
*, 32> Result
;
904 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
905 Constant
*C
= Agg
->getAggregateElement(i
);
906 if (!C
) return nullptr;
909 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
914 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
915 return ConstantStruct::get(ST
, Result
);
916 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
->getType()))
917 return ConstantArray::get(AT
, Result
);
918 return ConstantVector::get(Result
);
921 Constant
*llvm::ConstantFoldUnaryInstruction(unsigned Opcode
, Constant
*C
) {
922 assert(Instruction::isUnaryOp(Opcode
) && "Non-unary instruction detected");
924 // Handle scalar UndefValue. Vectors are always evaluated per element.
925 bool HasScalarUndef
= !C
->getType()->isVectorTy() && isa
<UndefValue
>(C
);
927 if (HasScalarUndef
) {
928 switch (static_cast<Instruction::UnaryOps
>(Opcode
)) {
929 case Instruction::FNeg
:
930 return C
; // -undef -> undef
931 case Instruction::UnaryOpsEnd
:
932 llvm_unreachable("Invalid UnaryOp");
936 // Constant should not be UndefValue, unless these are vector constants.
937 assert(!HasScalarUndef
&& "Unexpected UndefValue");
938 // We only have FP UnaryOps right now.
939 assert(!isa
<ConstantInt
>(C
) && "Unexpected Integer UnaryOp");
941 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
942 const APFloat
&CV
= CFP
->getValueAPF();
946 case Instruction::FNeg
:
947 return ConstantFP::get(C
->getContext(), neg(CV
));
949 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C
->getType())) {
950 // Fold each element and create a vector constant from those constants.
951 SmallVector
<Constant
*, 16> Result
;
952 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
953 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
954 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
955 Constant
*Elt
= ConstantExpr::getExtractElement(C
, ExtractIdx
);
957 Result
.push_back(ConstantExpr::get(Opcode
, Elt
));
960 return ConstantVector::get(Result
);
963 // We don't know how to fold this.
967 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
, Constant
*C1
,
969 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
971 // Handle scalar UndefValue. Vectors are always evaluated per element.
972 bool HasScalarUndef
= !C1
->getType()->isVectorTy() &&
973 (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
));
974 if (HasScalarUndef
) {
975 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
976 case Instruction::Xor
:
977 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
978 // Handle undef ^ undef -> 0 special case. This is a common
980 return Constant::getNullValue(C1
->getType());
982 case Instruction::Add
:
983 case Instruction::Sub
:
984 return UndefValue::get(C1
->getType());
985 case Instruction::And
:
986 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
988 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
989 case Instruction::Mul
: {
990 // undef * undef -> undef
991 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
994 // X * undef -> undef if X is odd
995 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
997 return UndefValue::get(C1
->getType());
999 // X * undef -> 0 otherwise
1000 return Constant::getNullValue(C1
->getType());
1002 case Instruction::SDiv
:
1003 case Instruction::UDiv
:
1004 // X / undef -> undef
1005 if (isa
<UndefValue
>(C2
))
1007 // undef / 0 -> undef
1008 // undef / 1 -> undef
1009 if (match(C2
, m_Zero()) || match(C2
, m_One()))
1011 // undef / X -> 0 otherwise
1012 return Constant::getNullValue(C1
->getType());
1013 case Instruction::URem
:
1014 case Instruction::SRem
:
1015 // X % undef -> undef
1016 if (match(C2
, m_Undef()))
1018 // undef % 0 -> undef
1019 if (match(C2
, m_Zero()))
1021 // undef % X -> 0 otherwise
1022 return Constant::getNullValue(C1
->getType());
1023 case Instruction::Or
: // X | undef -> -1
1024 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
1026 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
1027 case Instruction::LShr
:
1028 // X >>l undef -> undef
1029 if (isa
<UndefValue
>(C2
))
1031 // undef >>l 0 -> undef
1032 if (match(C2
, m_Zero()))
1035 return Constant::getNullValue(C1
->getType());
1036 case Instruction::AShr
:
1037 // X >>a undef -> undef
1038 if (isa
<UndefValue
>(C2
))
1040 // undef >>a 0 -> undef
1041 if (match(C2
, m_Zero()))
1043 // TODO: undef >>a X -> undef if the shift is exact
1045 return Constant::getNullValue(C1
->getType());
1046 case Instruction::Shl
:
1047 // X << undef -> undef
1048 if (isa
<UndefValue
>(C2
))
1050 // undef << 0 -> undef
1051 if (match(C2
, m_Zero()))
1054 return Constant::getNullValue(C1
->getType());
1055 case Instruction::FAdd
:
1056 case Instruction::FSub
:
1057 case Instruction::FMul
:
1058 case Instruction::FDiv
:
1059 case Instruction::FRem
:
1060 // [any flop] undef, undef -> undef
1061 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
1063 // [any flop] C, undef -> NaN
1064 // [any flop] undef, C -> NaN
1065 // We could potentially specialize NaN/Inf constants vs. 'normal'
1066 // constants (possibly differently depending on opcode and operand). This
1067 // would allow returning undef sometimes. But it is always safe to fold to
1068 // NaN because we can choose the undef operand as NaN, and any FP opcode
1069 // with a NaN operand will propagate NaN.
1070 return ConstantFP::getNaN(C1
->getType());
1071 case Instruction::BinaryOpsEnd
:
1072 llvm_unreachable("Invalid BinaryOp");
1076 // Neither constant should be UndefValue, unless these are vector constants.
1077 assert(!HasScalarUndef
&& "Unexpected UndefValue");
1079 // Handle simplifications when the RHS is a constant int.
1080 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1082 case Instruction::Add
:
1083 if (CI2
->isZero()) return C1
; // X + 0 == X
1085 case Instruction::Sub
:
1086 if (CI2
->isZero()) return C1
; // X - 0 == X
1088 case Instruction::Mul
:
1089 if (CI2
->isZero()) return C2
; // X * 0 == 0
1091 return C1
; // X * 1 == X
1093 case Instruction::UDiv
:
1094 case Instruction::SDiv
:
1096 return C1
; // X / 1 == X
1098 return UndefValue::get(CI2
->getType()); // X / 0 == undef
1100 case Instruction::URem
:
1101 case Instruction::SRem
:
1103 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
1105 return UndefValue::get(CI2
->getType()); // X % 0 == undef
1107 case Instruction::And
:
1108 if (CI2
->isZero()) return C2
; // X & 0 == 0
1109 if (CI2
->isMinusOne())
1110 return C1
; // X & -1 == X
1112 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1113 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1114 if (CE1
->getOpcode() == Instruction::ZExt
) {
1115 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1117 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1118 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1119 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
1123 // If and'ing the address of a global with a constant, fold it.
1124 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
1125 isa
<GlobalValue
>(CE1
->getOperand(0))) {
1126 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
1130 if (Module
*TheModule
= GV
->getParent()) {
1131 GVAlign
= GV
->getPointerAlignment(TheModule
->getDataLayout());
1133 // If the function alignment is not specified then assume that it
1135 // This is dangerous; on x86, the alignment of the pointer
1136 // corresponds to the alignment of the function, but might be less
1137 // than 4 if it isn't explicitly specified.
1138 // However, a fix for this behaviour was reverted because it
1139 // increased code size (see https://reviews.llvm.org/D55115)
1140 // FIXME: This code should be deleted once existing targets have
1141 // appropriate defaults
1142 if (GVAlign
== 0U && isa
<Function
>(GV
))
1144 } else if (isa
<Function
>(GV
)) {
1145 // Without a datalayout we have to assume the worst case: that the
1146 // function pointer isn't aligned at all.
1149 GVAlign
= GV
->getAlignment();
1153 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1154 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
1155 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1157 // If checking bits we know are clear, return zero.
1158 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
1159 return Constant::getNullValue(CI2
->getType());
1164 case Instruction::Or
:
1165 if (CI2
->isZero()) return C1
; // X | 0 == X
1166 if (CI2
->isMinusOne())
1167 return C2
; // X | -1 == -1
1169 case Instruction::Xor
:
1170 if (CI2
->isZero()) return C1
; // X ^ 0 == X
1172 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1173 switch (CE1
->getOpcode()) {
1175 case Instruction::ICmp
:
1176 case Instruction::FCmp
:
1177 // cmp pred ^ true -> cmp !pred
1178 assert(CI2
->isOne());
1179 CmpInst::Predicate pred
= (CmpInst::Predicate
)CE1
->getPredicate();
1180 pred
= CmpInst::getInversePredicate(pred
);
1181 return ConstantExpr::getCompare(pred
, CE1
->getOperand(0),
1182 CE1
->getOperand(1));
1186 case Instruction::AShr
:
1187 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1188 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
1189 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
1190 return ConstantExpr::getLShr(C1
, C2
);
1193 } else if (isa
<ConstantInt
>(C1
)) {
1194 // If C1 is a ConstantInt and C2 is not, swap the operands.
1195 if (Instruction::isCommutative(Opcode
))
1196 return ConstantExpr::get(Opcode
, C2
, C1
);
1199 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
1200 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1201 const APInt
&C1V
= CI1
->getValue();
1202 const APInt
&C2V
= CI2
->getValue();
1206 case Instruction::Add
:
1207 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
1208 case Instruction::Sub
:
1209 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
1210 case Instruction::Mul
:
1211 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
1212 case Instruction::UDiv
:
1213 assert(!CI2
->isZero() && "Div by zero handled above");
1214 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
1215 case Instruction::SDiv
:
1216 assert(!CI2
->isZero() && "Div by zero handled above");
1217 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1218 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
1219 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
1220 case Instruction::URem
:
1221 assert(!CI2
->isZero() && "Div by zero handled above");
1222 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
1223 case Instruction::SRem
:
1224 assert(!CI2
->isZero() && "Div by zero handled above");
1225 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1226 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
1227 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
1228 case Instruction::And
:
1229 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
1230 case Instruction::Or
:
1231 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
1232 case Instruction::Xor
:
1233 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
1234 case Instruction::Shl
:
1235 if (C2V
.ult(C1V
.getBitWidth()))
1236 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
1237 return UndefValue::get(C1
->getType()); // too big shift is undef
1238 case Instruction::LShr
:
1239 if (C2V
.ult(C1V
.getBitWidth()))
1240 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
1241 return UndefValue::get(C1
->getType()); // too big shift is undef
1242 case Instruction::AShr
:
1243 if (C2V
.ult(C1V
.getBitWidth()))
1244 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
1245 return UndefValue::get(C1
->getType()); // too big shift is undef
1250 case Instruction::SDiv
:
1251 case Instruction::UDiv
:
1252 case Instruction::URem
:
1253 case Instruction::SRem
:
1254 case Instruction::LShr
:
1255 case Instruction::AShr
:
1256 case Instruction::Shl
:
1257 if (CI1
->isZero()) return C1
;
1262 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
1263 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
1264 const APFloat
&C1V
= CFP1
->getValueAPF();
1265 const APFloat
&C2V
= CFP2
->getValueAPF();
1266 APFloat C3V
= C1V
; // copy for modification
1270 case Instruction::FAdd
:
1271 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
1272 return ConstantFP::get(C1
->getContext(), C3V
);
1273 case Instruction::FSub
:
1274 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
1275 return ConstantFP::get(C1
->getContext(), C3V
);
1276 case Instruction::FMul
:
1277 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
1278 return ConstantFP::get(C1
->getContext(), C3V
);
1279 case Instruction::FDiv
:
1280 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
1281 return ConstantFP::get(C1
->getContext(), C3V
);
1282 case Instruction::FRem
:
1284 return ConstantFP::get(C1
->getContext(), C3V
);
1287 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1288 // Fold each element and create a vector constant from those constants.
1289 SmallVector
<Constant
*, 16> Result
;
1290 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
1291 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
1292 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
1293 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
1294 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
1296 // If any element of a divisor vector is zero, the whole op is undef.
1297 if (Instruction::isIntDivRem(Opcode
) && RHS
->isNullValue())
1298 return UndefValue::get(VTy
);
1300 Result
.push_back(ConstantExpr::get(Opcode
, LHS
, RHS
));
1303 return ConstantVector::get(Result
);
1306 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1307 // There are many possible foldings we could do here. We should probably
1308 // at least fold add of a pointer with an integer into the appropriate
1309 // getelementptr. This will improve alias analysis a bit.
1311 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1313 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
1314 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
1315 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
1316 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
1318 } else if (isa
<ConstantExpr
>(C2
)) {
1319 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1320 // other way if possible.
1321 if (Instruction::isCommutative(Opcode
))
1322 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
1325 // i1 can be simplified in many cases.
1326 if (C1
->getType()->isIntegerTy(1)) {
1328 case Instruction::Add
:
1329 case Instruction::Sub
:
1330 return ConstantExpr::getXor(C1
, C2
);
1331 case Instruction::Mul
:
1332 return ConstantExpr::getAnd(C1
, C2
);
1333 case Instruction::Shl
:
1334 case Instruction::LShr
:
1335 case Instruction::AShr
:
1336 // We can assume that C2 == 0. If it were one the result would be
1337 // undefined because the shift value is as large as the bitwidth.
1339 case Instruction::SDiv
:
1340 case Instruction::UDiv
:
1341 // We can assume that C2 == 1. If it were zero the result would be
1342 // undefined through division by zero.
1344 case Instruction::URem
:
1345 case Instruction::SRem
:
1346 // We can assume that C2 == 1. If it were zero the result would be
1347 // undefined through division by zero.
1348 return ConstantInt::getFalse(C1
->getContext());
1354 // We don't know how to fold this.
1358 /// This type is zero-sized if it's an array or structure of zero-sized types.
1359 /// The only leaf zero-sized type is an empty structure.
1360 static bool isMaybeZeroSizedType(Type
*Ty
) {
1361 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1362 if (STy
->isOpaque()) return true; // Can't say.
1364 // If all of elements have zero size, this does too.
1365 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1366 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1369 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1370 return isMaybeZeroSizedType(ATy
->getElementType());
1375 /// Compare the two constants as though they were getelementptr indices.
1376 /// This allows coercion of the types to be the same thing.
1378 /// If the two constants are the "same" (after coercion), return 0. If the
1379 /// first is less than the second, return -1, if the second is less than the
1380 /// first, return 1. If the constants are not integral, return -2.
1382 static int IdxCompare(Constant
*C1
, Constant
*C2
, Type
*ElTy
) {
1383 if (C1
== C2
) return 0;
1385 // Ok, we found a different index. If they are not ConstantInt, we can't do
1386 // anything with them.
1387 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1388 return -2; // don't know!
1390 // We cannot compare the indices if they don't fit in an int64_t.
1391 if (cast
<ConstantInt
>(C1
)->getValue().getActiveBits() > 64 ||
1392 cast
<ConstantInt
>(C2
)->getValue().getActiveBits() > 64)
1393 return -2; // don't know!
1395 // Ok, we have two differing integer indices. Sign extend them to be the same
1397 int64_t C1Val
= cast
<ConstantInt
>(C1
)->getSExtValue();
1398 int64_t C2Val
= cast
<ConstantInt
>(C2
)->getSExtValue();
1400 if (C1Val
== C2Val
) return 0; // They are equal
1402 // If the type being indexed over is really just a zero sized type, there is
1403 // no pointer difference being made here.
1404 if (isMaybeZeroSizedType(ElTy
))
1405 return -2; // dunno.
1407 // If they are really different, now that they are the same type, then we
1408 // found a difference!
1415 /// This function determines if there is anything we can decide about the two
1416 /// constants provided. This doesn't need to handle simple things like
1417 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1418 /// If we can determine that the two constants have a particular relation to
1419 /// each other, we should return the corresponding FCmpInst predicate,
1420 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1421 /// ConstantFoldCompareInstruction.
1423 /// To simplify this code we canonicalize the relation so that the first
1424 /// operand is always the most "complex" of the two. We consider ConstantFP
1425 /// to be the simplest, and ConstantExprs to be the most complex.
1426 static FCmpInst::Predicate
evaluateFCmpRelation(Constant
*V1
, Constant
*V2
) {
1427 assert(V1
->getType() == V2
->getType() &&
1428 "Cannot compare values of different types!");
1430 // We do not know if a constant expression will evaluate to a number or NaN.
1431 // Therefore, we can only say that the relation is unordered or equal.
1432 if (V1
== V2
) return FCmpInst::FCMP_UEQ
;
1434 if (!isa
<ConstantExpr
>(V1
)) {
1435 if (!isa
<ConstantExpr
>(V2
)) {
1436 // Simple case, use the standard constant folder.
1437 ConstantInt
*R
= nullptr;
1438 R
= dyn_cast
<ConstantInt
>(
1439 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, V1
, V2
));
1440 if (R
&& !R
->isZero())
1441 return FCmpInst::FCMP_OEQ
;
1442 R
= dyn_cast
<ConstantInt
>(
1443 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, V1
, V2
));
1444 if (R
&& !R
->isZero())
1445 return FCmpInst::FCMP_OLT
;
1446 R
= dyn_cast
<ConstantInt
>(
1447 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, V1
, V2
));
1448 if (R
&& !R
->isZero())
1449 return FCmpInst::FCMP_OGT
;
1451 // Nothing more we can do
1452 return FCmpInst::BAD_FCMP_PREDICATE
;
1455 // If the first operand is simple and second is ConstantExpr, swap operands.
1456 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
1457 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1458 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1460 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1461 // constantexpr or a simple constant.
1462 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1463 switch (CE1
->getOpcode()) {
1464 case Instruction::FPTrunc
:
1465 case Instruction::FPExt
:
1466 case Instruction::UIToFP
:
1467 case Instruction::SIToFP
:
1468 // We might be able to do something with these but we don't right now.
1474 // There are MANY other foldings that we could perform here. They will
1475 // probably be added on demand, as they seem needed.
1476 return FCmpInst::BAD_FCMP_PREDICATE
;
1479 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
1480 const GlobalValue
*GV2
) {
1481 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
1482 if (GV
->hasExternalWeakLinkage() || GV
->hasWeakAnyLinkage())
1484 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
1485 Type
*Ty
= GVar
->getValueType();
1486 // A global with opaque type might end up being zero sized.
1489 // A global with an empty type might lie at the address of any other
1491 if (Ty
->isEmptyTy())
1496 // Don't try to decide equality of aliases.
1497 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1498 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1499 return ICmpInst::ICMP_NE
;
1500 return ICmpInst::BAD_ICMP_PREDICATE
;
1503 /// This function determines if there is anything we can decide about the two
1504 /// constants provided. This doesn't need to handle simple things like integer
1505 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1506 /// If we can determine that the two constants have a particular relation to
1507 /// each other, we should return the corresponding ICmp predicate, otherwise
1508 /// return ICmpInst::BAD_ICMP_PREDICATE.
1510 /// To simplify this code we canonicalize the relation so that the first
1511 /// operand is always the most "complex" of the two. We consider simple
1512 /// constants (like ConstantInt) to be the simplest, followed by
1513 /// GlobalValues, followed by ConstantExpr's (the most complex).
1515 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
,
1517 assert(V1
->getType() == V2
->getType() &&
1518 "Cannot compare different types of values!");
1519 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1521 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
) &&
1522 !isa
<BlockAddress
>(V1
)) {
1523 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
) &&
1524 !isa
<BlockAddress
>(V2
)) {
1525 // We distilled this down to a simple case, use the standard constant
1527 ConstantInt
*R
= nullptr;
1528 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1529 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1530 if (R
&& !R
->isZero())
1532 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1533 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1534 if (R
&& !R
->isZero())
1536 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1537 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1538 if (R
&& !R
->isZero())
1541 // If we couldn't figure it out, bail.
1542 return ICmpInst::BAD_ICMP_PREDICATE
;
1545 // If the first operand is simple, swap operands.
1546 ICmpInst::Predicate SwappedRelation
=
1547 evaluateICmpRelation(V2
, V1
, isSigned
);
1548 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1549 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1551 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1552 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1553 ICmpInst::Predicate SwappedRelation
=
1554 evaluateICmpRelation(V2
, V1
, isSigned
);
1555 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1556 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1557 return ICmpInst::BAD_ICMP_PREDICATE
;
1560 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1561 // constant (which, since the types must match, means that it's a
1562 // ConstantPointerNull).
1563 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1564 return areGlobalsPotentiallyEqual(GV
, GV2
);
1565 } else if (isa
<BlockAddress
>(V2
)) {
1566 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1568 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1569 // GlobalVals can never be null unless they have external weak linkage.
1570 // We don't try to evaluate aliases here.
1571 // NOTE: We should not be doing this constant folding if null pointer
1572 // is considered valid for the function. But currently there is no way to
1573 // query it from the Constant type.
1574 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
) &&
1575 !NullPointerIsDefined(nullptr /* F */,
1576 GV
->getType()->getAddressSpace()))
1577 return ICmpInst::ICMP_NE
;
1579 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1580 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1581 ICmpInst::Predicate SwappedRelation
=
1582 evaluateICmpRelation(V2
, V1
, isSigned
);
1583 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1584 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1585 return ICmpInst::BAD_ICMP_PREDICATE
;
1588 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1589 // constant (which, since the types must match, means that it is a
1590 // ConstantPointerNull).
1591 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1592 // Block address in another function can't equal this one, but block
1593 // addresses in the current function might be the same if blocks are
1595 if (BA2
->getFunction() != BA
->getFunction())
1596 return ICmpInst::ICMP_NE
;
1598 // Block addresses aren't null, don't equal the address of globals.
1599 assert((isa
<ConstantPointerNull
>(V2
) || isa
<GlobalValue
>(V2
)) &&
1600 "Canonicalization guarantee!");
1601 return ICmpInst::ICMP_NE
;
1604 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1605 // constantexpr, a global, block address, or a simple constant.
1606 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1607 Constant
*CE1Op0
= CE1
->getOperand(0);
1609 switch (CE1
->getOpcode()) {
1610 case Instruction::Trunc
:
1611 case Instruction::FPTrunc
:
1612 case Instruction::FPExt
:
1613 case Instruction::FPToUI
:
1614 case Instruction::FPToSI
:
1615 break; // We can't evaluate floating point casts or truncations.
1617 case Instruction::UIToFP
:
1618 case Instruction::SIToFP
:
1619 case Instruction::BitCast
:
1620 case Instruction::ZExt
:
1621 case Instruction::SExt
:
1622 // We can't evaluate floating point casts or truncations.
1623 if (CE1Op0
->getType()->isFPOrFPVectorTy())
1626 // If the cast is not actually changing bits, and the second operand is a
1627 // null pointer, do the comparison with the pre-casted value.
1628 if (V2
->isNullValue() && CE1
->getType()->isIntOrPtrTy()) {
1629 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1630 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1631 return evaluateICmpRelation(CE1Op0
,
1632 Constant::getNullValue(CE1Op0
->getType()),
1637 case Instruction::GetElementPtr
: {
1638 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1639 // Ok, since this is a getelementptr, we know that the constant has a
1640 // pointer type. Check the various cases.
1641 if (isa
<ConstantPointerNull
>(V2
)) {
1642 // If we are comparing a GEP to a null pointer, check to see if the base
1643 // of the GEP equals the null pointer.
1644 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1645 if (GV
->hasExternalWeakLinkage())
1646 // Weak linkage GVals could be zero or not. We're comparing that
1647 // to null pointer so its greater-or-equal
1648 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1650 // If its not weak linkage, the GVal must have a non-zero address
1651 // so the result is greater-than
1652 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1653 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1654 // If we are indexing from a null pointer, check to see if we have any
1655 // non-zero indices.
1656 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1657 if (!CE1
->getOperand(i
)->isNullValue())
1658 // Offsetting from null, must not be equal.
1659 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1660 // Only zero indexes from null, must still be zero.
1661 return ICmpInst::ICMP_EQ
;
1663 // Otherwise, we can't really say if the first operand is null or not.
1664 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1665 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1666 if (GV2
->hasExternalWeakLinkage())
1667 // Weak linkage GVals could be zero or not. We're comparing it to
1668 // a null pointer, so its less-or-equal
1669 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1671 // If its not weak linkage, the GVal must have a non-zero address
1672 // so the result is less-than
1673 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1674 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1676 // If this is a getelementptr of the same global, then it must be
1677 // different. Because the types must match, the getelementptr could
1678 // only have at most one index, and because we fold getelementptr's
1679 // with a single zero index, it must be nonzero.
1680 assert(CE1
->getNumOperands() == 2 &&
1681 !CE1
->getOperand(1)->isNullValue() &&
1682 "Surprising getelementptr!");
1683 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1685 if (CE1GEP
->hasAllZeroIndices())
1686 return areGlobalsPotentiallyEqual(GV
, GV2
);
1687 return ICmpInst::BAD_ICMP_PREDICATE
;
1691 ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1692 Constant
*CE2Op0
= CE2
->getOperand(0);
1694 // There are MANY other foldings that we could perform here. They will
1695 // probably be added on demand, as they seem needed.
1696 switch (CE2
->getOpcode()) {
1698 case Instruction::GetElementPtr
:
1699 // By far the most common case to handle is when the base pointers are
1700 // obviously to the same global.
1701 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1702 // Don't know relative ordering, but check for inequality.
1703 if (CE1Op0
!= CE2Op0
) {
1704 GEPOperator
*CE2GEP
= cast
<GEPOperator
>(CE2
);
1705 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1706 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1707 cast
<GlobalValue
>(CE2Op0
));
1708 return ICmpInst::BAD_ICMP_PREDICATE
;
1710 // Ok, we know that both getelementptr instructions are based on the
1711 // same global. From this, we can precisely determine the relative
1712 // ordering of the resultant pointers.
1715 // The logic below assumes that the result of the comparison
1716 // can be determined by finding the first index that differs.
1717 // This doesn't work if there is over-indexing in any
1718 // subsequent indices, so check for that case first.
1719 if (!CE1
->isGEPWithNoNotionalOverIndexing() ||
1720 !CE2
->isGEPWithNoNotionalOverIndexing())
1721 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1723 // Compare all of the operands the GEP's have in common.
1724 gep_type_iterator GTI
= gep_type_begin(CE1
);
1725 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1727 switch (IdxCompare(CE1
->getOperand(i
),
1728 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1729 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1730 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1731 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1734 // Ok, we ran out of things they have in common. If any leftovers
1735 // are non-zero then we have a difference, otherwise we are equal.
1736 for (; i
< CE1
->getNumOperands(); ++i
)
1737 if (!CE1
->getOperand(i
)->isNullValue()) {
1738 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1739 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1741 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1744 for (; i
< CE2
->getNumOperands(); ++i
)
1745 if (!CE2
->getOperand(i
)->isNullValue()) {
1746 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1747 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1749 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1751 return ICmpInst::ICMP_EQ
;
1762 return ICmpInst::BAD_ICMP_PREDICATE
;
1765 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1766 Constant
*C1
, Constant
*C2
) {
1768 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1769 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1770 VT
->getNumElements());
1772 ResultTy
= Type::getInt1Ty(C1
->getContext());
1774 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1775 if (pred
== FCmpInst::FCMP_FALSE
)
1776 return Constant::getNullValue(ResultTy
);
1778 if (pred
== FCmpInst::FCMP_TRUE
)
1779 return Constant::getAllOnesValue(ResultTy
);
1781 // Handle some degenerate cases first
1782 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1783 CmpInst::Predicate Predicate
= CmpInst::Predicate(pred
);
1784 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1785 // For EQ and NE, we can always pick a value for the undef to make the
1786 // predicate pass or fail, so we can return undef.
1787 // Also, if both operands are undef, we can return undef for int comparison.
1788 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1789 return UndefValue::get(ResultTy
);
1791 // Otherwise, for integer compare, pick the same value as the non-undef
1792 // operand, and fold it to true or false.
1793 if (isIntegerPredicate
)
1794 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1796 // Choosing NaN for the undef will always make unordered comparison succeed
1797 // and ordered comparison fails.
1798 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1801 // icmp eq/ne(null,GV) -> false/true
1802 if (C1
->isNullValue()) {
1803 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1804 // Don't try to evaluate aliases. External weak GV can be null.
1805 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1806 !NullPointerIsDefined(nullptr /* F */,
1807 GV
->getType()->getAddressSpace())) {
1808 if (pred
== ICmpInst::ICMP_EQ
)
1809 return ConstantInt::getFalse(C1
->getContext());
1810 else if (pred
== ICmpInst::ICMP_NE
)
1811 return ConstantInt::getTrue(C1
->getContext());
1813 // icmp eq/ne(GV,null) -> false/true
1814 } else if (C2
->isNullValue()) {
1815 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1816 // Don't try to evaluate aliases. External weak GV can be null.
1817 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1818 !NullPointerIsDefined(nullptr /* F */,
1819 GV
->getType()->getAddressSpace())) {
1820 if (pred
== ICmpInst::ICMP_EQ
)
1821 return ConstantInt::getFalse(C1
->getContext());
1822 else if (pred
== ICmpInst::ICMP_NE
)
1823 return ConstantInt::getTrue(C1
->getContext());
1827 // If the comparison is a comparison between two i1's, simplify it.
1828 if (C1
->getType()->isIntegerTy(1)) {
1830 case ICmpInst::ICMP_EQ
:
1831 if (isa
<ConstantInt
>(C2
))
1832 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1833 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1834 case ICmpInst::ICMP_NE
:
1835 return ConstantExpr::getXor(C1
, C2
);
1841 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1842 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1843 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1845 default: llvm_unreachable("Invalid ICmp Predicate");
1846 case ICmpInst::ICMP_EQ
: return ConstantInt::get(ResultTy
, V1
== V2
);
1847 case ICmpInst::ICMP_NE
: return ConstantInt::get(ResultTy
, V1
!= V2
);
1848 case ICmpInst::ICMP_SLT
: return ConstantInt::get(ResultTy
, V1
.slt(V2
));
1849 case ICmpInst::ICMP_SGT
: return ConstantInt::get(ResultTy
, V1
.sgt(V2
));
1850 case ICmpInst::ICMP_SLE
: return ConstantInt::get(ResultTy
, V1
.sle(V2
));
1851 case ICmpInst::ICMP_SGE
: return ConstantInt::get(ResultTy
, V1
.sge(V2
));
1852 case ICmpInst::ICMP_ULT
: return ConstantInt::get(ResultTy
, V1
.ult(V2
));
1853 case ICmpInst::ICMP_UGT
: return ConstantInt::get(ResultTy
, V1
.ugt(V2
));
1854 case ICmpInst::ICMP_ULE
: return ConstantInt::get(ResultTy
, V1
.ule(V2
));
1855 case ICmpInst::ICMP_UGE
: return ConstantInt::get(ResultTy
, V1
.uge(V2
));
1857 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1858 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1859 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1860 APFloat::cmpResult R
= C1V
.compare(C2V
);
1862 default: llvm_unreachable("Invalid FCmp Predicate");
1863 case FCmpInst::FCMP_FALSE
: return Constant::getNullValue(ResultTy
);
1864 case FCmpInst::FCMP_TRUE
: return Constant::getAllOnesValue(ResultTy
);
1865 case FCmpInst::FCMP_UNO
:
1866 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
);
1867 case FCmpInst::FCMP_ORD
:
1868 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpUnordered
);
1869 case FCmpInst::FCMP_UEQ
:
1870 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1871 R
==APFloat::cmpEqual
);
1872 case FCmpInst::FCMP_OEQ
:
1873 return ConstantInt::get(ResultTy
, R
==APFloat::cmpEqual
);
1874 case FCmpInst::FCMP_UNE
:
1875 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpEqual
);
1876 case FCmpInst::FCMP_ONE
:
1877 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1878 R
==APFloat::cmpGreaterThan
);
1879 case FCmpInst::FCMP_ULT
:
1880 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1881 R
==APFloat::cmpLessThan
);
1882 case FCmpInst::FCMP_OLT
:
1883 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
);
1884 case FCmpInst::FCMP_UGT
:
1885 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1886 R
==APFloat::cmpGreaterThan
);
1887 case FCmpInst::FCMP_OGT
:
1888 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
);
1889 case FCmpInst::FCMP_ULE
:
1890 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpGreaterThan
);
1891 case FCmpInst::FCMP_OLE
:
1892 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1893 R
==APFloat::cmpEqual
);
1894 case FCmpInst::FCMP_UGE
:
1895 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpLessThan
);
1896 case FCmpInst::FCMP_OGE
:
1897 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
||
1898 R
==APFloat::cmpEqual
);
1900 } else if (C1
->getType()->isVectorTy()) {
1901 // If we can constant fold the comparison of each element, constant fold
1902 // the whole vector comparison.
1903 SmallVector
<Constant
*, 4> ResElts
;
1904 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1905 // Compare the elements, producing an i1 result or constant expr.
1906 for (unsigned i
= 0, e
= C1
->getType()->getVectorNumElements(); i
!= e
;++i
){
1908 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, i
));
1910 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, i
));
1912 ResElts
.push_back(ConstantExpr::getCompare(pred
, C1E
, C2E
));
1915 return ConstantVector::get(ResElts
);
1918 if (C1
->getType()->isFloatingPointTy() &&
1919 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1920 // infinite recursive loop
1921 (isa
<ConstantExpr
>(C1
) || isa
<ConstantExpr
>(C2
))) {
1922 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1923 switch (evaluateFCmpRelation(C1
, C2
)) {
1924 default: llvm_unreachable("Unknown relation!");
1925 case FCmpInst::FCMP_UNO
:
1926 case FCmpInst::FCMP_ORD
:
1927 case FCmpInst::FCMP_UNE
:
1928 case FCmpInst::FCMP_ULT
:
1929 case FCmpInst::FCMP_UGT
:
1930 case FCmpInst::FCMP_ULE
:
1931 case FCmpInst::FCMP_UGE
:
1932 case FCmpInst::FCMP_TRUE
:
1933 case FCmpInst::FCMP_FALSE
:
1934 case FCmpInst::BAD_FCMP_PREDICATE
:
1935 break; // Couldn't determine anything about these constants.
1936 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1937 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1938 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1939 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1941 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1942 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1943 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1944 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1946 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1947 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1948 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1949 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1951 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1952 // We can only partially decide this relation.
1953 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1955 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1958 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1959 // We can only partially decide this relation.
1960 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1962 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1965 case FCmpInst::FCMP_ONE
: // We know that C1 != C2
1966 // We can only partially decide this relation.
1967 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1969 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1972 case FCmpInst::FCMP_UEQ
: // We know that C1 == C2 || isUnordered(C1, C2).
1973 // We can only partially decide this relation.
1974 if (pred
== FCmpInst::FCMP_ONE
)
1976 else if (pred
== FCmpInst::FCMP_UEQ
)
1981 // If we evaluated the result, return it now.
1983 return ConstantInt::get(ResultTy
, Result
);
1986 // Evaluate the relation between the two constants, per the predicate.
1987 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1988 switch (evaluateICmpRelation(C1
, C2
,
1989 CmpInst::isSigned((CmpInst::Predicate
)pred
))) {
1990 default: llvm_unreachable("Unknown relational!");
1991 case ICmpInst::BAD_ICMP_PREDICATE
:
1992 break; // Couldn't determine anything about these constants.
1993 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1994 // If we know the constants are equal, we can decide the result of this
1995 // computation precisely.
1996 Result
= ICmpInst::isTrueWhenEqual((ICmpInst::Predicate
)pred
);
1998 case ICmpInst::ICMP_ULT
:
2000 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
2002 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
2006 case ICmpInst::ICMP_SLT
:
2008 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
2010 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
2014 case ICmpInst::ICMP_UGT
:
2016 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
2018 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
2022 case ICmpInst::ICMP_SGT
:
2024 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
2026 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
2030 case ICmpInst::ICMP_ULE
:
2031 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
2032 if (pred
== ICmpInst::ICMP_ULT
|| pred
== ICmpInst::ICMP_ULE
) Result
= 1;
2034 case ICmpInst::ICMP_SLE
:
2035 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
2036 if (pred
== ICmpInst::ICMP_SLT
|| pred
== ICmpInst::ICMP_SLE
) Result
= 1;
2038 case ICmpInst::ICMP_UGE
:
2039 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
2040 if (pred
== ICmpInst::ICMP_UGT
|| pred
== ICmpInst::ICMP_UGE
) Result
= 1;
2042 case ICmpInst::ICMP_SGE
:
2043 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
2044 if (pred
== ICmpInst::ICMP_SGT
|| pred
== ICmpInst::ICMP_SGE
) Result
= 1;
2046 case ICmpInst::ICMP_NE
:
2047 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
2048 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
2052 // If we evaluated the result, return it now.
2054 return ConstantInt::get(ResultTy
, Result
);
2056 // If the right hand side is a bitcast, try using its inverse to simplify
2057 // it by moving it to the left hand side. We can't do this if it would turn
2058 // a vector compare into a scalar compare or visa versa, or if it would turn
2059 // the operands into FP values.
2060 if (ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(C2
)) {
2061 Constant
*CE2Op0
= CE2
->getOperand(0);
2062 if (CE2
->getOpcode() == Instruction::BitCast
&&
2063 CE2
->getType()->isVectorTy() == CE2Op0
->getType()->isVectorTy() &&
2064 !CE2Op0
->getType()->isFPOrFPVectorTy()) {
2065 Constant
*Inverse
= ConstantExpr::getBitCast(C1
, CE2Op0
->getType());
2066 return ConstantExpr::getICmp(pred
, Inverse
, CE2Op0
);
2070 // If the left hand side is an extension, try eliminating it.
2071 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
2072 if ((CE1
->getOpcode() == Instruction::SExt
&&
2073 ICmpInst::isSigned((ICmpInst::Predicate
)pred
)) ||
2074 (CE1
->getOpcode() == Instruction::ZExt
&&
2075 !ICmpInst::isSigned((ICmpInst::Predicate
)pred
))){
2076 Constant
*CE1Op0
= CE1
->getOperand(0);
2077 Constant
*CE1Inverse
= ConstantExpr::getTrunc(CE1
, CE1Op0
->getType());
2078 if (CE1Inverse
== CE1Op0
) {
2079 // Check whether we can safely truncate the right hand side.
2080 Constant
*C2Inverse
= ConstantExpr::getTrunc(C2
, CE1Op0
->getType());
2081 if (ConstantExpr::getCast(CE1
->getOpcode(), C2Inverse
,
2082 C2
->getType()) == C2
)
2083 return ConstantExpr::getICmp(pred
, CE1Inverse
, C2Inverse
);
2088 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
2089 (C1
->isNullValue() && !C2
->isNullValue())) {
2090 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2091 // other way if possible.
2092 // Also, if C1 is null and C2 isn't, flip them around.
2093 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
2094 return ConstantExpr::getICmp(pred
, C2
, C1
);
2100 /// Test whether the given sequence of *normalized* indices is "inbounds".
2101 template<typename IndexTy
>
2102 static bool isInBoundsIndices(ArrayRef
<IndexTy
> Idxs
) {
2103 // No indices means nothing that could be out of bounds.
2104 if (Idxs
.empty()) return true;
2106 // If the first index is zero, it's in bounds.
2107 if (cast
<Constant
>(Idxs
[0])->isNullValue()) return true;
2109 // If the first index is one and all the rest are zero, it's in bounds,
2110 // by the one-past-the-end rule.
2111 if (auto *CI
= dyn_cast
<ConstantInt
>(Idxs
[0])) {
2115 auto *CV
= cast
<ConstantDataVector
>(Idxs
[0]);
2116 CI
= dyn_cast_or_null
<ConstantInt
>(CV
->getSplatValue());
2117 if (!CI
|| !CI
->isOne())
2121 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
; ++i
)
2122 if (!cast
<Constant
>(Idxs
[i
])->isNullValue())
2127 /// Test whether a given ConstantInt is in-range for a SequentialType.
2128 static bool isIndexInRangeOfArrayType(uint64_t NumElements
,
2129 const ConstantInt
*CI
) {
2130 // We cannot bounds check the index if it doesn't fit in an int64_t.
2131 if (CI
->getValue().getMinSignedBits() > 64)
2134 // A negative index or an index past the end of our sequential type is
2135 // considered out-of-range.
2136 int64_t IndexVal
= CI
->getSExtValue();
2137 if (IndexVal
< 0 || (NumElements
> 0 && (uint64_t)IndexVal
>= NumElements
))
2140 // Otherwise, it is in-range.
2144 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
2146 Optional
<unsigned> InRangeIndex
,
2147 ArrayRef
<Value
*> Idxs
) {
2148 if (Idxs
.empty()) return C
;
2150 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
2151 PointeeTy
, C
, makeArrayRef((Value
*const *)Idxs
.data(), Idxs
.size()));
2153 if (isa
<UndefValue
>(C
))
2154 return UndefValue::get(GEPTy
);
2156 Constant
*Idx0
= cast
<Constant
>(Idxs
[0]);
2157 if (Idxs
.size() == 1 && (Idx0
->isNullValue() || isa
<UndefValue
>(Idx0
)))
2158 return GEPTy
->isVectorTy() && !C
->getType()->isVectorTy()
2159 ? ConstantVector::getSplat(
2160 cast
<VectorType
>(GEPTy
)->getNumElements(), C
)
2163 if (C
->isNullValue()) {
2165 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2166 if (!isa
<UndefValue
>(Idxs
[i
]) &&
2167 !cast
<Constant
>(Idxs
[i
])->isNullValue()) {
2172 PointerType
*PtrTy
= cast
<PointerType
>(C
->getType()->getScalarType());
2173 Type
*Ty
= GetElementPtrInst::getIndexedType(PointeeTy
, Idxs
);
2175 assert(Ty
&& "Invalid indices for GEP!");
2176 Type
*OrigGEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2177 Type
*GEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2178 if (VectorType
*VT
= dyn_cast
<VectorType
>(C
->getType()))
2179 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2181 // The GEP returns a vector of pointers when one of more of
2182 // its arguments is a vector.
2183 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2184 if (auto *VT
= dyn_cast
<VectorType
>(Idxs
[i
]->getType())) {
2185 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2190 return Constant::getNullValue(GEPTy
);
2194 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2195 // Combine Indices - If the source pointer to this getelementptr instruction
2196 // is a getelementptr instruction, combine the indices of the two
2197 // getelementptr instructions into a single instruction.
2199 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2200 gep_type_iterator LastI
= gep_type_end(CE
);
2201 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
2205 // We cannot combine indices if doing so would take us outside of an
2206 // array or vector. Doing otherwise could trick us if we evaluated such a
2207 // GEP as part of a load.
2209 // e.g. Consider if the original GEP was:
2210 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2211 // i32 0, i32 0, i64 0)
2213 // If we then tried to offset it by '8' to get to the third element,
2214 // an i8, we should *not* get:
2215 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2216 // i32 0, i32 0, i64 8)
2218 // This GEP tries to index array element '8 which runs out-of-bounds.
2219 // Subsequent evaluation would get confused and produce erroneous results.
2221 // The following prohibits such a GEP from being formed by checking to see
2222 // if the index is in-range with respect to an array.
2223 // TODO: This code may be extended to handle vectors as well.
2224 bool PerformFold
= false;
2225 if (Idx0
->isNullValue())
2227 else if (LastI
.isSequential())
2228 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx0
))
2229 PerformFold
= (!LastI
.isBoundedSequential() ||
2230 isIndexInRangeOfArrayType(
2231 LastI
.getSequentialNumElements(), CI
)) &&
2232 !CE
->getOperand(CE
->getNumOperands() - 1)
2237 SmallVector
<Value
*, 16> NewIndices
;
2238 NewIndices
.reserve(Idxs
.size() + CE
->getNumOperands());
2239 NewIndices
.append(CE
->op_begin() + 1, CE
->op_end() - 1);
2241 // Add the last index of the source with the first index of the new GEP.
2242 // Make sure to handle the case when they are actually different types.
2243 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
2244 // Otherwise it must be an array.
2245 if (!Idx0
->isNullValue()) {
2246 Type
*IdxTy
= Combined
->getType();
2247 if (IdxTy
!= Idx0
->getType()) {
2248 unsigned CommonExtendedWidth
=
2249 std::max(IdxTy
->getIntegerBitWidth(),
2250 Idx0
->getType()->getIntegerBitWidth());
2251 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2254 Type::getIntNTy(IdxTy
->getContext(), CommonExtendedWidth
);
2255 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, CommonTy
);
2256 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
, CommonTy
);
2257 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
2260 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
2264 NewIndices
.push_back(Combined
);
2265 NewIndices
.append(Idxs
.begin() + 1, Idxs
.end());
2267 // The combined GEP normally inherits its index inrange attribute from
2268 // the inner GEP, but if the inner GEP's last index was adjusted by the
2269 // outer GEP, any inbounds attribute on that index is invalidated.
2270 Optional
<unsigned> IRIndex
= cast
<GEPOperator
>(CE
)->getInRangeIndex();
2271 if (IRIndex
&& *IRIndex
== CE
->getNumOperands() - 2 && !Idx0
->isNullValue())
2274 return ConstantExpr::getGetElementPtr(
2275 cast
<GEPOperator
>(CE
)->getSourceElementType(), CE
->getOperand(0),
2276 NewIndices
, InBounds
&& cast
<GEPOperator
>(CE
)->isInBounds(),
2281 // Attempt to fold casts to the same type away. For example, folding:
2283 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2287 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2289 // Don't fold if the cast is changing address spaces.
2290 if (CE
->isCast() && Idxs
.size() > 1 && Idx0
->isNullValue()) {
2291 PointerType
*SrcPtrTy
=
2292 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType());
2293 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(CE
->getType());
2294 if (SrcPtrTy
&& DstPtrTy
) {
2295 ArrayType
*SrcArrayTy
=
2296 dyn_cast
<ArrayType
>(SrcPtrTy
->getElementType());
2297 ArrayType
*DstArrayTy
=
2298 dyn_cast
<ArrayType
>(DstPtrTy
->getElementType());
2299 if (SrcArrayTy
&& DstArrayTy
2300 && SrcArrayTy
->getElementType() == DstArrayTy
->getElementType()
2301 && SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
2302 return ConstantExpr::getGetElementPtr(SrcArrayTy
,
2303 (Constant
*)CE
->getOperand(0),
2304 Idxs
, InBounds
, InRangeIndex
);
2309 // Check to see if any array indices are not within the corresponding
2310 // notional array or vector bounds. If so, try to determine if they can be
2311 // factored out into preceding dimensions.
2312 SmallVector
<Constant
*, 8> NewIdxs
;
2313 Type
*Ty
= PointeeTy
;
2314 Type
*Prev
= C
->getType();
2316 !isa
<ConstantInt
>(Idxs
[0]) && !isa
<ConstantDataVector
>(Idxs
[0]);
2317 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
;
2318 Prev
= Ty
, Ty
= cast
<CompositeType
>(Ty
)->getTypeAtIndex(Idxs
[i
]), ++i
) {
2319 if (!isa
<ConstantInt
>(Idxs
[i
]) && !isa
<ConstantDataVector
>(Idxs
[i
])) {
2320 // We don't know if it's in range or not.
2324 if (!isa
<ConstantInt
>(Idxs
[i
- 1]) && !isa
<ConstantDataVector
>(Idxs
[i
- 1]))
2325 // Skip if the type of the previous index is not supported.
2327 if (InRangeIndex
&& i
== *InRangeIndex
+ 1) {
2328 // If an index is marked inrange, we cannot apply this canonicalization to
2329 // the following index, as that will cause the inrange index to point to
2330 // the wrong element.
2333 if (isa
<StructType
>(Ty
)) {
2334 // The verify makes sure that GEPs into a struct are in range.
2337 auto *STy
= cast
<SequentialType
>(Ty
);
2338 if (isa
<VectorType
>(STy
)) {
2339 // There can be awkward padding in after a non-power of two vector.
2343 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idxs
[i
])) {
2344 if (isIndexInRangeOfArrayType(STy
->getNumElements(), CI
))
2345 // It's in range, skip to the next index.
2347 if (CI
->getSExtValue() < 0) {
2348 // It's out of range and negative, don't try to factor it.
2353 auto *CV
= cast
<ConstantDataVector
>(Idxs
[i
]);
2354 bool InRange
= true;
2355 for (unsigned I
= 0, E
= CV
->getNumElements(); I
!= E
; ++I
) {
2356 auto *CI
= cast
<ConstantInt
>(CV
->getElementAsConstant(I
));
2357 InRange
&= isIndexInRangeOfArrayType(STy
->getNumElements(), CI
);
2358 if (CI
->getSExtValue() < 0) {
2363 if (InRange
|| Unknown
)
2364 // It's in range, skip to the next index.
2365 // It's out of range and negative, don't try to factor it.
2368 if (isa
<StructType
>(Prev
)) {
2369 // It's out of range, but the prior dimension is a struct
2370 // so we can't do anything about it.
2374 // It's out of range, but we can factor it into the prior
2376 NewIdxs
.resize(Idxs
.size());
2377 // Determine the number of elements in our sequential type.
2378 uint64_t NumElements
= STy
->getArrayNumElements();
2380 // Expand the current index or the previous index to a vector from a scalar
2382 Constant
*CurrIdx
= cast
<Constant
>(Idxs
[i
]);
2384 NewIdxs
[i
- 1] ? NewIdxs
[i
- 1] : cast
<Constant
>(Idxs
[i
- 1]);
2385 bool IsCurrIdxVector
= CurrIdx
->getType()->isVectorTy();
2386 bool IsPrevIdxVector
= PrevIdx
->getType()->isVectorTy();
2387 bool UseVector
= IsCurrIdxVector
|| IsPrevIdxVector
;
2389 if (!IsCurrIdxVector
&& IsPrevIdxVector
)
2390 CurrIdx
= ConstantDataVector::getSplat(
2391 PrevIdx
->getType()->getVectorNumElements(), CurrIdx
);
2393 if (!IsPrevIdxVector
&& IsCurrIdxVector
)
2394 PrevIdx
= ConstantDataVector::getSplat(
2395 CurrIdx
->getType()->getVectorNumElements(), PrevIdx
);
2398 ConstantInt::get(CurrIdx
->getType()->getScalarType(), NumElements
);
2400 Factor
= ConstantDataVector::getSplat(
2401 IsPrevIdxVector
? PrevIdx
->getType()->getVectorNumElements()
2402 : CurrIdx
->getType()->getVectorNumElements(),
2405 NewIdxs
[i
] = ConstantExpr::getSRem(CurrIdx
, Factor
);
2407 Constant
*Div
= ConstantExpr::getSDiv(CurrIdx
, Factor
);
2409 unsigned CommonExtendedWidth
=
2410 std::max(PrevIdx
->getType()->getScalarSizeInBits(),
2411 Div
->getType()->getScalarSizeInBits());
2412 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2414 // Before adding, extend both operands to i64 to avoid
2415 // overflow trouble.
2416 Type
*ExtendedTy
= Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
);
2418 ExtendedTy
= VectorType::get(
2419 ExtendedTy
, IsPrevIdxVector
2420 ? PrevIdx
->getType()->getVectorNumElements()
2421 : CurrIdx
->getType()->getVectorNumElements());
2423 if (!PrevIdx
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2424 PrevIdx
= ConstantExpr::getSExt(PrevIdx
, ExtendedTy
);
2426 if (!Div
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2427 Div
= ConstantExpr::getSExt(Div
, ExtendedTy
);
2429 NewIdxs
[i
- 1] = ConstantExpr::getAdd(PrevIdx
, Div
);
2432 // If we did any factoring, start over with the adjusted indices.
2433 if (!NewIdxs
.empty()) {
2434 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2435 if (!NewIdxs
[i
]) NewIdxs
[i
] = cast
<Constant
>(Idxs
[i
]);
2436 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, NewIdxs
, InBounds
,
2440 // If all indices are known integers and normalized, we can do a simple
2441 // check for the "inbounds" property.
2442 if (!Unknown
&& !InBounds
)
2443 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
2444 if (!GV
->hasExternalWeakLinkage() && isInBoundsIndices(Idxs
))
2445 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, Idxs
,
2446 /*InBounds=*/true, InRangeIndex
);