1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators. Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed. Forward dominators are
12 // needed to support the Verifier pass.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/GenericDomTreeConstruction.h"
27 #include "llvm/Support/raw_ostream.h"
31 bool llvm::VerifyDomInfo
= false;
32 static cl::opt
<bool, true>
33 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo
), cl::Hidden
,
34 cl::desc("Verify dominator info (time consuming)"));
36 #ifdef EXPENSIVE_CHECKS
37 static constexpr bool ExpensiveChecksEnabled
= true;
39 static constexpr bool ExpensiveChecksEnabled
= false;
42 bool BasicBlockEdge::isSingleEdge() const {
43 const Instruction
*TI
= Start
->getTerminator();
44 unsigned NumEdgesToEnd
= 0;
45 for (unsigned int i
= 0, n
= TI
->getNumSuccessors(); i
< n
; ++i
) {
46 if (TI
->getSuccessor(i
) == End
)
48 if (NumEdgesToEnd
>= 2)
51 assert(NumEdgesToEnd
== 1);
55 //===----------------------------------------------------------------------===//
56 // DominatorTree Implementation
57 //===----------------------------------------------------------------------===//
59 // Provide public access to DominatorTree information. Implementation details
60 // can be found in Dominators.h, GenericDomTree.h, and
61 // GenericDomTreeConstruction.h.
63 //===----------------------------------------------------------------------===//
65 template class llvm::DomTreeNodeBase
<BasicBlock
>;
66 template class llvm::DominatorTreeBase
<BasicBlock
, false>; // DomTreeBase
67 template class llvm::DominatorTreeBase
<BasicBlock
, true>; // PostDomTreeBase
69 template class llvm::cfg::Update
<BasicBlock
*>;
71 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBDomTree
>(
72 DomTreeBuilder::BBDomTree
&DT
);
74 llvm::DomTreeBuilder::CalculateWithUpdates
<DomTreeBuilder::BBDomTree
>(
75 DomTreeBuilder::BBDomTree
&DT
, BBUpdates U
);
77 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBPostDomTree
>(
78 DomTreeBuilder::BBPostDomTree
&DT
);
79 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
81 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBDomTree
>(
82 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
83 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBPostDomTree
>(
84 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
86 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBDomTree
>(
87 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
88 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBPostDomTree
>(
89 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
91 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBDomTree
>(
92 DomTreeBuilder::BBDomTree
&DT
, DomTreeBuilder::BBUpdates
);
93 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBPostDomTree
>(
94 DomTreeBuilder::BBPostDomTree
&DT
, DomTreeBuilder::BBUpdates
);
96 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBDomTree
>(
97 const DomTreeBuilder::BBDomTree
&DT
,
98 DomTreeBuilder::BBDomTree::VerificationLevel VL
);
99 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBPostDomTree
>(
100 const DomTreeBuilder::BBPostDomTree
&DT
,
101 DomTreeBuilder::BBPostDomTree::VerificationLevel VL
);
103 bool DominatorTree::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
104 FunctionAnalysisManager::Invalidator
&) {
105 // Check whether the analysis, all analyses on functions, or the function's
106 // CFG have been preserved.
107 auto PAC
= PA
.getChecker
<DominatorTreeAnalysis
>();
108 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
109 PAC
.preservedSet
<CFGAnalyses
>());
112 // dominates - Return true if Def dominates a use in User. This performs
113 // the special checks necessary if Def and User are in the same basic block.
114 // Note that Def doesn't dominate a use in Def itself!
115 bool DominatorTree::dominates(const Instruction
*Def
,
116 const Instruction
*User
) const {
117 const BasicBlock
*UseBB
= User
->getParent();
118 const BasicBlock
*DefBB
= Def
->getParent();
120 // Any unreachable use is dominated, even if Def == User.
121 if (!isReachableFromEntry(UseBB
))
124 // Unreachable definitions don't dominate anything.
125 if (!isReachableFromEntry(DefBB
))
128 // An instruction doesn't dominate a use in itself.
132 // The value defined by an invoke dominates an instruction only if it
133 // dominates every instruction in UseBB.
134 // A PHI is dominated only if the instruction dominates every possible use in
136 if (isa
<InvokeInst
>(Def
) || isa
<PHINode
>(User
))
137 return dominates(Def
, UseBB
);
140 return dominates(DefBB
, UseBB
);
142 // Loop through the basic block until we find Def or User.
143 BasicBlock::const_iterator I
= DefBB
->begin();
144 for (; &*I
!= Def
&& &*I
!= User
; ++I
)
150 // true if Def would dominate a use in any instruction in UseBB.
151 // note that dominates(Def, Def->getParent()) is false.
152 bool DominatorTree::dominates(const Instruction
*Def
,
153 const BasicBlock
*UseBB
) const {
154 const BasicBlock
*DefBB
= Def
->getParent();
156 // Any unreachable use is dominated, even if DefBB == UseBB.
157 if (!isReachableFromEntry(UseBB
))
160 // Unreachable definitions don't dominate anything.
161 if (!isReachableFromEntry(DefBB
))
167 // Invoke results are only usable in the normal destination, not in the
168 // exceptional destination.
169 if (const auto *II
= dyn_cast
<InvokeInst
>(Def
)) {
170 BasicBlock
*NormalDest
= II
->getNormalDest();
171 BasicBlockEdge
E(DefBB
, NormalDest
);
172 return dominates(E
, UseBB
);
175 return dominates(DefBB
, UseBB
);
178 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
,
179 const BasicBlock
*UseBB
) const {
180 // If the BB the edge ends in doesn't dominate the use BB, then the
181 // edge also doesn't.
182 const BasicBlock
*Start
= BBE
.getStart();
183 const BasicBlock
*End
= BBE
.getEnd();
184 if (!dominates(End
, UseBB
))
187 // Simple case: if the end BB has a single predecessor, the fact that it
188 // dominates the use block implies that the edge also does.
189 if (End
->getSinglePredecessor())
192 // The normal edge from the invoke is critical. Conceptually, what we would
193 // like to do is split it and check if the new block dominates the use.
194 // With X being the new block, the graph would look like:
207 // Given the definition of dominance, NormalDest is dominated by X iff X
208 // dominates all of NormalDest's predecessors (X, B, C in the example). X
209 // trivially dominates itself, so we only have to find if it dominates the
210 // other predecessors. Since the only way out of X is via NormalDest, X can
211 // only properly dominate a node if NormalDest dominates that node too.
212 int IsDuplicateEdge
= 0;
213 for (const_pred_iterator PI
= pred_begin(End
), E
= pred_end(End
);
215 const BasicBlock
*BB
= *PI
;
217 // If there are multiple edges between Start and End, by definition they
218 // can't dominate anything.
219 if (IsDuplicateEdge
++)
224 if (!dominates(End
, BB
))
230 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
, const Use
&U
) const {
231 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
232 // A PHI in the end of the edge is dominated by it.
233 PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
);
234 if (PN
&& PN
->getParent() == BBE
.getEnd() &&
235 PN
->getIncomingBlock(U
) == BBE
.getStart())
238 // Otherwise use the edge-dominates-block query, which
239 // handles the crazy critical edge cases properly.
240 const BasicBlock
*UseBB
;
242 UseBB
= PN
->getIncomingBlock(U
);
244 UseBB
= UserInst
->getParent();
245 return dominates(BBE
, UseBB
);
248 bool DominatorTree::dominates(const Instruction
*Def
, const Use
&U
) const {
249 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
250 const BasicBlock
*DefBB
= Def
->getParent();
252 // Determine the block in which the use happens. PHI nodes use
253 // their operands on edges; simulate this by thinking of the use
254 // happening at the end of the predecessor block.
255 const BasicBlock
*UseBB
;
256 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
257 UseBB
= PN
->getIncomingBlock(U
);
259 UseBB
= UserInst
->getParent();
261 // Any unreachable use is dominated, even if Def == User.
262 if (!isReachableFromEntry(UseBB
))
265 // Unreachable definitions don't dominate anything.
266 if (!isReachableFromEntry(DefBB
))
269 // Invoke instructions define their return values on the edges to their normal
270 // successors, so we have to handle them specially.
271 // Among other things, this means they don't dominate anything in
272 // their own block, except possibly a phi, so we don't need to
273 // walk the block in any case.
274 if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(Def
)) {
275 BasicBlock
*NormalDest
= II
->getNormalDest();
276 BasicBlockEdge
E(DefBB
, NormalDest
);
277 return dominates(E
, U
);
280 // If the def and use are in different blocks, do a simple CFG dominator
283 return dominates(DefBB
, UseBB
);
285 // Ok, def and use are in the same block. If the def is an invoke, it
286 // doesn't dominate anything in the block. If it's a PHI, it dominates
287 // everything in the block.
288 if (isa
<PHINode
>(UserInst
))
291 // Otherwise, just loop through the basic block until we find Def or User.
292 BasicBlock::const_iterator I
= DefBB
->begin();
293 for (; &*I
!= Def
&& &*I
!= UserInst
; ++I
)
296 return &*I
!= UserInst
;
299 bool DominatorTree::isReachableFromEntry(const Use
&U
) const {
300 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
302 // ConstantExprs aren't really reachable from the entry block, but they
303 // don't need to be treated like unreachable code either.
306 // PHI nodes use their operands on their incoming edges.
307 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
308 return isReachableFromEntry(PN
->getIncomingBlock(U
));
310 // Everything else uses their operands in their own block.
311 return isReachableFromEntry(I
->getParent());
314 //===----------------------------------------------------------------------===//
315 // DominatorTreeAnalysis and related pass implementations
316 //===----------------------------------------------------------------------===//
318 // This implements the DominatorTreeAnalysis which is used with the new pass
319 // manager. It also implements some methods from utility passes.
321 //===----------------------------------------------------------------------===//
323 DominatorTree
DominatorTreeAnalysis::run(Function
&F
,
324 FunctionAnalysisManager
&) {
330 AnalysisKey
DominatorTreeAnalysis::Key
;
332 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream
&OS
) : OS(OS
) {}
334 PreservedAnalyses
DominatorTreePrinterPass::run(Function
&F
,
335 FunctionAnalysisManager
&AM
) {
336 OS
<< "DominatorTree for function: " << F
.getName() << "\n";
337 AM
.getResult
<DominatorTreeAnalysis
>(F
).print(OS
);
339 return PreservedAnalyses::all();
342 PreservedAnalyses
DominatorTreeVerifierPass::run(Function
&F
,
343 FunctionAnalysisManager
&AM
) {
344 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
347 return PreservedAnalyses::all();
350 //===----------------------------------------------------------------------===//
351 // DominatorTreeWrapperPass Implementation
352 //===----------------------------------------------------------------------===//
354 // The implementation details of the wrapper pass that holds a DominatorTree
355 // suitable for use with the legacy pass manager.
357 //===----------------------------------------------------------------------===//
359 char DominatorTreeWrapperPass::ID
= 0;
360 INITIALIZE_PASS(DominatorTreeWrapperPass
, "domtree",
361 "Dominator Tree Construction", true, true)
363 bool DominatorTreeWrapperPass::runOnFunction(Function
&F
) {
368 void DominatorTreeWrapperPass::verifyAnalysis() const {
370 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
371 else if (ExpensiveChecksEnabled
)
372 assert(DT
.verify(DominatorTree::VerificationLevel::Basic
));
375 void DominatorTreeWrapperPass::print(raw_ostream
&OS
, const Module
*) const {