[LLVM][Alignment] Introduce Alignment In Attributes
[llvm-core.git] / lib / LTO / LTO.cpp
bloba67fa941696da6a9e2c225dcd48bb30739c91a7d
1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/Analysis/TargetTransformInfo.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/Bitcode/BitcodeWriter.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/AutoUpgrade.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Metadata.h"
27 #include "llvm/IR/RemarkStreamer.h"
28 #include "llvm/LTO/LTOBackend.h"
29 #include "llvm/LTO/SummaryBasedOptimizations.h"
30 #include "llvm/Linker/IRMover.h"
31 #include "llvm/Object/IRObjectFile.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/SHA1.h"
37 #include "llvm/Support/SourceMgr.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/ThreadPool.h"
40 #include "llvm/Support/Threading.h"
41 #include "llvm/Support/VCSRevision.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
47 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
48 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
49 #include "llvm/Transforms/Utils/SplitModule.h"
51 #include <set>
53 using namespace llvm;
54 using namespace lto;
55 using namespace object;
57 #define DEBUG_TYPE "lto"
59 static cl::opt<bool>
60 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
61 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
63 /// Enable global value internalization in LTO.
64 cl::opt<bool> EnableLTOInternalization(
65 "enable-lto-internalization", cl::init(true), cl::Hidden,
66 cl::desc("Enable global value internalization in LTO"));
68 // Computes a unique hash for the Module considering the current list of
69 // export/import and other global analysis results.
70 // The hash is produced in \p Key.
71 void llvm::computeLTOCacheKey(
72 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
73 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
74 const FunctionImporter::ExportSetTy &ExportList,
75 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
76 const GVSummaryMapTy &DefinedGlobals,
77 const std::set<GlobalValue::GUID> &CfiFunctionDefs,
78 const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
79 // Compute the unique hash for this entry.
80 // This is based on the current compiler version, the module itself, the
81 // export list, the hash for every single module in the import list, the
82 // list of ResolvedODR for the module, and the list of preserved symbols.
83 SHA1 Hasher;
85 // Start with the compiler revision
86 Hasher.update(LLVM_VERSION_STRING);
87 #ifdef LLVM_REVISION
88 Hasher.update(LLVM_REVISION);
89 #endif
91 // Include the parts of the LTO configuration that affect code generation.
92 auto AddString = [&](StringRef Str) {
93 Hasher.update(Str);
94 Hasher.update(ArrayRef<uint8_t>{0});
96 auto AddUnsigned = [&](unsigned I) {
97 uint8_t Data[4];
98 Data[0] = I;
99 Data[1] = I >> 8;
100 Data[2] = I >> 16;
101 Data[3] = I >> 24;
102 Hasher.update(ArrayRef<uint8_t>{Data, 4});
104 auto AddUint64 = [&](uint64_t I) {
105 uint8_t Data[8];
106 Data[0] = I;
107 Data[1] = I >> 8;
108 Data[2] = I >> 16;
109 Data[3] = I >> 24;
110 Data[4] = I >> 32;
111 Data[5] = I >> 40;
112 Data[6] = I >> 48;
113 Data[7] = I >> 56;
114 Hasher.update(ArrayRef<uint8_t>{Data, 8});
116 AddString(Conf.CPU);
117 // FIXME: Hash more of Options. For now all clients initialize Options from
118 // command-line flags (which is unsupported in production), but may set
119 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
120 // DataSections and DebuggerTuning via command line flags.
121 AddUnsigned(Conf.Options.RelaxELFRelocations);
122 AddUnsigned(Conf.Options.FunctionSections);
123 AddUnsigned(Conf.Options.DataSections);
124 AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
125 for (auto &A : Conf.MAttrs)
126 AddString(A);
127 if (Conf.RelocModel)
128 AddUnsigned(*Conf.RelocModel);
129 else
130 AddUnsigned(-1);
131 if (Conf.CodeModel)
132 AddUnsigned(*Conf.CodeModel);
133 else
134 AddUnsigned(-1);
135 AddUnsigned(Conf.CGOptLevel);
136 AddUnsigned(Conf.CGFileType);
137 AddUnsigned(Conf.OptLevel);
138 AddUnsigned(Conf.UseNewPM);
139 AddUnsigned(Conf.Freestanding);
140 AddString(Conf.OptPipeline);
141 AddString(Conf.AAPipeline);
142 AddString(Conf.OverrideTriple);
143 AddString(Conf.DefaultTriple);
144 AddString(Conf.DwoDir);
146 // Include the hash for the current module
147 auto ModHash = Index.getModuleHash(ModuleID);
148 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
149 for (auto F : ExportList)
150 // The export list can impact the internalization, be conservative here
151 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F)));
153 // Include the hash for every module we import functions from. The set of
154 // imported symbols for each module may affect code generation and is
155 // sensitive to link order, so include that as well.
156 for (auto &Entry : ImportList) {
157 auto ModHash = Index.getModuleHash(Entry.first());
158 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
160 AddUint64(Entry.second.size());
161 for (auto &Fn : Entry.second)
162 AddUint64(Fn);
165 // Include the hash for the resolved ODR.
166 for (auto &Entry : ResolvedODR) {
167 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
168 sizeof(GlobalValue::GUID)));
169 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
170 sizeof(GlobalValue::LinkageTypes)));
173 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
174 // defined in this module.
175 std::set<GlobalValue::GUID> UsedCfiDefs;
176 std::set<GlobalValue::GUID> UsedCfiDecls;
178 // Typeids used in this module.
179 std::set<GlobalValue::GUID> UsedTypeIds;
181 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
182 if (CfiFunctionDefs.count(ValueGUID))
183 UsedCfiDefs.insert(ValueGUID);
184 if (CfiFunctionDecls.count(ValueGUID))
185 UsedCfiDecls.insert(ValueGUID);
188 auto AddUsedThings = [&](GlobalValueSummary *GS) {
189 if (!GS) return;
190 AddUnsigned(GS->isLive());
191 AddUnsigned(GS->canAutoHide());
192 for (const ValueInfo &VI : GS->refs()) {
193 AddUnsigned(VI.isDSOLocal());
194 AddUsedCfiGlobal(VI.getGUID());
196 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
197 AddUnsigned(GVS->maybeReadOnly());
198 AddUnsigned(GVS->maybeWriteOnly());
200 if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
201 for (auto &TT : FS->type_tests())
202 UsedTypeIds.insert(TT);
203 for (auto &TT : FS->type_test_assume_vcalls())
204 UsedTypeIds.insert(TT.GUID);
205 for (auto &TT : FS->type_checked_load_vcalls())
206 UsedTypeIds.insert(TT.GUID);
207 for (auto &TT : FS->type_test_assume_const_vcalls())
208 UsedTypeIds.insert(TT.VFunc.GUID);
209 for (auto &TT : FS->type_checked_load_const_vcalls())
210 UsedTypeIds.insert(TT.VFunc.GUID);
211 for (auto &ET : FS->calls()) {
212 AddUnsigned(ET.first.isDSOLocal());
213 AddUsedCfiGlobal(ET.first.getGUID());
218 // Include the hash for the linkage type to reflect internalization and weak
219 // resolution, and collect any used type identifier resolutions.
220 for (auto &GS : DefinedGlobals) {
221 GlobalValue::LinkageTypes Linkage = GS.second->linkage();
222 Hasher.update(
223 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
224 AddUsedCfiGlobal(GS.first);
225 AddUsedThings(GS.second);
228 // Imported functions may introduce new uses of type identifier resolutions,
229 // so we need to collect their used resolutions as well.
230 for (auto &ImpM : ImportList)
231 for (auto &ImpF : ImpM.second) {
232 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
233 AddUsedThings(S);
234 // If this is an alias, we also care about any types/etc. that the aliasee
235 // may reference.
236 if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
237 AddUsedThings(AS->getBaseObject());
240 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
241 AddString(TId);
243 AddUnsigned(S.TTRes.TheKind);
244 AddUnsigned(S.TTRes.SizeM1BitWidth);
246 AddUint64(S.TTRes.AlignLog2);
247 AddUint64(S.TTRes.SizeM1);
248 AddUint64(S.TTRes.BitMask);
249 AddUint64(S.TTRes.InlineBits);
251 AddUint64(S.WPDRes.size());
252 for (auto &WPD : S.WPDRes) {
253 AddUnsigned(WPD.first);
254 AddUnsigned(WPD.second.TheKind);
255 AddString(WPD.second.SingleImplName);
257 AddUint64(WPD.second.ResByArg.size());
258 for (auto &ByArg : WPD.second.ResByArg) {
259 AddUint64(ByArg.first.size());
260 for (uint64_t Arg : ByArg.first)
261 AddUint64(Arg);
262 AddUnsigned(ByArg.second.TheKind);
263 AddUint64(ByArg.second.Info);
264 AddUnsigned(ByArg.second.Byte);
265 AddUnsigned(ByArg.second.Bit);
270 // Include the hash for all type identifiers used by this module.
271 for (GlobalValue::GUID TId : UsedTypeIds) {
272 auto TidIter = Index.typeIds().equal_range(TId);
273 for (auto It = TidIter.first; It != TidIter.second; ++It)
274 AddTypeIdSummary(It->second.first, It->second.second);
277 AddUnsigned(UsedCfiDefs.size());
278 for (auto &V : UsedCfiDefs)
279 AddUint64(V);
281 AddUnsigned(UsedCfiDecls.size());
282 for (auto &V : UsedCfiDecls)
283 AddUint64(V);
285 if (!Conf.SampleProfile.empty()) {
286 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
287 if (FileOrErr) {
288 Hasher.update(FileOrErr.get()->getBuffer());
290 if (!Conf.ProfileRemapping.empty()) {
291 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
292 if (FileOrErr)
293 Hasher.update(FileOrErr.get()->getBuffer());
298 Key = toHex(Hasher.result());
301 static void thinLTOResolvePrevailingGUID(
302 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
303 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
304 isPrevailing,
305 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
306 recordNewLinkage,
307 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
308 for (auto &S : VI.getSummaryList()) {
309 GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
310 // Ignore local and appending linkage values since the linker
311 // doesn't resolve them.
312 if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
313 GlobalValue::isAppendingLinkage(S->linkage()))
314 continue;
315 // We need to emit only one of these. The prevailing module will keep it,
316 // but turned into a weak, while the others will drop it when possible.
317 // This is both a compile-time optimization and a correctness
318 // transformation. This is necessary for correctness when we have exported
319 // a reference - we need to convert the linkonce to weak to
320 // ensure a copy is kept to satisfy the exported reference.
321 // FIXME: We may want to split the compile time and correctness
322 // aspects into separate routines.
323 if (isPrevailing(VI.getGUID(), S.get())) {
324 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
325 S->setLinkage(GlobalValue::getWeakLinkage(
326 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
327 // The kept copy is eligible for auto-hiding (hidden visibility) if all
328 // copies were (i.e. they were all linkonce_odr global unnamed addr).
329 // If any copy is not (e.g. it was originally weak_odr), then the symbol
330 // must remain externally available (e.g. a weak_odr from an explicitly
331 // instantiated template). Additionally, if it is in the
332 // GUIDPreservedSymbols set, that means that it is visibile outside
333 // the summary (e.g. in a native object or a bitcode file without
334 // summary), and in that case we cannot hide it as it isn't possible to
335 // check all copies.
336 S->setCanAutoHide(VI.canAutoHide() &&
337 !GUIDPreservedSymbols.count(VI.getGUID()));
340 // Alias and aliasee can't be turned into available_externally.
341 else if (!isa<AliasSummary>(S.get()) &&
342 !GlobalInvolvedWithAlias.count(S.get()))
343 S->setLinkage(GlobalValue::AvailableExternallyLinkage);
344 if (S->linkage() != OriginalLinkage)
345 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
349 /// Resolve linkage for prevailing symbols in the \p Index.
351 // We'd like to drop these functions if they are no longer referenced in the
352 // current module. However there is a chance that another module is still
353 // referencing them because of the import. We make sure we always emit at least
354 // one copy.
355 void llvm::thinLTOResolvePrevailingInIndex(
356 ModuleSummaryIndex &Index,
357 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
358 isPrevailing,
359 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
360 recordNewLinkage,
361 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
362 // We won't optimize the globals that are referenced by an alias for now
363 // Ideally we should turn the alias into a global and duplicate the definition
364 // when needed.
365 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
366 for (auto &I : Index)
367 for (auto &S : I.second.SummaryList)
368 if (auto AS = dyn_cast<AliasSummary>(S.get()))
369 GlobalInvolvedWithAlias.insert(&AS->getAliasee());
371 for (auto &I : Index)
372 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias,
373 isPrevailing, recordNewLinkage,
374 GUIDPreservedSymbols);
377 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
378 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
379 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
380 (VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
381 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
382 return false;
385 static void thinLTOInternalizeAndPromoteGUID(
386 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID,
387 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) {
388 for (auto &S : GVSummaryList) {
389 if (isExported(S->modulePath(), GUID)) {
390 if (GlobalValue::isLocalLinkage(S->linkage()))
391 S->setLinkage(GlobalValue::ExternalLinkage);
392 } else if (EnableLTOInternalization &&
393 // Ignore local and appending linkage values since the linker
394 // doesn't resolve them.
395 !GlobalValue::isLocalLinkage(S->linkage()) &&
396 S->linkage() != GlobalValue::AppendingLinkage &&
397 // We can't internalize available_externally globals because this
398 // can break function pointer equality.
399 S->linkage() != GlobalValue::AvailableExternallyLinkage &&
400 // Functions and read-only variables with linkonce_odr and
401 // weak_odr linkage can be internalized. We can't internalize
402 // linkonce_odr and weak_odr variables which are both modified
403 // and read somewhere in the program because reads and writes
404 // will become inconsistent.
405 !isWeakObjectWithRWAccess(S.get()))
406 S->setLinkage(GlobalValue::InternalLinkage);
410 // Update the linkages in the given \p Index to mark exported values
411 // as external and non-exported values as internal.
412 void llvm::thinLTOInternalizeAndPromoteInIndex(
413 ModuleSummaryIndex &Index,
414 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) {
415 for (auto &I : Index)
416 thinLTOInternalizeAndPromoteGUID(I.second.SummaryList, I.first, isExported);
419 // Requires a destructor for std::vector<InputModule>.
420 InputFile::~InputFile() = default;
422 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
423 std::unique_ptr<InputFile> File(new InputFile);
425 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
426 if (!FOrErr)
427 return FOrErr.takeError();
429 File->TargetTriple = FOrErr->TheReader.getTargetTriple();
430 File->SourceFileName = FOrErr->TheReader.getSourceFileName();
431 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
432 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
433 File->ComdatTable = FOrErr->TheReader.getComdatTable();
435 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
436 size_t Begin = File->Symbols.size();
437 for (const irsymtab::Reader::SymbolRef &Sym :
438 FOrErr->TheReader.module_symbols(I))
439 // Skip symbols that are irrelevant to LTO. Note that this condition needs
440 // to match the one in Skip() in LTO::addRegularLTO().
441 if (Sym.isGlobal() && !Sym.isFormatSpecific())
442 File->Symbols.push_back(Sym);
443 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
446 File->Mods = FOrErr->Mods;
447 File->Strtab = std::move(FOrErr->Strtab);
448 return std::move(File);
451 StringRef InputFile::getName() const {
452 return Mods[0].getModuleIdentifier();
455 BitcodeModule &InputFile::getSingleBitcodeModule() {
456 assert(Mods.size() == 1 && "Expect only one bitcode module");
457 return Mods[0];
460 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
461 Config &Conf)
462 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
463 Ctx(Conf), CombinedModule(llvm::make_unique<Module>("ld-temp.o", Ctx)),
464 Mover(llvm::make_unique<IRMover>(*CombinedModule)) {}
466 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
467 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
468 if (!Backend)
469 this->Backend =
470 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
473 LTO::LTO(Config Conf, ThinBackend Backend,
474 unsigned ParallelCodeGenParallelismLevel)
475 : Conf(std::move(Conf)),
476 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
477 ThinLTO(std::move(Backend)) {}
479 // Requires a destructor for MapVector<BitcodeModule>.
480 LTO::~LTO() = default;
482 // Add the symbols in the given module to the GlobalResolutions map, and resolve
483 // their partitions.
484 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
485 ArrayRef<SymbolResolution> Res,
486 unsigned Partition, bool InSummary) {
487 auto *ResI = Res.begin();
488 auto *ResE = Res.end();
489 (void)ResE;
490 for (const InputFile::Symbol &Sym : Syms) {
491 assert(ResI != ResE);
492 SymbolResolution Res = *ResI++;
494 StringRef Name = Sym.getName();
495 Triple TT(RegularLTO.CombinedModule->getTargetTriple());
496 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
497 // way they are handled by lld), otherwise we can end up with two
498 // global resolutions (one with and one for a copy of the symbol without).
499 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
500 Name = Name.substr(strlen("__imp_"));
501 auto &GlobalRes = GlobalResolutions[Name];
502 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
503 if (Res.Prevailing) {
504 assert(!GlobalRes.Prevailing &&
505 "Multiple prevailing defs are not allowed");
506 GlobalRes.Prevailing = true;
507 GlobalRes.IRName = Sym.getIRName();
508 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
509 // Sometimes it can be two copies of symbol in a module and prevailing
510 // symbol can have no IR name. That might happen if symbol is defined in
511 // module level inline asm block. In case we have multiple modules with
512 // the same symbol we want to use IR name of the prevailing symbol.
513 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
514 // we can later use it to check if there is any prevailing copy in IR.
515 GlobalRes.IRName = Sym.getIRName();
518 // Set the partition to external if we know it is re-defined by the linker
519 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
520 // regular object, is referenced from llvm.compiler_used, or was already
521 // recorded as being referenced from a different partition.
522 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
523 (GlobalRes.Partition != GlobalResolution::Unknown &&
524 GlobalRes.Partition != Partition)) {
525 GlobalRes.Partition = GlobalResolution::External;
526 } else
527 // First recorded reference, save the current partition.
528 GlobalRes.Partition = Partition;
530 // Flag as visible outside of summary if visible from a regular object or
531 // from a module that does not have a summary.
532 GlobalRes.VisibleOutsideSummary |=
533 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
537 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
538 ArrayRef<SymbolResolution> Res) {
539 StringRef Path = Input->getName();
540 OS << Path << '\n';
541 auto ResI = Res.begin();
542 for (const InputFile::Symbol &Sym : Input->symbols()) {
543 assert(ResI != Res.end());
544 SymbolResolution Res = *ResI++;
546 OS << "-r=" << Path << ',' << Sym.getName() << ',';
547 if (Res.Prevailing)
548 OS << 'p';
549 if (Res.FinalDefinitionInLinkageUnit)
550 OS << 'l';
551 if (Res.VisibleToRegularObj)
552 OS << 'x';
553 if (Res.LinkerRedefined)
554 OS << 'r';
555 OS << '\n';
557 OS.flush();
558 assert(ResI == Res.end());
561 Error LTO::add(std::unique_ptr<InputFile> Input,
562 ArrayRef<SymbolResolution> Res) {
563 assert(!CalledGetMaxTasks);
565 if (Conf.ResolutionFile)
566 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
568 if (RegularLTO.CombinedModule->getTargetTriple().empty())
569 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
571 const SymbolResolution *ResI = Res.begin();
572 for (unsigned I = 0; I != Input->Mods.size(); ++I)
573 if (Error Err = addModule(*Input, I, ResI, Res.end()))
574 return Err;
576 assert(ResI == Res.end());
577 return Error::success();
580 Error LTO::addModule(InputFile &Input, unsigned ModI,
581 const SymbolResolution *&ResI,
582 const SymbolResolution *ResE) {
583 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
584 if (!LTOInfo)
585 return LTOInfo.takeError();
587 if (EnableSplitLTOUnit.hasValue()) {
588 // If only some modules were split, flag this in the index so that
589 // we can skip or error on optimizations that need consistently split
590 // modules (whole program devirt and lower type tests).
591 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
592 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
593 } else
594 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
596 BitcodeModule BM = Input.Mods[ModI];
597 auto ModSyms = Input.module_symbols(ModI);
598 addModuleToGlobalRes(ModSyms, {ResI, ResE},
599 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
600 LTOInfo->HasSummary);
602 if (LTOInfo->IsThinLTO)
603 return addThinLTO(BM, ModSyms, ResI, ResE);
605 Expected<RegularLTOState::AddedModule> ModOrErr =
606 addRegularLTO(BM, ModSyms, ResI, ResE);
607 if (!ModOrErr)
608 return ModOrErr.takeError();
610 if (!LTOInfo->HasSummary)
611 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
613 // Regular LTO module summaries are added to a dummy module that represents
614 // the combined regular LTO module.
615 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
616 return Err;
617 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
618 return Error::success();
621 // Checks whether the given global value is in a non-prevailing comdat
622 // (comdat containing values the linker indicated were not prevailing,
623 // which we then dropped to available_externally), and if so, removes
624 // it from the comdat. This is called for all global values to ensure the
625 // comdat is empty rather than leaving an incomplete comdat. It is needed for
626 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
627 // and thin LTO modules) compilation. Since the regular LTO module will be
628 // linked first in the final native link, we want to make sure the linker
629 // doesn't select any of these incomplete comdats that would be left
630 // in the regular LTO module without this cleanup.
631 static void
632 handleNonPrevailingComdat(GlobalValue &GV,
633 std::set<const Comdat *> &NonPrevailingComdats) {
634 Comdat *C = GV.getComdat();
635 if (!C)
636 return;
638 if (!NonPrevailingComdats.count(C))
639 return;
641 // Additionally need to drop externally visible global values from the comdat
642 // to available_externally, so that there aren't multiply defined linker
643 // errors.
644 if (!GV.hasLocalLinkage())
645 GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
647 if (auto GO = dyn_cast<GlobalObject>(&GV))
648 GO->setComdat(nullptr);
651 // Add a regular LTO object to the link.
652 // The resulting module needs to be linked into the combined LTO module with
653 // linkRegularLTO.
654 Expected<LTO::RegularLTOState::AddedModule>
655 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
656 const SymbolResolution *&ResI,
657 const SymbolResolution *ResE) {
658 RegularLTOState::AddedModule Mod;
659 Expected<std::unique_ptr<Module>> MOrErr =
660 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
661 /*IsImporting*/ false);
662 if (!MOrErr)
663 return MOrErr.takeError();
664 Module &M = **MOrErr;
665 Mod.M = std::move(*MOrErr);
667 if (Error Err = M.materializeMetadata())
668 return std::move(Err);
669 UpgradeDebugInfo(M);
671 ModuleSymbolTable SymTab;
672 SymTab.addModule(&M);
674 for (GlobalVariable &GV : M.globals())
675 if (GV.hasAppendingLinkage())
676 Mod.Keep.push_back(&GV);
678 DenseSet<GlobalObject *> AliasedGlobals;
679 for (auto &GA : M.aliases())
680 if (GlobalObject *GO = GA.getBaseObject())
681 AliasedGlobals.insert(GO);
683 // In this function we need IR GlobalValues matching the symbols in Syms
684 // (which is not backed by a module), so we need to enumerate them in the same
685 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
686 // matches the order of an irsymtab, but when we read the irsymtab in
687 // InputFile::create we omit some symbols that are irrelevant to LTO. The
688 // Skip() function skips the same symbols from the module as InputFile does
689 // from the symbol table.
690 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
691 auto Skip = [&]() {
692 while (MsymI != MsymE) {
693 auto Flags = SymTab.getSymbolFlags(*MsymI);
694 if ((Flags & object::BasicSymbolRef::SF_Global) &&
695 !(Flags & object::BasicSymbolRef::SF_FormatSpecific))
696 return;
697 ++MsymI;
700 Skip();
702 std::set<const Comdat *> NonPrevailingComdats;
703 for (const InputFile::Symbol &Sym : Syms) {
704 assert(ResI != ResE);
705 SymbolResolution Res = *ResI++;
707 assert(MsymI != MsymE);
708 ModuleSymbolTable::Symbol Msym = *MsymI++;
709 Skip();
711 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
712 if (Res.Prevailing) {
713 if (Sym.isUndefined())
714 continue;
715 Mod.Keep.push_back(GV);
716 // For symbols re-defined with linker -wrap and -defsym options,
717 // set the linkage to weak to inhibit IPO. The linkage will be
718 // restored by the linker.
719 if (Res.LinkerRedefined)
720 GV->setLinkage(GlobalValue::WeakAnyLinkage);
722 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
723 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
724 GV->setLinkage(GlobalValue::getWeakLinkage(
725 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
726 } else if (isa<GlobalObject>(GV) &&
727 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
728 GV->hasAvailableExternallyLinkage()) &&
729 !AliasedGlobals.count(cast<GlobalObject>(GV))) {
730 // Any of the above three types of linkage indicates that the
731 // chosen prevailing symbol will have the same semantics as this copy of
732 // the symbol, so we may be able to link it with available_externally
733 // linkage. We will decide later whether to do that when we link this
734 // module (in linkRegularLTO), based on whether it is undefined.
735 Mod.Keep.push_back(GV);
736 GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
737 if (GV->hasComdat())
738 NonPrevailingComdats.insert(GV->getComdat());
739 cast<GlobalObject>(GV)->setComdat(nullptr);
742 // Set the 'local' flag based on the linker resolution for this symbol.
743 if (Res.FinalDefinitionInLinkageUnit) {
744 GV->setDSOLocal(true);
745 if (GV->hasDLLImportStorageClass())
746 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
747 DefaultStorageClass);
750 // Common resolution: collect the maximum size/alignment over all commons.
751 // We also record if we see an instance of a common as prevailing, so that
752 // if none is prevailing we can ignore it later.
753 if (Sym.isCommon()) {
754 // FIXME: We should figure out what to do about commons defined by asm.
755 // For now they aren't reported correctly by ModuleSymbolTable.
756 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()];
757 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
758 CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment());
759 CommonRes.Prevailing |= Res.Prevailing;
763 if (!M.getComdatSymbolTable().empty())
764 for (GlobalValue &GV : M.global_values())
765 handleNonPrevailingComdat(GV, NonPrevailingComdats);
766 assert(MsymI == MsymE);
767 return std::move(Mod);
770 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
771 bool LivenessFromIndex) {
772 std::vector<GlobalValue *> Keep;
773 for (GlobalValue *GV : Mod.Keep) {
774 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID()))
775 continue;
777 if (!GV->hasAvailableExternallyLinkage()) {
778 Keep.push_back(GV);
779 continue;
782 // Only link available_externally definitions if we don't already have a
783 // definition.
784 GlobalValue *CombinedGV =
785 RegularLTO.CombinedModule->getNamedValue(GV->getName());
786 if (CombinedGV && !CombinedGV->isDeclaration())
787 continue;
789 Keep.push_back(GV);
792 return RegularLTO.Mover->move(std::move(Mod.M), Keep,
793 [](GlobalValue &, IRMover::ValueAdder) {},
794 /* IsPerformingImport */ false);
797 // Add a ThinLTO module to the link.
798 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
799 const SymbolResolution *&ResI,
800 const SymbolResolution *ResE) {
801 if (Error Err =
802 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
803 ThinLTO.ModuleMap.size()))
804 return Err;
806 for (const InputFile::Symbol &Sym : Syms) {
807 assert(ResI != ResE);
808 SymbolResolution Res = *ResI++;
810 if (!Sym.getIRName().empty()) {
811 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
812 Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
813 if (Res.Prevailing) {
814 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
816 // For linker redefined symbols (via --wrap or --defsym) we want to
817 // switch the linkage to `weak` to prevent IPOs from happening.
818 // Find the summary in the module for this very GV and record the new
819 // linkage so that we can switch it when we import the GV.
820 if (Res.LinkerRedefined)
821 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
822 GUID, BM.getModuleIdentifier()))
823 S->setLinkage(GlobalValue::WeakAnyLinkage);
826 // If the linker resolved the symbol to a local definition then mark it
827 // as local in the summary for the module we are adding.
828 if (Res.FinalDefinitionInLinkageUnit) {
829 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
830 GUID, BM.getModuleIdentifier())) {
831 S->setDSOLocal(true);
837 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
838 return make_error<StringError>(
839 "Expected at most one ThinLTO module per bitcode file",
840 inconvertibleErrorCode());
842 return Error::success();
845 unsigned LTO::getMaxTasks() const {
846 CalledGetMaxTasks = true;
847 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size();
850 // If only some of the modules were split, we cannot correctly handle
851 // code that contains type tests or type checked loads.
852 Error LTO::checkPartiallySplit() {
853 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
854 return Error::success();
856 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
857 Intrinsic::getName(Intrinsic::type_test));
858 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
859 Intrinsic::getName(Intrinsic::type_checked_load));
861 // First check if there are type tests / type checked loads in the
862 // merged regular LTO module IR.
863 if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
864 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
865 return make_error<StringError>(
866 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
867 inconvertibleErrorCode());
869 // Otherwise check if there are any recorded in the combined summary from the
870 // ThinLTO modules.
871 for (auto &P : ThinLTO.CombinedIndex) {
872 for (auto &S : P.second.SummaryList) {
873 auto *FS = dyn_cast<FunctionSummary>(S.get());
874 if (!FS)
875 continue;
876 if (!FS->type_test_assume_vcalls().empty() ||
877 !FS->type_checked_load_vcalls().empty() ||
878 !FS->type_test_assume_const_vcalls().empty() ||
879 !FS->type_checked_load_const_vcalls().empty() ||
880 !FS->type_tests().empty())
881 return make_error<StringError>(
882 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
883 inconvertibleErrorCode());
886 return Error::success();
889 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
890 // Compute "dead" symbols, we don't want to import/export these!
891 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
892 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
893 for (auto &Res : GlobalResolutions) {
894 // Normally resolution have IR name of symbol. We can do nothing here
895 // otherwise. See comments in GlobalResolution struct for more details.
896 if (Res.second.IRName.empty())
897 continue;
899 GlobalValue::GUID GUID = GlobalValue::getGUID(
900 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
902 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
903 GUIDPreservedSymbols.insert(GlobalValue::getGUID(
904 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)));
906 GUIDPrevailingResolutions[GUID] =
907 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
910 auto isPrevailing = [&](GlobalValue::GUID G) {
911 auto It = GUIDPrevailingResolutions.find(G);
912 if (It == GUIDPrevailingResolutions.end())
913 return PrevailingType::Unknown;
914 return It->second;
916 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
917 isPrevailing, Conf.OptLevel > 0);
919 // Setup output file to emit statistics.
920 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
921 if (!StatsFileOrErr)
922 return StatsFileOrErr.takeError();
923 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
925 // Finalize linking of regular LTO modules containing summaries now that
926 // we have computed liveness information.
927 for (auto &M : RegularLTO.ModsWithSummaries)
928 if (Error Err = linkRegularLTO(std::move(M),
929 /*LivenessFromIndex=*/true))
930 return Err;
932 // Ensure we don't have inconsistently split LTO units with type tests.
933 if (Error Err = checkPartiallySplit())
934 return Err;
936 Error Result = runRegularLTO(AddStream);
937 if (!Result)
938 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
940 if (StatsFile)
941 PrintStatisticsJSON(StatsFile->os());
943 return Result;
946 Error LTO::runRegularLTO(AddStreamFn AddStream) {
947 // Make sure commons have the right size/alignment: we kept the largest from
948 // all the prevailing when adding the inputs, and we apply it here.
949 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
950 for (auto &I : RegularLTO.Commons) {
951 if (!I.second.Prevailing)
952 // Don't do anything if no instance of this common was prevailing.
953 continue;
954 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
955 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
956 // Don't create a new global if the type is already correct, just make
957 // sure the alignment is correct.
958 OldGV->setAlignment(I.second.Align);
959 continue;
961 ArrayType *Ty =
962 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
963 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
964 GlobalValue::CommonLinkage,
965 ConstantAggregateZero::get(Ty), "");
966 GV->setAlignment(I.second.Align);
967 if (OldGV) {
968 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
969 GV->takeName(OldGV);
970 OldGV->eraseFromParent();
971 } else {
972 GV->setName(I.first);
976 if (Conf.PreOptModuleHook &&
977 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
978 return Error::success();
980 if (!Conf.CodeGenOnly) {
981 for (const auto &R : GlobalResolutions) {
982 if (!R.second.isPrevailingIRSymbol())
983 continue;
984 if (R.second.Partition != 0 &&
985 R.second.Partition != GlobalResolution::External)
986 continue;
988 GlobalValue *GV =
989 RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
990 // Ignore symbols defined in other partitions.
991 // Also skip declarations, which are not allowed to have internal linkage.
992 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
993 continue;
994 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
995 : GlobalValue::UnnamedAddr::None);
996 if (EnableLTOInternalization && R.second.Partition == 0)
997 GV->setLinkage(GlobalValue::InternalLinkage);
1000 if (Conf.PostInternalizeModuleHook &&
1001 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1002 return Error::success();
1004 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1005 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex);
1008 /// This class defines the interface to the ThinLTO backend.
1009 class lto::ThinBackendProc {
1010 protected:
1011 Config &Conf;
1012 ModuleSummaryIndex &CombinedIndex;
1013 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
1015 public:
1016 ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex,
1017 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
1018 : Conf(Conf), CombinedIndex(CombinedIndex),
1019 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
1021 virtual ~ThinBackendProc() {}
1022 virtual Error start(
1023 unsigned Task, BitcodeModule BM,
1024 const FunctionImporter::ImportMapTy &ImportList,
1025 const FunctionImporter::ExportSetTy &ExportList,
1026 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1027 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
1028 virtual Error wait() = 0;
1031 namespace {
1032 class InProcessThinBackend : public ThinBackendProc {
1033 ThreadPool BackendThreadPool;
1034 AddStreamFn AddStream;
1035 NativeObjectCache Cache;
1036 std::set<GlobalValue::GUID> CfiFunctionDefs;
1037 std::set<GlobalValue::GUID> CfiFunctionDecls;
1039 Optional<Error> Err;
1040 std::mutex ErrMu;
1042 public:
1043 InProcessThinBackend(
1044 Config &Conf, ModuleSummaryIndex &CombinedIndex,
1045 unsigned ThinLTOParallelismLevel,
1046 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1047 AddStreamFn AddStream, NativeObjectCache Cache)
1048 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1049 BackendThreadPool(ThinLTOParallelismLevel),
1050 AddStream(std::move(AddStream)), Cache(std::move(Cache)) {
1051 for (auto &Name : CombinedIndex.cfiFunctionDefs())
1052 CfiFunctionDefs.insert(
1053 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1054 for (auto &Name : CombinedIndex.cfiFunctionDecls())
1055 CfiFunctionDecls.insert(
1056 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1059 Error runThinLTOBackendThread(
1060 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
1061 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1062 const FunctionImporter::ImportMapTy &ImportList,
1063 const FunctionImporter::ExportSetTy &ExportList,
1064 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1065 const GVSummaryMapTy &DefinedGlobals,
1066 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1067 auto RunThinBackend = [&](AddStreamFn AddStream) {
1068 LTOLLVMContext BackendContext(Conf);
1069 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1070 if (!MOrErr)
1071 return MOrErr.takeError();
1073 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1074 ImportList, DefinedGlobals, ModuleMap);
1077 auto ModuleID = BM.getModuleIdentifier();
1079 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
1080 all_of(CombinedIndex.getModuleHash(ModuleID),
1081 [](uint32_t V) { return V == 0; }))
1082 // Cache disabled or no entry for this module in the combined index or
1083 // no module hash.
1084 return RunThinBackend(AddStream);
1086 SmallString<40> Key;
1087 // The module may be cached, this helps handling it.
1088 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
1089 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
1090 CfiFunctionDecls);
1091 if (AddStreamFn CacheAddStream = Cache(Task, Key))
1092 return RunThinBackend(CacheAddStream);
1094 return Error::success();
1097 Error start(
1098 unsigned Task, BitcodeModule BM,
1099 const FunctionImporter::ImportMapTy &ImportList,
1100 const FunctionImporter::ExportSetTy &ExportList,
1101 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1102 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1103 StringRef ModulePath = BM.getModuleIdentifier();
1104 assert(ModuleToDefinedGVSummaries.count(ModulePath));
1105 const GVSummaryMapTy &DefinedGlobals =
1106 ModuleToDefinedGVSummaries.find(ModulePath)->second;
1107 BackendThreadPool.async(
1108 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1109 const FunctionImporter::ImportMapTy &ImportList,
1110 const FunctionImporter::ExportSetTy &ExportList,
1111 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1112 &ResolvedODR,
1113 const GVSummaryMapTy &DefinedGlobals,
1114 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1115 Error E = runThinLTOBackendThread(
1116 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1117 ResolvedODR, DefinedGlobals, ModuleMap);
1118 if (E) {
1119 std::unique_lock<std::mutex> L(ErrMu);
1120 if (Err)
1121 Err = joinErrors(std::move(*Err), std::move(E));
1122 else
1123 Err = std::move(E);
1126 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1127 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1128 return Error::success();
1131 Error wait() override {
1132 BackendThreadPool.wait();
1133 if (Err)
1134 return std::move(*Err);
1135 else
1136 return Error::success();
1139 } // end anonymous namespace
1141 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) {
1142 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex,
1143 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1144 AddStreamFn AddStream, NativeObjectCache Cache) {
1145 return llvm::make_unique<InProcessThinBackend>(
1146 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries,
1147 AddStream, Cache);
1151 // Given the original \p Path to an output file, replace any path
1152 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1153 // resulting directory if it does not yet exist.
1154 std::string lto::getThinLTOOutputFile(const std::string &Path,
1155 const std::string &OldPrefix,
1156 const std::string &NewPrefix) {
1157 if (OldPrefix.empty() && NewPrefix.empty())
1158 return Path;
1159 SmallString<128> NewPath(Path);
1160 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1161 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1162 if (!ParentPath.empty()) {
1163 // Make sure the new directory exists, creating it if necessary.
1164 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1165 llvm::errs() << "warning: could not create directory '" << ParentPath
1166 << "': " << EC.message() << '\n';
1168 return NewPath.str();
1171 namespace {
1172 class WriteIndexesThinBackend : public ThinBackendProc {
1173 std::string OldPrefix, NewPrefix;
1174 bool ShouldEmitImportsFiles;
1175 raw_fd_ostream *LinkedObjectsFile;
1176 lto::IndexWriteCallback OnWrite;
1178 public:
1179 WriteIndexesThinBackend(
1180 Config &Conf, ModuleSummaryIndex &CombinedIndex,
1181 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1182 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1183 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1184 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1185 OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1186 ShouldEmitImportsFiles(ShouldEmitImportsFiles),
1187 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
1189 Error start(
1190 unsigned Task, BitcodeModule BM,
1191 const FunctionImporter::ImportMapTy &ImportList,
1192 const FunctionImporter::ExportSetTy &ExportList,
1193 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1194 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1195 StringRef ModulePath = BM.getModuleIdentifier();
1196 std::string NewModulePath =
1197 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix);
1199 if (LinkedObjectsFile)
1200 *LinkedObjectsFile << NewModulePath << '\n';
1202 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
1203 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1204 ImportList, ModuleToSummariesForIndex);
1206 std::error_code EC;
1207 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1208 sys::fs::OpenFlags::OF_None);
1209 if (EC)
1210 return errorCodeToError(EC);
1211 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
1213 if (ShouldEmitImportsFiles) {
1214 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
1215 ModuleToSummariesForIndex);
1216 if (EC)
1217 return errorCodeToError(EC);
1220 if (OnWrite)
1221 OnWrite(ModulePath);
1222 return Error::success();
1225 Error wait() override { return Error::success(); }
1227 } // end anonymous namespace
1229 ThinBackend lto::createWriteIndexesThinBackend(
1230 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1231 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
1232 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex,
1233 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1234 AddStreamFn AddStream, NativeObjectCache Cache) {
1235 return llvm::make_unique<WriteIndexesThinBackend>(
1236 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
1237 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
1241 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
1242 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1243 if (ThinLTO.ModuleMap.empty())
1244 return Error::success();
1246 if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex))
1247 return Error::success();
1249 // Collect for each module the list of function it defines (GUID ->
1250 // Summary).
1251 StringMap<GVSummaryMapTy>
1252 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
1253 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1254 ModuleToDefinedGVSummaries);
1255 // Create entries for any modules that didn't have any GV summaries
1256 // (either they didn't have any GVs to start with, or we suppressed
1257 // generation of the summaries because they e.g. had inline assembly
1258 // uses that couldn't be promoted/renamed on export). This is so
1259 // InProcessThinBackend::start can still launch a backend thread, which
1260 // is passed the map of summaries for the module, without any special
1261 // handling for this case.
1262 for (auto &Mod : ThinLTO.ModuleMap)
1263 if (!ModuleToDefinedGVSummaries.count(Mod.first))
1264 ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1266 // Synthesize entry counts for functions in the CombinedIndex.
1267 computeSyntheticCounts(ThinLTO.CombinedIndex);
1269 StringMap<FunctionImporter::ImportMapTy> ImportLists(
1270 ThinLTO.ModuleMap.size());
1271 StringMap<FunctionImporter::ExportSetTy> ExportLists(
1272 ThinLTO.ModuleMap.size());
1273 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1275 if (DumpThinCGSCCs)
1276 ThinLTO.CombinedIndex.dumpSCCs(outs());
1278 std::set<GlobalValue::GUID> ExportedGUIDs;
1280 // Perform index-based WPD. This will return immediately if there are
1281 // no index entries in the typeIdMetadata map (e.g. if we are instead
1282 // performing IR-based WPD in hybrid regular/thin LTO mode).
1283 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
1284 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
1285 LocalWPDTargetsMap);
1287 if (Conf.OptLevel > 0)
1288 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1289 ImportLists, ExportLists);
1291 // Update local devirtualized targets that were exported by cross-module
1292 // importing
1293 updateIndexWPDForExports(ThinLTO.CombinedIndex, ExportLists,
1294 LocalWPDTargetsMap);
1296 // Figure out which symbols need to be internalized. This also needs to happen
1297 // at -O0 because summary-based DCE is implemented using internalization, and
1298 // we must apply DCE consistently with the full LTO module in order to avoid
1299 // undefined references during the final link.
1300 for (auto &Res : GlobalResolutions) {
1301 // If the symbol does not have external references or it is not prevailing,
1302 // then not need to mark it as exported from a ThinLTO partition.
1303 if (Res.second.Partition != GlobalResolution::External ||
1304 !Res.second.isPrevailingIRSymbol())
1305 continue;
1306 auto GUID = GlobalValue::getGUID(
1307 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1308 // Mark exported unless index-based analysis determined it to be dead.
1309 if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1310 ExportedGUIDs.insert(GUID);
1313 // Any functions referenced by the jump table in the regular LTO object must
1314 // be exported.
1315 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1316 ExportedGUIDs.insert(
1317 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1319 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
1320 const auto &ExportList = ExportLists.find(ModuleIdentifier);
1321 return (ExportList != ExportLists.end() &&
1322 ExportList->second.count(GUID)) ||
1323 ExportedGUIDs.count(GUID);
1325 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported);
1327 auto isPrevailing = [&](GlobalValue::GUID GUID,
1328 const GlobalValueSummary *S) {
1329 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1331 auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1332 GlobalValue::GUID GUID,
1333 GlobalValue::LinkageTypes NewLinkage) {
1334 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1336 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing,
1337 recordNewLinkage, GUIDPreservedSymbols);
1339 std::unique_ptr<ThinBackendProc> BackendProc =
1340 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1341 AddStream, Cache);
1343 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined
1344 // module and parallel code generation partitions.
1345 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel;
1346 for (auto &Mod : ThinLTO.ModuleMap) {
1347 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first],
1348 ExportLists[Mod.first],
1349 ResolvedODR[Mod.first], ThinLTO.ModuleMap))
1350 return E;
1351 ++Task;
1354 return BackendProc->wait();
1357 Expected<std::unique_ptr<ToolOutputFile>>
1358 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename,
1359 StringRef RemarksPasses, StringRef RemarksFormat,
1360 bool RemarksWithHotness, int Count) {
1361 std::string Filename = RemarksFilename;
1362 if (!Filename.empty() && Count != -1)
1363 Filename += ".thin." + llvm::utostr(Count) + ".yaml";
1365 auto ResultOrErr = llvm::setupOptimizationRemarks(
1366 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness);
1367 if (Error E = ResultOrErr.takeError())
1368 return std::move(E);
1370 if (*ResultOrErr)
1371 (*ResultOrErr)->keep();
1373 return ResultOrErr;
1376 Expected<std::unique_ptr<ToolOutputFile>>
1377 lto::setupStatsFile(StringRef StatsFilename) {
1378 // Setup output file to emit statistics.
1379 if (StatsFilename.empty())
1380 return nullptr;
1382 llvm::EnableStatistics(false);
1383 std::error_code EC;
1384 auto StatsFile =
1385 llvm::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
1386 if (EC)
1387 return errorCodeToError(EC);
1389 StatsFile->keep();
1390 return std::move(StatsFile);