1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
58 /// Allow disabling BasicAA from the AA results. This is particularly useful
59 /// when testing to isolate a single AA implementation.
60 static cl::opt
<bool> DisableBasicAA("disable-basicaa", cl::Hidden
,
63 AAResults::AAResults(AAResults
&&Arg
)
64 : TLI(Arg
.TLI
), AAs(std::move(Arg
.AAs
)), AADeps(std::move(Arg
.AADeps
)) {
66 AA
->setAAResults(this);
69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
76 AA
->setAAResults(nullptr);
80 bool AAResults::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
81 FunctionAnalysisManager::Invalidator
&Inv
) {
82 // AAResults preserves the AAManager by default, due to the stateless nature
83 // of AliasAnalysis. There is no need to check whether it has been preserved
84 // explicitly. Check if any module dependency was invalidated and caused the
85 // AAManager to be invalidated. Invalidate ourselves in that case.
86 auto PAC
= PA
.getChecker
<AAManager
>();
87 if (!PAC
.preservedWhenStateless())
90 // Check if any of the function dependencies were invalidated, and invalidate
91 // ourselves in that case.
92 for (AnalysisKey
*ID
: AADeps
)
93 if (Inv
.invalidate(ID
, F
, PA
))
96 // Everything we depend on is still fine, so are we. Nothing to invalidate.
100 //===----------------------------------------------------------------------===//
101 // Default chaining methods
102 //===----------------------------------------------------------------------===//
104 AliasResult
AAResults::alias(const MemoryLocation
&LocA
,
105 const MemoryLocation
&LocB
) {
107 return alias(LocA
, LocB
, AAQIP
);
110 AliasResult
AAResults::alias(const MemoryLocation
&LocA
,
111 const MemoryLocation
&LocB
, AAQueryInfo
&AAQI
) {
112 for (const auto &AA
: AAs
) {
113 auto Result
= AA
->alias(LocA
, LocB
, AAQI
);
114 if (Result
!= MayAlias
)
120 bool AAResults::pointsToConstantMemory(const MemoryLocation
&Loc
,
123 return pointsToConstantMemory(Loc
, AAQIP
, OrLocal
);
126 bool AAResults::pointsToConstantMemory(const MemoryLocation
&Loc
,
127 AAQueryInfo
&AAQI
, bool OrLocal
) {
128 for (const auto &AA
: AAs
)
129 if (AA
->pointsToConstantMemory(Loc
, AAQI
, OrLocal
))
135 ModRefInfo
AAResults::getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) {
136 ModRefInfo Result
= ModRefInfo::ModRef
;
138 for (const auto &AA
: AAs
) {
139 Result
= intersectModRef(Result
, AA
->getArgModRefInfo(Call
, ArgIdx
));
141 // Early-exit the moment we reach the bottom of the lattice.
142 if (isNoModRef(Result
))
143 return ModRefInfo::NoModRef
;
149 ModRefInfo
AAResults::getModRefInfo(Instruction
*I
, const CallBase
*Call2
) {
151 return getModRefInfo(I
, Call2
, AAQIP
);
154 ModRefInfo
AAResults::getModRefInfo(Instruction
*I
, const CallBase
*Call2
,
156 // We may have two calls.
157 if (const auto *Call1
= dyn_cast
<CallBase
>(I
)) {
158 // Check if the two calls modify the same memory.
159 return getModRefInfo(Call1
, Call2
, AAQI
);
160 } else if (I
->isFenceLike()) {
161 // If this is a fence, just return ModRef.
162 return ModRefInfo::ModRef
;
164 // Otherwise, check if the call modifies or references the
165 // location this memory access defines. The best we can say
166 // is that if the call references what this instruction
167 // defines, it must be clobbered by this location.
168 const MemoryLocation DefLoc
= MemoryLocation::get(I
);
169 ModRefInfo MR
= getModRefInfo(Call2
, DefLoc
, AAQI
);
170 if (isModOrRefSet(MR
))
171 return setModAndRef(MR
);
173 return ModRefInfo::NoModRef
;
176 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call
,
177 const MemoryLocation
&Loc
) {
179 return getModRefInfo(Call
, Loc
, AAQIP
);
182 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call
,
183 const MemoryLocation
&Loc
,
185 ModRefInfo Result
= ModRefInfo::ModRef
;
187 for (const auto &AA
: AAs
) {
188 Result
= intersectModRef(Result
, AA
->getModRefInfo(Call
, Loc
, AAQI
));
190 // Early-exit the moment we reach the bottom of the lattice.
191 if (isNoModRef(Result
))
192 return ModRefInfo::NoModRef
;
195 // Try to refine the mod-ref info further using other API entry points to the
196 // aggregate set of AA results.
197 auto MRB
= getModRefBehavior(Call
);
198 if (MRB
== FMRB_DoesNotAccessMemory
||
199 MRB
== FMRB_OnlyAccessesInaccessibleMem
)
200 return ModRefInfo::NoModRef
;
202 if (onlyReadsMemory(MRB
))
203 Result
= clearMod(Result
);
204 else if (doesNotReadMemory(MRB
))
205 Result
= clearRef(Result
);
207 if (onlyAccessesArgPointees(MRB
) || onlyAccessesInaccessibleOrArgMem(MRB
)) {
208 bool IsMustAlias
= true;
209 ModRefInfo AllArgsMask
= ModRefInfo::NoModRef
;
210 if (doesAccessArgPointees(MRB
)) {
211 for (auto AI
= Call
->arg_begin(), AE
= Call
->arg_end(); AI
!= AE
; ++AI
) {
212 const Value
*Arg
= *AI
;
213 if (!Arg
->getType()->isPointerTy())
215 unsigned ArgIdx
= std::distance(Call
->arg_begin(), AI
);
216 MemoryLocation ArgLoc
=
217 MemoryLocation::getForArgument(Call
, ArgIdx
, TLI
);
218 AliasResult ArgAlias
= alias(ArgLoc
, Loc
);
219 if (ArgAlias
!= NoAlias
) {
220 ModRefInfo ArgMask
= getArgModRefInfo(Call
, ArgIdx
);
221 AllArgsMask
= unionModRef(AllArgsMask
, ArgMask
);
223 // Conservatively clear IsMustAlias unless only MustAlias is found.
224 IsMustAlias
&= (ArgAlias
== MustAlias
);
227 // Return NoModRef if no alias found with any argument.
228 if (isNoModRef(AllArgsMask
))
229 return ModRefInfo::NoModRef
;
230 // Logical & between other AA analyses and argument analysis.
231 Result
= intersectModRef(Result
, AllArgsMask
);
232 // If only MustAlias found above, set Must bit.
233 Result
= IsMustAlias
? setMust(Result
) : clearMust(Result
);
236 // If Loc is a constant memory location, the call definitely could not
237 // modify the memory location.
238 if (isModSet(Result
) && pointsToConstantMemory(Loc
, /*OrLocal*/ false))
239 Result
= clearMod(Result
);
244 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call1
,
245 const CallBase
*Call2
) {
247 return getModRefInfo(Call1
, Call2
, AAQIP
);
250 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call1
,
251 const CallBase
*Call2
, AAQueryInfo
&AAQI
) {
252 ModRefInfo Result
= ModRefInfo::ModRef
;
254 for (const auto &AA
: AAs
) {
255 Result
= intersectModRef(Result
, AA
->getModRefInfo(Call1
, Call2
, AAQI
));
257 // Early-exit the moment we reach the bottom of the lattice.
258 if (isNoModRef(Result
))
259 return ModRefInfo::NoModRef
;
262 // Try to refine the mod-ref info further using other API entry points to the
263 // aggregate set of AA results.
265 // If Call1 or Call2 are readnone, they don't interact.
266 auto Call1B
= getModRefBehavior(Call1
);
267 if (Call1B
== FMRB_DoesNotAccessMemory
)
268 return ModRefInfo::NoModRef
;
270 auto Call2B
= getModRefBehavior(Call2
);
271 if (Call2B
== FMRB_DoesNotAccessMemory
)
272 return ModRefInfo::NoModRef
;
274 // If they both only read from memory, there is no dependence.
275 if (onlyReadsMemory(Call1B
) && onlyReadsMemory(Call2B
))
276 return ModRefInfo::NoModRef
;
278 // If Call1 only reads memory, the only dependence on Call2 can be
279 // from Call1 reading memory written by Call2.
280 if (onlyReadsMemory(Call1B
))
281 Result
= clearMod(Result
);
282 else if (doesNotReadMemory(Call1B
))
283 Result
= clearRef(Result
);
285 // If Call2 only access memory through arguments, accumulate the mod/ref
286 // information from Call1's references to the memory referenced by
287 // Call2's arguments.
288 if (onlyAccessesArgPointees(Call2B
)) {
289 if (!doesAccessArgPointees(Call2B
))
290 return ModRefInfo::NoModRef
;
291 ModRefInfo R
= ModRefInfo::NoModRef
;
292 bool IsMustAlias
= true;
293 for (auto I
= Call2
->arg_begin(), E
= Call2
->arg_end(); I
!= E
; ++I
) {
294 const Value
*Arg
= *I
;
295 if (!Arg
->getType()->isPointerTy())
297 unsigned Call2ArgIdx
= std::distance(Call2
->arg_begin(), I
);
299 MemoryLocation::getForArgument(Call2
, Call2ArgIdx
, TLI
);
301 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
302 // dependence of Call1 on that location is the inverse:
303 // - If Call2 modifies location, dependence exists if Call1 reads or
305 // - If Call2 only reads location, dependence exists if Call1 writes.
306 ModRefInfo ArgModRefC2
= getArgModRefInfo(Call2
, Call2ArgIdx
);
307 ModRefInfo ArgMask
= ModRefInfo::NoModRef
;
308 if (isModSet(ArgModRefC2
))
309 ArgMask
= ModRefInfo::ModRef
;
310 else if (isRefSet(ArgModRefC2
))
311 ArgMask
= ModRefInfo::Mod
;
313 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
314 // above ArgMask to update dependence info.
315 ModRefInfo ModRefC1
= getModRefInfo(Call1
, Call2ArgLoc
);
316 ArgMask
= intersectModRef(ArgMask
, ModRefC1
);
318 // Conservatively clear IsMustAlias unless only MustAlias is found.
319 IsMustAlias
&= isMustSet(ModRefC1
);
321 R
= intersectModRef(unionModRef(R
, ArgMask
), Result
);
323 // On early exit, not all args were checked, cannot set Must.
331 return ModRefInfo::NoModRef
;
333 // If MustAlias found above, set Must bit.
334 return IsMustAlias
? setMust(R
) : clearMust(R
);
337 // If Call1 only accesses memory through arguments, check if Call2 references
338 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
339 if (onlyAccessesArgPointees(Call1B
)) {
340 if (!doesAccessArgPointees(Call1B
))
341 return ModRefInfo::NoModRef
;
342 ModRefInfo R
= ModRefInfo::NoModRef
;
343 bool IsMustAlias
= true;
344 for (auto I
= Call1
->arg_begin(), E
= Call1
->arg_end(); I
!= E
; ++I
) {
345 const Value
*Arg
= *I
;
346 if (!Arg
->getType()->isPointerTy())
348 unsigned Call1ArgIdx
= std::distance(Call1
->arg_begin(), I
);
350 MemoryLocation::getForArgument(Call1
, Call1ArgIdx
, TLI
);
352 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
353 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
354 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
355 ModRefInfo ArgModRefC1
= getArgModRefInfo(Call1
, Call1ArgIdx
);
356 ModRefInfo ModRefC2
= getModRefInfo(Call2
, Call1ArgLoc
);
357 if ((isModSet(ArgModRefC1
) && isModOrRefSet(ModRefC2
)) ||
358 (isRefSet(ArgModRefC1
) && isModSet(ModRefC2
)))
359 R
= intersectModRef(unionModRef(R
, ArgModRefC1
), Result
);
361 // Conservatively clear IsMustAlias unless only MustAlias is found.
362 IsMustAlias
&= isMustSet(ModRefC2
);
365 // On early exit, not all args were checked, cannot set Must.
373 return ModRefInfo::NoModRef
;
375 // If MustAlias found above, set Must bit.
376 return IsMustAlias
? setMust(R
) : clearMust(R
);
382 FunctionModRefBehavior
AAResults::getModRefBehavior(const CallBase
*Call
) {
383 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
385 for (const auto &AA
: AAs
) {
386 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(Call
));
388 // Early-exit the moment we reach the bottom of the lattice.
389 if (Result
== FMRB_DoesNotAccessMemory
)
396 FunctionModRefBehavior
AAResults::getModRefBehavior(const Function
*F
) {
397 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
399 for (const auto &AA
: AAs
) {
400 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(F
));
402 // Early-exit the moment we reach the bottom of the lattice.
403 if (Result
== FMRB_DoesNotAccessMemory
)
410 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, AliasResult AR
) {
422 OS
<< "PartialAlias";
428 //===----------------------------------------------------------------------===//
429 // Helper method implementation
430 //===----------------------------------------------------------------------===//
432 ModRefInfo
AAResults::getModRefInfo(const LoadInst
*L
,
433 const MemoryLocation
&Loc
) {
435 return getModRefInfo(L
, Loc
, AAQIP
);
437 ModRefInfo
AAResults::getModRefInfo(const LoadInst
*L
,
438 const MemoryLocation
&Loc
,
440 // Be conservative in the face of atomic.
441 if (isStrongerThan(L
->getOrdering(), AtomicOrdering::Unordered
))
442 return ModRefInfo::ModRef
;
444 // If the load address doesn't alias the given address, it doesn't read
445 // or write the specified memory.
447 AliasResult AR
= alias(MemoryLocation::get(L
), Loc
, AAQI
);
449 return ModRefInfo::NoModRef
;
451 return ModRefInfo::MustRef
;
453 // Otherwise, a load just reads.
454 return ModRefInfo::Ref
;
457 ModRefInfo
AAResults::getModRefInfo(const StoreInst
*S
,
458 const MemoryLocation
&Loc
) {
460 return getModRefInfo(S
, Loc
, AAQIP
);
462 ModRefInfo
AAResults::getModRefInfo(const StoreInst
*S
,
463 const MemoryLocation
&Loc
,
465 // Be conservative in the face of atomic.
466 if (isStrongerThan(S
->getOrdering(), AtomicOrdering::Unordered
))
467 return ModRefInfo::ModRef
;
470 AliasResult AR
= alias(MemoryLocation::get(S
), Loc
, AAQI
);
471 // If the store address cannot alias the pointer in question, then the
472 // specified memory cannot be modified by the store.
474 return ModRefInfo::NoModRef
;
476 // If the pointer is a pointer to constant memory, then it could not have
477 // been modified by this store.
478 if (pointsToConstantMemory(Loc
, AAQI
))
479 return ModRefInfo::NoModRef
;
481 // If the store address aliases the pointer as must alias, set Must.
483 return ModRefInfo::MustMod
;
486 // Otherwise, a store just writes.
487 return ModRefInfo::Mod
;
490 ModRefInfo
AAResults::getModRefInfo(const FenceInst
*S
, const MemoryLocation
&Loc
) {
492 return getModRefInfo(S
, Loc
, AAQIP
);
495 ModRefInfo
AAResults::getModRefInfo(const FenceInst
*S
,
496 const MemoryLocation
&Loc
,
498 // If we know that the location is a constant memory location, the fence
499 // cannot modify this location.
500 if (Loc
.Ptr
&& pointsToConstantMemory(Loc
, AAQI
))
501 return ModRefInfo::Ref
;
502 return ModRefInfo::ModRef
;
505 ModRefInfo
AAResults::getModRefInfo(const VAArgInst
*V
,
506 const MemoryLocation
&Loc
) {
508 return getModRefInfo(V
, Loc
, AAQIP
);
511 ModRefInfo
AAResults::getModRefInfo(const VAArgInst
*V
,
512 const MemoryLocation
&Loc
,
515 AliasResult AR
= alias(MemoryLocation::get(V
), Loc
, AAQI
);
516 // If the va_arg address cannot alias the pointer in question, then the
517 // specified memory cannot be accessed by the va_arg.
519 return ModRefInfo::NoModRef
;
521 // If the pointer is a pointer to constant memory, then it could not have
522 // been modified by this va_arg.
523 if (pointsToConstantMemory(Loc
, AAQI
))
524 return ModRefInfo::NoModRef
;
526 // If the va_arg aliases the pointer as must alias, set Must.
528 return ModRefInfo::MustModRef
;
531 // Otherwise, a va_arg reads and writes.
532 return ModRefInfo::ModRef
;
535 ModRefInfo
AAResults::getModRefInfo(const CatchPadInst
*CatchPad
,
536 const MemoryLocation
&Loc
) {
538 return getModRefInfo(CatchPad
, Loc
, AAQIP
);
541 ModRefInfo
AAResults::getModRefInfo(const CatchPadInst
*CatchPad
,
542 const MemoryLocation
&Loc
,
545 // If the pointer is a pointer to constant memory,
546 // then it could not have been modified by this catchpad.
547 if (pointsToConstantMemory(Loc
, AAQI
))
548 return ModRefInfo::NoModRef
;
551 // Otherwise, a catchpad reads and writes.
552 return ModRefInfo::ModRef
;
555 ModRefInfo
AAResults::getModRefInfo(const CatchReturnInst
*CatchRet
,
556 const MemoryLocation
&Loc
) {
558 return getModRefInfo(CatchRet
, Loc
, AAQIP
);
561 ModRefInfo
AAResults::getModRefInfo(const CatchReturnInst
*CatchRet
,
562 const MemoryLocation
&Loc
,
565 // If the pointer is a pointer to constant memory,
566 // then it could not have been modified by this catchpad.
567 if (pointsToConstantMemory(Loc
, AAQI
))
568 return ModRefInfo::NoModRef
;
571 // Otherwise, a catchret reads and writes.
572 return ModRefInfo::ModRef
;
575 ModRefInfo
AAResults::getModRefInfo(const AtomicCmpXchgInst
*CX
,
576 const MemoryLocation
&Loc
) {
578 return getModRefInfo(CX
, Loc
, AAQIP
);
581 ModRefInfo
AAResults::getModRefInfo(const AtomicCmpXchgInst
*CX
,
582 const MemoryLocation
&Loc
,
584 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
585 if (isStrongerThanMonotonic(CX
->getSuccessOrdering()))
586 return ModRefInfo::ModRef
;
589 AliasResult AR
= alias(MemoryLocation::get(CX
), Loc
, AAQI
);
590 // If the cmpxchg address does not alias the location, it does not access
593 return ModRefInfo::NoModRef
;
595 // If the cmpxchg address aliases the pointer as must alias, set Must.
597 return ModRefInfo::MustModRef
;
600 return ModRefInfo::ModRef
;
603 ModRefInfo
AAResults::getModRefInfo(const AtomicRMWInst
*RMW
,
604 const MemoryLocation
&Loc
) {
606 return getModRefInfo(RMW
, Loc
, AAQIP
);
609 ModRefInfo
AAResults::getModRefInfo(const AtomicRMWInst
*RMW
,
610 const MemoryLocation
&Loc
,
612 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
613 if (isStrongerThanMonotonic(RMW
->getOrdering()))
614 return ModRefInfo::ModRef
;
617 AliasResult AR
= alias(MemoryLocation::get(RMW
), Loc
, AAQI
);
618 // If the atomicrmw address does not alias the location, it does not access
621 return ModRefInfo::NoModRef
;
623 // If the atomicrmw address aliases the pointer as must alias, set Must.
625 return ModRefInfo::MustModRef
;
628 return ModRefInfo::ModRef
;
631 /// Return information about whether a particular call site modifies
632 /// or reads the specified memory location \p MemLoc before instruction \p I
633 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
634 /// instruction-ordering queries inside the BasicBlock containing \p I.
635 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
636 /// BasicAA isn't willing to spend linear time determining whether an alloca
637 /// was captured before or after this particular call, while we are. However,
638 /// with a smarter AA in place, this test is just wasting compile time.
639 ModRefInfo
AAResults::callCapturesBefore(const Instruction
*I
,
640 const MemoryLocation
&MemLoc
,
642 OrderedBasicBlock
*OBB
) {
644 return ModRefInfo::ModRef
;
646 const Value
*Object
=
647 GetUnderlyingObject(MemLoc
.Ptr
, I
->getModule()->getDataLayout());
648 if (!isIdentifiedObject(Object
) || isa
<GlobalValue
>(Object
) ||
649 isa
<Constant
>(Object
))
650 return ModRefInfo::ModRef
;
652 const auto *Call
= dyn_cast
<CallBase
>(I
);
653 if (!Call
|| Call
== Object
)
654 return ModRefInfo::ModRef
;
656 if (PointerMayBeCapturedBefore(Object
, /* ReturnCaptures */ true,
657 /* StoreCaptures */ true, I
, DT
,
658 /* include Object */ true,
659 /* OrderedBasicBlock */ OBB
))
660 return ModRefInfo::ModRef
;
663 ModRefInfo R
= ModRefInfo::NoModRef
;
664 bool IsMustAlias
= true;
665 // Set flag only if no May found and all operands processed.
666 for (auto CI
= Call
->data_operands_begin(), CE
= Call
->data_operands_end();
667 CI
!= CE
; ++CI
, ++ArgNo
) {
668 // Only look at the no-capture or byval pointer arguments. If this
669 // pointer were passed to arguments that were neither of these, then it
670 // couldn't be no-capture.
671 if (!(*CI
)->getType()->isPointerTy() ||
672 (!Call
->doesNotCapture(ArgNo
) && ArgNo
< Call
->getNumArgOperands() &&
673 !Call
->isByValArgument(ArgNo
)))
676 AliasResult AR
= alias(MemoryLocation(*CI
), MemoryLocation(Object
));
677 // If this is a no-capture pointer argument, see if we can tell that it
678 // is impossible to alias the pointer we're checking. If not, we have to
679 // assume that the call could touch the pointer, even though it doesn't
685 if (Call
->doesNotAccessMemory(ArgNo
))
687 if (Call
->onlyReadsMemory(ArgNo
)) {
691 // Not returning MustModRef since we have not seen all the arguments.
692 return ModRefInfo::ModRef
;
694 return IsMustAlias
? setMust(R
) : clearMust(R
);
697 /// canBasicBlockModify - Return true if it is possible for execution of the
698 /// specified basic block to modify the location Loc.
700 bool AAResults::canBasicBlockModify(const BasicBlock
&BB
,
701 const MemoryLocation
&Loc
) {
702 return canInstructionRangeModRef(BB
.front(), BB
.back(), Loc
, ModRefInfo::Mod
);
705 /// canInstructionRangeModRef - Return true if it is possible for the
706 /// execution of the specified instructions to mod\ref (according to the
707 /// mode) the location Loc. The instructions to consider are all
708 /// of the instructions in the range of [I1,I2] INCLUSIVE.
709 /// I1 and I2 must be in the same basic block.
710 bool AAResults::canInstructionRangeModRef(const Instruction
&I1
,
711 const Instruction
&I2
,
712 const MemoryLocation
&Loc
,
713 const ModRefInfo Mode
) {
714 assert(I1
.getParent() == I2
.getParent() &&
715 "Instructions not in same basic block!");
716 BasicBlock::const_iterator I
= I1
.getIterator();
717 BasicBlock::const_iterator E
= I2
.getIterator();
718 ++E
; // Convert from inclusive to exclusive range.
720 for (; I
!= E
; ++I
) // Check every instruction in range
721 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I
, Loc
), Mode
)))
726 // Provide a definition for the root virtual destructor.
727 AAResults::Concept::~Concept() = default;
729 // Provide a definition for the static object used to identify passes.
730 AnalysisKey
AAManager::Key
;
735 } // end anonymous namespace
737 char ExternalAAWrapperPass::ID
= 0;
739 INITIALIZE_PASS(ExternalAAWrapperPass
, "external-aa", "External Alias Analysis",
743 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback
) {
744 return new ExternalAAWrapperPass(std::move(Callback
));
747 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID
) {
748 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
751 char AAResultsWrapperPass::ID
= 0;
753 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass
, "aa",
754 "Function Alias Analysis Results", false, true)
755 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
756 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass
)
757 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass
)
758 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass
)
759 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
760 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass
)
761 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
762 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass
)
763 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass
)
764 INITIALIZE_PASS_END(AAResultsWrapperPass
, "aa",
765 "Function Alias Analysis Results", false, true)
767 FunctionPass
*llvm::createAAResultsWrapperPass() {
768 return new AAResultsWrapperPass();
771 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
773 /// This is the legacy pass manager's interface to the new-style AA results
774 /// aggregation object. Because this is somewhat shoe-horned into the legacy
775 /// pass manager, we hard code all the specific alias analyses available into
776 /// it. While the particular set enabled is configured via commandline flags,
777 /// adding a new alias analysis to LLVM will require adding support for it to
779 bool AAResultsWrapperPass::runOnFunction(Function
&F
) {
780 // NB! This *must* be reset before adding new AA results to the new
781 // AAResults object because in the legacy pass manager, each instance
782 // of these will refer to the *same* immutable analyses, registering and
783 // unregistering themselves with them. We need to carefully tear down the
784 // previous object first, in this case replacing it with an empty one, before
785 // registering new results.
787 new AAResults(getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI()));
789 // BasicAA is always available for function analyses. Also, we add it first
790 // so that it can trump TBAA results when it proves MustAlias.
791 // FIXME: TBAA should have an explicit mode to support this and then we
792 // should reconsider the ordering here.
794 AAR
->addAAResult(getAnalysis
<BasicAAWrapperPass
>().getResult());
796 // Populate the results with the currently available AAs.
797 if (auto *WrapperPass
= getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
798 AAR
->addAAResult(WrapperPass
->getResult());
799 if (auto *WrapperPass
= getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
800 AAR
->addAAResult(WrapperPass
->getResult());
801 if (auto *WrapperPass
=
802 getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
803 AAR
->addAAResult(WrapperPass
->getResult());
804 if (auto *WrapperPass
= getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
805 AAR
->addAAResult(WrapperPass
->getResult());
806 if (auto *WrapperPass
= getAnalysisIfAvailable
<SCEVAAWrapperPass
>())
807 AAR
->addAAResult(WrapperPass
->getResult());
808 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
809 AAR
->addAAResult(WrapperPass
->getResult());
810 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
811 AAR
->addAAResult(WrapperPass
->getResult());
813 // If available, run an external AA providing callback over the results as
815 if (auto *WrapperPass
= getAnalysisIfAvailable
<ExternalAAWrapperPass
>())
817 WrapperPass
->CB(*this, F
, *AAR
);
819 // Analyses don't mutate the IR, so return false.
823 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
824 AU
.setPreservesAll();
825 AU
.addRequired
<BasicAAWrapperPass
>();
826 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
828 // We also need to mark all the alias analysis passes we will potentially
829 // probe in runOnFunction as used here to ensure the legacy pass manager
830 // preserves them. This hard coding of lists of alias analyses is specific to
831 // the legacy pass manager.
832 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
833 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
834 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
835 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
836 AU
.addUsedIfAvailable
<SCEVAAWrapperPass
>();
837 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
838 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();
841 AAResults
llvm::createLegacyPMAAResults(Pass
&P
, Function
&F
,
842 BasicAAResult
&BAR
) {
843 AAResults
AAR(P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI());
845 // Add in our explicitly constructed BasicAA results.
847 AAR
.addAAResult(BAR
);
849 // Populate the results with the other currently available AAs.
850 if (auto *WrapperPass
=
851 P
.getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
852 AAR
.addAAResult(WrapperPass
->getResult());
853 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
854 AAR
.addAAResult(WrapperPass
->getResult());
855 if (auto *WrapperPass
=
856 P
.getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
857 AAR
.addAAResult(WrapperPass
->getResult());
858 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
859 AAR
.addAAResult(WrapperPass
->getResult());
860 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
861 AAR
.addAAResult(WrapperPass
->getResult());
862 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
863 AAR
.addAAResult(WrapperPass
->getResult());
868 bool llvm::isNoAliasCall(const Value
*V
) {
869 if (const auto *Call
= dyn_cast
<CallBase
>(V
))
870 return Call
->hasRetAttr(Attribute::NoAlias
);
874 bool llvm::isNoAliasArgument(const Value
*V
) {
875 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
876 return A
->hasNoAliasAttr();
880 bool llvm::isIdentifiedObject(const Value
*V
) {
881 if (isa
<AllocaInst
>(V
))
883 if (isa
<GlobalValue
>(V
) && !isa
<GlobalAlias
>(V
))
885 if (isNoAliasCall(V
))
887 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
888 return A
->hasNoAliasAttr() || A
->hasByValAttr();
892 bool llvm::isIdentifiedFunctionLocal(const Value
*V
) {
893 return isa
<AllocaInst
>(V
) || isNoAliasCall(V
) || isNoAliasArgument(V
);
896 void llvm::getAAResultsAnalysisUsage(AnalysisUsage
&AU
) {
897 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
898 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
899 // to be added here also.
900 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
901 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
902 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
903 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
904 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
905 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
906 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();