1 //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements a CFL-based, summary-based alias analysis algorithm. It
10 // differs from CFLSteensAliasAnalysis in its inclusion-based nature while
11 // CFLSteensAliasAnalysis is unification-based. This pass has worse performance
12 // than CFLSteensAliasAnalysis (the worst case complexity of
13 // CFLAndersAliasAnalysis is cubic, while the worst case complexity of
14 // CFLSteensAliasAnalysis is almost linear), but it is able to yield more
15 // precise analysis result. The precision of this analysis is roughly the same
16 // as that of an one level context-sensitive Andersen's algorithm.
18 // The algorithm used here is based on recursive state machine matching scheme
19 // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
20 // Rugina. The general idea is to extend the traditional transitive closure
21 // algorithm to perform CFL matching along the way: instead of recording
22 // "whether X is reachable from Y", we keep track of "whether X is reachable
23 // from Y at state Z", where the "state" field indicates where we are in the CFL
24 // matching process. To understand the matching better, it is advisable to have
25 // the state machine shown in Figure 3 of the paper available when reading the
26 // codes: all we do here is to selectively expand the transitive closure by
27 // discarding edges that are not recognized by the state machine.
29 // There are two differences between our current implementation and the one
30 // described in the paper:
31 // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
32 // while in the paper the authors did the computation in a demand-driven
33 // fashion. We did not implement the demand-driven algorithm due to the
34 // additional coding complexity and higher memory profile, but if we found it
35 // necessary we may switch to it eventually.
36 // - In the paper the authors use a state machine that does not distinguish
37 // value reads from value writes. For example, if Y is reachable from X at state
38 // S3, it may be the case that X is written into Y, or it may be the case that
39 // there's a third value Z that writes into both X and Y. To make that
40 // distinction (which is crucial in building function summary as well as
41 // retrieving mod-ref info), we choose to duplicate some of the states in the
42 // paper's proposed state machine. The duplication does not change the set the
43 // machine accepts. Given a pair of reachable values, it only provides more
44 // detailed information on which value is being written into and which is being
47 //===----------------------------------------------------------------------===//
49 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
50 // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
51 // FunctionPasses are only allowed to inspect the Function that they're being
52 // run on. Realistically, this likely isn't a problem until we allow
53 // FunctionPasses to run concurrently.
55 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
56 #include "AliasAnalysisSummary.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseMapInfo.h"
60 #include "llvm/ADT/DenseSet.h"
61 #include "llvm/ADT/None.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallVector.h"
65 #include "llvm/ADT/iterator_range.h"
66 #include "llvm/Analysis/AliasAnalysis.h"
67 #include "llvm/Analysis/MemoryLocation.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
87 using namespace llvm::cflaa
;
89 #define DEBUG_TYPE "cfl-anders-aa"
91 CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo
&TLI
) : TLI(TLI
) {}
92 CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult
&&RHS
)
93 : AAResultBase(std::move(RHS
)), TLI(RHS
.TLI
) {}
94 CFLAndersAAResult::~CFLAndersAAResult() = default;
98 enum class MatchState
: uint8_t {
99 // The following state represents S1 in the paper.
100 FlowFromReadOnly
= 0,
101 // The following two states together represent S2 in the paper.
102 // The 'NoReadWrite' suffix indicates that there exists an alias path that
103 // does not contain assignment and reverse assignment edges.
104 // The 'ReadOnly' suffix indicates that there exists an alias path that
105 // contains reverse assignment edges only.
106 FlowFromMemAliasNoReadWrite
,
107 FlowFromMemAliasReadOnly
,
108 // The following two states together represent S3 in the paper.
109 // The 'WriteOnly' suffix indicates that there exists an alias path that
110 // contains assignment edges only.
111 // The 'ReadWrite' suffix indicates that there exists an alias path that
112 // contains both assignment and reverse assignment edges. Note that if X and Y
113 // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
114 // and written to Y. Instead, it means that a third value Z is written to both
118 // The following two states together represent S4 in the paper.
119 FlowToMemAliasWriteOnly
,
120 FlowToMemAliasReadWrite
,
123 using StateSet
= std::bitset
<7>;
125 const unsigned ReadOnlyStateMask
=
126 (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly
)) |
127 (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly
));
128 const unsigned WriteOnlyStateMask
=
129 (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly
)) |
130 (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly
));
132 // A pair that consists of a value and an offset
138 bool operator==(OffsetValue LHS
, OffsetValue RHS
) {
139 return LHS
.Val
== RHS
.Val
&& LHS
.Offset
== RHS
.Offset
;
141 bool operator<(OffsetValue LHS
, OffsetValue RHS
) {
142 return std::less
<const Value
*>()(LHS
.Val
, RHS
.Val
) ||
143 (LHS
.Val
== RHS
.Val
&& LHS
.Offset
< RHS
.Offset
);
146 // A pair that consists of an InstantiatedValue and an offset
147 struct OffsetInstantiatedValue
{
148 InstantiatedValue IVal
;
152 bool operator==(OffsetInstantiatedValue LHS
, OffsetInstantiatedValue RHS
) {
153 return LHS
.IVal
== RHS
.IVal
&& LHS
.Offset
== RHS
.Offset
;
156 // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
157 // the paper) during the analysis.
158 class ReachabilitySet
{
159 using ValueStateMap
= DenseMap
<InstantiatedValue
, StateSet
>;
160 using ValueReachMap
= DenseMap
<InstantiatedValue
, ValueStateMap
>;
162 ValueReachMap ReachMap
;
165 using const_valuestate_iterator
= ValueStateMap::const_iterator
;
166 using const_value_iterator
= ValueReachMap::const_iterator
;
168 // Insert edge 'From->To' at state 'State'
169 bool insert(InstantiatedValue From
, InstantiatedValue To
, MatchState State
) {
171 auto &States
= ReachMap
[To
][From
];
172 auto Idx
= static_cast<size_t>(State
);
173 if (!States
.test(Idx
)) {
180 // Return the set of all ('From', 'State') pair for a given node 'To'
181 iterator_range
<const_valuestate_iterator
>
182 reachableValueAliases(InstantiatedValue V
) const {
183 auto Itr
= ReachMap
.find(V
);
184 if (Itr
== ReachMap
.end())
185 return make_range
<const_valuestate_iterator
>(const_valuestate_iterator(),
186 const_valuestate_iterator());
187 return make_range
<const_valuestate_iterator
>(Itr
->second
.begin(),
191 iterator_range
<const_value_iterator
> value_mappings() const {
192 return make_range
<const_value_iterator
>(ReachMap
.begin(), ReachMap
.end());
196 // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
197 // in the paper) during the analysis.
199 using MemSet
= DenseSet
<InstantiatedValue
>;
200 using MemMapType
= DenseMap
<InstantiatedValue
, MemSet
>;
205 using const_mem_iterator
= MemSet::const_iterator
;
207 bool insert(InstantiatedValue LHS
, InstantiatedValue RHS
) {
208 // Top-level values can never be memory aliases because one cannot take the
210 assert(LHS
.DerefLevel
> 0 && RHS
.DerefLevel
> 0);
211 return MemMap
[LHS
].insert(RHS
).second
;
214 const MemSet
*getMemoryAliases(InstantiatedValue V
) const {
215 auto Itr
= MemMap
.find(V
);
216 if (Itr
== MemMap
.end())
222 // We use AliasAttrMap to keep track of the AliasAttr of each node.
224 using MapType
= DenseMap
<InstantiatedValue
, AliasAttrs
>;
229 using const_iterator
= MapType::const_iterator
;
231 bool add(InstantiatedValue V
, AliasAttrs Attr
) {
232 auto &OldAttr
= AttrMap
[V
];
233 auto NewAttr
= OldAttr
| Attr
;
234 if (OldAttr
== NewAttr
)
240 AliasAttrs
getAttrs(InstantiatedValue V
) const {
242 auto Itr
= AttrMap
.find(V
);
243 if (Itr
!= AttrMap
.end())
248 iterator_range
<const_iterator
> mappings() const {
249 return make_range
<const_iterator
>(AttrMap
.begin(), AttrMap
.end());
253 struct WorkListItem
{
254 InstantiatedValue From
;
255 InstantiatedValue To
;
259 struct ValueSummary
{
261 InterfaceValue IValue
;
264 SmallVector
<Record
, 4> FromRecords
, ToRecords
;
267 } // end anonymous namespace
271 // Specialize DenseMapInfo for OffsetValue.
272 template <> struct DenseMapInfo
<OffsetValue
> {
273 static OffsetValue
getEmptyKey() {
274 return OffsetValue
{DenseMapInfo
<const Value
*>::getEmptyKey(),
275 DenseMapInfo
<int64_t>::getEmptyKey()};
278 static OffsetValue
getTombstoneKey() {
279 return OffsetValue
{DenseMapInfo
<const Value
*>::getTombstoneKey(),
280 DenseMapInfo
<int64_t>::getEmptyKey()};
283 static unsigned getHashValue(const OffsetValue
&OVal
) {
284 return DenseMapInfo
<std::pair
<const Value
*, int64_t>>::getHashValue(
285 std::make_pair(OVal
.Val
, OVal
.Offset
));
288 static bool isEqual(const OffsetValue
&LHS
, const OffsetValue
&RHS
) {
293 // Specialize DenseMapInfo for OffsetInstantiatedValue.
294 template <> struct DenseMapInfo
<OffsetInstantiatedValue
> {
295 static OffsetInstantiatedValue
getEmptyKey() {
296 return OffsetInstantiatedValue
{
297 DenseMapInfo
<InstantiatedValue
>::getEmptyKey(),
298 DenseMapInfo
<int64_t>::getEmptyKey()};
301 static OffsetInstantiatedValue
getTombstoneKey() {
302 return OffsetInstantiatedValue
{
303 DenseMapInfo
<InstantiatedValue
>::getTombstoneKey(),
304 DenseMapInfo
<int64_t>::getEmptyKey()};
307 static unsigned getHashValue(const OffsetInstantiatedValue
&OVal
) {
308 return DenseMapInfo
<std::pair
<InstantiatedValue
, int64_t>>::getHashValue(
309 std::make_pair(OVal
.IVal
, OVal
.Offset
));
312 static bool isEqual(const OffsetInstantiatedValue
&LHS
,
313 const OffsetInstantiatedValue
&RHS
) {
318 } // end namespace llvm
320 class CFLAndersAAResult::FunctionInfo
{
321 /// Map a value to other values that may alias it
322 /// Since the alias relation is symmetric, to save some space we assume values
323 /// are properly ordered: if a and b alias each other, and a < b, then b is in
324 /// AliasMap[a] but not vice versa.
325 DenseMap
<const Value
*, std::vector
<OffsetValue
>> AliasMap
;
327 /// Map a value to its corresponding AliasAttrs
328 DenseMap
<const Value
*, AliasAttrs
> AttrMap
;
330 /// Summary of externally visible effects.
331 AliasSummary Summary
;
333 Optional
<AliasAttrs
> getAttrs(const Value
*) const;
336 FunctionInfo(const Function
&, const SmallVectorImpl
<Value
*> &,
337 const ReachabilitySet
&, const AliasAttrMap
&);
339 bool mayAlias(const Value
*, LocationSize
, const Value
*, LocationSize
) const;
340 const AliasSummary
&getAliasSummary() const { return Summary
; }
343 static bool hasReadOnlyState(StateSet Set
) {
344 return (Set
& StateSet(ReadOnlyStateMask
)).any();
347 static bool hasWriteOnlyState(StateSet Set
) {
348 return (Set
& StateSet(WriteOnlyStateMask
)).any();
351 static Optional
<InterfaceValue
>
352 getInterfaceValue(InstantiatedValue IValue
,
353 const SmallVectorImpl
<Value
*> &RetVals
) {
354 auto Val
= IValue
.Val
;
356 Optional
<unsigned> Index
;
357 if (auto Arg
= dyn_cast
<Argument
>(Val
))
358 Index
= Arg
->getArgNo() + 1;
359 else if (is_contained(RetVals
, Val
))
363 return InterfaceValue
{*Index
, IValue
.DerefLevel
};
367 static void populateAttrMap(DenseMap
<const Value
*, AliasAttrs
> &AttrMap
,
368 const AliasAttrMap
&AMap
) {
369 for (const auto &Mapping
: AMap
.mappings()) {
370 auto IVal
= Mapping
.first
;
372 // Insert IVal into the map
373 auto &Attr
= AttrMap
[IVal
.Val
];
374 // AttrMap only cares about top-level values
375 if (IVal
.DerefLevel
== 0)
376 Attr
|= Mapping
.second
;
381 populateAliasMap(DenseMap
<const Value
*, std::vector
<OffsetValue
>> &AliasMap
,
382 const ReachabilitySet
&ReachSet
) {
383 for (const auto &OuterMapping
: ReachSet
.value_mappings()) {
384 // AliasMap only cares about top-level values
385 if (OuterMapping
.first
.DerefLevel
> 0)
388 auto Val
= OuterMapping
.first
.Val
;
389 auto &AliasList
= AliasMap
[Val
];
390 for (const auto &InnerMapping
: OuterMapping
.second
) {
391 // Again, AliasMap only cares about top-level values
392 if (InnerMapping
.first
.DerefLevel
== 0)
393 AliasList
.push_back(OffsetValue
{InnerMapping
.first
.Val
, UnknownOffset
});
396 // Sort AliasList for faster lookup
397 llvm::sort(AliasList
);
401 static void populateExternalRelations(
402 SmallVectorImpl
<ExternalRelation
> &ExtRelations
, const Function
&Fn
,
403 const SmallVectorImpl
<Value
*> &RetVals
, const ReachabilitySet
&ReachSet
) {
404 // If a function only returns one of its argument X, then X will be both an
405 // argument and a return value at the same time. This is an edge case that
406 // needs special handling here.
407 for (const auto &Arg
: Fn
.args()) {
408 if (is_contained(RetVals
, &Arg
)) {
409 auto ArgVal
= InterfaceValue
{Arg
.getArgNo() + 1, 0};
410 auto RetVal
= InterfaceValue
{0, 0};
411 ExtRelations
.push_back(ExternalRelation
{ArgVal
, RetVal
, 0});
415 // Below is the core summary construction logic.
416 // A naive solution of adding only the value aliases that are parameters or
417 // return values in ReachSet to the summary won't work: It is possible that a
418 // parameter P is written into an intermediate value I, and the function
419 // subsequently returns *I. In that case, *I is does not value alias anything
420 // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
422 // To account for the aforementioned case, we need to check each non-parameter
423 // and non-return value for the possibility of acting as an intermediate.
424 // 'ValueMap' here records, for each value, which InterfaceValues read from or
425 // write into it. If both the read list and the write list of a given value
426 // are non-empty, we know that a particular value is an intermidate and we
427 // need to add summary edges from the writes to the reads.
428 DenseMap
<Value
*, ValueSummary
> ValueMap
;
429 for (const auto &OuterMapping
: ReachSet
.value_mappings()) {
430 if (auto Dst
= getInterfaceValue(OuterMapping
.first
, RetVals
)) {
431 for (const auto &InnerMapping
: OuterMapping
.second
) {
432 // If Src is a param/return value, we get a same-level assignment.
433 if (auto Src
= getInterfaceValue(InnerMapping
.first
, RetVals
)) {
434 // This may happen if both Dst and Src are return values
438 if (hasReadOnlyState(InnerMapping
.second
))
439 ExtRelations
.push_back(ExternalRelation
{*Dst
, *Src
, UnknownOffset
});
440 // No need to check for WriteOnly state, since ReachSet is symmetric
442 // If Src is not a param/return, add it to ValueMap
443 auto SrcIVal
= InnerMapping
.first
;
444 if (hasReadOnlyState(InnerMapping
.second
))
445 ValueMap
[SrcIVal
.Val
].FromRecords
.push_back(
446 ValueSummary::Record
{*Dst
, SrcIVal
.DerefLevel
});
447 if (hasWriteOnlyState(InnerMapping
.second
))
448 ValueMap
[SrcIVal
.Val
].ToRecords
.push_back(
449 ValueSummary::Record
{*Dst
, SrcIVal
.DerefLevel
});
455 for (const auto &Mapping
: ValueMap
) {
456 for (const auto &FromRecord
: Mapping
.second
.FromRecords
) {
457 for (const auto &ToRecord
: Mapping
.second
.ToRecords
) {
458 auto ToLevel
= ToRecord
.DerefLevel
;
459 auto FromLevel
= FromRecord
.DerefLevel
;
460 // Same-level assignments should have already been processed by now
461 if (ToLevel
== FromLevel
)
464 auto SrcIndex
= FromRecord
.IValue
.Index
;
465 auto SrcLevel
= FromRecord
.IValue
.DerefLevel
;
466 auto DstIndex
= ToRecord
.IValue
.Index
;
467 auto DstLevel
= ToRecord
.IValue
.DerefLevel
;
468 if (ToLevel
> FromLevel
)
469 SrcLevel
+= ToLevel
- FromLevel
;
471 DstLevel
+= FromLevel
- ToLevel
;
473 ExtRelations
.push_back(ExternalRelation
{
474 InterfaceValue
{SrcIndex
, SrcLevel
},
475 InterfaceValue
{DstIndex
, DstLevel
}, UnknownOffset
});
480 // Remove duplicates in ExtRelations
481 llvm::sort(ExtRelations
);
482 ExtRelations
.erase(std::unique(ExtRelations
.begin(), ExtRelations
.end()),
486 static void populateExternalAttributes(
487 SmallVectorImpl
<ExternalAttribute
> &ExtAttributes
, const Function
&Fn
,
488 const SmallVectorImpl
<Value
*> &RetVals
, const AliasAttrMap
&AMap
) {
489 for (const auto &Mapping
: AMap
.mappings()) {
490 if (auto IVal
= getInterfaceValue(Mapping
.first
, RetVals
)) {
491 auto Attr
= getExternallyVisibleAttrs(Mapping
.second
);
493 ExtAttributes
.push_back(ExternalAttribute
{*IVal
, Attr
});
498 CFLAndersAAResult::FunctionInfo::FunctionInfo(
499 const Function
&Fn
, const SmallVectorImpl
<Value
*> &RetVals
,
500 const ReachabilitySet
&ReachSet
, const AliasAttrMap
&AMap
) {
501 populateAttrMap(AttrMap
, AMap
);
502 populateExternalAttributes(Summary
.RetParamAttributes
, Fn
, RetVals
, AMap
);
503 populateAliasMap(AliasMap
, ReachSet
);
504 populateExternalRelations(Summary
.RetParamRelations
, Fn
, RetVals
, ReachSet
);
508 CFLAndersAAResult::FunctionInfo::getAttrs(const Value
*V
) const {
509 assert(V
!= nullptr);
511 auto Itr
= AttrMap
.find(V
);
512 if (Itr
!= AttrMap
.end())
517 bool CFLAndersAAResult::FunctionInfo::mayAlias(
518 const Value
*LHS
, LocationSize MaybeLHSSize
, const Value
*RHS
,
519 LocationSize MaybeRHSSize
) const {
522 // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
523 // after the analysis gets executed, and we want to be conservative in those
525 auto MaybeAttrsA
= getAttrs(LHS
);
526 auto MaybeAttrsB
= getAttrs(RHS
);
527 if (!MaybeAttrsA
|| !MaybeAttrsB
)
530 // Check AliasAttrs before AliasMap lookup since it's cheaper
531 auto AttrsA
= *MaybeAttrsA
;
532 auto AttrsB
= *MaybeAttrsB
;
533 if (hasUnknownOrCallerAttr(AttrsA
))
535 if (hasUnknownOrCallerAttr(AttrsB
))
537 if (isGlobalOrArgAttr(AttrsA
))
538 return isGlobalOrArgAttr(AttrsB
);
539 if (isGlobalOrArgAttr(AttrsB
))
540 return isGlobalOrArgAttr(AttrsA
);
542 // At this point both LHS and RHS should point to locally allocated objects
544 auto Itr
= AliasMap
.find(LHS
);
545 if (Itr
!= AliasMap
.end()) {
547 // Find out all (X, Offset) where X == RHS
548 auto Comparator
= [](OffsetValue LHS
, OffsetValue RHS
) {
549 return std::less
<const Value
*>()(LHS
.Val
, RHS
.Val
);
551 #ifdef EXPENSIVE_CHECKS
552 assert(std::is_sorted(Itr
->second
.begin(), Itr
->second
.end(), Comparator
));
554 auto RangePair
= std::equal_range(Itr
->second
.begin(), Itr
->second
.end(),
555 OffsetValue
{RHS
, 0}, Comparator
);
557 if (RangePair
.first
!= RangePair
.second
) {
558 // Be conservative about unknown sizes
559 if (MaybeLHSSize
== LocationSize::unknown() ||
560 MaybeRHSSize
== LocationSize::unknown())
563 const uint64_t LHSSize
= MaybeLHSSize
.getValue();
564 const uint64_t RHSSize
= MaybeRHSSize
.getValue();
566 for (const auto &OVal
: make_range(RangePair
)) {
567 // Be conservative about UnknownOffset
568 if (OVal
.Offset
== UnknownOffset
)
571 // We know that LHS aliases (RHS + OVal.Offset) if the control flow
572 // reaches here. The may-alias query essentially becomes integer
573 // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
574 // LHSSize) and [0, RHSSize).
576 // Try to be conservative on super large offsets
577 if (LLVM_UNLIKELY(LHSSize
> INT64_MAX
|| RHSSize
> INT64_MAX
))
580 auto LHSStart
= OVal
.Offset
;
581 // FIXME: Do we need to guard against integer overflow?
582 auto LHSEnd
= OVal
.Offset
+ static_cast<int64_t>(LHSSize
);
584 auto RHSEnd
= static_cast<int64_t>(RHSSize
);
585 if (LHSEnd
> RHSStart
&& LHSStart
< RHSEnd
)
594 static void propagate(InstantiatedValue From
, InstantiatedValue To
,
595 MatchState State
, ReachabilitySet
&ReachSet
,
596 std::vector
<WorkListItem
> &WorkList
) {
599 if (ReachSet
.insert(From
, To
, State
))
600 WorkList
.push_back(WorkListItem
{From
, To
, State
});
603 static void initializeWorkList(std::vector
<WorkListItem
> &WorkList
,
604 ReachabilitySet
&ReachSet
,
605 const CFLGraph
&Graph
) {
606 for (const auto &Mapping
: Graph
.value_mappings()) {
607 auto Val
= Mapping
.first
;
608 auto &ValueInfo
= Mapping
.second
;
609 assert(ValueInfo
.getNumLevels() > 0);
611 // Insert all immediate assignment neighbors to the worklist
612 for (unsigned I
= 0, E
= ValueInfo
.getNumLevels(); I
< E
; ++I
) {
613 auto Src
= InstantiatedValue
{Val
, I
};
614 // If there's an assignment edge from X to Y, it means Y is reachable from
615 // X at S3 and X is reachable from Y at S1
616 for (auto &Edge
: ValueInfo
.getNodeInfoAtLevel(I
).Edges
) {
617 propagate(Edge
.Other
, Src
, MatchState::FlowFromReadOnly
, ReachSet
,
619 propagate(Src
, Edge
.Other
, MatchState::FlowToWriteOnly
, ReachSet
,
626 static Optional
<InstantiatedValue
> getNodeBelow(const CFLGraph
&Graph
,
627 InstantiatedValue V
) {
628 auto NodeBelow
= InstantiatedValue
{V
.Val
, V
.DerefLevel
+ 1};
629 if (Graph
.getNode(NodeBelow
))
634 static void processWorkListItem(const WorkListItem
&Item
, const CFLGraph
&Graph
,
635 ReachabilitySet
&ReachSet
, AliasMemSet
&MemSet
,
636 std::vector
<WorkListItem
> &WorkList
) {
637 auto FromNode
= Item
.From
;
638 auto ToNode
= Item
.To
;
640 auto NodeInfo
= Graph
.getNode(ToNode
);
641 assert(NodeInfo
!= nullptr);
643 // TODO: propagate field offsets
645 // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
646 // relations that are symmetric, we could actually cut the storage by half by
647 // sorting FromNode and ToNode before insertion happens.
649 // The newly added value alias pair may potentially generate more memory
650 // alias pairs. Check for them here.
651 auto FromNodeBelow
= getNodeBelow(Graph
, FromNode
);
652 auto ToNodeBelow
= getNodeBelow(Graph
, ToNode
);
653 if (FromNodeBelow
&& ToNodeBelow
&&
654 MemSet
.insert(*FromNodeBelow
, *ToNodeBelow
)) {
655 propagate(*FromNodeBelow
, *ToNodeBelow
,
656 MatchState::FlowFromMemAliasNoReadWrite
, ReachSet
, WorkList
);
657 for (const auto &Mapping
: ReachSet
.reachableValueAliases(*FromNodeBelow
)) {
658 auto Src
= Mapping
.first
;
659 auto MemAliasPropagate
= [&](MatchState FromState
, MatchState ToState
) {
660 if (Mapping
.second
.test(static_cast<size_t>(FromState
)))
661 propagate(Src
, *ToNodeBelow
, ToState
, ReachSet
, WorkList
);
664 MemAliasPropagate(MatchState::FlowFromReadOnly
,
665 MatchState::FlowFromMemAliasReadOnly
);
666 MemAliasPropagate(MatchState::FlowToWriteOnly
,
667 MatchState::FlowToMemAliasWriteOnly
);
668 MemAliasPropagate(MatchState::FlowToReadWrite
,
669 MatchState::FlowToMemAliasReadWrite
);
673 // This is the core of the state machine walking algorithm. We expand ReachSet
674 // based on which state we are at (which in turn dictates what edges we
676 // From a high-level point of view, the state machine here guarantees two
678 // - If *X and *Y are memory aliases, then X and Y are value aliases
679 // - If Y is an alias of X, then reverse assignment edges (if there is any)
680 // should precede any assignment edges on the path from X to Y.
681 auto NextAssignState
= [&](MatchState State
) {
682 for (const auto &AssignEdge
: NodeInfo
->Edges
)
683 propagate(FromNode
, AssignEdge
.Other
, State
, ReachSet
, WorkList
);
685 auto NextRevAssignState
= [&](MatchState State
) {
686 for (const auto &RevAssignEdge
: NodeInfo
->ReverseEdges
)
687 propagate(FromNode
, RevAssignEdge
.Other
, State
, ReachSet
, WorkList
);
689 auto NextMemState
= [&](MatchState State
) {
690 if (auto AliasSet
= MemSet
.getMemoryAliases(ToNode
)) {
691 for (const auto &MemAlias
: *AliasSet
)
692 propagate(FromNode
, MemAlias
, State
, ReachSet
, WorkList
);
696 switch (Item
.State
) {
697 case MatchState::FlowFromReadOnly
:
698 NextRevAssignState(MatchState::FlowFromReadOnly
);
699 NextAssignState(MatchState::FlowToReadWrite
);
700 NextMemState(MatchState::FlowFromMemAliasReadOnly
);
703 case MatchState::FlowFromMemAliasNoReadWrite
:
704 NextRevAssignState(MatchState::FlowFromReadOnly
);
705 NextAssignState(MatchState::FlowToWriteOnly
);
708 case MatchState::FlowFromMemAliasReadOnly
:
709 NextRevAssignState(MatchState::FlowFromReadOnly
);
710 NextAssignState(MatchState::FlowToReadWrite
);
713 case MatchState::FlowToWriteOnly
:
714 NextAssignState(MatchState::FlowToWriteOnly
);
715 NextMemState(MatchState::FlowToMemAliasWriteOnly
);
718 case MatchState::FlowToReadWrite
:
719 NextAssignState(MatchState::FlowToReadWrite
);
720 NextMemState(MatchState::FlowToMemAliasReadWrite
);
723 case MatchState::FlowToMemAliasWriteOnly
:
724 NextAssignState(MatchState::FlowToWriteOnly
);
727 case MatchState::FlowToMemAliasReadWrite
:
728 NextAssignState(MatchState::FlowToReadWrite
);
733 static AliasAttrMap
buildAttrMap(const CFLGraph
&Graph
,
734 const ReachabilitySet
&ReachSet
) {
735 AliasAttrMap AttrMap
;
736 std::vector
<InstantiatedValue
> WorkList
, NextList
;
738 // Initialize each node with its original AliasAttrs in CFLGraph
739 for (const auto &Mapping
: Graph
.value_mappings()) {
740 auto Val
= Mapping
.first
;
741 auto &ValueInfo
= Mapping
.second
;
742 for (unsigned I
= 0, E
= ValueInfo
.getNumLevels(); I
< E
; ++I
) {
743 auto Node
= InstantiatedValue
{Val
, I
};
744 AttrMap
.add(Node
, ValueInfo
.getNodeInfoAtLevel(I
).Attr
);
745 WorkList
.push_back(Node
);
749 while (!WorkList
.empty()) {
750 for (const auto &Dst
: WorkList
) {
751 auto DstAttr
= AttrMap
.getAttrs(Dst
);
755 // Propagate attr on the same level
756 for (const auto &Mapping
: ReachSet
.reachableValueAliases(Dst
)) {
757 auto Src
= Mapping
.first
;
758 if (AttrMap
.add(Src
, DstAttr
))
759 NextList
.push_back(Src
);
762 // Propagate attr to the levels below
763 auto DstBelow
= getNodeBelow(Graph
, Dst
);
765 if (AttrMap
.add(*DstBelow
, DstAttr
)) {
766 NextList
.push_back(*DstBelow
);
769 DstBelow
= getNodeBelow(Graph
, *DstBelow
);
772 WorkList
.swap(NextList
);
779 CFLAndersAAResult::FunctionInfo
780 CFLAndersAAResult::buildInfoFrom(const Function
&Fn
) {
781 CFLGraphBuilder
<CFLAndersAAResult
> GraphBuilder(
783 // Cast away the constness here due to GraphBuilder's API requirement
784 const_cast<Function
&>(Fn
));
785 auto &Graph
= GraphBuilder
.getCFLGraph();
787 ReachabilitySet ReachSet
;
790 std::vector
<WorkListItem
> WorkList
, NextList
;
791 initializeWorkList(WorkList
, ReachSet
, Graph
);
792 // TODO: make sure we don't stop before the fix point is reached
793 while (!WorkList
.empty()) {
794 for (const auto &Item
: WorkList
)
795 processWorkListItem(Item
, Graph
, ReachSet
, MemSet
, NextList
);
797 NextList
.swap(WorkList
);
801 // Now that we have all the reachability info, propagate AliasAttrs according
803 auto IValueAttrMap
= buildAttrMap(Graph
, ReachSet
);
805 return FunctionInfo(Fn
, GraphBuilder
.getReturnValues(), ReachSet
,
806 std::move(IValueAttrMap
));
809 void CFLAndersAAResult::scan(const Function
&Fn
) {
810 auto InsertPair
= Cache
.insert(std::make_pair(&Fn
, Optional
<FunctionInfo
>()));
812 assert(InsertPair
.second
&&
813 "Trying to scan a function that has already been cached");
815 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
816 // may get evaluated after operator[], potentially triggering a DenseMap
817 // resize and invalidating the reference returned by operator[]
818 auto FunInfo
= buildInfoFrom(Fn
);
819 Cache
[&Fn
] = std::move(FunInfo
);
820 Handles
.emplace_front(const_cast<Function
*>(&Fn
), this);
823 void CFLAndersAAResult::evict(const Function
*Fn
) { Cache
.erase(Fn
); }
825 const Optional
<CFLAndersAAResult::FunctionInfo
> &
826 CFLAndersAAResult::ensureCached(const Function
&Fn
) {
827 auto Iter
= Cache
.find(&Fn
);
828 if (Iter
== Cache
.end()) {
830 Iter
= Cache
.find(&Fn
);
831 assert(Iter
!= Cache
.end());
832 assert(Iter
->second
.hasValue());
837 const AliasSummary
*CFLAndersAAResult::getAliasSummary(const Function
&Fn
) {
838 auto &FunInfo
= ensureCached(Fn
);
839 if (FunInfo
.hasValue())
840 return &FunInfo
->getAliasSummary();
845 AliasResult
CFLAndersAAResult::query(const MemoryLocation
&LocA
,
846 const MemoryLocation
&LocB
) {
847 auto *ValA
= LocA
.Ptr
;
848 auto *ValB
= LocB
.Ptr
;
850 if (!ValA
->getType()->isPointerTy() || !ValB
->getType()->isPointerTy())
853 auto *Fn
= parentFunctionOfValue(ValA
);
855 Fn
= parentFunctionOfValue(ValB
);
857 // The only times this is known to happen are when globals + InlineAsm are
861 << "CFLAndersAA: could not extract parent function information.\n");
865 assert(!parentFunctionOfValue(ValB
) || parentFunctionOfValue(ValB
) == Fn
);
868 assert(Fn
!= nullptr);
869 auto &FunInfo
= ensureCached(*Fn
);
872 if (FunInfo
->mayAlias(ValA
, LocA
.Size
, ValB
, LocB
.Size
))
877 AliasResult
CFLAndersAAResult::alias(const MemoryLocation
&LocA
,
878 const MemoryLocation
&LocB
,
880 if (LocA
.Ptr
== LocB
.Ptr
)
883 // Comparisons between global variables and other constants should be
884 // handled by BasicAA.
885 // CFLAndersAA may report NoAlias when comparing a GlobalValue and
886 // ConstantExpr, but every query needs to have at least one Value tied to a
887 // Function, and neither GlobalValues nor ConstantExprs are.
888 if (isa
<Constant
>(LocA
.Ptr
) && isa
<Constant
>(LocB
.Ptr
))
889 return AAResultBase::alias(LocA
, LocB
, AAQI
);
891 AliasResult QueryResult
= query(LocA
, LocB
);
892 if (QueryResult
== MayAlias
)
893 return AAResultBase::alias(LocA
, LocB
, AAQI
);
898 AnalysisKey
CFLAndersAA::Key
;
900 CFLAndersAAResult
CFLAndersAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
901 return CFLAndersAAResult(AM
.getResult
<TargetLibraryAnalysis
>(F
));
904 char CFLAndersAAWrapperPass::ID
= 0;
905 INITIALIZE_PASS(CFLAndersAAWrapperPass
, "cfl-anders-aa",
906 "Inclusion-Based CFL Alias Analysis", false, true)
908 ImmutablePass
*llvm::createCFLAndersAAWrapperPass() {
909 return new CFLAndersAAWrapperPass();
912 CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID
) {
913 initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
916 void CFLAndersAAWrapperPass::initializePass() {
917 auto &TLIWP
= getAnalysis
<TargetLibraryInfoWrapperPass
>();
918 Result
.reset(new CFLAndersAAResult(TLIWP
.getTLI()));
921 void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
922 AU
.setPreservesAll();
923 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();