1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
39 using namespace llvm::PatternMatch
;
41 #define DEBUG_TYPE "iv-descriptors"
43 bool RecurrenceDescriptor::areAllUsesIn(Instruction
*I
,
44 SmallPtrSetImpl
<Instruction
*> &Set
) {
45 for (User::op_iterator Use
= I
->op_begin(), E
= I
->op_end(); Use
!= E
; ++Use
)
46 if (!Set
.count(dyn_cast
<Instruction
>(*Use
)))
51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind
) {
60 case RK_IntegerMinMax
:
66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind
) {
67 return (Kind
!= RK_NoRecurrence
) && !isIntegerRecurrenceKind(Kind
);
70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind
) {
83 /// Determines if Phi may have been type-promoted. If Phi has a single user
84 /// that ANDs the Phi with a type mask, return the user. RT is updated to
85 /// account for the narrower bit width represented by the mask, and the AND
86 /// instruction is added to CI.
87 static Instruction
*lookThroughAnd(PHINode
*Phi
, Type
*&RT
,
88 SmallPtrSetImpl
<Instruction
*> &Visited
,
89 SmallPtrSetImpl
<Instruction
*> &CI
) {
90 if (!Phi
->hasOneUse())
93 const APInt
*M
= nullptr;
94 Instruction
*I
, *J
= cast
<Instruction
>(Phi
->use_begin()->getUser());
96 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97 // with a new integer type of the corresponding bit width.
98 if (match(J
, m_c_And(m_Instruction(I
), m_APInt(M
)))) {
99 int32_t Bits
= (*M
+ 1).exactLogBase2();
101 RT
= IntegerType::get(Phi
->getContext(), Bits
);
110 /// Compute the minimal bit width needed to represent a reduction whose exit
111 /// instruction is given by Exit.
112 static std::pair
<Type
*, bool> computeRecurrenceType(Instruction
*Exit
,
116 bool IsSigned
= false;
117 const DataLayout
&DL
= Exit
->getModule()->getDataLayout();
118 uint64_t MaxBitWidth
= DL
.getTypeSizeInBits(Exit
->getType());
121 // Use the demanded bits analysis to determine the bits that are live out
122 // of the exit instruction, rounding up to the nearest power of two. If the
123 // use of demanded bits results in a smaller bit width, we know the value
124 // must be positive (i.e., IsSigned = false), because if this were not the
125 // case, the sign bit would have been demanded.
126 auto Mask
= DB
->getDemandedBits(Exit
);
127 MaxBitWidth
= Mask
.getBitWidth() - Mask
.countLeadingZeros();
130 if (MaxBitWidth
== DL
.getTypeSizeInBits(Exit
->getType()) && AC
&& DT
) {
131 // If demanded bits wasn't able to limit the bit width, we can try to use
132 // value tracking instead. This can be the case, for example, if the value
134 auto NumSignBits
= ComputeNumSignBits(Exit
, DL
, 0, AC
, nullptr, DT
);
135 auto NumTypeBits
= DL
.getTypeSizeInBits(Exit
->getType());
136 MaxBitWidth
= NumTypeBits
- NumSignBits
;
137 KnownBits Bits
= computeKnownBits(Exit
, DL
);
138 if (!Bits
.isNonNegative()) {
139 // If the value is not known to be non-negative, we set IsSigned to true,
140 // meaning that we will use sext instructions instead of zext
141 // instructions to restore the original type.
143 if (!Bits
.isNegative())
144 // If the value is not known to be negative, we don't known what the
145 // upper bit is, and therefore, we don't know what kind of extend we
146 // will need. In this case, just increase the bit width by one bit and
151 if (!isPowerOf2_64(MaxBitWidth
))
152 MaxBitWidth
= NextPowerOf2(MaxBitWidth
);
154 return std::make_pair(Type::getIntNTy(Exit
->getContext(), MaxBitWidth
),
158 /// Collect cast instructions that can be ignored in the vectorizer's cost
159 /// model, given a reduction exit value and the minimal type in which the
160 /// reduction can be represented.
161 static void collectCastsToIgnore(Loop
*TheLoop
, Instruction
*Exit
,
162 Type
*RecurrenceType
,
163 SmallPtrSetImpl
<Instruction
*> &Casts
) {
165 SmallVector
<Instruction
*, 8> Worklist
;
166 SmallPtrSet
<Instruction
*, 8> Visited
;
167 Worklist
.push_back(Exit
);
169 while (!Worklist
.empty()) {
170 Instruction
*Val
= Worklist
.pop_back_val();
172 if (auto *Cast
= dyn_cast
<CastInst
>(Val
))
173 if (Cast
->getSrcTy() == RecurrenceType
) {
174 // If the source type of a cast instruction is equal to the recurrence
175 // type, it will be eliminated, and should be ignored in the vectorizer
181 // Add all operands to the work list if they are loop-varying values that
182 // we haven't yet visited.
183 for (Value
*O
: cast
<User
>(Val
)->operands())
184 if (auto *I
= dyn_cast
<Instruction
>(O
))
185 if (TheLoop
->contains(I
) && !Visited
.count(I
))
186 Worklist
.push_back(I
);
190 bool RecurrenceDescriptor::AddReductionVar(PHINode
*Phi
, RecurrenceKind Kind
,
191 Loop
*TheLoop
, bool HasFunNoNaNAttr
,
192 RecurrenceDescriptor
&RedDes
,
196 if (Phi
->getNumIncomingValues() != 2)
199 // Reduction variables are only found in the loop header block.
200 if (Phi
->getParent() != TheLoop
->getHeader())
203 // Obtain the reduction start value from the value that comes from the loop
205 Value
*RdxStart
= Phi
->getIncomingValueForBlock(TheLoop
->getLoopPreheader());
207 // ExitInstruction is the single value which is used outside the loop.
208 // We only allow for a single reduction value to be used outside the loop.
209 // This includes users of the reduction, variables (which form a cycle
210 // which ends in the phi node).
211 Instruction
*ExitInstruction
= nullptr;
212 // Indicates that we found a reduction operation in our scan.
213 bool FoundReduxOp
= false;
215 // We start with the PHI node and scan for all of the users of this
216 // instruction. All users must be instructions that can be used as reduction
217 // variables (such as ADD). We must have a single out-of-block user. The cycle
218 // must include the original PHI.
219 bool FoundStartPHI
= false;
221 // To recognize min/max patterns formed by a icmp select sequence, we store
222 // the number of instruction we saw from the recognized min/max pattern,
223 // to make sure we only see exactly the two instructions.
224 unsigned NumCmpSelectPatternInst
= 0;
225 InstDesc
ReduxDesc(false, nullptr);
227 // Data used for determining if the recurrence has been type-promoted.
228 Type
*RecurrenceType
= Phi
->getType();
229 SmallPtrSet
<Instruction
*, 4> CastInsts
;
230 Instruction
*Start
= Phi
;
231 bool IsSigned
= false;
233 SmallPtrSet
<Instruction
*, 8> VisitedInsts
;
234 SmallVector
<Instruction
*, 8> Worklist
;
236 // Return early if the recurrence kind does not match the type of Phi. If the
237 // recurrence kind is arithmetic, we attempt to look through AND operations
238 // resulting from the type promotion performed by InstCombine. Vector
239 // operations are not limited to the legal integer widths, so we may be able
240 // to evaluate the reduction in the narrower width.
241 if (RecurrenceType
->isFloatingPointTy()) {
242 if (!isFloatingPointRecurrenceKind(Kind
))
245 if (!isIntegerRecurrenceKind(Kind
))
247 if (isArithmeticRecurrenceKind(Kind
))
248 Start
= lookThroughAnd(Phi
, RecurrenceType
, VisitedInsts
, CastInsts
);
251 Worklist
.push_back(Start
);
252 VisitedInsts
.insert(Start
);
254 // Start with all flags set because we will intersect this with the reduction
255 // flags from all the reduction operations.
256 FastMathFlags FMF
= FastMathFlags::getFast();
258 // A value in the reduction can be used:
259 // - By the reduction:
260 // - Reduction operation:
261 // - One use of reduction value (safe).
262 // - Multiple use of reduction value (not safe).
264 // - All uses of the PHI must be the reduction (safe).
265 // - Otherwise, not safe.
266 // - By instructions outside of the loop (safe).
267 // * One value may have several outside users, but all outside
268 // uses must be of the same value.
269 // - By an instruction that is not part of the reduction (not safe).
271 // * An instruction type other than PHI or the reduction operation.
272 // * A PHI in the header other than the initial PHI.
273 while (!Worklist
.empty()) {
274 Instruction
*Cur
= Worklist
.back();
278 // If the instruction has no users then this is a broken chain and can't be
279 // a reduction variable.
280 if (Cur
->use_empty())
283 bool IsAPhi
= isa
<PHINode
>(Cur
);
285 // A header PHI use other than the original PHI.
286 if (Cur
!= Phi
&& IsAPhi
&& Cur
->getParent() == Phi
->getParent())
289 // Reductions of instructions such as Div, and Sub is only possible if the
290 // LHS is the reduction variable.
291 if (!Cur
->isCommutative() && !IsAPhi
&& !isa
<SelectInst
>(Cur
) &&
292 !isa
<ICmpInst
>(Cur
) && !isa
<FCmpInst
>(Cur
) &&
293 !VisitedInsts
.count(dyn_cast
<Instruction
>(Cur
->getOperand(0))))
296 // Any reduction instruction must be of one of the allowed kinds. We ignore
297 // the starting value (the Phi or an AND instruction if the Phi has been
300 ReduxDesc
= isRecurrenceInstr(Cur
, Kind
, ReduxDesc
, HasFunNoNaNAttr
);
301 if (!ReduxDesc
.isRecurrence())
303 if (isa
<FPMathOperator
>(ReduxDesc
.getPatternInst()))
304 FMF
&= ReduxDesc
.getPatternInst()->getFastMathFlags();
307 bool IsASelect
= isa
<SelectInst
>(Cur
);
309 // A conditional reduction operation must only have 2 or less uses in
311 if (IsASelect
&& (Kind
== RK_FloatAdd
|| Kind
== RK_FloatMult
) &&
312 hasMultipleUsesOf(Cur
, VisitedInsts
, 2))
315 // A reduction operation must only have one use of the reduction value.
316 if (!IsAPhi
&& !IsASelect
&& Kind
!= RK_IntegerMinMax
&&
317 Kind
!= RK_FloatMinMax
&& hasMultipleUsesOf(Cur
, VisitedInsts
, 1))
320 // All inputs to a PHI node must be a reduction value.
321 if (IsAPhi
&& Cur
!= Phi
&& !areAllUsesIn(Cur
, VisitedInsts
))
324 if (Kind
== RK_IntegerMinMax
&&
325 (isa
<ICmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
326 ++NumCmpSelectPatternInst
;
327 if (Kind
== RK_FloatMinMax
&& (isa
<FCmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
328 ++NumCmpSelectPatternInst
;
330 // Check whether we found a reduction operator.
331 FoundReduxOp
|= !IsAPhi
&& Cur
!= Start
;
333 // Process users of current instruction. Push non-PHI nodes after PHI nodes
334 // onto the stack. This way we are going to have seen all inputs to PHI
335 // nodes once we get to them.
336 SmallVector
<Instruction
*, 8> NonPHIs
;
337 SmallVector
<Instruction
*, 8> PHIs
;
338 for (User
*U
: Cur
->users()) {
339 Instruction
*UI
= cast
<Instruction
>(U
);
341 // Check if we found the exit user.
342 BasicBlock
*Parent
= UI
->getParent();
343 if (!TheLoop
->contains(Parent
)) {
344 // If we already know this instruction is used externally, move on to
346 if (ExitInstruction
== Cur
)
349 // Exit if you find multiple values used outside or if the header phi
350 // node is being used. In this case the user uses the value of the
351 // previous iteration, in which case we would loose "VF-1" iterations of
352 // the reduction operation if we vectorize.
353 if (ExitInstruction
!= nullptr || Cur
== Phi
)
356 // The instruction used by an outside user must be the last instruction
357 // before we feed back to the reduction phi. Otherwise, we loose VF-1
358 // operations on the value.
359 if (!is_contained(Phi
->operands(), Cur
))
362 ExitInstruction
= Cur
;
366 // Process instructions only once (termination). Each reduction cycle
367 // value must only be used once, except by phi nodes and min/max
368 // reductions which are represented as a cmp followed by a select.
369 InstDesc
IgnoredVal(false, nullptr);
370 if (VisitedInsts
.insert(UI
).second
) {
371 if (isa
<PHINode
>(UI
))
374 NonPHIs
.push_back(UI
);
375 } else if (!isa
<PHINode
>(UI
) &&
376 ((!isa
<FCmpInst
>(UI
) && !isa
<ICmpInst
>(UI
) &&
377 !isa
<SelectInst
>(UI
)) ||
378 (!isConditionalRdxPattern(Kind
, UI
).isRecurrence() &&
379 !isMinMaxSelectCmpPattern(UI
, IgnoredVal
).isRecurrence())))
382 // Remember that we completed the cycle.
384 FoundStartPHI
= true;
386 Worklist
.append(PHIs
.begin(), PHIs
.end());
387 Worklist
.append(NonPHIs
.begin(), NonPHIs
.end());
390 // This means we have seen one but not the other instruction of the
391 // pattern or more than just a select and cmp.
392 if ((Kind
== RK_IntegerMinMax
|| Kind
== RK_FloatMinMax
) &&
393 NumCmpSelectPatternInst
!= 2)
396 if (!FoundStartPHI
|| !FoundReduxOp
|| !ExitInstruction
)
400 // If the starting value is not the same as the phi node, we speculatively
401 // looked through an 'and' instruction when evaluating a potential
402 // arithmetic reduction to determine if it may have been type-promoted.
404 // We now compute the minimal bit width that is required to represent the
405 // reduction. If this is the same width that was indicated by the 'and', we
406 // can represent the reduction in the smaller type. The 'and' instruction
407 // will be eliminated since it will essentially be a cast instruction that
408 // can be ignore in the cost model. If we compute a different type than we
409 // did when evaluating the 'and', the 'and' will not be eliminated, and we
410 // will end up with different kinds of operations in the recurrence
411 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
414 // The vectorizer relies on InstCombine to perform the actual
415 // type-shrinking. It does this by inserting instructions to truncate the
416 // exit value of the reduction to the width indicated by RecurrenceType and
417 // then extend this value back to the original width. If IsSigned is false,
418 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
421 // TODO: We should not rely on InstCombine to rewrite the reduction in the
422 // smaller type. We should just generate a correctly typed expression
425 std::tie(ComputedType
, IsSigned
) =
426 computeRecurrenceType(ExitInstruction
, DB
, AC
, DT
);
427 if (ComputedType
!= RecurrenceType
)
430 // The recurrence expression will be represented in a narrower type. If
431 // there are any cast instructions that will be unnecessary, collect them
432 // in CastInsts. Note that the 'and' instruction was already included in
435 // TODO: A better way to represent this may be to tag in some way all the
436 // instructions that are a part of the reduction. The vectorizer cost
437 // model could then apply the recurrence type to these instructions,
438 // without needing a white list of instructions to ignore.
439 collectCastsToIgnore(TheLoop
, ExitInstruction
, RecurrenceType
, CastInsts
);
442 // We found a reduction var if we have reached the original phi node and we
443 // only have a single instruction with out-of-loop users.
445 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
446 // is saved as part of the RecurrenceDescriptor.
448 // Save the description of this reduction variable.
449 RecurrenceDescriptor
RD(
450 RdxStart
, ExitInstruction
, Kind
, FMF
, ReduxDesc
.getMinMaxKind(),
451 ReduxDesc
.getUnsafeAlgebraInst(), RecurrenceType
, IsSigned
, CastInsts
);
457 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
458 /// pattern corresponding to a min(X, Y) or max(X, Y).
459 RecurrenceDescriptor::InstDesc
460 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction
*I
, InstDesc
&Prev
) {
462 assert((isa
<ICmpInst
>(I
) || isa
<FCmpInst
>(I
) || isa
<SelectInst
>(I
)) &&
463 "Expect a select instruction");
464 Instruction
*Cmp
= nullptr;
465 SelectInst
*Select
= nullptr;
467 // We must handle the select(cmp()) as a single instruction. Advance to the
469 if ((Cmp
= dyn_cast
<ICmpInst
>(I
)) || (Cmp
= dyn_cast
<FCmpInst
>(I
))) {
470 if (!Cmp
->hasOneUse() || !(Select
= dyn_cast
<SelectInst
>(*I
->user_begin())))
471 return InstDesc(false, I
);
472 return InstDesc(Select
, Prev
.getMinMaxKind());
475 // Only handle single use cases for now.
476 if (!(Select
= dyn_cast
<SelectInst
>(I
)))
477 return InstDesc(false, I
);
478 if (!(Cmp
= dyn_cast
<ICmpInst
>(I
->getOperand(0))) &&
479 !(Cmp
= dyn_cast
<FCmpInst
>(I
->getOperand(0))))
480 return InstDesc(false, I
);
481 if (!Cmp
->hasOneUse())
482 return InstDesc(false, I
);
487 // Look for a min/max pattern.
488 if (m_UMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
489 return InstDesc(Select
, MRK_UIntMin
);
490 else if (m_UMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
491 return InstDesc(Select
, MRK_UIntMax
);
492 else if (m_SMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
493 return InstDesc(Select
, MRK_SIntMax
);
494 else if (m_SMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
495 return InstDesc(Select
, MRK_SIntMin
);
496 else if (m_OrdFMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
497 return InstDesc(Select
, MRK_FloatMin
);
498 else if (m_OrdFMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
499 return InstDesc(Select
, MRK_FloatMax
);
500 else if (m_UnordFMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
501 return InstDesc(Select
, MRK_FloatMin
);
502 else if (m_UnordFMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
503 return InstDesc(Select
, MRK_FloatMax
);
505 return InstDesc(false, I
);
508 /// Returns true if the select instruction has users in the compare-and-add
509 /// reduction pattern below. The select instruction argument is the last one
514 /// %cmp = fcmp pred %0, %CFP
515 /// %add = fadd %0, %sum.1
516 /// %sum.2 = select %cmp, %add, %sum.1
517 RecurrenceDescriptor::InstDesc
518 RecurrenceDescriptor::isConditionalRdxPattern(
519 RecurrenceKind Kind
, Instruction
*I
) {
520 SelectInst
*SI
= dyn_cast
<SelectInst
>(I
);
522 return InstDesc(false, I
);
524 CmpInst
*CI
= dyn_cast
<CmpInst
>(SI
->getCondition());
525 // Only handle single use cases for now.
526 if (!CI
|| !CI
->hasOneUse())
527 return InstDesc(false, I
);
529 Value
*TrueVal
= SI
->getTrueValue();
530 Value
*FalseVal
= SI
->getFalseValue();
531 // Handle only when either of operands of select instruction is a PHI
533 if ((isa
<PHINode
>(*TrueVal
) && isa
<PHINode
>(*FalseVal
)) ||
534 (!isa
<PHINode
>(*TrueVal
) && !isa
<PHINode
>(*FalseVal
)))
535 return InstDesc(false, I
);
538 isa
<PHINode
>(*TrueVal
) ? dyn_cast
<Instruction
>(FalseVal
)
539 : dyn_cast
<Instruction
>(TrueVal
);
540 if (!I1
|| !I1
->isBinaryOp())
541 return InstDesc(false, I
);
544 if ((m_FAdd(m_Value(Op1
), m_Value(Op2
)).match(I1
) ||
545 m_FSub(m_Value(Op1
), m_Value(Op2
)).match(I1
)) &&
547 return InstDesc(Kind
== RK_FloatAdd
, SI
);
549 if (m_FMul(m_Value(Op1
), m_Value(Op2
)).match(I1
) && (I1
->isFast()))
550 return InstDesc(Kind
== RK_FloatMult
, SI
);
552 return InstDesc(false, I
);
555 RecurrenceDescriptor::InstDesc
556 RecurrenceDescriptor::isRecurrenceInstr(Instruction
*I
, RecurrenceKind Kind
,
557 InstDesc
&Prev
, bool HasFunNoNaNAttr
) {
558 Instruction
*UAI
= Prev
.getUnsafeAlgebraInst();
559 if (!UAI
&& isa
<FPMathOperator
>(I
) && !I
->hasAllowReassoc())
560 UAI
= I
; // Found an unsafe (unvectorizable) algebra instruction.
562 switch (I
->getOpcode()) {
564 return InstDesc(false, I
);
565 case Instruction::PHI
:
566 return InstDesc(I
, Prev
.getMinMaxKind(), Prev
.getUnsafeAlgebraInst());
567 case Instruction::Sub
:
568 case Instruction::Add
:
569 return InstDesc(Kind
== RK_IntegerAdd
, I
);
570 case Instruction::Mul
:
571 return InstDesc(Kind
== RK_IntegerMult
, I
);
572 case Instruction::And
:
573 return InstDesc(Kind
== RK_IntegerAnd
, I
);
574 case Instruction::Or
:
575 return InstDesc(Kind
== RK_IntegerOr
, I
);
576 case Instruction::Xor
:
577 return InstDesc(Kind
== RK_IntegerXor
, I
);
578 case Instruction::FMul
:
579 return InstDesc(Kind
== RK_FloatMult
, I
, UAI
);
580 case Instruction::FSub
:
581 case Instruction::FAdd
:
582 return InstDesc(Kind
== RK_FloatAdd
, I
, UAI
);
583 case Instruction::Select
:
584 if (Kind
== RK_FloatAdd
|| Kind
== RK_FloatMult
)
585 return isConditionalRdxPattern(Kind
, I
);
587 case Instruction::FCmp
:
588 case Instruction::ICmp
:
589 if (Kind
!= RK_IntegerMinMax
&&
590 (!HasFunNoNaNAttr
|| Kind
!= RK_FloatMinMax
))
591 return InstDesc(false, I
);
592 return isMinMaxSelectCmpPattern(I
, Prev
);
596 bool RecurrenceDescriptor::hasMultipleUsesOf(
597 Instruction
*I
, SmallPtrSetImpl
<Instruction
*> &Insts
,
598 unsigned MaxNumUses
) {
599 unsigned NumUses
= 0;
600 for (User::op_iterator Use
= I
->op_begin(), E
= I
->op_end(); Use
!= E
;
602 if (Insts
.count(dyn_cast
<Instruction
>(*Use
)))
604 if (NumUses
> MaxNumUses
)
610 bool RecurrenceDescriptor::isReductionPHI(PHINode
*Phi
, Loop
*TheLoop
,
611 RecurrenceDescriptor
&RedDes
,
612 DemandedBits
*DB
, AssumptionCache
*AC
,
615 BasicBlock
*Header
= TheLoop
->getHeader();
616 Function
&F
= *Header
->getParent();
617 bool HasFunNoNaNAttr
=
618 F
.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
620 if (AddReductionVar(Phi
, RK_IntegerAdd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
622 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi
<< "\n");
625 if (AddReductionVar(Phi
, RK_IntegerMult
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
627 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi
<< "\n");
630 if (AddReductionVar(Phi
, RK_IntegerOr
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
632 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi
<< "\n");
635 if (AddReductionVar(Phi
, RK_IntegerAnd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
637 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi
<< "\n");
640 if (AddReductionVar(Phi
, RK_IntegerXor
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
642 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi
<< "\n");
645 if (AddReductionVar(Phi
, RK_IntegerMinMax
, TheLoop
, HasFunNoNaNAttr
, RedDes
,
647 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi
<< "\n");
650 if (AddReductionVar(Phi
, RK_FloatMult
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
652 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi
<< "\n");
655 if (AddReductionVar(Phi
, RK_FloatAdd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
657 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi
<< "\n");
660 if (AddReductionVar(Phi
, RK_FloatMinMax
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
662 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
666 // Not a reduction of known type.
670 bool RecurrenceDescriptor::isFirstOrderRecurrence(
671 PHINode
*Phi
, Loop
*TheLoop
,
672 DenseMap
<Instruction
*, Instruction
*> &SinkAfter
, DominatorTree
*DT
) {
674 // Ensure the phi node is in the loop header and has two incoming values.
675 if (Phi
->getParent() != TheLoop
->getHeader() ||
676 Phi
->getNumIncomingValues() != 2)
679 // Ensure the loop has a preheader and a single latch block. The loop
680 // vectorizer will need the latch to set up the next iteration of the loop.
681 auto *Preheader
= TheLoop
->getLoopPreheader();
682 auto *Latch
= TheLoop
->getLoopLatch();
683 if (!Preheader
|| !Latch
)
686 // Ensure the phi node's incoming blocks are the loop preheader and latch.
687 if (Phi
->getBasicBlockIndex(Preheader
) < 0 ||
688 Phi
->getBasicBlockIndex(Latch
) < 0)
691 // Get the previous value. The previous value comes from the latch edge while
692 // the initial value comes form the preheader edge.
693 auto *Previous
= dyn_cast
<Instruction
>(Phi
->getIncomingValueForBlock(Latch
));
694 if (!Previous
|| !TheLoop
->contains(Previous
) || isa
<PHINode
>(Previous
) ||
695 SinkAfter
.count(Previous
)) // Cannot rely on dominance due to motion.
698 // Ensure every user of the phi node is dominated by the previous value.
699 // The dominance requirement ensures the loop vectorizer will not need to
700 // vectorize the initial value prior to the first iteration of the loop.
701 // TODO: Consider extending this sinking to handle other kinds of instructions
702 // and expressions, beyond sinking a single cast past Previous.
703 if (Phi
->hasOneUse()) {
704 auto *I
= Phi
->user_back();
705 if (I
->isCast() && (I
->getParent() == Phi
->getParent()) && I
->hasOneUse() &&
706 DT
->dominates(Previous
, I
->user_back())) {
707 if (!DT
->dominates(Previous
, I
)) // Otherwise we're good w/o sinking.
708 SinkAfter
[I
] = Previous
;
713 for (User
*U
: Phi
->users())
714 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
715 if (!DT
->dominates(Previous
, I
))
722 /// This function returns the identity element (or neutral element) for
724 Constant
*RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K
,
730 // Adding, Xoring, Oring zero to a number does not change it.
731 return ConstantInt::get(Tp
, 0);
733 // Multiplying a number by 1 does not change it.
734 return ConstantInt::get(Tp
, 1);
736 // AND-ing a number with an all-1 value does not change it.
737 return ConstantInt::get(Tp
, -1, true);
739 // Multiplying a number by 1 does not change it.
740 return ConstantFP::get(Tp
, 1.0L);
742 // Adding zero to a number does not change it.
743 return ConstantFP::get(Tp
, 0.0L);
745 llvm_unreachable("Unknown recurrence kind");
749 /// This function translates the recurrence kind to an LLVM binary operator.
750 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind
) {
753 return Instruction::Add
;
755 return Instruction::Mul
;
757 return Instruction::Or
;
759 return Instruction::And
;
761 return Instruction::Xor
;
763 return Instruction::FMul
;
765 return Instruction::FAdd
;
766 case RK_IntegerMinMax
:
767 return Instruction::ICmp
;
769 return Instruction::FCmp
;
771 llvm_unreachable("Unknown recurrence operation");
775 InductionDescriptor::InductionDescriptor(Value
*Start
, InductionKind K
,
776 const SCEV
*Step
, BinaryOperator
*BOp
,
777 SmallVectorImpl
<Instruction
*> *Casts
)
778 : StartValue(Start
), IK(K
), Step(Step
), InductionBinOp(BOp
) {
779 assert(IK
!= IK_NoInduction
&& "Not an induction");
781 // Start value type should match the induction kind and the value
782 // itself should not be null.
783 assert(StartValue
&& "StartValue is null");
784 assert((IK
!= IK_PtrInduction
|| StartValue
->getType()->isPointerTy()) &&
785 "StartValue is not a pointer for pointer induction");
786 assert((IK
!= IK_IntInduction
|| StartValue
->getType()->isIntegerTy()) &&
787 "StartValue is not an integer for integer induction");
789 // Check the Step Value. It should be non-zero integer value.
790 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
791 "Step value is zero");
793 assert((IK
!= IK_PtrInduction
|| getConstIntStepValue()) &&
794 "Step value should be constant for pointer induction");
795 assert((IK
== IK_FpInduction
|| Step
->getType()->isIntegerTy()) &&
796 "StepValue is not an integer");
798 assert((IK
!= IK_FpInduction
|| Step
->getType()->isFloatingPointTy()) &&
799 "StepValue is not FP for FpInduction");
800 assert((IK
!= IK_FpInduction
||
802 (InductionBinOp
->getOpcode() == Instruction::FAdd
||
803 InductionBinOp
->getOpcode() == Instruction::FSub
))) &&
804 "Binary opcode should be specified for FP induction");
807 for (auto &Inst
: *Casts
) {
808 RedundantCasts
.push_back(Inst
);
813 int InductionDescriptor::getConsecutiveDirection() const {
814 ConstantInt
*ConstStep
= getConstIntStepValue();
815 if (ConstStep
&& (ConstStep
->isOne() || ConstStep
->isMinusOne()))
816 return ConstStep
->getSExtValue();
820 ConstantInt
*InductionDescriptor::getConstIntStepValue() const {
821 if (isa
<SCEVConstant
>(Step
))
822 return dyn_cast
<ConstantInt
>(cast
<SCEVConstant
>(Step
)->getValue());
826 bool InductionDescriptor::isFPInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
828 InductionDescriptor
&D
) {
830 // Here we only handle FP induction variables.
831 assert(Phi
->getType()->isFloatingPointTy() && "Unexpected Phi type");
833 if (TheLoop
->getHeader() != Phi
->getParent())
836 // The loop may have multiple entrances or multiple exits; we can analyze
837 // this phi if it has a unique entry value and a unique backedge value.
838 if (Phi
->getNumIncomingValues() != 2)
840 Value
*BEValue
= nullptr, *StartValue
= nullptr;
841 if (TheLoop
->contains(Phi
->getIncomingBlock(0))) {
842 BEValue
= Phi
->getIncomingValue(0);
843 StartValue
= Phi
->getIncomingValue(1);
845 assert(TheLoop
->contains(Phi
->getIncomingBlock(1)) &&
846 "Unexpected Phi node in the loop");
847 BEValue
= Phi
->getIncomingValue(1);
848 StartValue
= Phi
->getIncomingValue(0);
851 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(BEValue
);
855 Value
*Addend
= nullptr;
856 if (BOp
->getOpcode() == Instruction::FAdd
) {
857 if (BOp
->getOperand(0) == Phi
)
858 Addend
= BOp
->getOperand(1);
859 else if (BOp
->getOperand(1) == Phi
)
860 Addend
= BOp
->getOperand(0);
861 } else if (BOp
->getOpcode() == Instruction::FSub
)
862 if (BOp
->getOperand(0) == Phi
)
863 Addend
= BOp
->getOperand(1);
868 // The addend should be loop invariant
869 if (auto *I
= dyn_cast
<Instruction
>(Addend
))
870 if (TheLoop
->contains(I
))
873 // FP Step has unknown SCEV
874 const SCEV
*Step
= SE
->getUnknown(Addend
);
875 D
= InductionDescriptor(StartValue
, IK_FpInduction
, Step
, BOp
);
879 /// This function is called when we suspect that the update-chain of a phi node
880 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
881 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
882 /// predicate P under which the SCEV expression for the phi can be the
883 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
884 /// cast instructions that are involved in the update-chain of this induction.
885 /// A caller that adds the required runtime predicate can be free to drop these
886 /// cast instructions, and compute the phi using \p AR (instead of some scev
887 /// expression with casts).
889 /// For example, without a predicate the scev expression can take the following
891 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
893 /// It corresponds to the following IR sequence:
895 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
896 /// %casted_phi = "ExtTrunc i64 %x"
897 /// %add = add i64 %casted_phi, %step
899 /// where %x is given in \p PN,
900 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
901 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
902 /// several forms, for example, such as:
903 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
905 /// ExtTrunc2: %t = shl %x, m
906 /// %casted_phi = ashr %t, m
908 /// If we are able to find such sequence, we return the instructions
909 /// we found, namely %casted_phi and the instructions on its use-def chain up
910 /// to the phi (not including the phi).
911 static bool getCastsForInductionPHI(PredicatedScalarEvolution
&PSE
,
912 const SCEVUnknown
*PhiScev
,
913 const SCEVAddRecExpr
*AR
,
914 SmallVectorImpl
<Instruction
*> &CastInsts
) {
916 assert(CastInsts
.empty() && "CastInsts is expected to be empty.");
917 auto *PN
= cast
<PHINode
>(PhiScev
->getValue());
918 assert(PSE
.getSCEV(PN
) == AR
&& "Unexpected phi node SCEV expression");
919 const Loop
*L
= AR
->getLoop();
921 // Find any cast instructions that participate in the def-use chain of
922 // PhiScev in the loop.
923 // FORNOW/TODO: We currently expect the def-use chain to include only
924 // two-operand instructions, where one of the operands is an invariant.
925 // createAddRecFromPHIWithCasts() currently does not support anything more
926 // involved than that, so we keep the search simple. This can be
927 // extended/generalized as needed.
929 auto getDef
= [&](const Value
*Val
) -> Value
* {
930 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Val
);
933 Value
*Op0
= BinOp
->getOperand(0);
934 Value
*Op1
= BinOp
->getOperand(1);
935 Value
*Def
= nullptr;
936 if (L
->isLoopInvariant(Op0
))
938 else if (L
->isLoopInvariant(Op1
))
943 // Look for the instruction that defines the induction via the
945 BasicBlock
*Latch
= L
->getLoopLatch();
948 Value
*Val
= PN
->getIncomingValueForBlock(Latch
);
952 // Follow the def-use chain until the induction phi is reached.
953 // If on the way we encounter a Value that has the same SCEV Expr as the
954 // phi node, we can consider the instructions we visit from that point
955 // as part of the cast-sequence that can be ignored.
956 bool InCastSequence
= false;
957 auto *Inst
= dyn_cast
<Instruction
>(Val
);
959 // If we encountered a phi node other than PN, or if we left the loop,
961 if (!Inst
|| !L
->contains(Inst
)) {
964 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Val
));
965 if (AddRec
&& PSE
.areAddRecsEqualWithPreds(AddRec
, AR
))
966 InCastSequence
= true;
967 if (InCastSequence
) {
968 // Only the last instruction in the cast sequence is expected to have
969 // uses outside the induction def-use chain.
970 if (!CastInsts
.empty())
971 if (!Inst
->hasOneUse())
973 CastInsts
.push_back(Inst
);
978 Inst
= dyn_cast
<Instruction
>(Val
);
981 return InCastSequence
;
984 bool InductionDescriptor::isInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
985 PredicatedScalarEvolution
&PSE
,
986 InductionDescriptor
&D
, bool Assume
) {
987 Type
*PhiTy
= Phi
->getType();
989 // Handle integer and pointer inductions variables.
990 // Now we handle also FP induction but not trying to make a
991 // recurrent expression from the PHI node in-place.
993 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy() && !PhiTy
->isFloatTy() &&
994 !PhiTy
->isDoubleTy() && !PhiTy
->isHalfTy())
997 if (PhiTy
->isFloatingPointTy())
998 return isFPInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
);
1000 const SCEV
*PhiScev
= PSE
.getSCEV(Phi
);
1001 const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
1003 // We need this expression to be an AddRecExpr.
1005 AR
= PSE
.getAsAddRec(Phi
);
1008 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1012 // Record any Cast instructions that participate in the induction update
1013 const auto *SymbolicPhi
= dyn_cast
<SCEVUnknown
>(PhiScev
);
1014 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1015 // only after enabling Assume with PSCEV, this means we may have encountered
1016 // cast instructions that required adding a runtime check in order to
1017 // guarantee the correctness of the AddRecurrence respresentation of the
1019 if (PhiScev
!= AR
&& SymbolicPhi
) {
1020 SmallVector
<Instruction
*, 2> Casts
;
1021 if (getCastsForInductionPHI(PSE
, SymbolicPhi
, AR
, Casts
))
1022 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
, &Casts
);
1025 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
);
1028 bool InductionDescriptor::isInductionPHI(
1029 PHINode
*Phi
, const Loop
*TheLoop
, ScalarEvolution
*SE
,
1030 InductionDescriptor
&D
, const SCEV
*Expr
,
1031 SmallVectorImpl
<Instruction
*> *CastsToIgnore
) {
1032 Type
*PhiTy
= Phi
->getType();
1033 // We only handle integer and pointer inductions variables.
1034 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy())
1037 // Check that the PHI is consecutive.
1038 const SCEV
*PhiScev
= Expr
? Expr
: SE
->getSCEV(Phi
);
1039 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
1042 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1046 if (AR
->getLoop() != TheLoop
) {
1047 // FIXME: We should treat this as a uniform. Unfortunately, we
1048 // don't currently know how to handled uniform PHIs.
1050 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1055 Phi
->getIncomingValueForBlock(AR
->getLoop()->getLoopPreheader());
1057 BasicBlock
*Latch
= AR
->getLoop()->getLoopLatch();
1060 BinaryOperator
*BOp
=
1061 dyn_cast
<BinaryOperator
>(Phi
->getIncomingValueForBlock(Latch
));
1063 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1064 // Calculate the pointer stride and check if it is consecutive.
1065 // The stride may be a constant or a loop invariant integer value.
1066 const SCEVConstant
*ConstStep
= dyn_cast
<SCEVConstant
>(Step
);
1067 if (!ConstStep
&& !SE
->isLoopInvariant(Step
, TheLoop
))
1070 if (PhiTy
->isIntegerTy()) {
1071 D
= InductionDescriptor(StartValue
, IK_IntInduction
, Step
, BOp
,
1076 assert(PhiTy
->isPointerTy() && "The PHI must be a pointer");
1077 // Pointer induction should be a constant.
1081 ConstantInt
*CV
= ConstStep
->getValue();
1082 Type
*PointerElementType
= PhiTy
->getPointerElementType();
1083 // The pointer stride cannot be determined if the pointer element type is not
1085 if (!PointerElementType
->isSized())
1088 const DataLayout
&DL
= Phi
->getModule()->getDataLayout();
1089 int64_t Size
= static_cast<int64_t>(DL
.getTypeAllocSize(PointerElementType
));
1093 int64_t CVSize
= CV
->getSExtValue();
1097 SE
->getConstant(CV
->getType(), CVSize
/ Size
, true /* signed */);
1098 D
= InductionDescriptor(StartValue
, IK_PtrInduction
, StepValue
, BOp
);