[ARM] Generate 8.1-m CSINC, CSNEG and CSINV instructions.
[llvm-core.git] / lib / Analysis / InstructionSimplify.cpp
blobcd394966d7223b14f8891a3875337ae13ddc0bf7
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
46 #define DEBUG_TYPE "instsimplify"
48 enum { RecursionLimit = 3 };
50 STATISTIC(NumExpand, "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56 const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58 unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60 const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62 unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64 const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68 const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70 unsigned);
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73 Value *FalseVal) {
74 BinaryOperator::BinaryOps BinOpCode;
75 if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76 BinOpCode = BO->getOpcode();
77 else
78 return nullptr;
80 CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81 if (BinOpCode == BinaryOperator::Or) {
82 ExpectedPred = ICmpInst::ICMP_NE;
83 } else if (BinOpCode == BinaryOperator::And) {
84 ExpectedPred = ICmpInst::ICMP_EQ;
85 } else
86 return nullptr;
88 // %A = icmp eq %TV, %FV
89 // %B = icmp eq %X, %Y (and one of these is a select operand)
90 // %C = and %A, %B
91 // %D = select %C, %TV, %FV
92 // -->
93 // %FV
95 // %A = icmp ne %TV, %FV
96 // %B = icmp ne %X, %Y (and one of these is a select operand)
97 // %C = or %A, %B
98 // %D = select %C, %TV, %FV
99 // -->
100 // %TV
101 Value *X, *Y;
102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103 m_Specific(FalseVal)),
104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105 Pred1 != Pred2 || Pred1 != ExpectedPred)
106 return nullptr;
108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
111 return nullptr;
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117 return ConstantInt::getFalse(Ty);
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123 return ConstantInt::getTrue(Ty);
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128 Value *RHS) {
129 CmpInst *Cmp = dyn_cast<CmpInst>(V);
130 if (!Cmp)
131 return false;
132 CmpInst::Predicate CPred = Cmp->getPredicate();
133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135 return true;
136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137 CRHS == LHS;
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142 Instruction *I = dyn_cast<Instruction>(V);
143 if (!I)
144 // Arguments and constants dominate all instructions.
145 return true;
147 // If we are processing instructions (and/or basic blocks) that have not been
148 // fully added to a function, the parent nodes may still be null. Simply
149 // return the conservative answer in these cases.
150 if (!I->getParent() || !P->getParent() || !I->getFunction())
151 return false;
153 // If we have a DominatorTree then do a precise test.
154 if (DT)
155 return DT->dominates(I, P);
157 // Otherwise, if the instruction is in the entry block and is not an invoke,
158 // then it obviously dominates all phi nodes.
159 if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160 !isa<InvokeInst>(I))
161 return true;
163 return false;
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172 Instruction::BinaryOps OpcodeToExpand,
173 const SimplifyQuery &Q, unsigned MaxRecurse) {
174 // Recursion is always used, so bail out at once if we already hit the limit.
175 if (!MaxRecurse--)
176 return nullptr;
178 // Check whether the expression has the form "(A op' B) op C".
179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180 if (Op0->getOpcode() == OpcodeToExpand) {
181 // It does! Try turning it into "(A op C) op' (B op C)".
182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183 // Do "A op C" and "B op C" both simplify?
184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186 // They do! Return "L op' R" if it simplifies or is already available.
187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189 && L == B && R == A)) {
190 ++NumExpand;
191 return LHS;
193 // Otherwise return "L op' R" if it simplifies.
194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195 ++NumExpand;
196 return V;
201 // Check whether the expression has the form "A op (B op' C)".
202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203 if (Op1->getOpcode() == OpcodeToExpand) {
204 // It does! Try turning it into "(A op B) op' (A op C)".
205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206 // Do "A op B" and "A op C" both simplify?
207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209 // They do! Return "L op' R" if it simplifies or is already available.
210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212 && L == C && R == B)) {
213 ++NumExpand;
214 return RHS;
216 // Otherwise return "L op' R" if it simplifies.
217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218 ++NumExpand;
219 return V;
224 return nullptr;
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230 Value *LHS, Value *RHS,
231 const SimplifyQuery &Q,
232 unsigned MaxRecurse) {
233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
235 // Recursion is always used, so bail out at once if we already hit the limit.
236 if (!MaxRecurse--)
237 return nullptr;
239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243 if (Op0 && Op0->getOpcode() == Opcode) {
244 Value *A = Op0->getOperand(0);
245 Value *B = Op0->getOperand(1);
246 Value *C = RHS;
248 // Does "B op C" simplify?
249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250 // It does! Return "A op V" if it simplifies or is already available.
251 // If V equals B then "A op V" is just the LHS.
252 if (V == B) return LHS;
253 // Otherwise return "A op V" if it simplifies.
254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255 ++NumReassoc;
256 return W;
261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262 if (Op1 && Op1->getOpcode() == Opcode) {
263 Value *A = LHS;
264 Value *B = Op1->getOperand(0);
265 Value *C = Op1->getOperand(1);
267 // Does "A op B" simplify?
268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269 // It does! Return "V op C" if it simplifies or is already available.
270 // If V equals B then "V op C" is just the RHS.
271 if (V == B) return RHS;
272 // Otherwise return "V op C" if it simplifies.
273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274 ++NumReassoc;
275 return W;
280 // The remaining transforms require commutativity as well as associativity.
281 if (!Instruction::isCommutative(Opcode))
282 return nullptr;
284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285 if (Op0 && Op0->getOpcode() == Opcode) {
286 Value *A = Op0->getOperand(0);
287 Value *B = Op0->getOperand(1);
288 Value *C = RHS;
290 // Does "C op A" simplify?
291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292 // It does! Return "V op B" if it simplifies or is already available.
293 // If V equals A then "V op B" is just the LHS.
294 if (V == A) return LHS;
295 // Otherwise return "V op B" if it simplifies.
296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297 ++NumReassoc;
298 return W;
303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304 if (Op1 && Op1->getOpcode() == Opcode) {
305 Value *A = LHS;
306 Value *B = Op1->getOperand(0);
307 Value *C = Op1->getOperand(1);
309 // Does "C op A" simplify?
310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311 // It does! Return "B op V" if it simplifies or is already available.
312 // If V equals C then "B op V" is just the RHS.
313 if (V == C) return RHS;
314 // Otherwise return "B op V" if it simplifies.
315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316 ++NumReassoc;
317 return W;
322 return nullptr;
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330 Value *RHS, const SimplifyQuery &Q,
331 unsigned MaxRecurse) {
332 // Recursion is always used, so bail out at once if we already hit the limit.
333 if (!MaxRecurse--)
334 return nullptr;
336 SelectInst *SI;
337 if (isa<SelectInst>(LHS)) {
338 SI = cast<SelectInst>(LHS);
339 } else {
340 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
341 SI = cast<SelectInst>(RHS);
344 // Evaluate the BinOp on the true and false branches of the select.
345 Value *TV;
346 Value *FV;
347 if (SI == LHS) {
348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350 } else {
351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
355 // If they simplified to the same value, then return the common value.
356 // If they both failed to simplify then return null.
357 if (TV == FV)
358 return TV;
360 // If one branch simplified to undef, return the other one.
361 if (TV && isa<UndefValue>(TV))
362 return FV;
363 if (FV && isa<UndefValue>(FV))
364 return TV;
366 // If applying the operation did not change the true and false select values,
367 // then the result of the binop is the select itself.
368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369 return SI;
371 // If one branch simplified and the other did not, and the simplified
372 // value is equal to the unsimplified one, return the simplified value.
373 // For example, select (cond, X, X & Z) & Z -> X & Z.
374 if ((FV && !TV) || (TV && !FV)) {
375 // Check that the simplified value has the form "X op Y" where "op" is the
376 // same as the original operation.
377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380 // We already know that "op" is the same as for the simplified value. See
381 // if the operands match too. If so, return the simplified value.
382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386 Simplified->getOperand(1) == UnsimplifiedRHS)
387 return Simplified;
388 if (Simplified->isCommutative() &&
389 Simplified->getOperand(1) == UnsimplifiedLHS &&
390 Simplified->getOperand(0) == UnsimplifiedRHS)
391 return Simplified;
395 return nullptr;
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402 Value *RHS, const SimplifyQuery &Q,
403 unsigned MaxRecurse) {
404 // Recursion is always used, so bail out at once if we already hit the limit.
405 if (!MaxRecurse--)
406 return nullptr;
408 // Make sure the select is on the LHS.
409 if (!isa<SelectInst>(LHS)) {
410 std::swap(LHS, RHS);
411 Pred = CmpInst::getSwappedPredicate(Pred);
413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
414 SelectInst *SI = cast<SelectInst>(LHS);
415 Value *Cond = SI->getCondition();
416 Value *TV = SI->getTrueValue();
417 Value *FV = SI->getFalseValue();
419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420 // Does "cmp TV, RHS" simplify?
421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422 if (TCmp == Cond) {
423 // It not only simplified, it simplified to the select condition. Replace
424 // it with 'true'.
425 TCmp = getTrue(Cond->getType());
426 } else if (!TCmp) {
427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
428 // condition then we can replace it with 'true'. Otherwise give up.
429 if (!isSameCompare(Cond, Pred, TV, RHS))
430 return nullptr;
431 TCmp = getTrue(Cond->getType());
434 // Does "cmp FV, RHS" simplify?
435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436 if (FCmp == Cond) {
437 // It not only simplified, it simplified to the select condition. Replace
438 // it with 'false'.
439 FCmp = getFalse(Cond->getType());
440 } else if (!FCmp) {
441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
442 // condition then we can replace it with 'false'. Otherwise give up.
443 if (!isSameCompare(Cond, Pred, FV, RHS))
444 return nullptr;
445 FCmp = getFalse(Cond->getType());
448 // If both sides simplified to the same value, then use it as the result of
449 // the original comparison.
450 if (TCmp == FCmp)
451 return TCmp;
453 // The remaining cases only make sense if the select condition has the same
454 // type as the result of the comparison, so bail out if this is not so.
455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456 return nullptr;
457 // If the false value simplified to false, then the result of the compare
458 // is equal to "Cond && TCmp". This also catches the case when the false
459 // value simplified to false and the true value to true, returning "Cond".
460 if (match(FCmp, m_Zero()))
461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462 return V;
463 // If the true value simplified to true, then the result of the compare
464 // is equal to "Cond || FCmp".
465 if (match(TCmp, m_One()))
466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467 return V;
468 // Finally, if the false value simplified to true and the true value to
469 // false, then the result of the compare is equal to "!Cond".
470 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471 if (Value *V =
472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473 Q, MaxRecurse))
474 return V;
476 return nullptr;
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484 Value *RHS, const SimplifyQuery &Q,
485 unsigned MaxRecurse) {
486 // Recursion is always used, so bail out at once if we already hit the limit.
487 if (!MaxRecurse--)
488 return nullptr;
490 PHINode *PI;
491 if (isa<PHINode>(LHS)) {
492 PI = cast<PHINode>(LHS);
493 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494 if (!valueDominatesPHI(RHS, PI, Q.DT))
495 return nullptr;
496 } else {
497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
498 PI = cast<PHINode>(RHS);
499 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500 if (!valueDominatesPHI(LHS, PI, Q.DT))
501 return nullptr;
504 // Evaluate the BinOp on the incoming phi values.
505 Value *CommonValue = nullptr;
506 for (Value *Incoming : PI->incoming_values()) {
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming == PI) continue;
509 Value *V = PI == LHS ?
510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512 // If the operation failed to simplify, or simplified to a different value
513 // to previously, then give up.
514 if (!V || (CommonValue && V != CommonValue))
515 return nullptr;
516 CommonValue = V;
519 return CommonValue;
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527 const SimplifyQuery &Q, unsigned MaxRecurse) {
528 // Recursion is always used, so bail out at once if we already hit the limit.
529 if (!MaxRecurse--)
530 return nullptr;
532 // Make sure the phi is on the LHS.
533 if (!isa<PHINode>(LHS)) {
534 std::swap(LHS, RHS);
535 Pred = CmpInst::getSwappedPredicate(Pred);
537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
538 PHINode *PI = cast<PHINode>(LHS);
540 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541 if (!valueDominatesPHI(RHS, PI, Q.DT))
542 return nullptr;
544 // Evaluate the BinOp on the incoming phi values.
545 Value *CommonValue = nullptr;
546 for (Value *Incoming : PI->incoming_values()) {
547 // If the incoming value is the phi node itself, it can safely be skipped.
548 if (Incoming == PI) continue;
549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550 // If the operation failed to simplify, or simplified to a different value
551 // to previously, then give up.
552 if (!V || (CommonValue && V != CommonValue))
553 return nullptr;
554 CommonValue = V;
557 return CommonValue;
560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561 Value *&Op0, Value *&Op1,
562 const SimplifyQuery &Q) {
563 if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564 if (auto *CRHS = dyn_cast<Constant>(Op1))
565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
567 // Canonicalize the constant to the RHS if this is a commutative operation.
568 if (Instruction::isCommutative(Opcode))
569 std::swap(Op0, Op1);
571 return nullptr;
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577 const SimplifyQuery &Q, unsigned MaxRecurse) {
578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579 return C;
581 // X + undef -> undef
582 if (match(Op1, m_Undef()))
583 return Op1;
585 // X + 0 -> X
586 if (match(Op1, m_Zero()))
587 return Op0;
589 // If two operands are negative, return 0.
590 if (isKnownNegation(Op0, Op1))
591 return Constant::getNullValue(Op0->getType());
593 // X + (Y - X) -> Y
594 // (Y - X) + X -> Y
595 // Eg: X + -X -> 0
596 Value *Y = nullptr;
597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599 return Y;
601 // X + ~X -> -1 since ~X = -X-1
602 Type *Ty = Op0->getType();
603 if (match(Op0, m_Not(m_Specific(Op1))) ||
604 match(Op1, m_Not(m_Specific(Op0))))
605 return Constant::getAllOnesValue(Ty);
607 // add nsw/nuw (xor Y, signmask), signmask --> Y
608 // The no-wrapping add guarantees that the top bit will be set by the add.
609 // Therefore, the xor must be clearing the already set sign bit of Y.
610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611 match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612 return Y;
614 // add nuw %x, -1 -> -1, because %x can only be 0.
615 if (IsNUW && match(Op1, m_AllOnes()))
616 return Op1; // Which is -1.
618 /// i1 add -> xor.
619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621 return V;
623 // Try some generic simplifications for associative operations.
624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625 MaxRecurse))
626 return V;
628 // Threading Add over selects and phi nodes is pointless, so don't bother.
629 // Threading over the select in "A + select(cond, B, C)" means evaluating
630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631 // only if B and C are equal. If B and C are equal then (since we assume
632 // that operands have already been simplified) "select(cond, B, C)" should
633 // have been simplified to the common value of B and C already. Analysing
634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
635 // for threading over phi nodes.
637 return nullptr;
640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641 const SimplifyQuery &Query) {
642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
645 /// Compute the base pointer and cumulative constant offsets for V.
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654 /// folding.
655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656 bool AllowNonInbounds = false) {
657 assert(V->getType()->isPtrOrPtrVectorTy());
659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
662 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
663 // As that strip may trace through `addrspacecast`, need to sext or trunc
664 // the offset calculated.
665 IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
666 Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
668 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
669 if (V->getType()->isVectorTy())
670 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
671 OffsetIntPtr);
672 return OffsetIntPtr;
675 /// Compute the constant difference between two pointer values.
676 /// If the difference is not a constant, returns zero.
677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
678 Value *RHS) {
679 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
680 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
682 // If LHS and RHS are not related via constant offsets to the same base
683 // value, there is nothing we can do here.
684 if (LHS != RHS)
685 return nullptr;
687 // Otherwise, the difference of LHS - RHS can be computed as:
688 // LHS - RHS
689 // = (LHSOffset + Base) - (RHSOffset + Base)
690 // = LHSOffset - RHSOffset
691 return ConstantExpr::getSub(LHSOffset, RHSOffset);
694 /// Given operands for a Sub, see if we can fold the result.
695 /// If not, this returns null.
696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
697 const SimplifyQuery &Q, unsigned MaxRecurse) {
698 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
699 return C;
701 // X - undef -> undef
702 // undef - X -> undef
703 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
704 return UndefValue::get(Op0->getType());
706 // X - 0 -> X
707 if (match(Op1, m_Zero()))
708 return Op0;
710 // X - X -> 0
711 if (Op0 == Op1)
712 return Constant::getNullValue(Op0->getType());
714 // Is this a negation?
715 if (match(Op0, m_Zero())) {
716 // 0 - X -> 0 if the sub is NUW.
717 if (isNUW)
718 return Constant::getNullValue(Op0->getType());
720 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
721 if (Known.Zero.isMaxSignedValue()) {
722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
723 // Op1 must be 0 because negating the minimum signed value is undefined.
724 if (isNSW)
725 return Constant::getNullValue(Op0->getType());
727 // 0 - X -> X if X is 0 or the minimum signed value.
728 return Op1;
732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
734 Value *X = nullptr, *Y = nullptr, *Z = Op1;
735 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
736 // See if "V === Y - Z" simplifies.
737 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
738 // It does! Now see if "X + V" simplifies.
739 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
740 // It does, we successfully reassociated!
741 ++NumReassoc;
742 return W;
744 // See if "V === X - Z" simplifies.
745 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
746 // It does! Now see if "Y + V" simplifies.
747 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
748 // It does, we successfully reassociated!
749 ++NumReassoc;
750 return W;
754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
755 // For example, X - (X + 1) -> -1
756 X = Op0;
757 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
758 // See if "V === X - Y" simplifies.
759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
760 // It does! Now see if "V - Z" simplifies.
761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
762 // It does, we successfully reassociated!
763 ++NumReassoc;
764 return W;
766 // See if "V === X - Z" simplifies.
767 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
768 // It does! Now see if "V - Y" simplifies.
769 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
770 // It does, we successfully reassociated!
771 ++NumReassoc;
772 return W;
776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
777 // For example, X - (X - Y) -> Y.
778 Z = Op0;
779 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
780 // See if "V === Z - X" simplifies.
781 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
782 // It does! Now see if "V + Y" simplifies.
783 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
784 // It does, we successfully reassociated!
785 ++NumReassoc;
786 return W;
789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
790 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
791 match(Op1, m_Trunc(m_Value(Y))))
792 if (X->getType() == Y->getType())
793 // See if "V === X - Y" simplifies.
794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
795 // It does! Now see if "trunc V" simplifies.
796 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
797 Q, MaxRecurse - 1))
798 // It does, return the simplified "trunc V".
799 return W;
801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
802 if (match(Op0, m_PtrToInt(m_Value(X))) &&
803 match(Op1, m_PtrToInt(m_Value(Y))))
804 if (Constant *Result = computePointerDifference(Q.DL, X, Y))
805 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
807 // i1 sub -> xor.
808 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
809 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
810 return V;
812 // Threading Sub over selects and phi nodes is pointless, so don't bother.
813 // Threading over the select in "A - select(cond, B, C)" means evaluating
814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
815 // only if B and C are equal. If B and C are equal then (since we assume
816 // that operands have already been simplified) "select(cond, B, C)" should
817 // have been simplified to the common value of B and C already. Analysing
818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
819 // for threading over phi nodes.
821 return nullptr;
824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
825 const SimplifyQuery &Q) {
826 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
829 /// Given operands for a Mul, see if we can fold the result.
830 /// If not, this returns null.
831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
832 unsigned MaxRecurse) {
833 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
834 return C;
836 // X * undef -> 0
837 // X * 0 -> 0
838 if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
839 return Constant::getNullValue(Op0->getType());
841 // X * 1 -> X
842 if (match(Op1, m_One()))
843 return Op0;
845 // (X / Y) * Y -> X if the division is exact.
846 Value *X = nullptr;
847 if (Q.IIQ.UseInstrInfo &&
848 (match(Op0,
849 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
850 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
851 return X;
853 // i1 mul -> and.
854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
855 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
856 return V;
858 // Try some generic simplifications for associative operations.
859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
860 MaxRecurse))
861 return V;
863 // Mul distributes over Add. Try some generic simplifications based on this.
864 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
865 Q, MaxRecurse))
866 return V;
868 // If the operation is with the result of a select instruction, check whether
869 // operating on either branch of the select always yields the same value.
870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
871 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
872 MaxRecurse))
873 return V;
875 // If the operation is with the result of a phi instruction, check whether
876 // operating on all incoming values of the phi always yields the same value.
877 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
878 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
879 MaxRecurse))
880 return V;
882 return nullptr;
885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
886 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
889 /// Check for common or similar folds of integer division or integer remainder.
890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
892 Type *Ty = Op0->getType();
894 // X / undef -> undef
895 // X % undef -> undef
896 if (match(Op1, m_Undef()))
897 return Op1;
899 // X / 0 -> undef
900 // X % 0 -> undef
901 // We don't need to preserve faults!
902 if (match(Op1, m_Zero()))
903 return UndefValue::get(Ty);
905 // If any element of a constant divisor vector is zero or undef, the whole op
906 // is undef.
907 auto *Op1C = dyn_cast<Constant>(Op1);
908 if (Op1C && Ty->isVectorTy()) {
909 unsigned NumElts = Ty->getVectorNumElements();
910 for (unsigned i = 0; i != NumElts; ++i) {
911 Constant *Elt = Op1C->getAggregateElement(i);
912 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
913 return UndefValue::get(Ty);
917 // undef / X -> 0
918 // undef % X -> 0
919 if (match(Op0, m_Undef()))
920 return Constant::getNullValue(Ty);
922 // 0 / X -> 0
923 // 0 % X -> 0
924 if (match(Op0, m_Zero()))
925 return Constant::getNullValue(Op0->getType());
927 // X / X -> 1
928 // X % X -> 0
929 if (Op0 == Op1)
930 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
932 // X / 1 -> X
933 // X % 1 -> 0
934 // If this is a boolean op (single-bit element type), we can't have
935 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
937 Value *X;
938 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
939 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
940 return IsDiv ? Op0 : Constant::getNullValue(Ty);
942 return nullptr;
945 /// Given a predicate and two operands, return true if the comparison is true.
946 /// This is a helper for div/rem simplification where we return some other value
947 /// when we can prove a relationship between the operands.
948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
949 const SimplifyQuery &Q, unsigned MaxRecurse) {
950 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
951 Constant *C = dyn_cast_or_null<Constant>(V);
952 return (C && C->isAllOnesValue());
955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
956 /// to simplify X % Y to X.
957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
958 unsigned MaxRecurse, bool IsSigned) {
959 // Recursion is always used, so bail out at once if we already hit the limit.
960 if (!MaxRecurse--)
961 return false;
963 if (IsSigned) {
964 // |X| / |Y| --> 0
966 // We require that 1 operand is a simple constant. That could be extended to
967 // 2 variables if we computed the sign bit for each.
969 // Make sure that a constant is not the minimum signed value because taking
970 // the abs() of that is undefined.
971 Type *Ty = X->getType();
972 const APInt *C;
973 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
974 // Is the variable divisor magnitude always greater than the constant
975 // dividend magnitude?
976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
977 Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
978 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
979 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
980 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
981 return true;
983 if (match(Y, m_APInt(C))) {
984 // Special-case: we can't take the abs() of a minimum signed value. If
985 // that's the divisor, then all we have to do is prove that the dividend
986 // is also not the minimum signed value.
987 if (C->isMinSignedValue())
988 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
990 // Is the variable dividend magnitude always less than the constant
991 // divisor magnitude?
992 // |X| < |C| --> X > -abs(C) and X < abs(C)
993 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
994 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
995 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
996 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
997 return true;
999 return false;
1002 // IsSigned == false.
1003 // Is the dividend unsigned less than the divisor?
1004 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1007 /// These are simplifications common to SDiv and UDiv.
1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1009 const SimplifyQuery &Q, unsigned MaxRecurse) {
1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1011 return C;
1013 if (Value *V = simplifyDivRem(Op0, Op1, true))
1014 return V;
1016 bool IsSigned = Opcode == Instruction::SDiv;
1018 // (X * Y) / Y -> X if the multiplication does not overflow.
1019 Value *X;
1020 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1021 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1022 // If the Mul does not overflow, then we are good to go.
1023 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1024 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1025 return X;
1026 // If X has the form X = A / Y, then X * Y cannot overflow.
1027 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1028 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1029 return X;
1032 // (X rem Y) / Y -> 0
1033 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1034 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1035 return Constant::getNullValue(Op0->getType());
1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1038 ConstantInt *C1, *C2;
1039 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1040 match(Op1, m_ConstantInt(C2))) {
1041 bool Overflow;
1042 (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1043 if (Overflow)
1044 return Constant::getNullValue(Op0->getType());
1047 // If the operation is with the result of a select instruction, check whether
1048 // operating on either branch of the select always yields the same value.
1049 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1050 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1051 return V;
1053 // If the operation is with the result of a phi instruction, check whether
1054 // operating on all incoming values of the phi always yields the same value.
1055 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1056 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1057 return V;
1059 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1060 return Constant::getNullValue(Op0->getType());
1062 return nullptr;
1065 /// These are simplifications common to SRem and URem.
1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1067 const SimplifyQuery &Q, unsigned MaxRecurse) {
1068 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1069 return C;
1071 if (Value *V = simplifyDivRem(Op0, Op1, false))
1072 return V;
1074 // (X % Y) % Y -> X % Y
1075 if ((Opcode == Instruction::SRem &&
1076 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1077 (Opcode == Instruction::URem &&
1078 match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1079 return Op0;
1081 // (X << Y) % X -> 0
1082 if (Q.IIQ.UseInstrInfo &&
1083 ((Opcode == Instruction::SRem &&
1084 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1085 (Opcode == Instruction::URem &&
1086 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1087 return Constant::getNullValue(Op0->getType());
1089 // If the operation is with the result of a select instruction, check whether
1090 // operating on either branch of the select always yields the same value.
1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1093 return V;
1095 // If the operation is with the result of a phi instruction, check whether
1096 // operating on all incoming values of the phi always yields the same value.
1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1099 return V;
1101 // If X / Y == 0, then X % Y == X.
1102 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1103 return Op0;
1105 return nullptr;
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1111 unsigned MaxRecurse) {
1112 // If two operands are negated and no signed overflow, return -1.
1113 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1114 return Constant::getAllOnesValue(Op0->getType());
1116 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1120 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1123 /// Given operands for a UDiv, see if we can fold the result.
1124 /// If not, this returns null.
1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1126 unsigned MaxRecurse) {
1127 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1131 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1134 /// Given operands for an SRem, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1137 unsigned MaxRecurse) {
1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1140 Value *X;
1141 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1142 return ConstantInt::getNullValue(Op0->getType());
1144 // If the two operands are negated, return 0.
1145 if (isKnownNegation(Op0, Op1))
1146 return ConstantInt::getNullValue(Op0->getType());
1148 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1155 /// Given operands for a URem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158 unsigned MaxRecurse) {
1159 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1163 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1166 /// Returns true if a shift by \c Amount always yields undef.
1167 static bool isUndefShift(Value *Amount) {
1168 Constant *C = dyn_cast<Constant>(Amount);
1169 if (!C)
1170 return false;
1172 // X shift by undef -> undef because it may shift by the bitwidth.
1173 if (isa<UndefValue>(C))
1174 return true;
1176 // Shifting by the bitwidth or more is undefined.
1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1178 if (CI->getValue().getLimitedValue() >=
1179 CI->getType()->getScalarSizeInBits())
1180 return true;
1182 // If all lanes of a vector shift are undefined the whole shift is.
1183 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1184 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1185 if (!isUndefShift(C->getAggregateElement(I)))
1186 return false;
1187 return true;
1190 return false;
1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1196 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1197 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1198 return C;
1200 // 0 shift by X -> 0
1201 if (match(Op0, m_Zero()))
1202 return Constant::getNullValue(Op0->getType());
1204 // X shift by 0 -> X
1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1206 // would be poison.
1207 Value *X;
1208 if (match(Op1, m_Zero()) ||
1209 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1210 return Op0;
1212 // Fold undefined shifts.
1213 if (isUndefShift(Op1))
1214 return UndefValue::get(Op0->getType());
1216 // If the operation is with the result of a select instruction, check whether
1217 // operating on either branch of the select always yields the same value.
1218 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1219 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1220 return V;
1222 // If the operation is with the result of a phi instruction, check whether
1223 // operating on all incoming values of the phi always yields the same value.
1224 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1225 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1226 return V;
1228 // If any bits in the shift amount make that value greater than or equal to
1229 // the number of bits in the type, the shift is undefined.
1230 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1231 if (Known.One.getLimitedValue() >= Known.getBitWidth())
1232 return UndefValue::get(Op0->getType());
1234 // If all valid bits in the shift amount are known zero, the first operand is
1235 // unchanged.
1236 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1237 if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1238 return Op0;
1240 return nullptr;
1243 /// Given operands for an Shl, LShr or AShr, see if we can
1244 /// fold the result. If not, this returns null.
1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1246 Value *Op1, bool isExact, const SimplifyQuery &Q,
1247 unsigned MaxRecurse) {
1248 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1249 return V;
1251 // X >> X -> 0
1252 if (Op0 == Op1)
1253 return Constant::getNullValue(Op0->getType());
1255 // undef >> X -> 0
1256 // undef >> X -> undef (if it's exact)
1257 if (match(Op0, m_Undef()))
1258 return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1260 // The low bit cannot be shifted out of an exact shift if it is set.
1261 if (isExact) {
1262 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1263 if (Op0Known.One[0])
1264 return Op0;
1267 return nullptr;
1270 /// Given operands for an Shl, see if we can fold the result.
1271 /// If not, this returns null.
1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1273 const SimplifyQuery &Q, unsigned MaxRecurse) {
1274 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1275 return V;
1277 // undef << X -> 0
1278 // undef << X -> undef if (if it's NSW/NUW)
1279 if (match(Op0, m_Undef()))
1280 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1282 // (X >> A) << A -> X
1283 Value *X;
1284 if (Q.IIQ.UseInstrInfo &&
1285 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1286 return X;
1288 // shl nuw i8 C, %x -> C iff C has sign bit set.
1289 if (isNUW && match(Op0, m_Negative()))
1290 return Op0;
1291 // NOTE: could use computeKnownBits() / LazyValueInfo,
1292 // but the cost-benefit analysis suggests it isn't worth it.
1294 return nullptr;
1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1298 const SimplifyQuery &Q) {
1299 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1302 /// Given operands for an LShr, see if we can fold the result.
1303 /// If not, this returns null.
1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1305 const SimplifyQuery &Q, unsigned MaxRecurse) {
1306 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1307 MaxRecurse))
1308 return V;
1310 // (X << A) >> A -> X
1311 Value *X;
1312 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1313 return X;
1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1316 // We can return X as we do in the above case since OR alters no bits in X.
1317 // SimplifyDemandedBits in InstCombine can do more general optimization for
1318 // bit manipulation. This pattern aims to provide opportunities for other
1319 // optimizers by supporting a simple but common case in InstSimplify.
1320 Value *Y;
1321 const APInt *ShRAmt, *ShLAmt;
1322 if (match(Op1, m_APInt(ShRAmt)) &&
1323 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1324 *ShRAmt == *ShLAmt) {
1325 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1326 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1327 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1328 if (ShRAmt->uge(EffWidthY))
1329 return X;
1332 return nullptr;
1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1336 const SimplifyQuery &Q) {
1337 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1340 /// Given operands for an AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1343 const SimplifyQuery &Q, unsigned MaxRecurse) {
1344 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1345 MaxRecurse))
1346 return V;
1348 // all ones >>a X -> -1
1349 // Do not return Op0 because it may contain undef elements if it's a vector.
1350 if (match(Op0, m_AllOnes()))
1351 return Constant::getAllOnesValue(Op0->getType());
1353 // (X << A) >> A -> X
1354 Value *X;
1355 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1356 return X;
1358 // Arithmetic shifting an all-sign-bit value is a no-op.
1359 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1360 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1361 return Op0;
1363 return nullptr;
1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1367 const SimplifyQuery &Q) {
1368 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1371 /// Commuted variants are assumed to be handled by calling this function again
1372 /// with the parameters swapped.
1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1374 ICmpInst *UnsignedICmp, bool IsAnd) {
1375 Value *X, *Y;
1377 ICmpInst::Predicate EqPred;
1378 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1379 !ICmpInst::isEquality(EqPred))
1380 return nullptr;
1382 ICmpInst::Predicate UnsignedPred;
1383 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1384 ICmpInst::isUnsigned(UnsignedPred))
1386 else if (match(UnsignedICmp,
1387 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1388 ICmpInst::isUnsigned(UnsignedPred))
1389 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1390 else
1391 return nullptr;
1393 // X < Y && Y != 0 --> X < Y
1394 // X < Y || Y != 0 --> Y != 0
1395 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1396 return IsAnd ? UnsignedICmp : ZeroICmp;
1398 // X >= Y || Y != 0 --> true
1399 // X >= Y || Y == 0 --> X >= Y
1400 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1401 if (EqPred == ICmpInst::ICMP_NE)
1402 return getTrue(UnsignedICmp->getType());
1403 return UnsignedICmp;
1406 // X < Y && Y == 0 --> false
1407 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1408 IsAnd)
1409 return getFalse(UnsignedICmp->getType());
1411 return nullptr;
1414 /// Commuted variants are assumed to be handled by calling this function again
1415 /// with the parameters swapped.
1416 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1417 ICmpInst::Predicate Pred0, Pred1;
1418 Value *A ,*B;
1419 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1420 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1421 return nullptr;
1423 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1424 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1425 // can eliminate Op1 from this 'and'.
1426 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1427 return Op0;
1429 // Check for any combination of predicates that are guaranteed to be disjoint.
1430 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1431 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1432 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1433 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1434 return getFalse(Op0->getType());
1436 return nullptr;
1439 /// Commuted variants are assumed to be handled by calling this function again
1440 /// with the parameters swapped.
1441 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1442 ICmpInst::Predicate Pred0, Pred1;
1443 Value *A ,*B;
1444 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1445 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1446 return nullptr;
1448 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1449 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1450 // can eliminate Op0 from this 'or'.
1451 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1452 return Op1;
1454 // Check for any combination of predicates that cover the entire range of
1455 // possibilities.
1456 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1457 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1458 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1459 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1460 return getTrue(Op0->getType());
1462 return nullptr;
1465 /// Test if a pair of compares with a shared operand and 2 constants has an
1466 /// empty set intersection, full set union, or if one compare is a superset of
1467 /// the other.
1468 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1469 bool IsAnd) {
1470 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1471 if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1472 return nullptr;
1474 const APInt *C0, *C1;
1475 if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1476 !match(Cmp1->getOperand(1), m_APInt(C1)))
1477 return nullptr;
1479 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1480 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1482 // For and-of-compares, check if the intersection is empty:
1483 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1484 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1485 return getFalse(Cmp0->getType());
1487 // For or-of-compares, check if the union is full:
1488 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1489 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1490 return getTrue(Cmp0->getType());
1492 // Is one range a superset of the other?
1493 // If this is and-of-compares, take the smaller set:
1494 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1495 // If this is or-of-compares, take the larger set:
1496 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1497 if (Range0.contains(Range1))
1498 return IsAnd ? Cmp1 : Cmp0;
1499 if (Range1.contains(Range0))
1500 return IsAnd ? Cmp0 : Cmp1;
1502 return nullptr;
1505 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1506 bool IsAnd) {
1507 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1508 if (!match(Cmp0->getOperand(1), m_Zero()) ||
1509 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1510 return nullptr;
1512 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1513 return nullptr;
1515 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1516 Value *X = Cmp0->getOperand(0);
1517 Value *Y = Cmp1->getOperand(0);
1519 // If one of the compares is a masked version of a (not) null check, then
1520 // that compare implies the other, so we eliminate the other. Optionally, look
1521 // through a pointer-to-int cast to match a null check of a pointer type.
1523 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1524 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1525 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1526 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1527 if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1528 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1529 return Cmp1;
1531 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1532 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1533 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1534 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1535 if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1536 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1537 return Cmp0;
1539 return nullptr;
1542 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1543 const InstrInfoQuery &IIQ) {
1544 // (icmp (add V, C0), C1) & (icmp V, C0)
1545 ICmpInst::Predicate Pred0, Pred1;
1546 const APInt *C0, *C1;
1547 Value *V;
1548 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1549 return nullptr;
1551 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1552 return nullptr;
1554 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1555 if (AddInst->getOperand(1) != Op1->getOperand(1))
1556 return nullptr;
1558 Type *ITy = Op0->getType();
1559 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1560 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1562 const APInt Delta = *C1 - *C0;
1563 if (C0->isStrictlyPositive()) {
1564 if (Delta == 2) {
1565 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1566 return getFalse(ITy);
1567 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1568 return getFalse(ITy);
1570 if (Delta == 1) {
1571 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1572 return getFalse(ITy);
1573 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1574 return getFalse(ITy);
1577 if (C0->getBoolValue() && isNUW) {
1578 if (Delta == 2)
1579 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1580 return getFalse(ITy);
1581 if (Delta == 1)
1582 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1583 return getFalse(ITy);
1586 return nullptr;
1589 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1590 const InstrInfoQuery &IIQ) {
1591 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1592 return X;
1593 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1594 return X;
1596 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1597 return X;
1598 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1599 return X;
1601 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1602 return X;
1604 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1605 return X;
1607 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
1608 return X;
1609 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
1610 return X;
1612 return nullptr;
1615 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1616 const InstrInfoQuery &IIQ) {
1617 // (icmp (add V, C0), C1) | (icmp V, C0)
1618 ICmpInst::Predicate Pred0, Pred1;
1619 const APInt *C0, *C1;
1620 Value *V;
1621 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1622 return nullptr;
1624 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1625 return nullptr;
1627 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1628 if (AddInst->getOperand(1) != Op1->getOperand(1))
1629 return nullptr;
1631 Type *ITy = Op0->getType();
1632 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1633 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1635 const APInt Delta = *C1 - *C0;
1636 if (C0->isStrictlyPositive()) {
1637 if (Delta == 2) {
1638 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1639 return getTrue(ITy);
1640 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1641 return getTrue(ITy);
1643 if (Delta == 1) {
1644 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1645 return getTrue(ITy);
1646 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1647 return getTrue(ITy);
1650 if (C0->getBoolValue() && isNUW) {
1651 if (Delta == 2)
1652 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1653 return getTrue(ITy);
1654 if (Delta == 1)
1655 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1656 return getTrue(ITy);
1659 return nullptr;
1662 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1663 const InstrInfoQuery &IIQ) {
1664 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1665 return X;
1666 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1667 return X;
1669 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1670 return X;
1671 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1672 return X;
1674 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1675 return X;
1677 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1678 return X;
1680 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
1681 return X;
1682 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
1683 return X;
1685 return nullptr;
1688 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1689 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1690 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1691 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1692 if (LHS0->getType() != RHS0->getType())
1693 return nullptr;
1695 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1696 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1697 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1698 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1699 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1700 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1701 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1702 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1703 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1704 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1705 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1706 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1707 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1708 return RHS;
1710 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1711 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1712 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1713 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1714 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1715 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1716 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1717 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1718 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1719 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1720 return LHS;
1723 return nullptr;
1726 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1727 Value *Op0, Value *Op1, bool IsAnd) {
1728 // Look through casts of the 'and' operands to find compares.
1729 auto *Cast0 = dyn_cast<CastInst>(Op0);
1730 auto *Cast1 = dyn_cast<CastInst>(Op1);
1731 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1732 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1733 Op0 = Cast0->getOperand(0);
1734 Op1 = Cast1->getOperand(0);
1737 Value *V = nullptr;
1738 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1739 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1740 if (ICmp0 && ICmp1)
1741 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
1742 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
1744 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1745 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1746 if (FCmp0 && FCmp1)
1747 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1749 if (!V)
1750 return nullptr;
1751 if (!Cast0)
1752 return V;
1754 // If we looked through casts, we can only handle a constant simplification
1755 // because we are not allowed to create a cast instruction here.
1756 if (auto *C = dyn_cast<Constant>(V))
1757 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1759 return nullptr;
1762 /// Check that the Op1 is in expected form, i.e.:
1763 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1764 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1765 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1766 Value *X) {
1767 auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1768 // We should only be extracting the overflow bit.
1769 if (!Extract || !Extract->getIndices().equals(1))
1770 return false;
1771 Value *Agg = Extract->getAggregateOperand();
1772 // This should be a multiplication-with-overflow intrinsic.
1773 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1774 m_Intrinsic<Intrinsic::smul_with_overflow>())))
1775 return false;
1776 // One of its multipliers should be the value we checked for zero before.
1777 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1778 m_Argument<1>(m_Specific(X)))))
1779 return false;
1780 return true;
1783 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1784 /// other form of check, e.g. one that was using division; it may have been
1785 /// guarded against division-by-zero. We can drop that check now.
1786 /// Look for:
1787 /// %Op0 = icmp ne i4 %X, 0
1788 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1789 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1790 /// %??? = and i1 %Op0, %Op1
1791 /// We can just return %Op1
1792 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1793 ICmpInst::Predicate Pred;
1794 Value *X;
1795 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1796 Pred != ICmpInst::Predicate::ICMP_NE)
1797 return nullptr;
1798 // Is Op1 in expected form?
1799 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1800 return nullptr;
1801 // Can omit 'and', and just return the overflow bit.
1802 return Op1;
1805 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1806 /// other form of check, e.g. one that was using division; it may have been
1807 /// guarded against division-by-zero. We can drop that check now.
1808 /// Look for:
1809 /// %Op0 = icmp eq i4 %X, 0
1810 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1811 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1812 /// %NotOp1 = xor i1 %Op1, true
1813 /// %or = or i1 %Op0, %NotOp1
1814 /// We can just return %NotOp1
1815 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1816 Value *NotOp1) {
1817 ICmpInst::Predicate Pred;
1818 Value *X;
1819 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1820 Pred != ICmpInst::Predicate::ICMP_EQ)
1821 return nullptr;
1822 // We expect the other hand of an 'or' to be a 'not'.
1823 Value *Op1;
1824 if (!match(NotOp1, m_Not(m_Value(Op1))))
1825 return nullptr;
1826 // Is Op1 in expected form?
1827 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1828 return nullptr;
1829 // Can omit 'and', and just return the inverted overflow bit.
1830 return NotOp1;
1833 /// Given operands for an And, see if we can fold the result.
1834 /// If not, this returns null.
1835 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1836 unsigned MaxRecurse) {
1837 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1838 return C;
1840 // X & undef -> 0
1841 if (match(Op1, m_Undef()))
1842 return Constant::getNullValue(Op0->getType());
1844 // X & X = X
1845 if (Op0 == Op1)
1846 return Op0;
1848 // X & 0 = 0
1849 if (match(Op1, m_Zero()))
1850 return Constant::getNullValue(Op0->getType());
1852 // X & -1 = X
1853 if (match(Op1, m_AllOnes()))
1854 return Op0;
1856 // A & ~A = ~A & A = 0
1857 if (match(Op0, m_Not(m_Specific(Op1))) ||
1858 match(Op1, m_Not(m_Specific(Op0))))
1859 return Constant::getNullValue(Op0->getType());
1861 // (A | ?) & A = A
1862 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1863 return Op1;
1865 // A & (A | ?) = A
1866 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1867 return Op0;
1869 // A mask that only clears known zeros of a shifted value is a no-op.
1870 Value *X;
1871 const APInt *Mask;
1872 const APInt *ShAmt;
1873 if (match(Op1, m_APInt(Mask))) {
1874 // If all bits in the inverted and shifted mask are clear:
1875 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1876 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1877 (~(*Mask)).lshr(*ShAmt).isNullValue())
1878 return Op0;
1880 // If all bits in the inverted and shifted mask are clear:
1881 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1882 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1883 (~(*Mask)).shl(*ShAmt).isNullValue())
1884 return Op0;
1887 // If we have a multiplication overflow check that is being 'and'ed with a
1888 // check that one of the multipliers is not zero, we can omit the 'and', and
1889 // only keep the overflow check.
1890 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
1891 return V;
1892 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
1893 return V;
1895 // A & (-A) = A if A is a power of two or zero.
1896 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1897 match(Op1, m_Neg(m_Specific(Op0)))) {
1898 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1899 Q.DT))
1900 return Op0;
1901 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1902 Q.DT))
1903 return Op1;
1906 // This is a similar pattern used for checking if a value is a power-of-2:
1907 // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1908 // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
1909 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
1910 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1911 return Constant::getNullValue(Op1->getType());
1912 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
1913 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1914 return Constant::getNullValue(Op0->getType());
1916 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1917 return V;
1919 // Try some generic simplifications for associative operations.
1920 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1921 MaxRecurse))
1922 return V;
1924 // And distributes over Or. Try some generic simplifications based on this.
1925 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1926 Q, MaxRecurse))
1927 return V;
1929 // And distributes over Xor. Try some generic simplifications based on this.
1930 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1931 Q, MaxRecurse))
1932 return V;
1934 // If the operation is with the result of a select instruction, check whether
1935 // operating on either branch of the select always yields the same value.
1936 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1937 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1938 MaxRecurse))
1939 return V;
1941 // If the operation is with the result of a phi instruction, check whether
1942 // operating on all incoming values of the phi always yields the same value.
1943 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1944 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1945 MaxRecurse))
1946 return V;
1948 // Assuming the effective width of Y is not larger than A, i.e. all bits
1949 // from X and Y are disjoint in (X << A) | Y,
1950 // if the mask of this AND op covers all bits of X or Y, while it covers
1951 // no bits from the other, we can bypass this AND op. E.g.,
1952 // ((X << A) | Y) & Mask -> Y,
1953 // if Mask = ((1 << effective_width_of(Y)) - 1)
1954 // ((X << A) | Y) & Mask -> X << A,
1955 // if Mask = ((1 << effective_width_of(X)) - 1) << A
1956 // SimplifyDemandedBits in InstCombine can optimize the general case.
1957 // This pattern aims to help other passes for a common case.
1958 Value *Y, *XShifted;
1959 if (match(Op1, m_APInt(Mask)) &&
1960 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
1961 m_Value(XShifted)),
1962 m_Value(Y)))) {
1963 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1964 const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
1965 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1966 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1967 if (EffWidthY <= ShftCnt) {
1968 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
1969 Q.DT);
1970 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
1971 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
1972 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
1973 // If the mask is extracting all bits from X or Y as is, we can skip
1974 // this AND op.
1975 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
1976 return Y;
1977 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
1978 return XShifted;
1982 return nullptr;
1985 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1986 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1989 /// Given operands for an Or, see if we can fold the result.
1990 /// If not, this returns null.
1991 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1992 unsigned MaxRecurse) {
1993 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1994 return C;
1996 // X | undef -> -1
1997 // X | -1 = -1
1998 // Do not return Op1 because it may contain undef elements if it's a vector.
1999 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
2000 return Constant::getAllOnesValue(Op0->getType());
2002 // X | X = X
2003 // X | 0 = X
2004 if (Op0 == Op1 || match(Op1, m_Zero()))
2005 return Op0;
2007 // A | ~A = ~A | A = -1
2008 if (match(Op0, m_Not(m_Specific(Op1))) ||
2009 match(Op1, m_Not(m_Specific(Op0))))
2010 return Constant::getAllOnesValue(Op0->getType());
2012 // (A & ?) | A = A
2013 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2014 return Op1;
2016 // A | (A & ?) = A
2017 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2018 return Op0;
2020 // ~(A & ?) | A = -1
2021 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2022 return Constant::getAllOnesValue(Op1->getType());
2024 // A | ~(A & ?) = -1
2025 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2026 return Constant::getAllOnesValue(Op0->getType());
2028 Value *A, *B;
2029 // (A & ~B) | (A ^ B) -> (A ^ B)
2030 // (~B & A) | (A ^ B) -> (A ^ B)
2031 // (A & ~B) | (B ^ A) -> (B ^ A)
2032 // (~B & A) | (B ^ A) -> (B ^ A)
2033 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2034 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2035 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2036 return Op1;
2038 // Commute the 'or' operands.
2039 // (A ^ B) | (A & ~B) -> (A ^ B)
2040 // (A ^ B) | (~B & A) -> (A ^ B)
2041 // (B ^ A) | (A & ~B) -> (B ^ A)
2042 // (B ^ A) | (~B & A) -> (B ^ A)
2043 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2044 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2045 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2046 return Op0;
2048 // (A & B) | (~A ^ B) -> (~A ^ B)
2049 // (B & A) | (~A ^ B) -> (~A ^ B)
2050 // (A & B) | (B ^ ~A) -> (B ^ ~A)
2051 // (B & A) | (B ^ ~A) -> (B ^ ~A)
2052 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2053 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2054 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2055 return Op1;
2057 // (~A ^ B) | (A & B) -> (~A ^ B)
2058 // (~A ^ B) | (B & A) -> (~A ^ B)
2059 // (B ^ ~A) | (A & B) -> (B ^ ~A)
2060 // (B ^ ~A) | (B & A) -> (B ^ ~A)
2061 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2062 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2063 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2064 return Op0;
2066 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2067 return V;
2069 // If we have a multiplication overflow check that is being 'and'ed with a
2070 // check that one of the multipliers is not zero, we can omit the 'and', and
2071 // only keep the overflow check.
2072 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2073 return V;
2074 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2075 return V;
2077 // Try some generic simplifications for associative operations.
2078 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2079 MaxRecurse))
2080 return V;
2082 // Or distributes over And. Try some generic simplifications based on this.
2083 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2084 MaxRecurse))
2085 return V;
2087 // If the operation is with the result of a select instruction, check whether
2088 // operating on either branch of the select always yields the same value.
2089 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2090 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2091 MaxRecurse))
2092 return V;
2094 // (A & C1)|(B & C2)
2095 const APInt *C1, *C2;
2096 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2097 match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2098 if (*C1 == ~*C2) {
2099 // (A & C1)|(B & C2)
2100 // If we have: ((V + N) & C1) | (V & C2)
2101 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2102 // replace with V+N.
2103 Value *N;
2104 if (C2->isMask() && // C2 == 0+1+
2105 match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2106 // Add commutes, try both ways.
2107 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2108 return A;
2110 // Or commutes, try both ways.
2111 if (C1->isMask() &&
2112 match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2113 // Add commutes, try both ways.
2114 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2115 return B;
2120 // If the operation is with the result of a phi instruction, check whether
2121 // operating on all incoming values of the phi always yields the same value.
2122 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2123 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2124 return V;
2126 return nullptr;
2129 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2130 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2133 /// Given operands for a Xor, see if we can fold the result.
2134 /// If not, this returns null.
2135 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2136 unsigned MaxRecurse) {
2137 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2138 return C;
2140 // A ^ undef -> undef
2141 if (match(Op1, m_Undef()))
2142 return Op1;
2144 // A ^ 0 = A
2145 if (match(Op1, m_Zero()))
2146 return Op0;
2148 // A ^ A = 0
2149 if (Op0 == Op1)
2150 return Constant::getNullValue(Op0->getType());
2152 // A ^ ~A = ~A ^ A = -1
2153 if (match(Op0, m_Not(m_Specific(Op1))) ||
2154 match(Op1, m_Not(m_Specific(Op0))))
2155 return Constant::getAllOnesValue(Op0->getType());
2157 // Try some generic simplifications for associative operations.
2158 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2159 MaxRecurse))
2160 return V;
2162 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2163 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2164 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2165 // only if B and C are equal. If B and C are equal then (since we assume
2166 // that operands have already been simplified) "select(cond, B, C)" should
2167 // have been simplified to the common value of B and C already. Analysing
2168 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2169 // for threading over phi nodes.
2171 return nullptr;
2174 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2175 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2179 static Type *GetCompareTy(Value *Op) {
2180 return CmpInst::makeCmpResultType(Op->getType());
2183 /// Rummage around inside V looking for something equivalent to the comparison
2184 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2185 /// Helper function for analyzing max/min idioms.
2186 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2187 Value *LHS, Value *RHS) {
2188 SelectInst *SI = dyn_cast<SelectInst>(V);
2189 if (!SI)
2190 return nullptr;
2191 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2192 if (!Cmp)
2193 return nullptr;
2194 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2195 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2196 return Cmp;
2197 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2198 LHS == CmpRHS && RHS == CmpLHS)
2199 return Cmp;
2200 return nullptr;
2203 // A significant optimization not implemented here is assuming that alloca
2204 // addresses are not equal to incoming argument values. They don't *alias*,
2205 // as we say, but that doesn't mean they aren't equal, so we take a
2206 // conservative approach.
2208 // This is inspired in part by C++11 5.10p1:
2209 // "Two pointers of the same type compare equal if and only if they are both
2210 // null, both point to the same function, or both represent the same
2211 // address."
2213 // This is pretty permissive.
2215 // It's also partly due to C11 6.5.9p6:
2216 // "Two pointers compare equal if and only if both are null pointers, both are
2217 // pointers to the same object (including a pointer to an object and a
2218 // subobject at its beginning) or function, both are pointers to one past the
2219 // last element of the same array object, or one is a pointer to one past the
2220 // end of one array object and the other is a pointer to the start of a
2221 // different array object that happens to immediately follow the first array
2222 // object in the address space.)
2224 // C11's version is more restrictive, however there's no reason why an argument
2225 // couldn't be a one-past-the-end value for a stack object in the caller and be
2226 // equal to the beginning of a stack object in the callee.
2228 // If the C and C++ standards are ever made sufficiently restrictive in this
2229 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2230 // this optimization.
2231 static Constant *
2232 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2233 const DominatorTree *DT, CmpInst::Predicate Pred,
2234 AssumptionCache *AC, const Instruction *CxtI,
2235 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2236 // First, skip past any trivial no-ops.
2237 LHS = LHS->stripPointerCasts();
2238 RHS = RHS->stripPointerCasts();
2240 // A non-null pointer is not equal to a null pointer.
2241 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2242 IIQ.UseInstrInfo) &&
2243 isa<ConstantPointerNull>(RHS) &&
2244 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2245 return ConstantInt::get(GetCompareTy(LHS),
2246 !CmpInst::isTrueWhenEqual(Pred));
2248 // We can only fold certain predicates on pointer comparisons.
2249 switch (Pred) {
2250 default:
2251 return nullptr;
2253 // Equality comaprisons are easy to fold.
2254 case CmpInst::ICMP_EQ:
2255 case CmpInst::ICMP_NE:
2256 break;
2258 // We can only handle unsigned relational comparisons because 'inbounds' on
2259 // a GEP only protects against unsigned wrapping.
2260 case CmpInst::ICMP_UGT:
2261 case CmpInst::ICMP_UGE:
2262 case CmpInst::ICMP_ULT:
2263 case CmpInst::ICMP_ULE:
2264 // However, we have to switch them to their signed variants to handle
2265 // negative indices from the base pointer.
2266 Pred = ICmpInst::getSignedPredicate(Pred);
2267 break;
2270 // Strip off any constant offsets so that we can reason about them.
2271 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2272 // here and compare base addresses like AliasAnalysis does, however there are
2273 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2274 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2275 // doesn't need to guarantee pointer inequality when it says NoAlias.
2276 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2277 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2279 // If LHS and RHS are related via constant offsets to the same base
2280 // value, we can replace it with an icmp which just compares the offsets.
2281 if (LHS == RHS)
2282 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2284 // Various optimizations for (in)equality comparisons.
2285 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2286 // Different non-empty allocations that exist at the same time have
2287 // different addresses (if the program can tell). Global variables always
2288 // exist, so they always exist during the lifetime of each other and all
2289 // allocas. Two different allocas usually have different addresses...
2291 // However, if there's an @llvm.stackrestore dynamically in between two
2292 // allocas, they may have the same address. It's tempting to reduce the
2293 // scope of the problem by only looking at *static* allocas here. That would
2294 // cover the majority of allocas while significantly reducing the likelihood
2295 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2296 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2297 // an entry block. Also, if we have a block that's not attached to a
2298 // function, we can't tell if it's "static" under the current definition.
2299 // Theoretically, this problem could be fixed by creating a new kind of
2300 // instruction kind specifically for static allocas. Such a new instruction
2301 // could be required to be at the top of the entry block, thus preventing it
2302 // from being subject to a @llvm.stackrestore. Instcombine could even
2303 // convert regular allocas into these special allocas. It'd be nifty.
2304 // However, until then, this problem remains open.
2306 // So, we'll assume that two non-empty allocas have different addresses
2307 // for now.
2309 // With all that, if the offsets are within the bounds of their allocations
2310 // (and not one-past-the-end! so we can't use inbounds!), and their
2311 // allocations aren't the same, the pointers are not equal.
2313 // Note that it's not necessary to check for LHS being a global variable
2314 // address, due to canonicalization and constant folding.
2315 if (isa<AllocaInst>(LHS) &&
2316 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2317 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2318 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2319 uint64_t LHSSize, RHSSize;
2320 ObjectSizeOpts Opts;
2321 Opts.NullIsUnknownSize =
2322 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2323 if (LHSOffsetCI && RHSOffsetCI &&
2324 getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2325 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2326 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2327 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2328 if (!LHSOffsetValue.isNegative() &&
2329 !RHSOffsetValue.isNegative() &&
2330 LHSOffsetValue.ult(LHSSize) &&
2331 RHSOffsetValue.ult(RHSSize)) {
2332 return ConstantInt::get(GetCompareTy(LHS),
2333 !CmpInst::isTrueWhenEqual(Pred));
2337 // Repeat the above check but this time without depending on DataLayout
2338 // or being able to compute a precise size.
2339 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2340 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2341 LHSOffset->isNullValue() &&
2342 RHSOffset->isNullValue())
2343 return ConstantInt::get(GetCompareTy(LHS),
2344 !CmpInst::isTrueWhenEqual(Pred));
2347 // Even if an non-inbounds GEP occurs along the path we can still optimize
2348 // equality comparisons concerning the result. We avoid walking the whole
2349 // chain again by starting where the last calls to
2350 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2351 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2352 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2353 if (LHS == RHS)
2354 return ConstantExpr::getICmp(Pred,
2355 ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2356 ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2358 // If one side of the equality comparison must come from a noalias call
2359 // (meaning a system memory allocation function), and the other side must
2360 // come from a pointer that cannot overlap with dynamically-allocated
2361 // memory within the lifetime of the current function (allocas, byval
2362 // arguments, globals), then determine the comparison result here.
2363 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2364 GetUnderlyingObjects(LHS, LHSUObjs, DL);
2365 GetUnderlyingObjects(RHS, RHSUObjs, DL);
2367 // Is the set of underlying objects all noalias calls?
2368 auto IsNAC = [](ArrayRef<const Value *> Objects) {
2369 return all_of(Objects, isNoAliasCall);
2372 // Is the set of underlying objects all things which must be disjoint from
2373 // noalias calls. For allocas, we consider only static ones (dynamic
2374 // allocas might be transformed into calls to malloc not simultaneously
2375 // live with the compared-to allocation). For globals, we exclude symbols
2376 // that might be resolve lazily to symbols in another dynamically-loaded
2377 // library (and, thus, could be malloc'ed by the implementation).
2378 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2379 return all_of(Objects, [](const Value *V) {
2380 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2381 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2382 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2383 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2384 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2385 !GV->isThreadLocal();
2386 if (const Argument *A = dyn_cast<Argument>(V))
2387 return A->hasByValAttr();
2388 return false;
2392 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2393 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2394 return ConstantInt::get(GetCompareTy(LHS),
2395 !CmpInst::isTrueWhenEqual(Pred));
2397 // Fold comparisons for non-escaping pointer even if the allocation call
2398 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2399 // dynamic allocation call could be either of the operands.
2400 Value *MI = nullptr;
2401 if (isAllocLikeFn(LHS, TLI) &&
2402 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2403 MI = LHS;
2404 else if (isAllocLikeFn(RHS, TLI) &&
2405 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2406 MI = RHS;
2407 // FIXME: We should also fold the compare when the pointer escapes, but the
2408 // compare dominates the pointer escape
2409 if (MI && !PointerMayBeCaptured(MI, true, true))
2410 return ConstantInt::get(GetCompareTy(LHS),
2411 CmpInst::isFalseWhenEqual(Pred));
2414 // Otherwise, fail.
2415 return nullptr;
2418 /// Fold an icmp when its operands have i1 scalar type.
2419 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2420 Value *RHS, const SimplifyQuery &Q) {
2421 Type *ITy = GetCompareTy(LHS); // The return type.
2422 Type *OpTy = LHS->getType(); // The operand type.
2423 if (!OpTy->isIntOrIntVectorTy(1))
2424 return nullptr;
2426 // A boolean compared to true/false can be simplified in 14 out of the 20
2427 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2428 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2429 if (match(RHS, m_Zero())) {
2430 switch (Pred) {
2431 case CmpInst::ICMP_NE: // X != 0 -> X
2432 case CmpInst::ICMP_UGT: // X >u 0 -> X
2433 case CmpInst::ICMP_SLT: // X <s 0 -> X
2434 return LHS;
2436 case CmpInst::ICMP_ULT: // X <u 0 -> false
2437 case CmpInst::ICMP_SGT: // X >s 0 -> false
2438 return getFalse(ITy);
2440 case CmpInst::ICMP_UGE: // X >=u 0 -> true
2441 case CmpInst::ICMP_SLE: // X <=s 0 -> true
2442 return getTrue(ITy);
2444 default: break;
2446 } else if (match(RHS, m_One())) {
2447 switch (Pred) {
2448 case CmpInst::ICMP_EQ: // X == 1 -> X
2449 case CmpInst::ICMP_UGE: // X >=u 1 -> X
2450 case CmpInst::ICMP_SLE: // X <=s -1 -> X
2451 return LHS;
2453 case CmpInst::ICMP_UGT: // X >u 1 -> false
2454 case CmpInst::ICMP_SLT: // X <s -1 -> false
2455 return getFalse(ITy);
2457 case CmpInst::ICMP_ULE: // X <=u 1 -> true
2458 case CmpInst::ICMP_SGE: // X >=s -1 -> true
2459 return getTrue(ITy);
2461 default: break;
2465 switch (Pred) {
2466 default:
2467 break;
2468 case ICmpInst::ICMP_UGE:
2469 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2470 return getTrue(ITy);
2471 break;
2472 case ICmpInst::ICMP_SGE:
2473 /// For signed comparison, the values for an i1 are 0 and -1
2474 /// respectively. This maps into a truth table of:
2475 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2476 /// 0 | 0 | 1 (0 >= 0) | 1
2477 /// 0 | 1 | 1 (0 >= -1) | 1
2478 /// 1 | 0 | 0 (-1 >= 0) | 0
2479 /// 1 | 1 | 1 (-1 >= -1) | 1
2480 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2481 return getTrue(ITy);
2482 break;
2483 case ICmpInst::ICMP_ULE:
2484 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2485 return getTrue(ITy);
2486 break;
2489 return nullptr;
2492 /// Try hard to fold icmp with zero RHS because this is a common case.
2493 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2494 Value *RHS, const SimplifyQuery &Q) {
2495 if (!match(RHS, m_Zero()))
2496 return nullptr;
2498 Type *ITy = GetCompareTy(LHS); // The return type.
2499 switch (Pred) {
2500 default:
2501 llvm_unreachable("Unknown ICmp predicate!");
2502 case ICmpInst::ICMP_ULT:
2503 return getFalse(ITy);
2504 case ICmpInst::ICMP_UGE:
2505 return getTrue(ITy);
2506 case ICmpInst::ICMP_EQ:
2507 case ICmpInst::ICMP_ULE:
2508 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2509 return getFalse(ITy);
2510 break;
2511 case ICmpInst::ICMP_NE:
2512 case ICmpInst::ICMP_UGT:
2513 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2514 return getTrue(ITy);
2515 break;
2516 case ICmpInst::ICMP_SLT: {
2517 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2518 if (LHSKnown.isNegative())
2519 return getTrue(ITy);
2520 if (LHSKnown.isNonNegative())
2521 return getFalse(ITy);
2522 break;
2524 case ICmpInst::ICMP_SLE: {
2525 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2526 if (LHSKnown.isNegative())
2527 return getTrue(ITy);
2528 if (LHSKnown.isNonNegative() &&
2529 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2530 return getFalse(ITy);
2531 break;
2533 case ICmpInst::ICMP_SGE: {
2534 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2535 if (LHSKnown.isNegative())
2536 return getFalse(ITy);
2537 if (LHSKnown.isNonNegative())
2538 return getTrue(ITy);
2539 break;
2541 case ICmpInst::ICMP_SGT: {
2542 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2543 if (LHSKnown.isNegative())
2544 return getFalse(ITy);
2545 if (LHSKnown.isNonNegative() &&
2546 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2547 return getTrue(ITy);
2548 break;
2552 return nullptr;
2555 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2556 Value *RHS, const InstrInfoQuery &IIQ) {
2557 Type *ITy = GetCompareTy(RHS); // The return type.
2559 Value *X;
2560 // Sign-bit checks can be optimized to true/false after unsigned
2561 // floating-point casts:
2562 // icmp slt (bitcast (uitofp X)), 0 --> false
2563 // icmp sgt (bitcast (uitofp X)), -1 --> true
2564 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2565 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2566 return ConstantInt::getFalse(ITy);
2567 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2568 return ConstantInt::getTrue(ITy);
2571 const APInt *C;
2572 if (!match(RHS, m_APInt(C)))
2573 return nullptr;
2575 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2576 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2577 if (RHS_CR.isEmptySet())
2578 return ConstantInt::getFalse(ITy);
2579 if (RHS_CR.isFullSet())
2580 return ConstantInt::getTrue(ITy);
2582 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2583 if (!LHS_CR.isFullSet()) {
2584 if (RHS_CR.contains(LHS_CR))
2585 return ConstantInt::getTrue(ITy);
2586 if (RHS_CR.inverse().contains(LHS_CR))
2587 return ConstantInt::getFalse(ITy);
2590 return nullptr;
2593 /// TODO: A large part of this logic is duplicated in InstCombine's
2594 /// foldICmpBinOp(). We should be able to share that and avoid the code
2595 /// duplication.
2596 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2597 Value *RHS, const SimplifyQuery &Q,
2598 unsigned MaxRecurse) {
2599 Type *ITy = GetCompareTy(LHS); // The return type.
2601 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2602 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2603 if (MaxRecurse && (LBO || RBO)) {
2604 // Analyze the case when either LHS or RHS is an add instruction.
2605 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2606 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2607 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2608 if (LBO && LBO->getOpcode() == Instruction::Add) {
2609 A = LBO->getOperand(0);
2610 B = LBO->getOperand(1);
2611 NoLHSWrapProblem =
2612 ICmpInst::isEquality(Pred) ||
2613 (CmpInst::isUnsigned(Pred) &&
2614 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2615 (CmpInst::isSigned(Pred) &&
2616 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2618 if (RBO && RBO->getOpcode() == Instruction::Add) {
2619 C = RBO->getOperand(0);
2620 D = RBO->getOperand(1);
2621 NoRHSWrapProblem =
2622 ICmpInst::isEquality(Pred) ||
2623 (CmpInst::isUnsigned(Pred) &&
2624 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2625 (CmpInst::isSigned(Pred) &&
2626 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2629 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2630 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2631 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2632 Constant::getNullValue(RHS->getType()), Q,
2633 MaxRecurse - 1))
2634 return V;
2636 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2637 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2638 if (Value *V =
2639 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2640 C == LHS ? D : C, Q, MaxRecurse - 1))
2641 return V;
2643 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2644 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2645 NoRHSWrapProblem) {
2646 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2647 Value *Y, *Z;
2648 if (A == C) {
2649 // C + B == C + D -> B == D
2650 Y = B;
2651 Z = D;
2652 } else if (A == D) {
2653 // D + B == C + D -> B == C
2654 Y = B;
2655 Z = C;
2656 } else if (B == C) {
2657 // A + C == C + D -> A == D
2658 Y = A;
2659 Z = D;
2660 } else {
2661 assert(B == D);
2662 // A + D == C + D -> A == C
2663 Y = A;
2664 Z = C;
2666 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2667 return V;
2672 Value *Y = nullptr;
2673 // icmp pred (or X, Y), X
2674 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2675 if (Pred == ICmpInst::ICMP_ULT)
2676 return getFalse(ITy);
2677 if (Pred == ICmpInst::ICMP_UGE)
2678 return getTrue(ITy);
2680 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2681 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2682 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2683 if (RHSKnown.isNonNegative() && YKnown.isNegative())
2684 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2685 if (RHSKnown.isNegative() || YKnown.isNonNegative())
2686 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2689 // icmp pred X, (or X, Y)
2690 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2691 if (Pred == ICmpInst::ICMP_ULE)
2692 return getTrue(ITy);
2693 if (Pred == ICmpInst::ICMP_UGT)
2694 return getFalse(ITy);
2696 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2697 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2698 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2699 if (LHSKnown.isNonNegative() && YKnown.isNegative())
2700 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2701 if (LHSKnown.isNegative() || YKnown.isNonNegative())
2702 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2707 // icmp pred (and X, Y), X
2708 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2709 if (Pred == ICmpInst::ICMP_UGT)
2710 return getFalse(ITy);
2711 if (Pred == ICmpInst::ICMP_ULE)
2712 return getTrue(ITy);
2714 // icmp pred X, (and X, Y)
2715 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2716 if (Pred == ICmpInst::ICMP_UGE)
2717 return getTrue(ITy);
2718 if (Pred == ICmpInst::ICMP_ULT)
2719 return getFalse(ITy);
2722 // 0 - (zext X) pred C
2723 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2724 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2725 if (RHSC->getValue().isStrictlyPositive()) {
2726 if (Pred == ICmpInst::ICMP_SLT)
2727 return ConstantInt::getTrue(RHSC->getContext());
2728 if (Pred == ICmpInst::ICMP_SGE)
2729 return ConstantInt::getFalse(RHSC->getContext());
2730 if (Pred == ICmpInst::ICMP_EQ)
2731 return ConstantInt::getFalse(RHSC->getContext());
2732 if (Pred == ICmpInst::ICMP_NE)
2733 return ConstantInt::getTrue(RHSC->getContext());
2735 if (RHSC->getValue().isNonNegative()) {
2736 if (Pred == ICmpInst::ICMP_SLE)
2737 return ConstantInt::getTrue(RHSC->getContext());
2738 if (Pred == ICmpInst::ICMP_SGT)
2739 return ConstantInt::getFalse(RHSC->getContext());
2744 // icmp pred (urem X, Y), Y
2745 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2746 switch (Pred) {
2747 default:
2748 break;
2749 case ICmpInst::ICMP_SGT:
2750 case ICmpInst::ICMP_SGE: {
2751 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2752 if (!Known.isNonNegative())
2753 break;
2754 LLVM_FALLTHROUGH;
2756 case ICmpInst::ICMP_EQ:
2757 case ICmpInst::ICMP_UGT:
2758 case ICmpInst::ICMP_UGE:
2759 return getFalse(ITy);
2760 case ICmpInst::ICMP_SLT:
2761 case ICmpInst::ICMP_SLE: {
2762 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2763 if (!Known.isNonNegative())
2764 break;
2765 LLVM_FALLTHROUGH;
2767 case ICmpInst::ICMP_NE:
2768 case ICmpInst::ICMP_ULT:
2769 case ICmpInst::ICMP_ULE:
2770 return getTrue(ITy);
2774 // icmp pred X, (urem Y, X)
2775 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2776 switch (Pred) {
2777 default:
2778 break;
2779 case ICmpInst::ICMP_SGT:
2780 case ICmpInst::ICMP_SGE: {
2781 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2782 if (!Known.isNonNegative())
2783 break;
2784 LLVM_FALLTHROUGH;
2786 case ICmpInst::ICMP_NE:
2787 case ICmpInst::ICMP_UGT:
2788 case ICmpInst::ICMP_UGE:
2789 return getTrue(ITy);
2790 case ICmpInst::ICMP_SLT:
2791 case ICmpInst::ICMP_SLE: {
2792 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2793 if (!Known.isNonNegative())
2794 break;
2795 LLVM_FALLTHROUGH;
2797 case ICmpInst::ICMP_EQ:
2798 case ICmpInst::ICMP_ULT:
2799 case ICmpInst::ICMP_ULE:
2800 return getFalse(ITy);
2804 // x >> y <=u x
2805 // x udiv y <=u x.
2806 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2807 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2808 // icmp pred (X op Y), X
2809 if (Pred == ICmpInst::ICMP_UGT)
2810 return getFalse(ITy);
2811 if (Pred == ICmpInst::ICMP_ULE)
2812 return getTrue(ITy);
2815 // x >=u x >> y
2816 // x >=u x udiv y.
2817 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2818 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2819 // icmp pred X, (X op Y)
2820 if (Pred == ICmpInst::ICMP_ULT)
2821 return getFalse(ITy);
2822 if (Pred == ICmpInst::ICMP_UGE)
2823 return getTrue(ITy);
2826 // handle:
2827 // CI2 << X == CI
2828 // CI2 << X != CI
2830 // where CI2 is a power of 2 and CI isn't
2831 if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2832 const APInt *CI2Val, *CIVal = &CI->getValue();
2833 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2834 CI2Val->isPowerOf2()) {
2835 if (!CIVal->isPowerOf2()) {
2836 // CI2 << X can equal zero in some circumstances,
2837 // this simplification is unsafe if CI is zero.
2839 // We know it is safe if:
2840 // - The shift is nsw, we can't shift out the one bit.
2841 // - The shift is nuw, we can't shift out the one bit.
2842 // - CI2 is one
2843 // - CI isn't zero
2844 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2845 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2846 CI2Val->isOneValue() || !CI->isZero()) {
2847 if (Pred == ICmpInst::ICMP_EQ)
2848 return ConstantInt::getFalse(RHS->getContext());
2849 if (Pred == ICmpInst::ICMP_NE)
2850 return ConstantInt::getTrue(RHS->getContext());
2853 if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2854 if (Pred == ICmpInst::ICMP_UGT)
2855 return ConstantInt::getFalse(RHS->getContext());
2856 if (Pred == ICmpInst::ICMP_ULE)
2857 return ConstantInt::getTrue(RHS->getContext());
2862 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2863 LBO->getOperand(1) == RBO->getOperand(1)) {
2864 switch (LBO->getOpcode()) {
2865 default:
2866 break;
2867 case Instruction::UDiv:
2868 case Instruction::LShr:
2869 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2870 !Q.IIQ.isExact(RBO))
2871 break;
2872 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2873 RBO->getOperand(0), Q, MaxRecurse - 1))
2874 return V;
2875 break;
2876 case Instruction::SDiv:
2877 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2878 !Q.IIQ.isExact(RBO))
2879 break;
2880 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2881 RBO->getOperand(0), Q, MaxRecurse - 1))
2882 return V;
2883 break;
2884 case Instruction::AShr:
2885 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2886 break;
2887 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2888 RBO->getOperand(0), Q, MaxRecurse - 1))
2889 return V;
2890 break;
2891 case Instruction::Shl: {
2892 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2893 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2894 if (!NUW && !NSW)
2895 break;
2896 if (!NSW && ICmpInst::isSigned(Pred))
2897 break;
2898 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2899 RBO->getOperand(0), Q, MaxRecurse - 1))
2900 return V;
2901 break;
2905 return nullptr;
2908 /// Simplify integer comparisons where at least one operand of the compare
2909 /// matches an integer min/max idiom.
2910 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2911 Value *RHS, const SimplifyQuery &Q,
2912 unsigned MaxRecurse) {
2913 Type *ITy = GetCompareTy(LHS); // The return type.
2914 Value *A, *B;
2915 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2916 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2918 // Signed variants on "max(a,b)>=a -> true".
2919 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2920 if (A != RHS)
2921 std::swap(A, B); // smax(A, B) pred A.
2922 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2923 // We analyze this as smax(A, B) pred A.
2924 P = Pred;
2925 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2926 (A == LHS || B == LHS)) {
2927 if (A != LHS)
2928 std::swap(A, B); // A pred smax(A, B).
2929 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2930 // We analyze this as smax(A, B) swapped-pred A.
2931 P = CmpInst::getSwappedPredicate(Pred);
2932 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2933 (A == RHS || B == RHS)) {
2934 if (A != RHS)
2935 std::swap(A, B); // smin(A, B) pred A.
2936 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2937 // We analyze this as smax(-A, -B) swapped-pred -A.
2938 // Note that we do not need to actually form -A or -B thanks to EqP.
2939 P = CmpInst::getSwappedPredicate(Pred);
2940 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2941 (A == LHS || B == LHS)) {
2942 if (A != LHS)
2943 std::swap(A, B); // A pred smin(A, B).
2944 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2945 // We analyze this as smax(-A, -B) pred -A.
2946 // Note that we do not need to actually form -A or -B thanks to EqP.
2947 P = Pred;
2949 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2950 // Cases correspond to "max(A, B) p A".
2951 switch (P) {
2952 default:
2953 break;
2954 case CmpInst::ICMP_EQ:
2955 case CmpInst::ICMP_SLE:
2956 // Equivalent to "A EqP B". This may be the same as the condition tested
2957 // in the max/min; if so, we can just return that.
2958 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2959 return V;
2960 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2961 return V;
2962 // Otherwise, see if "A EqP B" simplifies.
2963 if (MaxRecurse)
2964 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2965 return V;
2966 break;
2967 case CmpInst::ICMP_NE:
2968 case CmpInst::ICMP_SGT: {
2969 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2970 // Equivalent to "A InvEqP B". This may be the same as the condition
2971 // tested in the max/min; if so, we can just return that.
2972 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2973 return V;
2974 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2975 return V;
2976 // Otherwise, see if "A InvEqP B" simplifies.
2977 if (MaxRecurse)
2978 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2979 return V;
2980 break;
2982 case CmpInst::ICMP_SGE:
2983 // Always true.
2984 return getTrue(ITy);
2985 case CmpInst::ICMP_SLT:
2986 // Always false.
2987 return getFalse(ITy);
2991 // Unsigned variants on "max(a,b)>=a -> true".
2992 P = CmpInst::BAD_ICMP_PREDICATE;
2993 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2994 if (A != RHS)
2995 std::swap(A, B); // umax(A, B) pred A.
2996 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2997 // We analyze this as umax(A, B) pred A.
2998 P = Pred;
2999 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3000 (A == LHS || B == LHS)) {
3001 if (A != LHS)
3002 std::swap(A, B); // A pred umax(A, B).
3003 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3004 // We analyze this as umax(A, B) swapped-pred A.
3005 P = CmpInst::getSwappedPredicate(Pred);
3006 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3007 (A == RHS || B == RHS)) {
3008 if (A != RHS)
3009 std::swap(A, B); // umin(A, B) pred A.
3010 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3011 // We analyze this as umax(-A, -B) swapped-pred -A.
3012 // Note that we do not need to actually form -A or -B thanks to EqP.
3013 P = CmpInst::getSwappedPredicate(Pred);
3014 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3015 (A == LHS || B == LHS)) {
3016 if (A != LHS)
3017 std::swap(A, B); // A pred umin(A, B).
3018 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3019 // We analyze this as umax(-A, -B) pred -A.
3020 // Note that we do not need to actually form -A or -B thanks to EqP.
3021 P = Pred;
3023 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3024 // Cases correspond to "max(A, B) p A".
3025 switch (P) {
3026 default:
3027 break;
3028 case CmpInst::ICMP_EQ:
3029 case CmpInst::ICMP_ULE:
3030 // Equivalent to "A EqP B". This may be the same as the condition tested
3031 // in the max/min; if so, we can just return that.
3032 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3033 return V;
3034 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3035 return V;
3036 // Otherwise, see if "A EqP B" simplifies.
3037 if (MaxRecurse)
3038 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3039 return V;
3040 break;
3041 case CmpInst::ICMP_NE:
3042 case CmpInst::ICMP_UGT: {
3043 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3044 // Equivalent to "A InvEqP B". This may be the same as the condition
3045 // tested in the max/min; if so, we can just return that.
3046 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3047 return V;
3048 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3049 return V;
3050 // Otherwise, see if "A InvEqP B" simplifies.
3051 if (MaxRecurse)
3052 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3053 return V;
3054 break;
3056 case CmpInst::ICMP_UGE:
3057 // Always true.
3058 return getTrue(ITy);
3059 case CmpInst::ICMP_ULT:
3060 // Always false.
3061 return getFalse(ITy);
3065 // Variants on "max(x,y) >= min(x,z)".
3066 Value *C, *D;
3067 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3068 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3069 (A == C || A == D || B == C || B == D)) {
3070 // max(x, ?) pred min(x, ?).
3071 if (Pred == CmpInst::ICMP_SGE)
3072 // Always true.
3073 return getTrue(ITy);
3074 if (Pred == CmpInst::ICMP_SLT)
3075 // Always false.
3076 return getFalse(ITy);
3077 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3078 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3079 (A == C || A == D || B == C || B == D)) {
3080 // min(x, ?) pred max(x, ?).
3081 if (Pred == CmpInst::ICMP_SLE)
3082 // Always true.
3083 return getTrue(ITy);
3084 if (Pred == CmpInst::ICMP_SGT)
3085 // Always false.
3086 return getFalse(ITy);
3087 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3088 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3089 (A == C || A == D || B == C || B == D)) {
3090 // max(x, ?) pred min(x, ?).
3091 if (Pred == CmpInst::ICMP_UGE)
3092 // Always true.
3093 return getTrue(ITy);
3094 if (Pred == CmpInst::ICMP_ULT)
3095 // Always false.
3096 return getFalse(ITy);
3097 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3098 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3099 (A == C || A == D || B == C || B == D)) {
3100 // min(x, ?) pred max(x, ?).
3101 if (Pred == CmpInst::ICMP_ULE)
3102 // Always true.
3103 return getTrue(ITy);
3104 if (Pred == CmpInst::ICMP_UGT)
3105 // Always false.
3106 return getFalse(ITy);
3109 return nullptr;
3112 /// Given operands for an ICmpInst, see if we can fold the result.
3113 /// If not, this returns null.
3114 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3115 const SimplifyQuery &Q, unsigned MaxRecurse) {
3116 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3117 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3119 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3120 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3121 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3123 // If we have a constant, make sure it is on the RHS.
3124 std::swap(LHS, RHS);
3125 Pred = CmpInst::getSwappedPredicate(Pred);
3127 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3129 Type *ITy = GetCompareTy(LHS); // The return type.
3131 // For EQ and NE, we can always pick a value for the undef to make the
3132 // predicate pass or fail, so we can return undef.
3133 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3134 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3135 return UndefValue::get(ITy);
3137 // icmp X, X -> true/false
3138 // icmp X, undef -> true/false because undef could be X.
3139 if (LHS == RHS || isa<UndefValue>(RHS))
3140 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3142 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3143 return V;
3145 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3146 return V;
3148 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3149 return V;
3151 // If both operands have range metadata, use the metadata
3152 // to simplify the comparison.
3153 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3154 auto RHS_Instr = cast<Instruction>(RHS);
3155 auto LHS_Instr = cast<Instruction>(LHS);
3157 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3158 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3159 auto RHS_CR = getConstantRangeFromMetadata(
3160 *RHS_Instr->getMetadata(LLVMContext::MD_range));
3161 auto LHS_CR = getConstantRangeFromMetadata(
3162 *LHS_Instr->getMetadata(LLVMContext::MD_range));
3164 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3165 if (Satisfied_CR.contains(LHS_CR))
3166 return ConstantInt::getTrue(RHS->getContext());
3168 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3169 CmpInst::getInversePredicate(Pred), RHS_CR);
3170 if (InversedSatisfied_CR.contains(LHS_CR))
3171 return ConstantInt::getFalse(RHS->getContext());
3175 // Compare of cast, for example (zext X) != 0 -> X != 0
3176 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3177 Instruction *LI = cast<CastInst>(LHS);
3178 Value *SrcOp = LI->getOperand(0);
3179 Type *SrcTy = SrcOp->getType();
3180 Type *DstTy = LI->getType();
3182 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3183 // if the integer type is the same size as the pointer type.
3184 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3185 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3186 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3187 // Transfer the cast to the constant.
3188 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3189 ConstantExpr::getIntToPtr(RHSC, SrcTy),
3190 Q, MaxRecurse-1))
3191 return V;
3192 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3193 if (RI->getOperand(0)->getType() == SrcTy)
3194 // Compare without the cast.
3195 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3196 Q, MaxRecurse-1))
3197 return V;
3201 if (isa<ZExtInst>(LHS)) {
3202 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3203 // same type.
3204 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3205 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3206 // Compare X and Y. Note that signed predicates become unsigned.
3207 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3208 SrcOp, RI->getOperand(0), Q,
3209 MaxRecurse-1))
3210 return V;
3212 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3213 // too. If not, then try to deduce the result of the comparison.
3214 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3215 // Compute the constant that would happen if we truncated to SrcTy then
3216 // reextended to DstTy.
3217 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3218 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3220 // If the re-extended constant didn't change then this is effectively
3221 // also a case of comparing two zero-extended values.
3222 if (RExt == CI && MaxRecurse)
3223 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3224 SrcOp, Trunc, Q, MaxRecurse-1))
3225 return V;
3227 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3228 // there. Use this to work out the result of the comparison.
3229 if (RExt != CI) {
3230 switch (Pred) {
3231 default: llvm_unreachable("Unknown ICmp predicate!");
3232 // LHS <u RHS.
3233 case ICmpInst::ICMP_EQ:
3234 case ICmpInst::ICMP_UGT:
3235 case ICmpInst::ICMP_UGE:
3236 return ConstantInt::getFalse(CI->getContext());
3238 case ICmpInst::ICMP_NE:
3239 case ICmpInst::ICMP_ULT:
3240 case ICmpInst::ICMP_ULE:
3241 return ConstantInt::getTrue(CI->getContext());
3243 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3244 // is non-negative then LHS <s RHS.
3245 case ICmpInst::ICMP_SGT:
3246 case ICmpInst::ICMP_SGE:
3247 return CI->getValue().isNegative() ?
3248 ConstantInt::getTrue(CI->getContext()) :
3249 ConstantInt::getFalse(CI->getContext());
3251 case ICmpInst::ICMP_SLT:
3252 case ICmpInst::ICMP_SLE:
3253 return CI->getValue().isNegative() ?
3254 ConstantInt::getFalse(CI->getContext()) :
3255 ConstantInt::getTrue(CI->getContext());
3261 if (isa<SExtInst>(LHS)) {
3262 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3263 // same type.
3264 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3265 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3266 // Compare X and Y. Note that the predicate does not change.
3267 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3268 Q, MaxRecurse-1))
3269 return V;
3271 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3272 // too. If not, then try to deduce the result of the comparison.
3273 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3274 // Compute the constant that would happen if we truncated to SrcTy then
3275 // reextended to DstTy.
3276 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3277 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3279 // If the re-extended constant didn't change then this is effectively
3280 // also a case of comparing two sign-extended values.
3281 if (RExt == CI && MaxRecurse)
3282 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3283 return V;
3285 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3286 // bits there. Use this to work out the result of the comparison.
3287 if (RExt != CI) {
3288 switch (Pred) {
3289 default: llvm_unreachable("Unknown ICmp predicate!");
3290 case ICmpInst::ICMP_EQ:
3291 return ConstantInt::getFalse(CI->getContext());
3292 case ICmpInst::ICMP_NE:
3293 return ConstantInt::getTrue(CI->getContext());
3295 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3296 // LHS >s RHS.
3297 case ICmpInst::ICMP_SGT:
3298 case ICmpInst::ICMP_SGE:
3299 return CI->getValue().isNegative() ?
3300 ConstantInt::getTrue(CI->getContext()) :
3301 ConstantInt::getFalse(CI->getContext());
3302 case ICmpInst::ICMP_SLT:
3303 case ICmpInst::ICMP_SLE:
3304 return CI->getValue().isNegative() ?
3305 ConstantInt::getFalse(CI->getContext()) :
3306 ConstantInt::getTrue(CI->getContext());
3308 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3309 // LHS >u RHS.
3310 case ICmpInst::ICMP_UGT:
3311 case ICmpInst::ICMP_UGE:
3312 // Comparison is true iff the LHS <s 0.
3313 if (MaxRecurse)
3314 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3315 Constant::getNullValue(SrcTy),
3316 Q, MaxRecurse-1))
3317 return V;
3318 break;
3319 case ICmpInst::ICMP_ULT:
3320 case ICmpInst::ICMP_ULE:
3321 // Comparison is true iff the LHS >=s 0.
3322 if (MaxRecurse)
3323 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3324 Constant::getNullValue(SrcTy),
3325 Q, MaxRecurse-1))
3326 return V;
3327 break;
3334 // icmp eq|ne X, Y -> false|true if X != Y
3335 if (ICmpInst::isEquality(Pred) &&
3336 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3337 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3340 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3341 return V;
3343 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3344 return V;
3346 // Simplify comparisons of related pointers using a powerful, recursive
3347 // GEP-walk when we have target data available..
3348 if (LHS->getType()->isPointerTy())
3349 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3350 Q.IIQ, LHS, RHS))
3351 return C;
3352 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3353 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3354 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3355 Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3356 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3357 Q.DL.getTypeSizeInBits(CRHS->getType()))
3358 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3359 Q.IIQ, CLHS->getPointerOperand(),
3360 CRHS->getPointerOperand()))
3361 return C;
3363 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3364 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3365 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3366 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3367 (ICmpInst::isEquality(Pred) ||
3368 (GLHS->isInBounds() && GRHS->isInBounds() &&
3369 Pred == ICmpInst::getSignedPredicate(Pred)))) {
3370 // The bases are equal and the indices are constant. Build a constant
3371 // expression GEP with the same indices and a null base pointer to see
3372 // what constant folding can make out of it.
3373 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3374 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3375 Constant *NewLHS = ConstantExpr::getGetElementPtr(
3376 GLHS->getSourceElementType(), Null, IndicesLHS);
3378 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3379 Constant *NewRHS = ConstantExpr::getGetElementPtr(
3380 GLHS->getSourceElementType(), Null, IndicesRHS);
3381 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3386 // If the comparison is with the result of a select instruction, check whether
3387 // comparing with either branch of the select always yields the same value.
3388 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3389 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3390 return V;
3392 // If the comparison is with the result of a phi instruction, check whether
3393 // doing the compare with each incoming phi value yields a common result.
3394 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3395 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3396 return V;
3398 return nullptr;
3401 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3402 const SimplifyQuery &Q) {
3403 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3406 /// Given operands for an FCmpInst, see if we can fold the result.
3407 /// If not, this returns null.
3408 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3409 FastMathFlags FMF, const SimplifyQuery &Q,
3410 unsigned MaxRecurse) {
3411 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3412 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3414 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3415 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3416 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3418 // If we have a constant, make sure it is on the RHS.
3419 std::swap(LHS, RHS);
3420 Pred = CmpInst::getSwappedPredicate(Pred);
3423 // Fold trivial predicates.
3424 Type *RetTy = GetCompareTy(LHS);
3425 if (Pred == FCmpInst::FCMP_FALSE)
3426 return getFalse(RetTy);
3427 if (Pred == FCmpInst::FCMP_TRUE)
3428 return getTrue(RetTy);
3430 // Fold (un)ordered comparison if we can determine there are no NaNs.
3431 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3432 if (FMF.noNaNs() ||
3433 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3434 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3436 // NaN is unordered; NaN is not ordered.
3437 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3438 "Comparison must be either ordered or unordered");
3439 if (match(RHS, m_NaN()))
3440 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3442 // fcmp pred x, undef and fcmp pred undef, x
3443 // fold to true if unordered, false if ordered
3444 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3445 // Choosing NaN for the undef will always make unordered comparison succeed
3446 // and ordered comparison fail.
3447 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3450 // fcmp x,x -> true/false. Not all compares are foldable.
3451 if (LHS == RHS) {
3452 if (CmpInst::isTrueWhenEqual(Pred))
3453 return getTrue(RetTy);
3454 if (CmpInst::isFalseWhenEqual(Pred))
3455 return getFalse(RetTy);
3458 // Handle fcmp with constant RHS.
3459 // TODO: Use match with a specific FP value, so these work with vectors with
3460 // undef lanes.
3461 const APFloat *C;
3462 if (match(RHS, m_APFloat(C))) {
3463 // Check whether the constant is an infinity.
3464 if (C->isInfinity()) {
3465 if (C->isNegative()) {
3466 switch (Pred) {
3467 case FCmpInst::FCMP_OLT:
3468 // No value is ordered and less than negative infinity.
3469 return getFalse(RetTy);
3470 case FCmpInst::FCMP_UGE:
3471 // All values are unordered with or at least negative infinity.
3472 return getTrue(RetTy);
3473 default:
3474 break;
3476 } else {
3477 switch (Pred) {
3478 case FCmpInst::FCMP_OGT:
3479 // No value is ordered and greater than infinity.
3480 return getFalse(RetTy);
3481 case FCmpInst::FCMP_ULE:
3482 // All values are unordered with and at most infinity.
3483 return getTrue(RetTy);
3484 default:
3485 break;
3489 if (C->isNegative() && !C->isNegZero()) {
3490 assert(!C->isNaN() && "Unexpected NaN constant!");
3491 // TODO: We can catch more cases by using a range check rather than
3492 // relying on CannotBeOrderedLessThanZero.
3493 switch (Pred) {
3494 case FCmpInst::FCMP_UGE:
3495 case FCmpInst::FCMP_UGT:
3496 case FCmpInst::FCMP_UNE:
3497 // (X >= 0) implies (X > C) when (C < 0)
3498 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3499 return getTrue(RetTy);
3500 break;
3501 case FCmpInst::FCMP_OEQ:
3502 case FCmpInst::FCMP_OLE:
3503 case FCmpInst::FCMP_OLT:
3504 // (X >= 0) implies !(X < C) when (C < 0)
3505 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3506 return getFalse(RetTy);
3507 break;
3508 default:
3509 break;
3513 // Check comparison of [minnum/maxnum with constant] with other constant.
3514 const APFloat *C2;
3515 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3516 C2->compare(*C) == APFloat::cmpLessThan) ||
3517 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3518 C2->compare(*C) == APFloat::cmpGreaterThan)) {
3519 bool IsMaxNum =
3520 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3521 // The ordered relationship and minnum/maxnum guarantee that we do not
3522 // have NaN constants, so ordered/unordered preds are handled the same.
3523 switch (Pred) {
3524 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3525 // minnum(X, LesserC) == C --> false
3526 // maxnum(X, GreaterC) == C --> false
3527 return getFalse(RetTy);
3528 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3529 // minnum(X, LesserC) != C --> true
3530 // maxnum(X, GreaterC) != C --> true
3531 return getTrue(RetTy);
3532 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3533 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3534 // minnum(X, LesserC) >= C --> false
3535 // minnum(X, LesserC) > C --> false
3536 // maxnum(X, GreaterC) >= C --> true
3537 // maxnum(X, GreaterC) > C --> true
3538 return ConstantInt::get(RetTy, IsMaxNum);
3539 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3540 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3541 // minnum(X, LesserC) <= C --> true
3542 // minnum(X, LesserC) < C --> true
3543 // maxnum(X, GreaterC) <= C --> false
3544 // maxnum(X, GreaterC) < C --> false
3545 return ConstantInt::get(RetTy, !IsMaxNum);
3546 default:
3547 // TRUE/FALSE/ORD/UNO should be handled before this.
3548 llvm_unreachable("Unexpected fcmp predicate");
3553 if (match(RHS, m_AnyZeroFP())) {
3554 switch (Pred) {
3555 case FCmpInst::FCMP_OGE:
3556 case FCmpInst::FCMP_ULT:
3557 // Positive or zero X >= 0.0 --> true
3558 // Positive or zero X < 0.0 --> false
3559 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3560 CannotBeOrderedLessThanZero(LHS, Q.TLI))
3561 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3562 break;
3563 case FCmpInst::FCMP_UGE:
3564 case FCmpInst::FCMP_OLT:
3565 // Positive or zero or nan X >= 0.0 --> true
3566 // Positive or zero or nan X < 0.0 --> false
3567 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3568 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3569 break;
3570 default:
3571 break;
3575 // If the comparison is with the result of a select instruction, check whether
3576 // comparing with either branch of the select always yields the same value.
3577 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3578 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3579 return V;
3581 // If the comparison is with the result of a phi instruction, check whether
3582 // doing the compare with each incoming phi value yields a common result.
3583 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3584 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3585 return V;
3587 return nullptr;
3590 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3591 FastMathFlags FMF, const SimplifyQuery &Q) {
3592 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3595 /// See if V simplifies when its operand Op is replaced with RepOp.
3596 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3597 const SimplifyQuery &Q,
3598 unsigned MaxRecurse) {
3599 // Trivial replacement.
3600 if (V == Op)
3601 return RepOp;
3603 // We cannot replace a constant, and shouldn't even try.
3604 if (isa<Constant>(Op))
3605 return nullptr;
3607 auto *I = dyn_cast<Instruction>(V);
3608 if (!I)
3609 return nullptr;
3611 // If this is a binary operator, try to simplify it with the replaced op.
3612 if (auto *B = dyn_cast<BinaryOperator>(I)) {
3613 // Consider:
3614 // %cmp = icmp eq i32 %x, 2147483647
3615 // %add = add nsw i32 %x, 1
3616 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3618 // We can't replace %sel with %add unless we strip away the flags.
3619 // TODO: This is an unusual limitation because better analysis results in
3620 // worse simplification. InstCombine can do this fold more generally
3621 // by dropping the flags. Remove this fold to save compile-time?
3622 if (isa<OverflowingBinaryOperator>(B))
3623 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3624 return nullptr;
3625 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3626 return nullptr;
3628 if (MaxRecurse) {
3629 if (B->getOperand(0) == Op)
3630 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3631 MaxRecurse - 1);
3632 if (B->getOperand(1) == Op)
3633 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3634 MaxRecurse - 1);
3638 // Same for CmpInsts.
3639 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3640 if (MaxRecurse) {
3641 if (C->getOperand(0) == Op)
3642 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3643 MaxRecurse - 1);
3644 if (C->getOperand(1) == Op)
3645 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3646 MaxRecurse - 1);
3650 // Same for GEPs.
3651 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3652 if (MaxRecurse) {
3653 SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3654 transform(GEP->operands(), NewOps.begin(),
3655 [&](Value *V) { return V == Op ? RepOp : V; });
3656 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3657 MaxRecurse - 1);
3661 // TODO: We could hand off more cases to instsimplify here.
3663 // If all operands are constant after substituting Op for RepOp then we can
3664 // constant fold the instruction.
3665 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3666 // Build a list of all constant operands.
3667 SmallVector<Constant *, 8> ConstOps;
3668 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3669 if (I->getOperand(i) == Op)
3670 ConstOps.push_back(CRepOp);
3671 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3672 ConstOps.push_back(COp);
3673 else
3674 break;
3677 // All operands were constants, fold it.
3678 if (ConstOps.size() == I->getNumOperands()) {
3679 if (CmpInst *C = dyn_cast<CmpInst>(I))
3680 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3681 ConstOps[1], Q.DL, Q.TLI);
3683 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3684 if (!LI->isVolatile())
3685 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3687 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3691 return nullptr;
3694 /// Try to simplify a select instruction when its condition operand is an
3695 /// integer comparison where one operand of the compare is a constant.
3696 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3697 const APInt *Y, bool TrueWhenUnset) {
3698 const APInt *C;
3700 // (X & Y) == 0 ? X & ~Y : X --> X
3701 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3702 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3703 *Y == ~*C)
3704 return TrueWhenUnset ? FalseVal : TrueVal;
3706 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3707 // (X & Y) != 0 ? X : X & ~Y --> X
3708 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3709 *Y == ~*C)
3710 return TrueWhenUnset ? FalseVal : TrueVal;
3712 if (Y->isPowerOf2()) {
3713 // (X & Y) == 0 ? X | Y : X --> X | Y
3714 // (X & Y) != 0 ? X | Y : X --> X
3715 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3716 *Y == *C)
3717 return TrueWhenUnset ? TrueVal : FalseVal;
3719 // (X & Y) == 0 ? X : X | Y --> X
3720 // (X & Y) != 0 ? X : X | Y --> X | Y
3721 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3722 *Y == *C)
3723 return TrueWhenUnset ? TrueVal : FalseVal;
3726 return nullptr;
3729 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3730 /// eq/ne.
3731 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3732 ICmpInst::Predicate Pred,
3733 Value *TrueVal, Value *FalseVal) {
3734 Value *X;
3735 APInt Mask;
3736 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3737 return nullptr;
3739 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3740 Pred == ICmpInst::ICMP_EQ);
3743 /// Try to simplify a select instruction when its condition operand is an
3744 /// integer comparison.
3745 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3746 Value *FalseVal, const SimplifyQuery &Q,
3747 unsigned MaxRecurse) {
3748 ICmpInst::Predicate Pred;
3749 Value *CmpLHS, *CmpRHS;
3750 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3751 return nullptr;
3753 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3754 Value *X;
3755 const APInt *Y;
3756 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3757 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3758 Pred == ICmpInst::ICMP_EQ))
3759 return V;
3761 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3762 Value *ShAmt;
3763 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3764 m_Value(ShAmt)),
3765 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3766 m_Value(ShAmt)));
3767 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3768 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3769 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3770 Pred == ICmpInst::ICMP_EQ)
3771 return X;
3772 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3773 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3774 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3775 Pred == ICmpInst::ICMP_NE)
3776 return X;
3778 // Test for a zero-shift-guard-op around rotates. These are used to
3779 // avoid UB from oversized shifts in raw IR rotate patterns, but the
3780 // intrinsics do not have that problem.
3781 // We do not allow this transform for the general funnel shift case because
3782 // that would not preserve the poison safety of the original code.
3783 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3784 m_Deferred(X),
3785 m_Value(ShAmt)),
3786 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3787 m_Deferred(X),
3788 m_Value(ShAmt)));
3789 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3790 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3791 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3792 Pred == ICmpInst::ICMP_NE)
3793 return TrueVal;
3794 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3795 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3796 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3797 Pred == ICmpInst::ICMP_EQ)
3798 return FalseVal;
3801 // Check for other compares that behave like bit test.
3802 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3803 TrueVal, FalseVal))
3804 return V;
3806 // If we have an equality comparison, then we know the value in one of the
3807 // arms of the select. See if substituting this value into the arm and
3808 // simplifying the result yields the same value as the other arm.
3809 if (Pred == ICmpInst::ICMP_EQ) {
3810 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3811 TrueVal ||
3812 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3813 TrueVal)
3814 return FalseVal;
3815 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3816 FalseVal ||
3817 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3818 FalseVal)
3819 return FalseVal;
3820 } else if (Pred == ICmpInst::ICMP_NE) {
3821 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3822 FalseVal ||
3823 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3824 FalseVal)
3825 return TrueVal;
3826 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3827 TrueVal ||
3828 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3829 TrueVal)
3830 return TrueVal;
3833 return nullptr;
3836 /// Try to simplify a select instruction when its condition operand is a
3837 /// floating-point comparison.
3838 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3839 FCmpInst::Predicate Pred;
3840 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3841 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3842 return nullptr;
3844 // TODO: The transform may not be valid with -0.0. An incomplete way of
3845 // testing for that possibility is to check if at least one operand is a
3846 // non-zero constant.
3847 const APFloat *C;
3848 if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3849 (match(F, m_APFloat(C)) && C->isNonZero())) {
3850 // (T == F) ? T : F --> F
3851 // (F == T) ? T : F --> F
3852 if (Pred == FCmpInst::FCMP_OEQ)
3853 return F;
3855 // (T != F) ? T : F --> T
3856 // (F != T) ? T : F --> T
3857 if (Pred == FCmpInst::FCMP_UNE)
3858 return T;
3861 return nullptr;
3864 /// Given operands for a SelectInst, see if we can fold the result.
3865 /// If not, this returns null.
3866 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3867 const SimplifyQuery &Q, unsigned MaxRecurse) {
3868 if (auto *CondC = dyn_cast<Constant>(Cond)) {
3869 if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3870 if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3871 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3873 // select undef, X, Y -> X or Y
3874 if (isa<UndefValue>(CondC))
3875 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3877 // TODO: Vector constants with undef elements don't simplify.
3879 // select true, X, Y -> X
3880 if (CondC->isAllOnesValue())
3881 return TrueVal;
3882 // select false, X, Y -> Y
3883 if (CondC->isNullValue())
3884 return FalseVal;
3887 // select ?, X, X -> X
3888 if (TrueVal == FalseVal)
3889 return TrueVal;
3891 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
3892 return FalseVal;
3893 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
3894 return TrueVal;
3896 if (Value *V =
3897 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3898 return V;
3900 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3901 return V;
3903 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3904 return V;
3906 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3907 if (Imp)
3908 return *Imp ? TrueVal : FalseVal;
3910 return nullptr;
3913 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3914 const SimplifyQuery &Q) {
3915 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3918 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3919 /// If not, this returns null.
3920 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3921 const SimplifyQuery &Q, unsigned) {
3922 // The type of the GEP pointer operand.
3923 unsigned AS =
3924 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3926 // getelementptr P -> P.
3927 if (Ops.size() == 1)
3928 return Ops[0];
3930 // Compute the (pointer) type returned by the GEP instruction.
3931 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3932 Type *GEPTy = PointerType::get(LastType, AS);
3933 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3934 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3935 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3936 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3938 if (isa<UndefValue>(Ops[0]))
3939 return UndefValue::get(GEPTy);
3941 if (Ops.size() == 2) {
3942 // getelementptr P, 0 -> P.
3943 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3944 return Ops[0];
3946 Type *Ty = SrcTy;
3947 if (Ty->isSized()) {
3948 Value *P;
3949 uint64_t C;
3950 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3951 // getelementptr P, N -> P if P points to a type of zero size.
3952 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
3953 return Ops[0];
3955 // The following transforms are only safe if the ptrtoint cast
3956 // doesn't truncate the pointers.
3957 if (Ops[1]->getType()->getScalarSizeInBits() ==
3958 Q.DL.getIndexSizeInBits(AS)) {
3959 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3960 if (match(P, m_Zero()))
3961 return Constant::getNullValue(GEPTy);
3962 Value *Temp;
3963 if (match(P, m_PtrToInt(m_Value(Temp))))
3964 if (Temp->getType() == GEPTy)
3965 return Temp;
3966 return nullptr;
3969 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3970 if (TyAllocSize == 1 &&
3971 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3972 if (Value *R = PtrToIntOrZero(P))
3973 return R;
3975 // getelementptr V, (ashr (sub P, V), C) -> Q
3976 // if P points to a type of size 1 << C.
3977 if (match(Ops[1],
3978 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3979 m_ConstantInt(C))) &&
3980 TyAllocSize == 1ULL << C)
3981 if (Value *R = PtrToIntOrZero(P))
3982 return R;
3984 // getelementptr V, (sdiv (sub P, V), C) -> Q
3985 // if P points to a type of size C.
3986 if (match(Ops[1],
3987 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3988 m_SpecificInt(TyAllocSize))))
3989 if (Value *R = PtrToIntOrZero(P))
3990 return R;
3995 if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3996 all_of(Ops.slice(1).drop_back(1),
3997 [](Value *Idx) { return match(Idx, m_Zero()); })) {
3998 unsigned IdxWidth =
3999 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4000 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4001 APInt BasePtrOffset(IdxWidth, 0);
4002 Value *StrippedBasePtr =
4003 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4004 BasePtrOffset);
4006 // gep (gep V, C), (sub 0, V) -> C
4007 if (match(Ops.back(),
4008 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4009 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4010 return ConstantExpr::getIntToPtr(CI, GEPTy);
4012 // gep (gep V, C), (xor V, -1) -> C-1
4013 if (match(Ops.back(),
4014 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4015 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4016 return ConstantExpr::getIntToPtr(CI, GEPTy);
4021 // Check to see if this is constant foldable.
4022 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4023 return nullptr;
4025 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4026 Ops.slice(1));
4027 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
4028 return CEFolded;
4029 return CE;
4032 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4033 const SimplifyQuery &Q) {
4034 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4037 /// Given operands for an InsertValueInst, see if we can fold the result.
4038 /// If not, this returns null.
4039 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4040 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4041 unsigned) {
4042 if (Constant *CAgg = dyn_cast<Constant>(Agg))
4043 if (Constant *CVal = dyn_cast<Constant>(Val))
4044 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4046 // insertvalue x, undef, n -> x
4047 if (match(Val, m_Undef()))
4048 return Agg;
4050 // insertvalue x, (extractvalue y, n), n
4051 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4052 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4053 EV->getIndices() == Idxs) {
4054 // insertvalue undef, (extractvalue y, n), n -> y
4055 if (match(Agg, m_Undef()))
4056 return EV->getAggregateOperand();
4058 // insertvalue y, (extractvalue y, n), n -> y
4059 if (Agg == EV->getAggregateOperand())
4060 return Agg;
4063 return nullptr;
4066 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4067 ArrayRef<unsigned> Idxs,
4068 const SimplifyQuery &Q) {
4069 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4072 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4073 const SimplifyQuery &Q) {
4074 // Try to constant fold.
4075 auto *VecC = dyn_cast<Constant>(Vec);
4076 auto *ValC = dyn_cast<Constant>(Val);
4077 auto *IdxC = dyn_cast<Constant>(Idx);
4078 if (VecC && ValC && IdxC)
4079 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4081 // Fold into undef if index is out of bounds.
4082 if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4083 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4084 if (CI->uge(NumElements))
4085 return UndefValue::get(Vec->getType());
4088 // If index is undef, it might be out of bounds (see above case)
4089 if (isa<UndefValue>(Idx))
4090 return UndefValue::get(Vec->getType());
4092 // Inserting an undef scalar? Assume it is the same value as the existing
4093 // vector element.
4094 if (isa<UndefValue>(Val))
4095 return Vec;
4097 // If we are extracting a value from a vector, then inserting it into the same
4098 // place, that's the input vector:
4099 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4100 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
4101 return Vec;
4103 return nullptr;
4106 /// Given operands for an ExtractValueInst, see if we can fold the result.
4107 /// If not, this returns null.
4108 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4109 const SimplifyQuery &, unsigned) {
4110 if (auto *CAgg = dyn_cast<Constant>(Agg))
4111 return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4113 // extractvalue x, (insertvalue y, elt, n), n -> elt
4114 unsigned NumIdxs = Idxs.size();
4115 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4116 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4117 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4118 unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4119 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4120 if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4121 Idxs.slice(0, NumCommonIdxs)) {
4122 if (NumIdxs == NumInsertValueIdxs)
4123 return IVI->getInsertedValueOperand();
4124 break;
4128 return nullptr;
4131 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4132 const SimplifyQuery &Q) {
4133 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4136 /// Given operands for an ExtractElementInst, see if we can fold the result.
4137 /// If not, this returns null.
4138 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4139 unsigned) {
4140 if (auto *CVec = dyn_cast<Constant>(Vec)) {
4141 if (auto *CIdx = dyn_cast<Constant>(Idx))
4142 return ConstantFoldExtractElementInstruction(CVec, CIdx);
4144 // The index is not relevant if our vector is a splat.
4145 if (auto *Splat = CVec->getSplatValue())
4146 return Splat;
4148 if (isa<UndefValue>(Vec))
4149 return UndefValue::get(Vec->getType()->getVectorElementType());
4152 // If extracting a specified index from the vector, see if we can recursively
4153 // find a previously computed scalar that was inserted into the vector.
4154 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4155 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4156 // definitely out of bounds, thus undefined result
4157 return UndefValue::get(Vec->getType()->getVectorElementType());
4158 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4159 return Elt;
4162 // An undef extract index can be arbitrarily chosen to be an out-of-range
4163 // index value, which would result in the instruction being undef.
4164 if (isa<UndefValue>(Idx))
4165 return UndefValue::get(Vec->getType()->getVectorElementType());
4167 return nullptr;
4170 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4171 const SimplifyQuery &Q) {
4172 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4175 /// See if we can fold the given phi. If not, returns null.
4176 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4177 // If all of the PHI's incoming values are the same then replace the PHI node
4178 // with the common value.
4179 Value *CommonValue = nullptr;
4180 bool HasUndefInput = false;
4181 for (Value *Incoming : PN->incoming_values()) {
4182 // If the incoming value is the phi node itself, it can safely be skipped.
4183 if (Incoming == PN) continue;
4184 if (isa<UndefValue>(Incoming)) {
4185 // Remember that we saw an undef value, but otherwise ignore them.
4186 HasUndefInput = true;
4187 continue;
4189 if (CommonValue && Incoming != CommonValue)
4190 return nullptr; // Not the same, bail out.
4191 CommonValue = Incoming;
4194 // If CommonValue is null then all of the incoming values were either undef or
4195 // equal to the phi node itself.
4196 if (!CommonValue)
4197 return UndefValue::get(PN->getType());
4199 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4200 // instruction, we cannot return X as the result of the PHI node unless it
4201 // dominates the PHI block.
4202 if (HasUndefInput)
4203 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4205 return CommonValue;
4208 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4209 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4210 if (auto *C = dyn_cast<Constant>(Op))
4211 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4213 if (auto *CI = dyn_cast<CastInst>(Op)) {
4214 auto *Src = CI->getOperand(0);
4215 Type *SrcTy = Src->getType();
4216 Type *MidTy = CI->getType();
4217 Type *DstTy = Ty;
4218 if (Src->getType() == Ty) {
4219 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4220 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4221 Type *SrcIntPtrTy =
4222 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4223 Type *MidIntPtrTy =
4224 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4225 Type *DstIntPtrTy =
4226 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4227 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4228 SrcIntPtrTy, MidIntPtrTy,
4229 DstIntPtrTy) == Instruction::BitCast)
4230 return Src;
4234 // bitcast x -> x
4235 if (CastOpc == Instruction::BitCast)
4236 if (Op->getType() == Ty)
4237 return Op;
4239 return nullptr;
4242 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4243 const SimplifyQuery &Q) {
4244 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4247 /// For the given destination element of a shuffle, peek through shuffles to
4248 /// match a root vector source operand that contains that element in the same
4249 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4250 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4251 int MaskVal, Value *RootVec,
4252 unsigned MaxRecurse) {
4253 if (!MaxRecurse--)
4254 return nullptr;
4256 // Bail out if any mask value is undefined. That kind of shuffle may be
4257 // simplified further based on demanded bits or other folds.
4258 if (MaskVal == -1)
4259 return nullptr;
4261 // The mask value chooses which source operand we need to look at next.
4262 int InVecNumElts = Op0->getType()->getVectorNumElements();
4263 int RootElt = MaskVal;
4264 Value *SourceOp = Op0;
4265 if (MaskVal >= InVecNumElts) {
4266 RootElt = MaskVal - InVecNumElts;
4267 SourceOp = Op1;
4270 // If the source operand is a shuffle itself, look through it to find the
4271 // matching root vector.
4272 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4273 return foldIdentityShuffles(
4274 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4275 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4278 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4279 // size?
4281 // The source operand is not a shuffle. Initialize the root vector value for
4282 // this shuffle if that has not been done yet.
4283 if (!RootVec)
4284 RootVec = SourceOp;
4286 // Give up as soon as a source operand does not match the existing root value.
4287 if (RootVec != SourceOp)
4288 return nullptr;
4290 // The element must be coming from the same lane in the source vector
4291 // (although it may have crossed lanes in intermediate shuffles).
4292 if (RootElt != DestElt)
4293 return nullptr;
4295 return RootVec;
4298 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4299 Type *RetTy, const SimplifyQuery &Q,
4300 unsigned MaxRecurse) {
4301 if (isa<UndefValue>(Mask))
4302 return UndefValue::get(RetTy);
4304 Type *InVecTy = Op0->getType();
4305 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4306 unsigned InVecNumElts = InVecTy->getVectorNumElements();
4308 SmallVector<int, 32> Indices;
4309 ShuffleVectorInst::getShuffleMask(Mask, Indices);
4310 assert(MaskNumElts == Indices.size() &&
4311 "Size of Indices not same as number of mask elements?");
4313 // Canonicalization: If mask does not select elements from an input vector,
4314 // replace that input vector with undef.
4315 bool MaskSelects0 = false, MaskSelects1 = false;
4316 for (unsigned i = 0; i != MaskNumElts; ++i) {
4317 if (Indices[i] == -1)
4318 continue;
4319 if ((unsigned)Indices[i] < InVecNumElts)
4320 MaskSelects0 = true;
4321 else
4322 MaskSelects1 = true;
4324 if (!MaskSelects0)
4325 Op0 = UndefValue::get(InVecTy);
4326 if (!MaskSelects1)
4327 Op1 = UndefValue::get(InVecTy);
4329 auto *Op0Const = dyn_cast<Constant>(Op0);
4330 auto *Op1Const = dyn_cast<Constant>(Op1);
4332 // If all operands are constant, constant fold the shuffle.
4333 if (Op0Const && Op1Const)
4334 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4336 // Canonicalization: if only one input vector is constant, it shall be the
4337 // second one.
4338 if (Op0Const && !Op1Const) {
4339 std::swap(Op0, Op1);
4340 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4343 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4344 // value type is same as the input vectors' type.
4345 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4346 if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4347 OpShuf->getMask()->getSplatValue())
4348 return Op0;
4350 // Don't fold a shuffle with undef mask elements. This may get folded in a
4351 // better way using demanded bits or other analysis.
4352 // TODO: Should we allow this?
4353 if (find(Indices, -1) != Indices.end())
4354 return nullptr;
4356 // Check if every element of this shuffle can be mapped back to the
4357 // corresponding element of a single root vector. If so, we don't need this
4358 // shuffle. This handles simple identity shuffles as well as chains of
4359 // shuffles that may widen/narrow and/or move elements across lanes and back.
4360 Value *RootVec = nullptr;
4361 for (unsigned i = 0; i != MaskNumElts; ++i) {
4362 // Note that recursion is limited for each vector element, so if any element
4363 // exceeds the limit, this will fail to simplify.
4364 RootVec =
4365 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4367 // We can't replace a widening/narrowing shuffle with one of its operands.
4368 if (!RootVec || RootVec->getType() != RetTy)
4369 return nullptr;
4371 return RootVec;
4374 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4375 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4376 Type *RetTy, const SimplifyQuery &Q) {
4377 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4380 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4381 Value *&Op, const SimplifyQuery &Q) {
4382 if (auto *C = dyn_cast<Constant>(Op))
4383 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4384 return nullptr;
4387 /// Given the operand for an FNeg, see if we can fold the result. If not, this
4388 /// returns null.
4389 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4390 const SimplifyQuery &Q, unsigned MaxRecurse) {
4391 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4392 return C;
4394 Value *X;
4395 // fneg (fneg X) ==> X
4396 if (match(Op, m_FNeg(m_Value(X))))
4397 return X;
4399 return nullptr;
4402 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4403 const SimplifyQuery &Q) {
4404 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4407 static Constant *propagateNaN(Constant *In) {
4408 // If the input is a vector with undef elements, just return a default NaN.
4409 if (!In->isNaN())
4410 return ConstantFP::getNaN(In->getType());
4412 // Propagate the existing NaN constant when possible.
4413 // TODO: Should we quiet a signaling NaN?
4414 return In;
4417 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4418 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4419 return ConstantFP::getNaN(Op0->getType());
4421 if (match(Op0, m_NaN()))
4422 return propagateNaN(cast<Constant>(Op0));
4423 if (match(Op1, m_NaN()))
4424 return propagateNaN(cast<Constant>(Op1));
4426 return nullptr;
4429 /// Given operands for an FAdd, see if we can fold the result. If not, this
4430 /// returns null.
4431 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4432 const SimplifyQuery &Q, unsigned MaxRecurse) {
4433 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4434 return C;
4436 if (Constant *C = simplifyFPBinop(Op0, Op1))
4437 return C;
4439 // fadd X, -0 ==> X
4440 if (match(Op1, m_NegZeroFP()))
4441 return Op0;
4443 // fadd X, 0 ==> X, when we know X is not -0
4444 if (match(Op1, m_PosZeroFP()) &&
4445 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4446 return Op0;
4448 // With nnan: -X + X --> 0.0 (and commuted variant)
4449 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4450 // Negative zeros are allowed because we always end up with positive zero:
4451 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4452 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4453 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4454 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4455 if (FMF.noNaNs()) {
4456 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4457 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4458 return ConstantFP::getNullValue(Op0->getType());
4460 if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4461 match(Op1, m_FNeg(m_Specific(Op0))))
4462 return ConstantFP::getNullValue(Op0->getType());
4465 // (X - Y) + Y --> X
4466 // Y + (X - Y) --> X
4467 Value *X;
4468 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4469 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4470 match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4471 return X;
4473 return nullptr;
4476 /// Given operands for an FSub, see if we can fold the result. If not, this
4477 /// returns null.
4478 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4479 const SimplifyQuery &Q, unsigned MaxRecurse) {
4480 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4481 return C;
4483 if (Constant *C = simplifyFPBinop(Op0, Op1))
4484 return C;
4486 // fsub X, +0 ==> X
4487 if (match(Op1, m_PosZeroFP()))
4488 return Op0;
4490 // fsub X, -0 ==> X, when we know X is not -0
4491 if (match(Op1, m_NegZeroFP()) &&
4492 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4493 return Op0;
4495 // fsub -0.0, (fsub -0.0, X) ==> X
4496 // fsub -0.0, (fneg X) ==> X
4497 Value *X;
4498 if (match(Op0, m_NegZeroFP()) &&
4499 match(Op1, m_FNeg(m_Value(X))))
4500 return X;
4502 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4503 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4504 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4505 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4506 match(Op1, m_FNeg(m_Value(X)))))
4507 return X;
4509 // fsub nnan x, x ==> 0.0
4510 if (FMF.noNaNs() && Op0 == Op1)
4511 return Constant::getNullValue(Op0->getType());
4513 // Y - (Y - X) --> X
4514 // (X + Y) - Y --> X
4515 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4516 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4517 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4518 return X;
4520 return nullptr;
4523 /// Given the operands for an FMul, see if we can fold the result
4524 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4525 const SimplifyQuery &Q, unsigned MaxRecurse) {
4526 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4527 return C;
4529 if (Constant *C = simplifyFPBinop(Op0, Op1))
4530 return C;
4532 // fmul X, 1.0 ==> X
4533 if (match(Op1, m_FPOne()))
4534 return Op0;
4536 // fmul nnan nsz X, 0 ==> 0
4537 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4538 return ConstantFP::getNullValue(Op0->getType());
4540 // sqrt(X) * sqrt(X) --> X, if we can:
4541 // 1. Remove the intermediate rounding (reassociate).
4542 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4543 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4544 Value *X;
4545 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4546 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4547 return X;
4549 return nullptr;
4552 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4553 const SimplifyQuery &Q) {
4554 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4558 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4559 const SimplifyQuery &Q) {
4560 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4563 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4564 const SimplifyQuery &Q) {
4565 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4568 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4569 const SimplifyQuery &Q, unsigned) {
4570 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4571 return C;
4573 if (Constant *C = simplifyFPBinop(Op0, Op1))
4574 return C;
4576 // X / 1.0 -> X
4577 if (match(Op1, m_FPOne()))
4578 return Op0;
4580 // 0 / X -> 0
4581 // Requires that NaNs are off (X could be zero) and signed zeroes are
4582 // ignored (X could be positive or negative, so the output sign is unknown).
4583 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4584 return ConstantFP::getNullValue(Op0->getType());
4586 if (FMF.noNaNs()) {
4587 // X / X -> 1.0 is legal when NaNs are ignored.
4588 // We can ignore infinities because INF/INF is NaN.
4589 if (Op0 == Op1)
4590 return ConstantFP::get(Op0->getType(), 1.0);
4592 // (X * Y) / Y --> X if we can reassociate to the above form.
4593 Value *X;
4594 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4595 return X;
4597 // -X / X -> -1.0 and
4598 // X / -X -> -1.0 are legal when NaNs are ignored.
4599 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4600 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4601 match(Op1, m_FNegNSZ(m_Specific(Op0))))
4602 return ConstantFP::get(Op0->getType(), -1.0);
4605 return nullptr;
4608 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4609 const SimplifyQuery &Q) {
4610 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4613 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4614 const SimplifyQuery &Q, unsigned) {
4615 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4616 return C;
4618 if (Constant *C = simplifyFPBinop(Op0, Op1))
4619 return C;
4621 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4622 // The constant match may include undef elements in a vector, so return a full
4623 // zero constant as the result.
4624 if (FMF.noNaNs()) {
4625 // +0 % X -> 0
4626 if (match(Op0, m_PosZeroFP()))
4627 return ConstantFP::getNullValue(Op0->getType());
4628 // -0 % X -> -0
4629 if (match(Op0, m_NegZeroFP()))
4630 return ConstantFP::getNegativeZero(Op0->getType());
4633 return nullptr;
4636 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4637 const SimplifyQuery &Q) {
4638 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4641 //=== Helper functions for higher up the class hierarchy.
4643 /// Given the operand for a UnaryOperator, see if we can fold the result.
4644 /// If not, this returns null.
4645 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4646 unsigned MaxRecurse) {
4647 switch (Opcode) {
4648 case Instruction::FNeg:
4649 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4650 default:
4651 llvm_unreachable("Unexpected opcode");
4655 /// Given the operand for a UnaryOperator, see if we can fold the result.
4656 /// If not, this returns null.
4657 /// Try to use FastMathFlags when folding the result.
4658 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4659 const FastMathFlags &FMF,
4660 const SimplifyQuery &Q, unsigned MaxRecurse) {
4661 switch (Opcode) {
4662 case Instruction::FNeg:
4663 return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4664 default:
4665 return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4669 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
4670 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
4673 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4674 const SimplifyQuery &Q) {
4675 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4678 /// Given operands for a BinaryOperator, see if we can fold the result.
4679 /// If not, this returns null.
4680 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4681 const SimplifyQuery &Q, unsigned MaxRecurse) {
4682 switch (Opcode) {
4683 case Instruction::Add:
4684 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4685 case Instruction::Sub:
4686 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4687 case Instruction::Mul:
4688 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4689 case Instruction::SDiv:
4690 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4691 case Instruction::UDiv:
4692 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4693 case Instruction::SRem:
4694 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4695 case Instruction::URem:
4696 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4697 case Instruction::Shl:
4698 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4699 case Instruction::LShr:
4700 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4701 case Instruction::AShr:
4702 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4703 case Instruction::And:
4704 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4705 case Instruction::Or:
4706 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4707 case Instruction::Xor:
4708 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4709 case Instruction::FAdd:
4710 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4711 case Instruction::FSub:
4712 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4713 case Instruction::FMul:
4714 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4715 case Instruction::FDiv:
4716 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4717 case Instruction::FRem:
4718 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4719 default:
4720 llvm_unreachable("Unexpected opcode");
4724 /// Given operands for a BinaryOperator, see if we can fold the result.
4725 /// If not, this returns null.
4726 /// Try to use FastMathFlags when folding the result.
4727 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4728 const FastMathFlags &FMF, const SimplifyQuery &Q,
4729 unsigned MaxRecurse) {
4730 switch (Opcode) {
4731 case Instruction::FAdd:
4732 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4733 case Instruction::FSub:
4734 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4735 case Instruction::FMul:
4736 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4737 case Instruction::FDiv:
4738 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4739 default:
4740 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4744 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4745 const SimplifyQuery &Q) {
4746 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4749 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4750 FastMathFlags FMF, const SimplifyQuery &Q) {
4751 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4754 /// Given operands for a CmpInst, see if we can fold the result.
4755 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4756 const SimplifyQuery &Q, unsigned MaxRecurse) {
4757 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4758 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4759 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4762 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4763 const SimplifyQuery &Q) {
4764 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4767 static bool IsIdempotent(Intrinsic::ID ID) {
4768 switch (ID) {
4769 default: return false;
4771 // Unary idempotent: f(f(x)) = f(x)
4772 case Intrinsic::fabs:
4773 case Intrinsic::floor:
4774 case Intrinsic::ceil:
4775 case Intrinsic::trunc:
4776 case Intrinsic::rint:
4777 case Intrinsic::nearbyint:
4778 case Intrinsic::round:
4779 case Intrinsic::canonicalize:
4780 return true;
4784 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4785 const DataLayout &DL) {
4786 GlobalValue *PtrSym;
4787 APInt PtrOffset;
4788 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4789 return nullptr;
4791 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4792 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4793 Type *Int32PtrTy = Int32Ty->getPointerTo();
4794 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4796 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4797 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4798 return nullptr;
4800 uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4801 if (OffsetInt % 4 != 0)
4802 return nullptr;
4804 Constant *C = ConstantExpr::getGetElementPtr(
4805 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4806 ConstantInt::get(Int64Ty, OffsetInt / 4));
4807 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4808 if (!Loaded)
4809 return nullptr;
4811 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4812 if (!LoadedCE)
4813 return nullptr;
4815 if (LoadedCE->getOpcode() == Instruction::Trunc) {
4816 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4817 if (!LoadedCE)
4818 return nullptr;
4821 if (LoadedCE->getOpcode() != Instruction::Sub)
4822 return nullptr;
4824 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4825 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4826 return nullptr;
4827 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4829 Constant *LoadedRHS = LoadedCE->getOperand(1);
4830 GlobalValue *LoadedRHSSym;
4831 APInt LoadedRHSOffset;
4832 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4833 DL) ||
4834 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4835 return nullptr;
4837 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4840 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4841 const SimplifyQuery &Q) {
4842 // Idempotent functions return the same result when called repeatedly.
4843 Intrinsic::ID IID = F->getIntrinsicID();
4844 if (IsIdempotent(IID))
4845 if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4846 if (II->getIntrinsicID() == IID)
4847 return II;
4849 Value *X;
4850 switch (IID) {
4851 case Intrinsic::fabs:
4852 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4853 break;
4854 case Intrinsic::bswap:
4855 // bswap(bswap(x)) -> x
4856 if (match(Op0, m_BSwap(m_Value(X)))) return X;
4857 break;
4858 case Intrinsic::bitreverse:
4859 // bitreverse(bitreverse(x)) -> x
4860 if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4861 break;
4862 case Intrinsic::exp:
4863 // exp(log(x)) -> x
4864 if (Q.CxtI->hasAllowReassoc() &&
4865 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4866 break;
4867 case Intrinsic::exp2:
4868 // exp2(log2(x)) -> x
4869 if (Q.CxtI->hasAllowReassoc() &&
4870 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4871 break;
4872 case Intrinsic::log:
4873 // log(exp(x)) -> x
4874 if (Q.CxtI->hasAllowReassoc() &&
4875 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4876 break;
4877 case Intrinsic::log2:
4878 // log2(exp2(x)) -> x
4879 if (Q.CxtI->hasAllowReassoc() &&
4880 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4881 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4882 m_Value(X))))) return X;
4883 break;
4884 case Intrinsic::log10:
4885 // log10(pow(10.0, x)) -> x
4886 if (Q.CxtI->hasAllowReassoc() &&
4887 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4888 m_Value(X)))) return X;
4889 break;
4890 case Intrinsic::floor:
4891 case Intrinsic::trunc:
4892 case Intrinsic::ceil:
4893 case Intrinsic::round:
4894 case Intrinsic::nearbyint:
4895 case Intrinsic::rint: {
4896 // floor (sitofp x) -> sitofp x
4897 // floor (uitofp x) -> uitofp x
4899 // Converting from int always results in a finite integral number or
4900 // infinity. For either of those inputs, these rounding functions always
4901 // return the same value, so the rounding can be eliminated.
4902 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4903 return Op0;
4904 break;
4906 default:
4907 break;
4910 return nullptr;
4913 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4914 const SimplifyQuery &Q) {
4915 Intrinsic::ID IID = F->getIntrinsicID();
4916 Type *ReturnType = F->getReturnType();
4917 switch (IID) {
4918 case Intrinsic::usub_with_overflow:
4919 case Intrinsic::ssub_with_overflow:
4920 // X - X -> { 0, false }
4921 if (Op0 == Op1)
4922 return Constant::getNullValue(ReturnType);
4923 LLVM_FALLTHROUGH;
4924 case Intrinsic::uadd_with_overflow:
4925 case Intrinsic::sadd_with_overflow:
4926 // X - undef -> { undef, false }
4927 // undef - X -> { undef, false }
4928 // X + undef -> { undef, false }
4929 // undef + x -> { undef, false }
4930 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
4931 return ConstantStruct::get(
4932 cast<StructType>(ReturnType),
4933 {UndefValue::get(ReturnType->getStructElementType(0)),
4934 Constant::getNullValue(ReturnType->getStructElementType(1))});
4936 break;
4937 case Intrinsic::umul_with_overflow:
4938 case Intrinsic::smul_with_overflow:
4939 // 0 * X -> { 0, false }
4940 // X * 0 -> { 0, false }
4941 if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4942 return Constant::getNullValue(ReturnType);
4943 // undef * X -> { 0, false }
4944 // X * undef -> { 0, false }
4945 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4946 return Constant::getNullValue(ReturnType);
4947 break;
4948 case Intrinsic::uadd_sat:
4949 // sat(MAX + X) -> MAX
4950 // sat(X + MAX) -> MAX
4951 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
4952 return Constant::getAllOnesValue(ReturnType);
4953 LLVM_FALLTHROUGH;
4954 case Intrinsic::sadd_sat:
4955 // sat(X + undef) -> -1
4956 // sat(undef + X) -> -1
4957 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
4958 // For signed: Assume undef is ~X, in which case X + ~X = -1.
4959 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4960 return Constant::getAllOnesValue(ReturnType);
4962 // X + 0 -> X
4963 if (match(Op1, m_Zero()))
4964 return Op0;
4965 // 0 + X -> X
4966 if (match(Op0, m_Zero()))
4967 return Op1;
4968 break;
4969 case Intrinsic::usub_sat:
4970 // sat(0 - X) -> 0, sat(X - MAX) -> 0
4971 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
4972 return Constant::getNullValue(ReturnType);
4973 LLVM_FALLTHROUGH;
4974 case Intrinsic::ssub_sat:
4975 // X - X -> 0, X - undef -> 0, undef - X -> 0
4976 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
4977 return Constant::getNullValue(ReturnType);
4978 // X - 0 -> X
4979 if (match(Op1, m_Zero()))
4980 return Op0;
4981 break;
4982 case Intrinsic::load_relative:
4983 if (auto *C0 = dyn_cast<Constant>(Op0))
4984 if (auto *C1 = dyn_cast<Constant>(Op1))
4985 return SimplifyRelativeLoad(C0, C1, Q.DL);
4986 break;
4987 case Intrinsic::powi:
4988 if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
4989 // powi(x, 0) -> 1.0
4990 if (Power->isZero())
4991 return ConstantFP::get(Op0->getType(), 1.0);
4992 // powi(x, 1) -> x
4993 if (Power->isOne())
4994 return Op0;
4996 break;
4997 case Intrinsic::maxnum:
4998 case Intrinsic::minnum:
4999 case Intrinsic::maximum:
5000 case Intrinsic::minimum: {
5001 // If the arguments are the same, this is a no-op.
5002 if (Op0 == Op1) return Op0;
5004 // If one argument is undef, return the other argument.
5005 if (match(Op0, m_Undef()))
5006 return Op1;
5007 if (match(Op1, m_Undef()))
5008 return Op0;
5010 // If one argument is NaN, return other or NaN appropriately.
5011 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5012 if (match(Op0, m_NaN()))
5013 return PropagateNaN ? Op0 : Op1;
5014 if (match(Op1, m_NaN()))
5015 return PropagateNaN ? Op1 : Op0;
5017 // Min/max of the same operation with common operand:
5018 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5019 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5020 if (M0->getIntrinsicID() == IID &&
5021 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5022 return Op0;
5023 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5024 if (M1->getIntrinsicID() == IID &&
5025 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5026 return Op1;
5028 // min(X, -Inf) --> -Inf (and commuted variant)
5029 // max(X, +Inf) --> +Inf (and commuted variant)
5030 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
5031 const APFloat *C;
5032 if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
5033 C->isNegative() == UseNegInf) ||
5034 (match(Op1, m_APFloat(C)) && C->isInfinity() &&
5035 C->isNegative() == UseNegInf))
5036 return ConstantFP::getInfinity(ReturnType, UseNegInf);
5038 // TODO: minnum(nnan x, inf) -> x
5039 // TODO: minnum(nnan ninf x, flt_max) -> x
5040 // TODO: maxnum(nnan x, -inf) -> x
5041 // TODO: maxnum(nnan ninf x, -flt_max) -> x
5042 break;
5044 default:
5045 break;
5048 return nullptr;
5051 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5053 // Intrinsics with no operands have some kind of side effect. Don't simplify.
5054 unsigned NumOperands = Call->getNumArgOperands();
5055 if (!NumOperands)
5056 return nullptr;
5058 Function *F = cast<Function>(Call->getCalledFunction());
5059 Intrinsic::ID IID = F->getIntrinsicID();
5060 if (NumOperands == 1)
5061 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5063 if (NumOperands == 2)
5064 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5065 Call->getArgOperand(1), Q);
5067 // Handle intrinsics with 3 or more arguments.
5068 switch (IID) {
5069 case Intrinsic::masked_load:
5070 case Intrinsic::masked_gather: {
5071 Value *MaskArg = Call->getArgOperand(2);
5072 Value *PassthruArg = Call->getArgOperand(3);
5073 // If the mask is all zeros or undef, the "passthru" argument is the result.
5074 if (maskIsAllZeroOrUndef(MaskArg))
5075 return PassthruArg;
5076 return nullptr;
5078 case Intrinsic::fshl:
5079 case Intrinsic::fshr: {
5080 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5081 *ShAmtArg = Call->getArgOperand(2);
5083 // If both operands are undef, the result is undef.
5084 if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
5085 return UndefValue::get(F->getReturnType());
5087 // If shift amount is undef, assume it is zero.
5088 if (match(ShAmtArg, m_Undef()))
5089 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5091 const APInt *ShAmtC;
5092 if (match(ShAmtArg, m_APInt(ShAmtC))) {
5093 // If there's effectively no shift, return the 1st arg or 2nd arg.
5094 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5095 if (ShAmtC->urem(BitWidth).isNullValue())
5096 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5098 return nullptr;
5100 default:
5101 return nullptr;
5105 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5106 Value *Callee = Call->getCalledValue();
5108 // call undef -> undef
5109 // call null -> undef
5110 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5111 return UndefValue::get(Call->getType());
5113 Function *F = dyn_cast<Function>(Callee);
5114 if (!F)
5115 return nullptr;
5117 if (F->isIntrinsic())
5118 if (Value *Ret = simplifyIntrinsic(Call, Q))
5119 return Ret;
5121 if (!canConstantFoldCallTo(Call, F))
5122 return nullptr;
5124 SmallVector<Constant *, 4> ConstantArgs;
5125 unsigned NumArgs = Call->getNumArgOperands();
5126 ConstantArgs.reserve(NumArgs);
5127 for (auto &Arg : Call->args()) {
5128 Constant *C = dyn_cast<Constant>(&Arg);
5129 if (!C)
5130 return nullptr;
5131 ConstantArgs.push_back(C);
5134 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5137 /// See if we can compute a simplified version of this instruction.
5138 /// If not, this returns null.
5140 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5141 OptimizationRemarkEmitter *ORE) {
5142 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5143 Value *Result;
5145 switch (I->getOpcode()) {
5146 default:
5147 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5148 break;
5149 case Instruction::FNeg:
5150 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5151 break;
5152 case Instruction::FAdd:
5153 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5154 I->getFastMathFlags(), Q);
5155 break;
5156 case Instruction::Add:
5157 Result =
5158 SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5159 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5160 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5161 break;
5162 case Instruction::FSub:
5163 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5164 I->getFastMathFlags(), Q);
5165 break;
5166 case Instruction::Sub:
5167 Result =
5168 SimplifySubInst(I->getOperand(0), I->getOperand(1),
5169 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5170 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5171 break;
5172 case Instruction::FMul:
5173 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5174 I->getFastMathFlags(), Q);
5175 break;
5176 case Instruction::Mul:
5177 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5178 break;
5179 case Instruction::SDiv:
5180 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5181 break;
5182 case Instruction::UDiv:
5183 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5184 break;
5185 case Instruction::FDiv:
5186 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5187 I->getFastMathFlags(), Q);
5188 break;
5189 case Instruction::SRem:
5190 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5191 break;
5192 case Instruction::URem:
5193 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5194 break;
5195 case Instruction::FRem:
5196 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5197 I->getFastMathFlags(), Q);
5198 break;
5199 case Instruction::Shl:
5200 Result =
5201 SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5202 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5203 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5204 break;
5205 case Instruction::LShr:
5206 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5207 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5208 break;
5209 case Instruction::AShr:
5210 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5211 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5212 break;
5213 case Instruction::And:
5214 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5215 break;
5216 case Instruction::Or:
5217 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5218 break;
5219 case Instruction::Xor:
5220 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5221 break;
5222 case Instruction::ICmp:
5223 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5224 I->getOperand(0), I->getOperand(1), Q);
5225 break;
5226 case Instruction::FCmp:
5227 Result =
5228 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5229 I->getOperand(1), I->getFastMathFlags(), Q);
5230 break;
5231 case Instruction::Select:
5232 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5233 I->getOperand(2), Q);
5234 break;
5235 case Instruction::GetElementPtr: {
5236 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5237 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5238 Ops, Q);
5239 break;
5241 case Instruction::InsertValue: {
5242 InsertValueInst *IV = cast<InsertValueInst>(I);
5243 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5244 IV->getInsertedValueOperand(),
5245 IV->getIndices(), Q);
5246 break;
5248 case Instruction::InsertElement: {
5249 auto *IE = cast<InsertElementInst>(I);
5250 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5251 IE->getOperand(2), Q);
5252 break;
5254 case Instruction::ExtractValue: {
5255 auto *EVI = cast<ExtractValueInst>(I);
5256 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5257 EVI->getIndices(), Q);
5258 break;
5260 case Instruction::ExtractElement: {
5261 auto *EEI = cast<ExtractElementInst>(I);
5262 Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5263 EEI->getIndexOperand(), Q);
5264 break;
5266 case Instruction::ShuffleVector: {
5267 auto *SVI = cast<ShuffleVectorInst>(I);
5268 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5269 SVI->getMask(), SVI->getType(), Q);
5270 break;
5272 case Instruction::PHI:
5273 Result = SimplifyPHINode(cast<PHINode>(I), Q);
5274 break;
5275 case Instruction::Call: {
5276 Result = SimplifyCall(cast<CallInst>(I), Q);
5277 break;
5279 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5280 #include "llvm/IR/Instruction.def"
5281 #undef HANDLE_CAST_INST
5282 Result =
5283 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5284 break;
5285 case Instruction::Alloca:
5286 // No simplifications for Alloca and it can't be constant folded.
5287 Result = nullptr;
5288 break;
5291 // In general, it is possible for computeKnownBits to determine all bits in a
5292 // value even when the operands are not all constants.
5293 if (!Result && I->getType()->isIntOrIntVectorTy()) {
5294 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5295 if (Known.isConstant())
5296 Result = ConstantInt::get(I->getType(), Known.getConstant());
5299 /// If called on unreachable code, the above logic may report that the
5300 /// instruction simplified to itself. Make life easier for users by
5301 /// detecting that case here, returning a safe value instead.
5302 return Result == I ? UndefValue::get(I->getType()) : Result;
5305 /// Implementation of recursive simplification through an instruction's
5306 /// uses.
5308 /// This is the common implementation of the recursive simplification routines.
5309 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5310 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5311 /// instructions to process and attempt to simplify it using
5312 /// InstructionSimplify. Recursively visited users which could not be
5313 /// simplified themselves are to the optional UnsimplifiedUsers set for
5314 /// further processing by the caller.
5316 /// This routine returns 'true' only when *it* simplifies something. The passed
5317 /// in simplified value does not count toward this.
5318 static bool replaceAndRecursivelySimplifyImpl(
5319 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5320 const DominatorTree *DT, AssumptionCache *AC,
5321 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5322 bool Simplified = false;
5323 SmallSetVector<Instruction *, 8> Worklist;
5324 const DataLayout &DL = I->getModule()->getDataLayout();
5326 // If we have an explicit value to collapse to, do that round of the
5327 // simplification loop by hand initially.
5328 if (SimpleV) {
5329 for (User *U : I->users())
5330 if (U != I)
5331 Worklist.insert(cast<Instruction>(U));
5333 // Replace the instruction with its simplified value.
5334 I->replaceAllUsesWith(SimpleV);
5336 // Gracefully handle edge cases where the instruction is not wired into any
5337 // parent block.
5338 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5339 !I->mayHaveSideEffects())
5340 I->eraseFromParent();
5341 } else {
5342 Worklist.insert(I);
5345 // Note that we must test the size on each iteration, the worklist can grow.
5346 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5347 I = Worklist[Idx];
5349 // See if this instruction simplifies.
5350 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5351 if (!SimpleV) {
5352 if (UnsimplifiedUsers)
5353 UnsimplifiedUsers->insert(I);
5354 continue;
5357 Simplified = true;
5359 // Stash away all the uses of the old instruction so we can check them for
5360 // recursive simplifications after a RAUW. This is cheaper than checking all
5361 // uses of To on the recursive step in most cases.
5362 for (User *U : I->users())
5363 Worklist.insert(cast<Instruction>(U));
5365 // Replace the instruction with its simplified value.
5366 I->replaceAllUsesWith(SimpleV);
5368 // Gracefully handle edge cases where the instruction is not wired into any
5369 // parent block.
5370 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5371 !I->mayHaveSideEffects())
5372 I->eraseFromParent();
5374 return Simplified;
5377 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5378 const TargetLibraryInfo *TLI,
5379 const DominatorTree *DT,
5380 AssumptionCache *AC) {
5381 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
5384 bool llvm::replaceAndRecursivelySimplify(
5385 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5386 const DominatorTree *DT, AssumptionCache *AC,
5387 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5388 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5389 assert(SimpleV && "Must provide a simplified value.");
5390 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5391 UnsimplifiedUsers);
5394 namespace llvm {
5395 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5396 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5397 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5398 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5399 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
5400 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5401 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5402 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5405 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5406 const DataLayout &DL) {
5407 return {DL, &AR.TLI, &AR.DT, &AR.AC};
5410 template <class T, class... TArgs>
5411 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5412 Function &F) {
5413 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5414 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5415 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5416 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5418 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5419 Function &);