1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
40 #define DEBUG_TYPE "lcg"
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node
&TargetN
,
44 EdgeIndexMap
.insert({&TargetN
, Edges
.size()});
45 Edges
.emplace_back(TargetN
, EK
);
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node
&TargetN
, Edge::Kind EK
) {
49 Edges
[EdgeIndexMap
.find(&TargetN
)->second
].setKind(EK
);
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node
&TargetN
) {
53 auto IndexMapI
= EdgeIndexMap
.find(&TargetN
);
54 if (IndexMapI
== EdgeIndexMap
.end())
57 Edges
[IndexMapI
->second
] = Edge();
58 EdgeIndexMap
.erase(IndexMapI
);
62 static void addEdge(SmallVectorImpl
<LazyCallGraph::Edge
> &Edges
,
63 DenseMap
<LazyCallGraph::Node
*, int> &EdgeIndexMap
,
64 LazyCallGraph::Node
&N
, LazyCallGraph::Edge::Kind EK
) {
65 if (!EdgeIndexMap
.insert({&N
, Edges
.size()}).second
)
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N
.getName() << "\n");
69 Edges
.emplace_back(LazyCallGraph::Edge(N
, EK
));
72 LazyCallGraph::EdgeSequence
&LazyCallGraph::Node::populateSlow() {
73 assert(!Edges
&& "Must not have already populated the edges for this node!");
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
78 Edges
= EdgeSequence();
80 SmallVector
<Constant
*, 16> Worklist
;
81 SmallPtrSet
<Function
*, 4> Callees
;
82 SmallPtrSet
<Constant
*, 16> Visited
;
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock
&BB
: *F
)
101 for (Instruction
&I
: BB
) {
102 if (auto CS
= CallSite(&I
))
103 if (Function
*Callee
= CS
.getCalledFunction())
104 if (!Callee
->isDeclaration())
105 if (Callees
.insert(Callee
).second
) {
106 Visited
.insert(Callee
);
107 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*Callee
),
108 LazyCallGraph::Edge::Call
);
111 for (Value
*Op
: I
.operand_values())
112 if (Constant
*C
= dyn_cast
<Constant
>(Op
))
113 if (Visited
.insert(C
).second
)
114 Worklist
.push_back(C
);
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all of the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
121 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(F
),
122 LazyCallGraph::Edge::Ref
);
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F
: G
->LibFunctions
)
128 if (!Visited
.count(F
))
129 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*F
),
130 LazyCallGraph::Edge::Ref
);
135 void LazyCallGraph::Node::replaceFunction(Function
&NewF
) {
136 assert(F
!= &NewF
&& "Must not replace a function with itself!");
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD
void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
146 static bool isKnownLibFunction(Function
&F
, TargetLibraryInfo
&TLI
) {
149 // Either this is a normal library function or a "vectorizable" function.
150 return TLI
.getLibFunc(F
, LF
) || TLI
.isFunctionVectorizable(F
.getName());
153 LazyCallGraph::LazyCallGraph(Module
&M
, TargetLibraryInfo
&TLI
) {
154 LLVM_DEBUG(dbgs() << "Building CG for module: " << M
.getModuleIdentifier()
156 for (Function
&F
: M
) {
157 if (F
.isDeclaration())
159 // If this function is a known lib function to LLVM then we want to
160 // synthesize reference edges to it to model the fact that LLVM can turn
161 // arbitrary code into a library function call.
162 if (isKnownLibFunction(F
, TLI
))
163 LibFunctions
.insert(&F
);
165 if (F
.hasLocalLinkage())
168 // External linkage defined functions have edges to them from other
170 LLVM_DEBUG(dbgs() << " Adding '" << F
.getName()
171 << "' to entry set of the graph.\n");
172 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
), Edge::Ref
);
175 // Externally visible aliases of internal functions are also viable entry
176 // edges to the module.
177 for (auto &A
: M
.aliases()) {
178 if (A
.hasLocalLinkage())
180 if (Function
* F
= dyn_cast
<Function
>(A
.getAliasee())) {
181 LLVM_DEBUG(dbgs() << " Adding '" << F
->getName()
182 << "' with alias '" << A
.getName()
183 << "' to entry set of the graph.\n");
184 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(*F
), Edge::Ref
);
188 // Now add entry nodes for functions reachable via initializers to globals.
189 SmallVector
<Constant
*, 16> Worklist
;
190 SmallPtrSet
<Constant
*, 16> Visited
;
191 for (GlobalVariable
&GV
: M
.globals())
192 if (GV
.hasInitializer())
193 if (Visited
.insert(GV
.getInitializer()).second
)
194 Worklist
.push_back(GV
.getInitializer());
197 dbgs() << " Adding functions referenced by global initializers to the "
199 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
200 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
),
201 LazyCallGraph::Edge::Ref
);
205 LazyCallGraph::LazyCallGraph(LazyCallGraph
&&G
)
206 : BPA(std::move(G
.BPA
)), NodeMap(std::move(G
.NodeMap
)),
207 EntryEdges(std::move(G
.EntryEdges
)), SCCBPA(std::move(G
.SCCBPA
)),
208 SCCMap(std::move(G
.SCCMap
)),
209 LibFunctions(std::move(G
.LibFunctions
)) {
213 LazyCallGraph
&LazyCallGraph::operator=(LazyCallGraph
&&G
) {
214 BPA
= std::move(G
.BPA
);
215 NodeMap
= std::move(G
.NodeMap
);
216 EntryEdges
= std::move(G
.EntryEdges
);
217 SCCBPA
= std::move(G
.SCCBPA
);
218 SCCMap
= std::move(G
.SCCMap
);
219 LibFunctions
= std::move(G
.LibFunctions
);
224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
225 LLVM_DUMP_METHOD
void LazyCallGraph::SCC::dump() const {
226 dbgs() << *this << '\n';
231 void LazyCallGraph::SCC::verify() {
232 assert(OuterRefSCC
&& "Can't have a null RefSCC!");
233 assert(!Nodes
.empty() && "Can't have an empty SCC!");
235 for (Node
*N
: Nodes
) {
236 assert(N
&& "Can't have a null node!");
237 assert(OuterRefSCC
->G
->lookupSCC(*N
) == this &&
238 "Node does not map to this SCC!");
239 assert(N
->DFSNumber
== -1 &&
240 "Must set DFS numbers to -1 when adding a node to an SCC!");
241 assert(N
->LowLink
== -1 &&
242 "Must set low link to -1 when adding a node to an SCC!");
244 assert(E
.getNode().isPopulated() && "Can't have an unpopulated node!");
249 bool LazyCallGraph::SCC::isParentOf(const SCC
&C
) const {
253 for (Node
&N
: *this)
254 for (Edge
&E
: N
->calls())
255 if (OuterRefSCC
->G
->lookupSCC(E
.getNode()) == &C
)
262 bool LazyCallGraph::SCC::isAncestorOf(const SCC
&TargetC
) const {
263 if (this == &TargetC
)
266 LazyCallGraph
&G
= *OuterRefSCC
->G
;
268 // Start with this SCC.
269 SmallPtrSet
<const SCC
*, 16> Visited
= {this};
270 SmallVector
<const SCC
*, 16> Worklist
= {this};
272 // Walk down the graph until we run out of edges or find a path to TargetC.
274 const SCC
&C
= *Worklist
.pop_back_val();
276 for (Edge
&E
: N
->calls()) {
277 SCC
*CalleeC
= G
.lookupSCC(E
.getNode());
281 // If the callee's SCC is the TargetC, we're done.
282 if (CalleeC
== &TargetC
)
285 // If this is the first time we've reached this SCC, put it on the
286 // worklist to recurse through.
287 if (Visited
.insert(CalleeC
).second
)
288 Worklist
.push_back(CalleeC
);
290 } while (!Worklist
.empty());
296 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph
&G
) : G(&G
) {}
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD
void LazyCallGraph::RefSCC::dump() const {
300 dbgs() << *this << '\n';
305 void LazyCallGraph::RefSCC::verify() {
306 assert(G
&& "Can't have a null graph!");
307 assert(!SCCs
.empty() && "Can't have an empty SCC!");
309 // Verify basic properties of the SCCs.
310 SmallPtrSet
<SCC
*, 4> SCCSet
;
311 for (SCC
*C
: SCCs
) {
312 assert(C
&& "Can't have a null SCC!");
314 assert(&C
->getOuterRefSCC() == this &&
315 "SCC doesn't think it is inside this RefSCC!");
316 bool Inserted
= SCCSet
.insert(C
).second
;
317 assert(Inserted
&& "Found a duplicate SCC!");
318 auto IndexIt
= SCCIndices
.find(C
);
319 assert(IndexIt
!= SCCIndices
.end() &&
320 "Found an SCC that doesn't have an index!");
323 // Check that our indices map correctly.
324 for (auto &SCCIndexPair
: SCCIndices
) {
325 SCC
*C
= SCCIndexPair
.first
;
326 int i
= SCCIndexPair
.second
;
327 assert(C
&& "Can't have a null SCC in the indices!");
328 assert(SCCSet
.count(C
) && "Found an index for an SCC not in the RefSCC!");
329 assert(SCCs
[i
] == C
&& "Index doesn't point to SCC!");
332 // Check that the SCCs are in fact in post-order.
333 for (int i
= 0, Size
= SCCs
.size(); i
< Size
; ++i
) {
334 SCC
&SourceSCC
= *SCCs
[i
];
335 for (Node
&N
: SourceSCC
)
339 SCC
&TargetSCC
= *G
->lookupSCC(E
.getNode());
340 if (&TargetSCC
.getOuterRefSCC() == this) {
341 assert(SCCIndices
.find(&TargetSCC
)->second
<= i
&&
342 "Edge between SCCs violates post-order relationship.");
350 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC
&RC
) const {
354 // Search all edges to see if this is a parent.
358 if (G
->lookupRefSCC(E
.getNode()) == &RC
)
364 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC
&RC
) const {
368 // For each descendant of this RefSCC, see if one of its children is the
369 // argument. If not, add that descendant to the worklist and continue
371 SmallVector
<const RefSCC
*, 4> Worklist
;
372 SmallPtrSet
<const RefSCC
*, 4> Visited
;
373 Worklist
.push_back(this);
374 Visited
.insert(this);
376 const RefSCC
&DescendantRC
= *Worklist
.pop_back_val();
377 for (SCC
&C
: DescendantRC
)
380 auto *ChildRC
= G
->lookupRefSCC(E
.getNode());
383 if (!ChildRC
|| !Visited
.insert(ChildRC
).second
)
385 Worklist
.push_back(ChildRC
);
387 } while (!Worklist
.empty());
392 /// Generic helper that updates a postorder sequence of SCCs for a potentially
393 /// cycle-introducing edge insertion.
395 /// A postorder sequence of SCCs of a directed graph has one fundamental
396 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
397 /// all edges in the SCC DAG point to prior SCCs in the sequence.
399 /// This routine both updates a postorder sequence and uses that sequence to
400 /// compute the set of SCCs connected into a cycle. It should only be called to
401 /// insert a "downward" edge which will require changing the sequence to
402 /// restore it to a postorder.
404 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
405 /// sequence, all of the SCCs which may be impacted are in the closed range of
406 /// those two within the postorder sequence. The algorithm used here to restore
407 /// the state is as follows:
409 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
410 /// source SCC consisting of just the source SCC. Then scan toward the
411 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
412 /// in the set, add it to the set. Otherwise, the source SCC is not
413 /// a successor, move it in the postorder sequence to immediately before
414 /// the source SCC, shifting the source SCC and all SCCs in the set one
415 /// position toward the target SCC. Stop scanning after processing the
417 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
418 /// and thus the new edge will flow toward the start, we are done.
419 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
420 /// SCC between the source and the target, and add them to the set of
421 /// connected SCCs, then recurse through them. Once a complete set of the
422 /// SCCs the target connects to is known, hoist the remaining SCCs between
423 /// the source and the target to be above the target. Note that there is no
424 /// need to process the source SCC, it is already known to connect.
425 /// 4) At this point, all of the SCCs in the closed range between the source
426 /// SCC and the target SCC in the postorder sequence are connected,
427 /// including the target SCC and the source SCC. Inserting the edge from
428 /// the source SCC to the target SCC will form a cycle out of precisely
429 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
432 /// This process has various important properties:
433 /// - Only mutates the SCCs when adding the edge actually changes the SCC
435 /// - Never mutates SCCs which are unaffected by the change.
436 /// - Updates the postorder sequence to correctly satisfy the postorder
437 /// constraint after the edge is inserted.
438 /// - Only reorders SCCs in the closed postorder sequence from the source to
439 /// the target, so easy to bound how much has changed even in the ordering.
440 /// - Big-O is the number of edges in the closed postorder range of SCCs from
441 /// source to target.
443 /// This helper routine, in addition to updating the postorder sequence itself
444 /// will also update a map from SCCs to indices within that sequence.
446 /// The sequence and the map must operate on pointers to the SCC type.
448 /// Two callbacks must be provided. The first computes the subset of SCCs in
449 /// the postorder closed range from the source to the target which connect to
450 /// the source SCC via some (transitive) set of edges. The second computes the
451 /// subset of the same range which the target SCC connects to via some
452 /// (transitive) set of edges. Both callbacks should populate the set argument
454 template <typename SCCT
, typename PostorderSequenceT
, typename SCCIndexMapT
,
455 typename ComputeSourceConnectedSetCallableT
,
456 typename ComputeTargetConnectedSetCallableT
>
457 static iterator_range
<typename
PostorderSequenceT::iterator
>
458 updatePostorderSequenceForEdgeInsertion(
459 SCCT
&SourceSCC
, SCCT
&TargetSCC
, PostorderSequenceT
&SCCs
,
460 SCCIndexMapT
&SCCIndices
,
461 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet
,
462 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet
) {
463 int SourceIdx
= SCCIndices
[&SourceSCC
];
464 int TargetIdx
= SCCIndices
[&TargetSCC
];
465 assert(SourceIdx
< TargetIdx
&& "Cannot have equal indices here!");
467 SmallPtrSet
<SCCT
*, 4> ConnectedSet
;
469 // Compute the SCCs which (transitively) reach the source.
470 ComputeSourceConnectedSet(ConnectedSet
);
472 // Partition the SCCs in this part of the port-order sequence so only SCCs
473 // connecting to the source remain between it and the target. This is
474 // a benign partition as it preserves postorder.
475 auto SourceI
= std::stable_partition(
476 SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
+ 1,
477 [&ConnectedSet
](SCCT
*C
) { return !ConnectedSet
.count(C
); });
478 for (int i
= SourceIdx
, e
= TargetIdx
+ 1; i
< e
; ++i
)
479 SCCIndices
.find(SCCs
[i
])->second
= i
;
481 // If the target doesn't connect to the source, then we've corrected the
482 // post-order and there are no cycles formed.
483 if (!ConnectedSet
.count(&TargetSCC
)) {
484 assert(SourceI
> (SCCs
.begin() + SourceIdx
) &&
485 "Must have moved the source to fix the post-order.");
486 assert(*std::prev(SourceI
) == &TargetSCC
&&
487 "Last SCC to move should have bene the target.");
489 // Return an empty range at the target SCC indicating there is nothing to
491 return make_range(std::prev(SourceI
), std::prev(SourceI
));
494 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
495 "Should not have moved target if connected!");
496 SourceIdx
= SourceI
- SCCs
.begin();
497 assert(SCCs
[SourceIdx
] == &SourceSCC
&&
498 "Bad updated index computation for the source SCC!");
501 // See whether there are any remaining intervening SCCs between the source
502 // and target. If so we need to make sure they all are reachable form the
504 if (SourceIdx
+ 1 < TargetIdx
) {
505 ConnectedSet
.clear();
506 ComputeTargetConnectedSet(ConnectedSet
);
508 // Partition SCCs so that only SCCs reached from the target remain between
509 // the source and the target. This preserves postorder.
510 auto TargetI
= std::stable_partition(
511 SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1,
512 [&ConnectedSet
](SCCT
*C
) { return ConnectedSet
.count(C
); });
513 for (int i
= SourceIdx
+ 1, e
= TargetIdx
+ 1; i
< e
; ++i
)
514 SCCIndices
.find(SCCs
[i
])->second
= i
;
515 TargetIdx
= std::prev(TargetI
) - SCCs
.begin();
516 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
517 "Should always end with the target!");
520 // At this point, we know that connecting source to target forms a cycle
521 // because target connects back to source, and we know that all of the SCCs
522 // between the source and target in the postorder sequence participate in that
524 return make_range(SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
);
528 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
529 Node
&SourceN
, Node
&TargetN
,
530 function_ref
<void(ArrayRef
<SCC
*> MergeSCCs
)> MergeCB
) {
531 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
532 SmallVector
<SCC
*, 1> DeletedSCCs
;
535 // In a debug build, verify the RefSCC is valid to start with and when this
538 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
541 SCC
&SourceSCC
= *G
->lookupSCC(SourceN
);
542 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
544 // If the two nodes are already part of the same SCC, we're also done as
545 // we've just added more connectivity.
546 if (&SourceSCC
== &TargetSCC
) {
547 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
548 return false; // No new cycle.
551 // At this point we leverage the postorder list of SCCs to detect when the
552 // insertion of an edge changes the SCC structure in any way.
554 // First and foremost, we can eliminate the need for any changes when the
555 // edge is toward the beginning of the postorder sequence because all edges
556 // flow in that direction already. Thus adding a new one cannot form a cycle.
557 int SourceIdx
= SCCIndices
[&SourceSCC
];
558 int TargetIdx
= SCCIndices
[&TargetSCC
];
559 if (TargetIdx
< SourceIdx
) {
560 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
561 return false; // No new cycle.
564 // Compute the SCCs which (transitively) reach the source.
565 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
567 // Check that the RefSCC is still valid before computing this as the
568 // results will be nonsensical of we've broken its invariants.
571 ConnectedSet
.insert(&SourceSCC
);
572 auto IsConnected
= [&](SCC
&C
) {
574 for (Edge
&E
: N
->calls())
575 if (ConnectedSet
.count(G
->lookupSCC(E
.getNode())))
582 make_range(SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1))
584 ConnectedSet
.insert(C
);
587 // Use a normal worklist to find which SCCs the target connects to. We still
588 // bound the search based on the range in the postorder list we care about,
589 // but because this is forward connectivity we just "recurse" through the
591 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
593 // Check that the RefSCC is still valid before computing this as the
594 // results will be nonsensical of we've broken its invariants.
597 ConnectedSet
.insert(&TargetSCC
);
598 SmallVector
<SCC
*, 4> Worklist
;
599 Worklist
.push_back(&TargetSCC
);
601 SCC
&C
= *Worklist
.pop_back_val();
606 SCC
&EdgeC
= *G
->lookupSCC(E
.getNode());
607 if (&EdgeC
.getOuterRefSCC() != this)
608 // Not in this RefSCC...
610 if (SCCIndices
.find(&EdgeC
)->second
<= SourceIdx
)
611 // Not in the postorder sequence between source and target.
614 if (ConnectedSet
.insert(&EdgeC
).second
)
615 Worklist
.push_back(&EdgeC
);
617 } while (!Worklist
.empty());
620 // Use a generic helper to update the postorder sequence of SCCs and return
621 // a range of any SCCs connected into a cycle by inserting this edge. This
622 // routine will also take care of updating the indices into the postorder
624 auto MergeRange
= updatePostorderSequenceForEdgeInsertion(
625 SourceSCC
, TargetSCC
, SCCs
, SCCIndices
, ComputeSourceConnectedSet
,
626 ComputeTargetConnectedSet
);
628 // Run the user's callback on the merged SCCs before we actually merge them.
630 MergeCB(makeArrayRef(MergeRange
.begin(), MergeRange
.end()));
632 // If the merge range is empty, then adding the edge didn't actually form any
633 // new cycles. We're done.
634 if (empty(MergeRange
)) {
635 // Now that the SCC structure is finalized, flip the kind to call.
636 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
637 return false; // No new cycle.
641 // Before merging, check that the RefSCC remains valid after all the
642 // postorder updates.
646 // Otherwise we need to merge all of the SCCs in the cycle into a single
649 // NB: We merge into the target because all of these functions were already
650 // reachable from the target, meaning any SCC-wide properties deduced about it
651 // other than the set of functions within it will not have changed.
652 for (SCC
*C
: MergeRange
) {
653 assert(C
!= &TargetSCC
&&
654 "We merge *into* the target and shouldn't process it here!");
656 TargetSCC
.Nodes
.append(C
->Nodes
.begin(), C
->Nodes
.end());
657 for (Node
*N
: C
->Nodes
)
658 G
->SCCMap
[N
] = &TargetSCC
;
660 DeletedSCCs
.push_back(C
);
663 // Erase the merged SCCs from the list and update the indices of the
665 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
666 auto EraseEnd
= SCCs
.erase(MergeRange
.begin(), MergeRange
.end());
667 for (SCC
*C
: make_range(EraseEnd
, SCCs
.end()))
668 SCCIndices
[C
] -= IndexOffset
;
670 // Now that the SCC structure is finalized, flip the kind to call.
671 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
673 // And we're done, but we did form a new cycle.
677 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node
&SourceN
,
679 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
682 // In a debug build, verify the RefSCC is valid to start with and when this
685 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
688 assert(G
->lookupRefSCC(SourceN
) == this &&
689 "Source must be in this RefSCC.");
690 assert(G
->lookupRefSCC(TargetN
) == this &&
691 "Target must be in this RefSCC.");
692 assert(G
->lookupSCC(SourceN
) != G
->lookupSCC(TargetN
) &&
693 "Source and Target must be in separate SCCs for this to be trivial!");
695 // Set the edge kind.
696 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
699 iterator_range
<LazyCallGraph::RefSCC::iterator
>
700 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node
&SourceN
, Node
&TargetN
) {
701 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
704 // In a debug build, verify the RefSCC is valid to start with and when this
707 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
710 assert(G
->lookupRefSCC(SourceN
) == this &&
711 "Source must be in this RefSCC.");
712 assert(G
->lookupRefSCC(TargetN
) == this &&
713 "Target must be in this RefSCC.");
715 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
716 assert(G
->lookupSCC(SourceN
) == &TargetSCC
&& "Source and Target must be in "
717 "the same SCC to require the "
720 // Set the edge kind.
721 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
723 // Otherwise we are removing a call edge from a single SCC. This may break
724 // the cycle. In order to compute the new set of SCCs, we need to do a small
725 // DFS over the nodes within the SCC to form any sub-cycles that remain as
726 // distinct SCCs and compute a postorder over the resulting SCCs.
728 // However, we specially handle the target node. The target node is known to
729 // reach all other nodes in the original SCC by definition. This means that
730 // we want the old SCC to be replaced with an SCC containing that node as it
731 // will be the root of whatever SCC DAG results from the DFS. Assumptions
732 // about an SCC such as the set of functions called will continue to hold,
735 SCC
&OldSCC
= TargetSCC
;
736 SmallVector
<std::pair
<Node
*, EdgeSequence::call_iterator
>, 16> DFSStack
;
737 SmallVector
<Node
*, 16> PendingSCCStack
;
738 SmallVector
<SCC
*, 4> NewSCCs
;
740 // Prepare the nodes for a fresh DFS.
741 SmallVector
<Node
*, 16> Worklist
;
742 Worklist
.swap(OldSCC
.Nodes
);
743 for (Node
*N
: Worklist
) {
744 N
->DFSNumber
= N
->LowLink
= 0;
748 // Force the target node to be in the old SCC. This also enables us to take
749 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
750 // below: whenever we build an edge that reaches the target node, we know
751 // that the target node eventually connects back to all other nodes in our
752 // walk. As a consequence, we can detect and handle participants in that
753 // cycle without walking all the edges that form this connection, and instead
754 // by relying on the fundamental guarantee coming into this operation (all
755 // nodes are reachable from the target due to previously forming an SCC).
756 TargetN
.DFSNumber
= TargetN
.LowLink
= -1;
757 OldSCC
.Nodes
.push_back(&TargetN
);
758 G
->SCCMap
[&TargetN
] = &OldSCC
;
760 // Scan down the stack and DFS across the call edges.
761 for (Node
*RootN
: Worklist
) {
762 assert(DFSStack
.empty() &&
763 "Cannot begin a new root with a non-empty DFS stack!");
764 assert(PendingSCCStack
.empty() &&
765 "Cannot begin a new root with pending nodes for an SCC!");
767 // Skip any nodes we've already reached in the DFS.
768 if (RootN
->DFSNumber
!= 0) {
769 assert(RootN
->DFSNumber
== -1 &&
770 "Shouldn't have any mid-DFS root nodes!");
774 RootN
->DFSNumber
= RootN
->LowLink
= 1;
775 int NextDFSNumber
= 2;
777 DFSStack
.push_back({RootN
, (*RootN
)->call_begin()});
780 EdgeSequence::call_iterator I
;
781 std::tie(N
, I
) = DFSStack
.pop_back_val();
782 auto E
= (*N
)->call_end();
784 Node
&ChildN
= I
->getNode();
785 if (ChildN
.DFSNumber
== 0) {
786 // We haven't yet visited this child, so descend, pushing the current
787 // node onto the stack.
788 DFSStack
.push_back({N
, I
});
790 assert(!G
->SCCMap
.count(&ChildN
) &&
791 "Found a node with 0 DFS number but already in an SCC!");
792 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
794 I
= (*N
)->call_begin();
795 E
= (*N
)->call_end();
799 // Check for the child already being part of some component.
800 if (ChildN
.DFSNumber
== -1) {
801 if (G
->lookupSCC(ChildN
) == &OldSCC
) {
802 // If the child is part of the old SCC, we know that it can reach
803 // every other node, so we have formed a cycle. Pull the entire DFS
804 // and pending stacks into it. See the comment above about setting
805 // up the old SCC for why we do this.
806 int OldSize
= OldSCC
.size();
807 OldSCC
.Nodes
.push_back(N
);
808 OldSCC
.Nodes
.append(PendingSCCStack
.begin(), PendingSCCStack
.end());
809 PendingSCCStack
.clear();
810 while (!DFSStack
.empty())
811 OldSCC
.Nodes
.push_back(DFSStack
.pop_back_val().first
);
812 for (Node
&N
: make_range(OldSCC
.begin() + OldSize
, OldSCC
.end())) {
813 N
.DFSNumber
= N
.LowLink
= -1;
814 G
->SCCMap
[&N
] = &OldSCC
;
820 // If the child has already been added to some child component, it
821 // couldn't impact the low-link of this parent because it isn't
822 // connected, and thus its low-link isn't relevant so skip it.
827 // Track the lowest linked child as the lowest link for this node.
828 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
829 if (ChildN
.LowLink
< N
->LowLink
)
830 N
->LowLink
= ChildN
.LowLink
;
832 // Move to the next edge.
836 // Cleared the DFS early, start another round.
839 // We've finished processing N and its descendants, put it on our pending
840 // SCC stack to eventually get merged into an SCC of nodes.
841 PendingSCCStack
.push_back(N
);
843 // If this node is linked to some lower entry, continue walking up the
845 if (N
->LowLink
!= N
->DFSNumber
)
848 // Otherwise, we've completed an SCC. Append it to our post order list of
850 int RootDFSNumber
= N
->DFSNumber
;
851 // Find the range of the node stack by walking down until we pass the
853 auto SCCNodes
= make_range(
854 PendingSCCStack
.rbegin(),
855 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
856 return N
->DFSNumber
< RootDFSNumber
;
859 // Form a new SCC out of these nodes and then clear them off our pending
861 NewSCCs
.push_back(G
->createSCC(*this, SCCNodes
));
862 for (Node
&N
: *NewSCCs
.back()) {
863 N
.DFSNumber
= N
.LowLink
= -1;
864 G
->SCCMap
[&N
] = NewSCCs
.back();
866 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
867 } while (!DFSStack
.empty());
870 // Insert the remaining SCCs before the old one. The old SCC can reach all
871 // other SCCs we form because it contains the target node of the removed edge
872 // of the old SCC. This means that we will have edges into all of the new
873 // SCCs, which means the old one must come last for postorder.
874 int OldIdx
= SCCIndices
[&OldSCC
];
875 SCCs
.insert(SCCs
.begin() + OldIdx
, NewSCCs
.begin(), NewSCCs
.end());
877 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
878 // old SCC from the mapping.
879 for (int Idx
= OldIdx
, Size
= SCCs
.size(); Idx
< Size
; ++Idx
)
880 SCCIndices
[SCCs
[Idx
]] = Idx
;
882 return make_range(SCCs
.begin() + OldIdx
,
883 SCCs
.begin() + OldIdx
+ NewSCCs
.size());
886 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node
&SourceN
,
888 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
890 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
891 assert(G
->lookupRefSCC(TargetN
) != this &&
892 "Target must not be in this RefSCC.");
893 #ifdef EXPENSIVE_CHECKS
894 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
895 "Target must be a descendant of the Source.");
898 // Edges between RefSCCs are the same regardless of call or ref, so we can
899 // just flip the edge here.
900 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
903 // Check that the RefSCC is still valid.
908 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node
&SourceN
,
910 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
912 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
913 assert(G
->lookupRefSCC(TargetN
) != this &&
914 "Target must not be in this RefSCC.");
915 #ifdef EXPENSIVE_CHECKS
916 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
917 "Target must be a descendant of the Source.");
920 // Edges between RefSCCs are the same regardless of call or ref, so we can
921 // just flip the edge here.
922 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
925 // Check that the RefSCC is still valid.
930 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node
&SourceN
,
932 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
933 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
935 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
938 // Check that the RefSCC is still valid.
943 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node
&SourceN
, Node
&TargetN
,
945 // First insert it into the caller.
946 SourceN
->insertEdgeInternal(TargetN
, EK
);
948 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
950 assert(G
->lookupRefSCC(TargetN
) != this &&
951 "Target must not be in this RefSCC.");
952 #ifdef EXPENSIVE_CHECKS
953 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
954 "Target must be a descendant of the Source.");
958 // Check that the RefSCC is still valid.
963 SmallVector
<LazyCallGraph::RefSCC
*, 1>
964 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node
&SourceN
, Node
&TargetN
) {
965 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
966 RefSCC
&SourceC
= *G
->lookupRefSCC(SourceN
);
967 assert(&SourceC
!= this && "Source must not be in this RefSCC.");
968 #ifdef EXPENSIVE_CHECKS
969 assert(SourceC
.isDescendantOf(*this) &&
970 "Source must be a descendant of the Target.");
973 SmallVector
<RefSCC
*, 1> DeletedRefSCCs
;
976 // In a debug build, verify the RefSCC is valid to start with and when this
979 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
982 int SourceIdx
= G
->RefSCCIndices
[&SourceC
];
983 int TargetIdx
= G
->RefSCCIndices
[this];
984 assert(SourceIdx
< TargetIdx
&&
985 "Postorder list doesn't see edge as incoming!");
987 // Compute the RefSCCs which (transitively) reach the source. We do this by
988 // working backwards from the source using the parent set in each RefSCC,
989 // skipping any RefSCCs that don't fall in the postorder range. This has the
990 // advantage of walking the sparser parent edge (in high fan-out graphs) but
991 // more importantly this removes examining all forward edges in all RefSCCs
992 // within the postorder range which aren't in fact connected. Only connected
993 // RefSCCs (and their edges) are visited here.
994 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
995 Set
.insert(&SourceC
);
996 auto IsConnected
= [&](RefSCC
&RC
) {
1000 if (Set
.count(G
->lookupRefSCC(E
.getNode())))
1006 for (RefSCC
*C
: make_range(G
->PostOrderRefSCCs
.begin() + SourceIdx
+ 1,
1007 G
->PostOrderRefSCCs
.begin() + TargetIdx
+ 1))
1008 if (IsConnected(*C
))
1012 // Use a normal worklist to find which SCCs the target connects to. We still
1013 // bound the search based on the range in the postorder list we care about,
1014 // but because this is forward connectivity we just "recurse" through the
1016 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1018 SmallVector
<RefSCC
*, 4> Worklist
;
1019 Worklist
.push_back(this);
1021 RefSCC
&RC
= *Worklist
.pop_back_val();
1024 for (Edge
&E
: *N
) {
1025 RefSCC
&EdgeRC
= *G
->lookupRefSCC(E
.getNode());
1026 if (G
->getRefSCCIndex(EdgeRC
) <= SourceIdx
)
1027 // Not in the postorder sequence between source and target.
1030 if (Set
.insert(&EdgeRC
).second
)
1031 Worklist
.push_back(&EdgeRC
);
1033 } while (!Worklist
.empty());
1036 // Use a generic helper to update the postorder sequence of RefSCCs and return
1037 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1038 // routine will also take care of updating the indices into the postorder
1040 iterator_range
<SmallVectorImpl
<RefSCC
*>::iterator
> MergeRange
=
1041 updatePostorderSequenceForEdgeInsertion(
1042 SourceC
, *this, G
->PostOrderRefSCCs
, G
->RefSCCIndices
,
1043 ComputeSourceConnectedSet
, ComputeTargetConnectedSet
);
1045 // Build a set so we can do fast tests for whether a RefSCC will end up as
1046 // part of the merged RefSCC.
1047 SmallPtrSet
<RefSCC
*, 16> MergeSet(MergeRange
.begin(), MergeRange
.end());
1049 // This RefSCC will always be part of that set, so just insert it here.
1050 MergeSet
.insert(this);
1052 // Now that we have identified all of the SCCs which need to be merged into
1053 // a connected set with the inserted edge, merge all of them into this SCC.
1054 SmallVector
<SCC
*, 16> MergedSCCs
;
1056 for (RefSCC
*RC
: MergeRange
) {
1057 assert(RC
!= this && "We're merging into the target RefSCC, so it "
1058 "shouldn't be in the range.");
1060 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1061 // update any parent sets.
1062 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1063 // walk by updating the parent sets in some other manner.
1064 for (SCC
&InnerC
: *RC
) {
1065 InnerC
.OuterRefSCC
= this;
1066 SCCIndices
[&InnerC
] = SCCIndex
++;
1067 for (Node
&N
: InnerC
)
1068 G
->SCCMap
[&N
] = &InnerC
;
1071 // Now merge in the SCCs. We can actually move here so try to reuse storage
1072 // the first time through.
1073 if (MergedSCCs
.empty())
1074 MergedSCCs
= std::move(RC
->SCCs
);
1076 MergedSCCs
.append(RC
->SCCs
.begin(), RC
->SCCs
.end());
1078 DeletedRefSCCs
.push_back(RC
);
1081 // Append our original SCCs to the merged list and move it into place.
1082 for (SCC
&InnerC
: *this)
1083 SCCIndices
[&InnerC
] = SCCIndex
++;
1084 MergedSCCs
.append(SCCs
.begin(), SCCs
.end());
1085 SCCs
= std::move(MergedSCCs
);
1087 // Remove the merged away RefSCCs from the post order sequence.
1088 for (RefSCC
*RC
: MergeRange
)
1089 G
->RefSCCIndices
.erase(RC
);
1090 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
1092 G
->PostOrderRefSCCs
.erase(MergeRange
.begin(), MergeRange
.end());
1093 for (RefSCC
*RC
: make_range(EraseEnd
, G
->PostOrderRefSCCs
.end()))
1094 G
->RefSCCIndices
[RC
] -= IndexOffset
;
1096 // At this point we have a merged RefSCC with a post-order SCCs list, just
1097 // connect the nodes to form the new edge.
1098 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
1100 // We return the list of SCCs which were merged so that callers can
1101 // invalidate any data they have associated with those SCCs. Note that these
1102 // SCCs are no longer in an interesting state (they are totally empty) but
1103 // the pointers will remain stable for the life of the graph itself.
1104 return DeletedRefSCCs
;
1107 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node
&SourceN
, Node
&TargetN
) {
1108 assert(G
->lookupRefSCC(SourceN
) == this &&
1109 "The source must be a member of this RefSCC.");
1110 assert(G
->lookupRefSCC(TargetN
) != this &&
1111 "The target must not be a member of this RefSCC");
1114 // In a debug build, verify the RefSCC is valid to start with and when this
1115 // routine finishes.
1117 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1120 // First remove it from the node.
1121 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1123 assert(Removed
&& "Target not in the edge set for this caller?");
1126 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1127 LazyCallGraph::RefSCC::removeInternalRefEdge(Node
&SourceN
,
1128 ArrayRef
<Node
*> TargetNs
) {
1129 // We return a list of the resulting *new* RefSCCs in post-order.
1130 SmallVector
<RefSCC
*, 1> Result
;
1133 // In a debug build, verify the RefSCC is valid to start with and that either
1134 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1135 // or we return new RefSCCs and this RefSCC is dead.
1137 auto VerifyOnExit
= make_scope_exit([&]() {
1138 // If we didn't replace our RefSCC with new ones, check that this one
1145 // First remove the actual edges.
1146 for (Node
*TargetN
: TargetNs
) {
1147 assert(!(*SourceN
)[*TargetN
].isCall() &&
1148 "Cannot remove a call edge, it must first be made a ref edge");
1150 bool Removed
= SourceN
->removeEdgeInternal(*TargetN
);
1152 assert(Removed
&& "Target not in the edge set for this caller?");
1155 // Direct self references don't impact the ref graph at all.
1156 if (llvm::all_of(TargetNs
,
1157 [&](Node
*TargetN
) { return &SourceN
== TargetN
; }))
1160 // If all targets are in the same SCC as the source, because no call edges
1161 // were removed there is no RefSCC structure change.
1162 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1163 if (llvm::all_of(TargetNs
, [&](Node
*TargetN
) {
1164 return G
->lookupSCC(*TargetN
) == &SourceC
;
1168 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1169 // for each inner SCC. We store these inside the low-link field of the nodes
1170 // rather than associated with SCCs because this saves a round-trip through
1171 // the node->SCC map and in the common case, SCCs are small. We will verify
1172 // that we always give the same number to every node in the SCC such that
1173 // these are equivalent.
1174 int PostOrderNumber
= 0;
1176 // Reset all the other nodes to prepare for a DFS over them, and add them to
1178 SmallVector
<Node
*, 8> Worklist
;
1179 for (SCC
*C
: SCCs
) {
1181 N
.DFSNumber
= N
.LowLink
= 0;
1183 Worklist
.append(C
->Nodes
.begin(), C
->Nodes
.end());
1186 // Track the number of nodes in this RefSCC so that we can quickly recognize
1187 // an important special case of the edge removal not breaking the cycle of
1189 const int NumRefSCCNodes
= Worklist
.size();
1191 SmallVector
<std::pair
<Node
*, EdgeSequence::iterator
>, 4> DFSStack
;
1192 SmallVector
<Node
*, 4> PendingRefSCCStack
;
1194 assert(DFSStack
.empty() &&
1195 "Cannot begin a new root with a non-empty DFS stack!");
1196 assert(PendingRefSCCStack
.empty() &&
1197 "Cannot begin a new root with pending nodes for an SCC!");
1199 Node
*RootN
= Worklist
.pop_back_val();
1200 // Skip any nodes we've already reached in the DFS.
1201 if (RootN
->DFSNumber
!= 0) {
1202 assert(RootN
->DFSNumber
== -1 &&
1203 "Shouldn't have any mid-DFS root nodes!");
1207 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1208 int NextDFSNumber
= 2;
1210 DFSStack
.push_back({RootN
, (*RootN
)->begin()});
1213 EdgeSequence::iterator I
;
1214 std::tie(N
, I
) = DFSStack
.pop_back_val();
1215 auto E
= (*N
)->end();
1217 assert(N
->DFSNumber
!= 0 && "We should always assign a DFS number "
1218 "before processing a node.");
1221 Node
&ChildN
= I
->getNode();
1222 if (ChildN
.DFSNumber
== 0) {
1223 // Mark that we should start at this child when next this node is the
1224 // top of the stack. We don't start at the next child to ensure this
1225 // child's lowlink is reflected.
1226 DFSStack
.push_back({N
, I
});
1228 // Continue, resetting to the child node.
1229 ChildN
.LowLink
= ChildN
.DFSNumber
= NextDFSNumber
++;
1231 I
= ChildN
->begin();
1235 if (ChildN
.DFSNumber
== -1) {
1236 // If this child isn't currently in this RefSCC, no need to process
1242 // Track the lowest link of the children, if any are still in the stack.
1243 // Any child not on the stack will have a LowLink of -1.
1244 assert(ChildN
.LowLink
!= 0 &&
1245 "Low-link must not be zero with a non-zero DFS number.");
1246 if (ChildN
.LowLink
>= 0 && ChildN
.LowLink
< N
->LowLink
)
1247 N
->LowLink
= ChildN
.LowLink
;
1251 // We've finished processing N and its descendants, put it on our pending
1252 // stack to eventually get merged into a RefSCC.
1253 PendingRefSCCStack
.push_back(N
);
1255 // If this node is linked to some lower entry, continue walking up the
1257 if (N
->LowLink
!= N
->DFSNumber
) {
1258 assert(!DFSStack
.empty() &&
1259 "We never found a viable root for a RefSCC to pop off!");
1263 // Otherwise, form a new RefSCC from the top of the pending node stack.
1264 int RefSCCNumber
= PostOrderNumber
++;
1265 int RootDFSNumber
= N
->DFSNumber
;
1267 // Find the range of the node stack by walking down until we pass the
1268 // root DFS number. Update the DFS numbers and low link numbers in the
1269 // process to avoid re-walking this list where possible.
1270 auto StackRI
= find_if(reverse(PendingRefSCCStack
), [&](Node
*N
) {
1271 if (N
->DFSNumber
< RootDFSNumber
)
1272 // We've found the bottom.
1275 // Update this node and keep scanning.
1277 // Save the post-order number in the lowlink field so that we can use
1278 // it to map SCCs into new RefSCCs after we finish the DFS.
1279 N
->LowLink
= RefSCCNumber
;
1282 auto RefSCCNodes
= make_range(StackRI
.base(), PendingRefSCCStack
.end());
1284 // If we find a cycle containing all nodes originally in this RefSCC then
1285 // the removal hasn't changed the structure at all. This is an important
1286 // special case and we can directly exit the entire routine more
1287 // efficiently as soon as we discover it.
1288 if (llvm::size(RefSCCNodes
) == NumRefSCCNodes
) {
1289 // Clear out the low link field as we won't need it.
1290 for (Node
*N
: RefSCCNodes
)
1292 // Return the empty result immediately.
1296 // We've already marked the nodes internally with the RefSCC number so
1297 // just clear them off the stack and continue.
1298 PendingRefSCCStack
.erase(RefSCCNodes
.begin(), PendingRefSCCStack
.end());
1299 } while (!DFSStack
.empty());
1301 assert(DFSStack
.empty() && "Didn't flush the entire DFS stack!");
1302 assert(PendingRefSCCStack
.empty() && "Didn't flush all pending nodes!");
1303 } while (!Worklist
.empty());
1305 assert(PostOrderNumber
> 1 &&
1306 "Should never finish the DFS when the existing RefSCC remains valid!");
1308 // Otherwise we create a collection of new RefSCC nodes and build
1309 // a radix-sort style map from postorder number to these new RefSCCs. We then
1310 // append SCCs to each of these RefSCCs in the order they occurred in the
1311 // original SCCs container.
1312 for (int i
= 0; i
< PostOrderNumber
; ++i
)
1313 Result
.push_back(G
->createRefSCC(*G
));
1315 // Insert the resulting postorder sequence into the global graph postorder
1316 // sequence before the current RefSCC in that sequence, and then remove the
1319 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1320 // range over the global postorder sequence and generally use that sequence
1321 // rather than building a separate result vector here.
1322 int Idx
= G
->getRefSCCIndex(*this);
1323 G
->PostOrderRefSCCs
.erase(G
->PostOrderRefSCCs
.begin() + Idx
);
1324 G
->PostOrderRefSCCs
.insert(G
->PostOrderRefSCCs
.begin() + Idx
, Result
.begin(),
1326 for (int i
: seq
<int>(Idx
, G
->PostOrderRefSCCs
.size()))
1327 G
->RefSCCIndices
[G
->PostOrderRefSCCs
[i
]] = i
;
1329 for (SCC
*C
: SCCs
) {
1330 // We store the SCC number in the node's low-link field above.
1331 int SCCNumber
= C
->begin()->LowLink
;
1332 // Clear out all of the SCC's node's low-link fields now that we're done
1333 // using them as side-storage.
1334 for (Node
&N
: *C
) {
1335 assert(N
.LowLink
== SCCNumber
&&
1336 "Cannot have different numbers for nodes in the same SCC!");
1340 RefSCC
&RC
= *Result
[SCCNumber
];
1341 int SCCIndex
= RC
.SCCs
.size();
1342 RC
.SCCs
.push_back(C
);
1343 RC
.SCCIndices
[C
] = SCCIndex
;
1344 C
->OuterRefSCC
= &RC
;
1347 // Now that we've moved things into the new RefSCCs, clear out our current
1354 // Verify the new RefSCCs we've built.
1355 for (RefSCC
*RC
: Result
)
1359 // Return the new list of SCCs.
1363 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node
&SourceN
,
1365 // The only trivial case that requires any graph updates is when we add new
1366 // ref edge and may connect different RefSCCs along that path. This is only
1367 // because of the parents set. Every other part of the graph remains constant
1368 // after this edge insertion.
1369 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
1370 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1371 if (&TargetRC
== this)
1374 #ifdef EXPENSIVE_CHECKS
1375 assert(TargetRC
.isDescendantOf(*this) &&
1376 "Target must be a descendant of the Source.");
1380 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node
&SourceN
,
1383 // Check that the RefSCC is still valid when we finish.
1384 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1386 #ifdef EXPENSIVE_CHECKS
1387 // Check that we aren't breaking some invariants of the SCC graph. Note that
1388 // this is quadratic in the number of edges in the call graph!
1389 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1390 SCC
&TargetC
= *G
->lookupSCC(TargetN
);
1391 if (&SourceC
!= &TargetC
)
1392 assert(SourceC
.isAncestorOf(TargetC
) &&
1393 "Call edge is not trivial in the SCC graph!");
1394 #endif // EXPENSIVE_CHECKS
1397 // First insert it into the source or find the existing edge.
1399 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1400 if (!InsertResult
.second
) {
1401 // Already an edge, just update it.
1402 Edge
&E
= SourceN
->Edges
[InsertResult
.first
->second
];
1404 return; // Nothing to do!
1405 E
.setKind(Edge::Call
);
1407 // Create the new edge.
1408 SourceN
->Edges
.emplace_back(TargetN
, Edge::Call
);
1411 // Now that we have the edge, handle the graph fallout.
1412 handleTrivialEdgeInsertion(SourceN
, TargetN
);
1415 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node
&SourceN
, Node
&TargetN
) {
1417 // Check that the RefSCC is still valid when we finish.
1418 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1420 #ifdef EXPENSIVE_CHECKS
1421 // Check that we aren't breaking some invariants of the RefSCC graph.
1422 RefSCC
&SourceRC
= *G
->lookupRefSCC(SourceN
);
1423 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1424 if (&SourceRC
!= &TargetRC
)
1425 assert(SourceRC
.isAncestorOf(TargetRC
) &&
1426 "Ref edge is not trivial in the RefSCC graph!");
1427 #endif // EXPENSIVE_CHECKS
1430 // First insert it into the source or find the existing edge.
1432 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1433 if (!InsertResult
.second
)
1434 // Already an edge, we're done.
1437 // Create the new edge.
1438 SourceN
->Edges
.emplace_back(TargetN
, Edge::Ref
);
1440 // Now that we have the edge, handle the graph fallout.
1441 handleTrivialEdgeInsertion(SourceN
, TargetN
);
1444 void LazyCallGraph::RefSCC::replaceNodeFunction(Node
&N
, Function
&NewF
) {
1445 Function
&OldF
= N
.getFunction();
1448 // Check that the RefSCC is still valid when we finish.
1449 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1451 assert(G
->lookupRefSCC(N
) == this &&
1452 "Cannot replace the function of a node outside this RefSCC.");
1454 assert(G
->NodeMap
.find(&NewF
) == G
->NodeMap
.end() &&
1455 "Must not have already walked the new function!'");
1457 // It is important that this replacement not introduce graph changes so we
1458 // insist that the caller has already removed every use of the original
1459 // function and that all uses of the new function correspond to existing
1460 // edges in the graph. The common and expected way to use this is when
1461 // replacing the function itself in the IR without changing the call graph
1462 // shape and just updating the analysis based on that.
1463 assert(&OldF
!= &NewF
&& "Cannot replace a function with itself!");
1464 assert(OldF
.use_empty() &&
1465 "Must have moved all uses from the old function to the new!");
1468 N
.replaceFunction(NewF
);
1470 // Update various call graph maps.
1471 G
->NodeMap
.erase(&OldF
);
1472 G
->NodeMap
[&NewF
] = &N
;
1475 void LazyCallGraph::insertEdge(Node
&SourceN
, Node
&TargetN
, Edge::Kind EK
) {
1476 assert(SCCMap
.empty() &&
1477 "This method cannot be called after SCCs have been formed!");
1479 return SourceN
->insertEdgeInternal(TargetN
, EK
);
1482 void LazyCallGraph::removeEdge(Node
&SourceN
, Node
&TargetN
) {
1483 assert(SCCMap
.empty() &&
1484 "This method cannot be called after SCCs have been formed!");
1486 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1488 assert(Removed
&& "Target not in the edge set for this caller?");
1491 void LazyCallGraph::removeDeadFunction(Function
&F
) {
1492 // FIXME: This is unnecessarily restrictive. We should be able to remove
1493 // functions which recursively call themselves.
1494 assert(F
.use_empty() &&
1495 "This routine should only be called on trivially dead functions!");
1497 // We shouldn't remove library functions as they are never really dead while
1498 // the call graph is in use -- every function definition refers to them.
1499 assert(!isLibFunction(F
) &&
1500 "Must not remove lib functions from the call graph!");
1502 auto NI
= NodeMap
.find(&F
);
1503 if (NI
== NodeMap
.end())
1504 // Not in the graph at all!
1507 Node
&N
= *NI
->second
;
1510 // Remove this from the entry edges if present.
1511 EntryEdges
.removeEdgeInternal(N
);
1513 if (SCCMap
.empty()) {
1514 // No SCCs have been formed, so removing this is fine and there is nothing
1515 // else necessary at this point but clearing out the node.
1520 // Cannot remove a function which has yet to be visited in the DFS walk, so
1521 // if we have a node at all then we must have an SCC and RefSCC.
1522 auto CI
= SCCMap
.find(&N
);
1523 assert(CI
!= SCCMap
.end() &&
1524 "Tried to remove a node without an SCC after DFS walk started!");
1525 SCC
&C
= *CI
->second
;
1527 RefSCC
&RC
= C
.getOuterRefSCC();
1529 // This node must be the only member of its SCC as it has no callers, and
1530 // that SCC must be the only member of a RefSCC as it has no references.
1531 // Validate these properties first.
1532 assert(C
.size() == 1 && "Dead functions must be in a singular SCC");
1533 assert(RC
.size() == 1 && "Dead functions must be in a singular RefSCC");
1535 auto RCIndexI
= RefSCCIndices
.find(&RC
);
1536 int RCIndex
= RCIndexI
->second
;
1537 PostOrderRefSCCs
.erase(PostOrderRefSCCs
.begin() + RCIndex
);
1538 RefSCCIndices
.erase(RCIndexI
);
1539 for (int i
= RCIndex
, Size
= PostOrderRefSCCs
.size(); i
< Size
; ++i
)
1540 RefSCCIndices
[PostOrderRefSCCs
[i
]] = i
;
1542 // Finally clear out all the data structures from the node down through the
1551 // Nothing to delete as all the objects are allocated in stable bump pointer
1555 LazyCallGraph::Node
&LazyCallGraph::insertInto(Function
&F
, Node
*&MappedN
) {
1556 return *new (MappedN
= BPA
.Allocate()) Node(*this, F
);
1559 void LazyCallGraph::updateGraphPtrs() {
1560 // Walk the node map to update their graph pointers. While this iterates in
1561 // an unstable order, the order has no effect so it remains correct.
1562 for (auto &FunctionNodePair
: NodeMap
)
1563 FunctionNodePair
.second
->G
= this;
1565 for (auto *RC
: PostOrderRefSCCs
)
1569 template <typename RootsT
, typename GetBeginT
, typename GetEndT
,
1570 typename GetNodeT
, typename FormSCCCallbackT
>
1571 void LazyCallGraph::buildGenericSCCs(RootsT
&&Roots
, GetBeginT
&&GetBegin
,
1572 GetEndT
&&GetEnd
, GetNodeT
&&GetNode
,
1573 FormSCCCallbackT
&&FormSCC
) {
1574 using EdgeItT
= decltype(GetBegin(std::declval
<Node
&>()));
1576 SmallVector
<std::pair
<Node
*, EdgeItT
>, 16> DFSStack
;
1577 SmallVector
<Node
*, 16> PendingSCCStack
;
1579 // Scan down the stack and DFS across the call edges.
1580 for (Node
*RootN
: Roots
) {
1581 assert(DFSStack
.empty() &&
1582 "Cannot begin a new root with a non-empty DFS stack!");
1583 assert(PendingSCCStack
.empty() &&
1584 "Cannot begin a new root with pending nodes for an SCC!");
1586 // Skip any nodes we've already reached in the DFS.
1587 if (RootN
->DFSNumber
!= 0) {
1588 assert(RootN
->DFSNumber
== -1 &&
1589 "Shouldn't have any mid-DFS root nodes!");
1593 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1594 int NextDFSNumber
= 2;
1596 DFSStack
.push_back({RootN
, GetBegin(*RootN
)});
1600 std::tie(N
, I
) = DFSStack
.pop_back_val();
1601 auto E
= GetEnd(*N
);
1603 Node
&ChildN
= GetNode(I
);
1604 if (ChildN
.DFSNumber
== 0) {
1605 // We haven't yet visited this child, so descend, pushing the current
1606 // node onto the stack.
1607 DFSStack
.push_back({N
, I
});
1609 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
1616 // If the child has already been added to some child component, it
1617 // couldn't impact the low-link of this parent because it isn't
1618 // connected, and thus its low-link isn't relevant so skip it.
1619 if (ChildN
.DFSNumber
== -1) {
1624 // Track the lowest linked child as the lowest link for this node.
1625 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
1626 if (ChildN
.LowLink
< N
->LowLink
)
1627 N
->LowLink
= ChildN
.LowLink
;
1629 // Move to the next edge.
1633 // We've finished processing N and its descendants, put it on our pending
1634 // SCC stack to eventually get merged into an SCC of nodes.
1635 PendingSCCStack
.push_back(N
);
1637 // If this node is linked to some lower entry, continue walking up the
1639 if (N
->LowLink
!= N
->DFSNumber
)
1642 // Otherwise, we've completed an SCC. Append it to our post order list of
1644 int RootDFSNumber
= N
->DFSNumber
;
1645 // Find the range of the node stack by walking down until we pass the
1647 auto SCCNodes
= make_range(
1648 PendingSCCStack
.rbegin(),
1649 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
1650 return N
->DFSNumber
< RootDFSNumber
;
1652 // Form a new SCC out of these nodes and then clear them off our pending
1655 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
1656 } while (!DFSStack
.empty());
1660 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1662 /// Appends the SCCs to the provided vector and updates the map with their
1663 /// indices. Both the vector and map must be empty when passed into this
1665 void LazyCallGraph::buildSCCs(RefSCC
&RC
, node_stack_range Nodes
) {
1666 assert(RC
.SCCs
.empty() && "Already built SCCs!");
1667 assert(RC
.SCCIndices
.empty() && "Already mapped SCC indices!");
1669 for (Node
*N
: Nodes
) {
1670 assert(N
->LowLink
>= (*Nodes
.begin())->LowLink
&&
1671 "We cannot have a low link in an SCC lower than its root on the "
1674 // This node will go into the next RefSCC, clear out its DFS and low link
1676 N
->DFSNumber
= N
->LowLink
= 0;
1679 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1680 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1681 // internal storage as we won't need it for the outer graph's DFS any longer.
1683 Nodes
, [](Node
&N
) { return N
->call_begin(); },
1684 [](Node
&N
) { return N
->call_end(); },
1685 [](EdgeSequence::call_iterator I
) -> Node
& { return I
->getNode(); },
1686 [this, &RC
](node_stack_range Nodes
) {
1687 RC
.SCCs
.push_back(createSCC(RC
, Nodes
));
1688 for (Node
&N
: *RC
.SCCs
.back()) {
1689 N
.DFSNumber
= N
.LowLink
= -1;
1690 SCCMap
[&N
] = RC
.SCCs
.back();
1694 // Wire up the SCC indices.
1695 for (int i
= 0, Size
= RC
.SCCs
.size(); i
< Size
; ++i
)
1696 RC
.SCCIndices
[RC
.SCCs
[i
]] = i
;
1699 void LazyCallGraph::buildRefSCCs() {
1700 if (EntryEdges
.empty() || !PostOrderRefSCCs
.empty())
1701 // RefSCCs are either non-existent or already built!
1704 assert(RefSCCIndices
.empty() && "Already mapped RefSCC indices!");
1706 SmallVector
<Node
*, 16> Roots
;
1707 for (Edge
&E
: *this)
1708 Roots
.push_back(&E
.getNode());
1710 // The roots will be popped of a stack, so use reverse to get a less
1711 // surprising order. This doesn't change any of the semantics anywhere.
1712 std::reverse(Roots
.begin(), Roots
.end());
1717 // We need to populate each node as we begin to walk its edges.
1721 [](Node
&N
) { return N
->end(); },
1722 [](EdgeSequence::iterator I
) -> Node
& { return I
->getNode(); },
1723 [this](node_stack_range Nodes
) {
1724 RefSCC
*NewRC
= createRefSCC(*this);
1725 buildSCCs(*NewRC
, Nodes
);
1727 // Push the new node into the postorder list and remember its position
1728 // in the index map.
1730 RefSCCIndices
.insert({NewRC
, PostOrderRefSCCs
.size()}).second
;
1732 assert(Inserted
&& "Cannot already have this RefSCC in the index map!");
1733 PostOrderRefSCCs
.push_back(NewRC
);
1740 AnalysisKey
LazyCallGraphAnalysis::Key
;
1742 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream
&OS
) : OS(OS
) {}
1744 static void printNode(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1745 OS
<< " Edges in function: " << N
.getFunction().getName() << "\n";
1746 for (LazyCallGraph::Edge
&E
: N
.populate())
1747 OS
<< " " << (E
.isCall() ? "call" : "ref ") << " -> "
1748 << E
.getFunction().getName() << "\n";
1753 static void printSCC(raw_ostream
&OS
, LazyCallGraph::SCC
&C
) {
1754 OS
<< " SCC with " << C
.size() << " functions:\n";
1756 for (LazyCallGraph::Node
&N
: C
)
1757 OS
<< " " << N
.getFunction().getName() << "\n";
1760 static void printRefSCC(raw_ostream
&OS
, LazyCallGraph::RefSCC
&C
) {
1761 OS
<< " RefSCC with " << C
.size() << " call SCCs:\n";
1763 for (LazyCallGraph::SCC
&InnerC
: C
)
1764 printSCC(OS
, InnerC
);
1769 PreservedAnalyses
LazyCallGraphPrinterPass::run(Module
&M
,
1770 ModuleAnalysisManager
&AM
) {
1771 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1773 OS
<< "Printing the call graph for module: " << M
.getModuleIdentifier()
1776 for (Function
&F
: M
)
1777 printNode(OS
, G
.get(F
));
1780 for (LazyCallGraph::RefSCC
&C
: G
.postorder_ref_sccs())
1783 return PreservedAnalyses::all();
1786 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream
&OS
)
1789 static void printNodeDOT(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1790 std::string Name
= "\"" + DOT::EscapeString(N
.getFunction().getName()) + "\"";
1792 for (LazyCallGraph::Edge
&E
: N
.populate()) {
1793 OS
<< " " << Name
<< " -> \""
1794 << DOT::EscapeString(E
.getFunction().getName()) << "\"";
1795 if (!E
.isCall()) // It is a ref edge.
1796 OS
<< " [style=dashed,label=\"ref\"]";
1803 PreservedAnalyses
LazyCallGraphDOTPrinterPass::run(Module
&M
,
1804 ModuleAnalysisManager
&AM
) {
1805 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1807 OS
<< "digraph \"" << DOT::EscapeString(M
.getModuleIdentifier()) << "\" {\n";
1809 for (Function
&F
: M
)
1810 printNodeDOT(OS
, G
.get(F
));
1814 return PreservedAnalyses::all();