1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Object/ModuleSymbolTable.h"
48 #include "llvm/Object/SymbolicFile.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
59 #define DEBUG_TYPE "module-summary-analysis"
61 // Option to force edges cold which will block importing when the
62 // -import-cold-multiplier is set to 0. Useful for debugging.
63 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
=
64 FunctionSummary::FSHT_None
;
65 cl::opt
<FunctionSummary::ForceSummaryHotnessType
, true> FSEC(
66 "force-summary-edges-cold", cl::Hidden
, cl::location(ForceSummaryEdgesCold
),
67 cl::desc("Force all edges in the function summary to cold"),
68 cl::values(clEnumValN(FunctionSummary::FSHT_None
, "none", "None."),
69 clEnumValN(FunctionSummary::FSHT_AllNonCritical
,
70 "all-non-critical", "All non-critical edges."),
71 clEnumValN(FunctionSummary::FSHT_All
, "all", "All edges.")));
73 cl::opt
<std::string
> ModuleSummaryDotFile(
74 "module-summary-dot-file", cl::init(""), cl::Hidden
,
75 cl::value_desc("filename"),
76 cl::desc("File to emit dot graph of new summary into."));
78 // Walk through the operands of a given User via worklist iteration and populate
79 // the set of GlobalValue references encountered. Invoked either on an
80 // Instruction or a GlobalVariable (which walks its initializer).
81 // Return true if any of the operands contains blockaddress. This is important
82 // to know when computing summary for global var, because if global variable
83 // references basic block address we can't import it separately from function
84 // containing that basic block. For simplicity we currently don't import such
85 // global vars at all. When importing function we aren't interested if any
86 // instruction in it takes an address of any basic block, because instruction
87 // can only take an address of basic block located in the same function.
88 static bool findRefEdges(ModuleSummaryIndex
&Index
, const User
*CurUser
,
89 SetVector
<ValueInfo
> &RefEdges
,
90 SmallPtrSet
<const User
*, 8> &Visited
) {
91 bool HasBlockAddress
= false;
92 SmallVector
<const User
*, 32> Worklist
;
93 Worklist
.push_back(CurUser
);
95 while (!Worklist
.empty()) {
96 const User
*U
= Worklist
.pop_back_val();
98 if (!Visited
.insert(U
).second
)
101 ImmutableCallSite
CS(U
);
103 for (const auto &OI
: U
->operands()) {
104 const User
*Operand
= dyn_cast
<User
>(OI
);
107 if (isa
<BlockAddress
>(Operand
)) {
108 HasBlockAddress
= true;
111 if (auto *GV
= dyn_cast
<GlobalValue
>(Operand
)) {
112 // We have a reference to a global value. This should be added to
113 // the reference set unless it is a callee. Callees are handled
114 // specially by WriteFunction and are added to a separate list.
115 if (!(CS
&& CS
.isCallee(&OI
)))
116 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
119 Worklist
.push_back(Operand
);
122 return HasBlockAddress
;
125 static CalleeInfo::HotnessType
getHotness(uint64_t ProfileCount
,
126 ProfileSummaryInfo
*PSI
) {
128 return CalleeInfo::HotnessType::Unknown
;
129 if (PSI
->isHotCount(ProfileCount
))
130 return CalleeInfo::HotnessType::Hot
;
131 if (PSI
->isColdCount(ProfileCount
))
132 return CalleeInfo::HotnessType::Cold
;
133 return CalleeInfo::HotnessType::None
;
136 static bool isNonRenamableLocal(const GlobalValue
&GV
) {
137 return GV
.hasSection() && GV
.hasLocalLinkage();
140 /// Determine whether this call has all constant integer arguments (excluding
141 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
142 static void addVCallToSet(DevirtCallSite Call
, GlobalValue::GUID Guid
,
143 SetVector
<FunctionSummary::VFuncId
> &VCalls
,
144 SetVector
<FunctionSummary::ConstVCall
> &ConstVCalls
) {
145 std::vector
<uint64_t> Args
;
146 // Start from the second argument to skip the "this" pointer.
147 for (auto &Arg
: make_range(Call
.CS
.arg_begin() + 1, Call
.CS
.arg_end())) {
148 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
149 if (!CI
|| CI
->getBitWidth() > 64) {
150 VCalls
.insert({Guid
, Call
.Offset
});
153 Args
.push_back(CI
->getZExtValue());
155 ConstVCalls
.insert({{Guid
, Call
.Offset
}, std::move(Args
)});
158 /// If this intrinsic call requires that we add information to the function
159 /// summary, do so via the non-constant reference arguments.
160 static void addIntrinsicToSummary(
161 const CallInst
*CI
, SetVector
<GlobalValue::GUID
> &TypeTests
,
162 SetVector
<FunctionSummary::VFuncId
> &TypeTestAssumeVCalls
,
163 SetVector
<FunctionSummary::VFuncId
> &TypeCheckedLoadVCalls
,
164 SetVector
<FunctionSummary::ConstVCall
> &TypeTestAssumeConstVCalls
,
165 SetVector
<FunctionSummary::ConstVCall
> &TypeCheckedLoadConstVCalls
,
167 switch (CI
->getCalledFunction()->getIntrinsicID()) {
168 case Intrinsic::type_test
: {
169 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(1));
170 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
173 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
175 // Produce a summary from type.test intrinsics. We only summarize type.test
176 // intrinsics that are used other than by an llvm.assume intrinsic.
177 // Intrinsics that are assumed are relevant only to the devirtualization
178 // pass, not the type test lowering pass.
179 bool HasNonAssumeUses
= llvm::any_of(CI
->uses(), [](const Use
&CIU
) {
180 auto *AssumeCI
= dyn_cast
<CallInst
>(CIU
.getUser());
183 Function
*F
= AssumeCI
->getCalledFunction();
184 return !F
|| F
->getIntrinsicID() != Intrinsic::assume
;
186 if (HasNonAssumeUses
)
187 TypeTests
.insert(Guid
);
189 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
190 SmallVector
<CallInst
*, 4> Assumes
;
191 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
192 for (auto &Call
: DevirtCalls
)
193 addVCallToSet(Call
, Guid
, TypeTestAssumeVCalls
,
194 TypeTestAssumeConstVCalls
);
199 case Intrinsic::type_checked_load
: {
200 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(2));
201 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
204 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
206 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
207 SmallVector
<Instruction
*, 4> LoadedPtrs
;
208 SmallVector
<Instruction
*, 4> Preds
;
209 bool HasNonCallUses
= false;
210 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
211 HasNonCallUses
, CI
, DT
);
212 // Any non-call uses of the result of llvm.type.checked.load will
213 // prevent us from optimizing away the llvm.type.test.
215 TypeTests
.insert(Guid
);
216 for (auto &Call
: DevirtCalls
)
217 addVCallToSet(Call
, Guid
, TypeCheckedLoadVCalls
,
218 TypeCheckedLoadConstVCalls
);
227 static bool isNonVolatileLoad(const Instruction
*I
) {
228 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
229 return !LI
->isVolatile();
234 static bool isNonVolatileStore(const Instruction
*I
) {
235 if (const auto *SI
= dyn_cast
<StoreInst
>(I
))
236 return !SI
->isVolatile();
241 static void computeFunctionSummary(ModuleSummaryIndex
&Index
, const Module
&M
,
242 const Function
&F
, BlockFrequencyInfo
*BFI
,
243 ProfileSummaryInfo
*PSI
, DominatorTree
&DT
,
244 bool HasLocalsInUsedOrAsm
,
245 DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
247 // Summary not currently supported for anonymous functions, they should
251 unsigned NumInsts
= 0;
252 // Map from callee ValueId to profile count. Used to accumulate profile
253 // counts for all static calls to a given callee.
254 MapVector
<ValueInfo
, CalleeInfo
> CallGraphEdges
;
255 SetVector
<ValueInfo
> RefEdges
, LoadRefEdges
, StoreRefEdges
;
256 SetVector
<GlobalValue::GUID
> TypeTests
;
257 SetVector
<FunctionSummary::VFuncId
> TypeTestAssumeVCalls
,
258 TypeCheckedLoadVCalls
;
259 SetVector
<FunctionSummary::ConstVCall
> TypeTestAssumeConstVCalls
,
260 TypeCheckedLoadConstVCalls
;
261 ICallPromotionAnalysis ICallAnalysis
;
262 SmallPtrSet
<const User
*, 8> Visited
;
264 // Add personality function, prefix data and prologue data to function's ref
266 findRefEdges(Index
, &F
, RefEdges
, Visited
);
267 std::vector
<const Instruction
*> NonVolatileLoads
;
268 std::vector
<const Instruction
*> NonVolatileStores
;
270 bool HasInlineAsmMaybeReferencingInternal
= false;
271 for (const BasicBlock
&BB
: F
)
272 for (const Instruction
&I
: BB
) {
273 if (isa
<DbgInfoIntrinsic
>(I
))
276 // Regular LTO module doesn't participate in ThinLTO import,
277 // so no reference from it can be read/writeonly, since this
278 // would require importing variable as local copy
280 if (isNonVolatileLoad(&I
)) {
281 // Postpone processing of non-volatile load instructions
282 // See comments below
284 NonVolatileLoads
.push_back(&I
);
286 } else if (isNonVolatileStore(&I
)) {
288 NonVolatileStores
.push_back(&I
);
289 // All references from second operand of store (destination address)
290 // can be considered write-only if they're not referenced by any
291 // non-store instruction. References from first operand of store
292 // (stored value) can't be treated either as read- or as write-only
293 // so we add them to RefEdges as we do with all other instructions
294 // except non-volatile load.
295 Value
*Stored
= I
.getOperand(0);
296 if (auto *GV
= dyn_cast
<GlobalValue
>(Stored
))
297 // findRefEdges will try to examine GV operands, so instead
298 // of calling it we should add GV to RefEdges directly.
299 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
300 else if (auto *U
= dyn_cast
<User
>(Stored
))
301 findRefEdges(Index
, U
, RefEdges
, Visited
);
305 findRefEdges(Index
, &I
, RefEdges
, Visited
);
306 auto CS
= ImmutableCallSite(&I
);
310 const auto *CI
= dyn_cast
<CallInst
>(&I
);
311 // Since we don't know exactly which local values are referenced in inline
312 // assembly, conservatively mark the function as possibly referencing
313 // a local value from inline assembly to ensure we don't export a
314 // reference (which would require renaming and promotion of the
315 // referenced value).
316 if (HasLocalsInUsedOrAsm
&& CI
&& CI
->isInlineAsm())
317 HasInlineAsmMaybeReferencingInternal
= true;
319 auto *CalledValue
= CS
.getCalledValue();
320 auto *CalledFunction
= CS
.getCalledFunction();
321 if (CalledValue
&& !CalledFunction
) {
322 CalledValue
= CalledValue
->stripPointerCasts();
323 // Stripping pointer casts can reveal a called function.
324 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
326 // Check if this is an alias to a function. If so, get the
327 // called aliasee for the checks below.
328 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
329 assert(!CalledFunction
&& "Expected null called function in callsite for alias");
330 CalledFunction
= dyn_cast
<Function
>(GA
->getBaseObject());
332 // Check if this is a direct call to a known function or a known
333 // intrinsic, or an indirect call with profile data.
334 if (CalledFunction
) {
335 if (CI
&& CalledFunction
->isIntrinsic()) {
336 addIntrinsicToSummary(
337 CI
, TypeTests
, TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
,
338 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
, DT
);
341 // We should have named any anonymous globals
342 assert(CalledFunction
->hasName());
343 auto ScaledCount
= PSI
->getProfileCount(&I
, BFI
);
344 auto Hotness
= ScaledCount
? getHotness(ScaledCount
.getValue(), PSI
)
345 : CalleeInfo::HotnessType::Unknown
;
346 if (ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
)
347 Hotness
= CalleeInfo::HotnessType::Cold
;
349 // Use the original CalledValue, in case it was an alias. We want
350 // to record the call edge to the alias in that case. Eventually
351 // an alias summary will be created to associate the alias and
353 auto &ValueInfo
= CallGraphEdges
[Index
.getOrInsertValueInfo(
354 cast
<GlobalValue
>(CalledValue
))];
355 ValueInfo
.updateHotness(Hotness
);
356 // Add the relative block frequency to CalleeInfo if there is no profile
358 if (BFI
!= nullptr && Hotness
== CalleeInfo::HotnessType::Unknown
) {
359 uint64_t BBFreq
= BFI
->getBlockFreq(&BB
).getFrequency();
360 uint64_t EntryFreq
= BFI
->getEntryFreq();
361 ValueInfo
.updateRelBlockFreq(BBFreq
, EntryFreq
);
364 // Skip inline assembly calls.
365 if (CI
&& CI
->isInlineAsm())
367 // Skip direct calls.
368 if (!CalledValue
|| isa
<Constant
>(CalledValue
))
371 // Check if the instruction has a callees metadata. If so, add callees
372 // to CallGraphEdges to reflect the references from the metadata, and
373 // to enable importing for subsequent indirect call promotion and
375 if (auto *MD
= I
.getMetadata(LLVMContext::MD_callees
)) {
376 for (auto &Op
: MD
->operands()) {
377 Function
*Callee
= mdconst::extract_or_null
<Function
>(Op
);
379 CallGraphEdges
[Index
.getOrInsertValueInfo(Callee
)];
383 uint32_t NumVals
, NumCandidates
;
385 auto CandidateProfileData
=
386 ICallAnalysis
.getPromotionCandidatesForInstruction(
387 &I
, NumVals
, TotalCount
, NumCandidates
);
388 for (auto &Candidate
: CandidateProfileData
)
389 CallGraphEdges
[Index
.getOrInsertValueInfo(Candidate
.Value
)]
390 .updateHotness(getHotness(Candidate
.Count
, PSI
));
394 std::vector
<ValueInfo
> Refs
;
396 auto AddRefEdges
= [&](const std::vector
<const Instruction
*> &Instrs
,
397 SetVector
<ValueInfo
> &Edges
,
398 SmallPtrSet
<const User
*, 8> &Cache
) {
399 for (const auto *I
: Instrs
) {
401 findRefEdges(Index
, I
, Edges
, Cache
);
405 // By now we processed all instructions in a function, except
406 // non-volatile loads and non-volatile value stores. Let's find
407 // ref edges for both of instruction sets
408 AddRefEdges(NonVolatileLoads
, LoadRefEdges
, Visited
);
409 // We can add some values to the Visited set when processing load
410 // instructions which are also used by stores in NonVolatileStores.
411 // For example this can happen if we have following code:
413 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
414 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
416 // After processing loads we'll add bitcast to the Visited set, and if
417 // we use the same set while processing stores, we'll never see store
418 // to @bar and @bar will be mistakenly treated as readonly.
419 SmallPtrSet
<const llvm::User
*, 8> StoreCache
;
420 AddRefEdges(NonVolatileStores
, StoreRefEdges
, StoreCache
);
422 // If both load and store instruction reference the same variable
423 // we won't be able to optimize it. Add all such reference edges
425 for (auto &VI
: StoreRefEdges
)
426 if (LoadRefEdges
.remove(VI
))
429 unsigned RefCnt
= RefEdges
.size();
430 // All new reference edges inserted in two loops below are either
431 // read or write only. They will be grouped in the end of RefEdges
432 // vector, so we can use a single integer value to identify them.
433 for (auto &VI
: LoadRefEdges
)
436 unsigned FirstWORef
= RefEdges
.size();
437 for (auto &VI
: StoreRefEdges
)
440 Refs
= RefEdges
.takeVector();
441 for (; RefCnt
< FirstWORef
; ++RefCnt
)
442 Refs
[RefCnt
].setReadOnly();
444 for (; RefCnt
< Refs
.size(); ++RefCnt
)
445 Refs
[RefCnt
].setWriteOnly();
447 Refs
= RefEdges
.takeVector();
449 // Explicit add hot edges to enforce importing for designated GUIDs for
450 // sample PGO, to enable the same inlines as the profiled optimized binary.
451 for (auto &I
: F
.getImportGUIDs())
452 CallGraphEdges
[Index
.getOrInsertValueInfo(I
)].updateHotness(
453 ForceSummaryEdgesCold
== FunctionSummary::FSHT_All
454 ? CalleeInfo::HotnessType::Cold
455 : CalleeInfo::HotnessType::Critical
);
457 bool NonRenamableLocal
= isNonRenamableLocal(F
);
458 bool NotEligibleForImport
=
459 NonRenamableLocal
|| HasInlineAsmMaybeReferencingInternal
;
460 GlobalValueSummary::GVFlags
Flags(F
.getLinkage(), NotEligibleForImport
,
461 /* Live = */ false, F
.isDSOLocal(),
462 F
.hasLinkOnceODRLinkage() && F
.hasGlobalUnnamedAddr());
463 FunctionSummary::FFlags FunFlags
{
464 F
.hasFnAttribute(Attribute::ReadNone
),
465 F
.hasFnAttribute(Attribute::ReadOnly
),
466 F
.hasFnAttribute(Attribute::NoRecurse
), F
.returnDoesNotAlias(),
467 // FIXME: refactor this to use the same code that inliner is using.
468 // Don't try to import functions with noinline attribute.
469 F
.getAttributes().hasFnAttribute(Attribute::NoInline
)};
470 auto FuncSummary
= std::make_unique
<FunctionSummary
>(
471 Flags
, NumInsts
, FunFlags
, /*EntryCount=*/0, std::move(Refs
),
472 CallGraphEdges
.takeVector(), TypeTests
.takeVector(),
473 TypeTestAssumeVCalls
.takeVector(), TypeCheckedLoadVCalls
.takeVector(),
474 TypeTestAssumeConstVCalls
.takeVector(),
475 TypeCheckedLoadConstVCalls
.takeVector());
476 if (NonRenamableLocal
)
477 CantBePromoted
.insert(F
.getGUID());
478 Index
.addGlobalValueSummary(F
, std::move(FuncSummary
));
481 /// Find function pointers referenced within the given vtable initializer
482 /// (or subset of an initializer) \p I. The starting offset of \p I within
483 /// the vtable initializer is \p StartingOffset. Any discovered function
484 /// pointers are added to \p VTableFuncs along with their cumulative offset
485 /// within the initializer.
486 static void findFuncPointers(const Constant
*I
, uint64_t StartingOffset
,
487 const Module
&M
, ModuleSummaryIndex
&Index
,
488 VTableFuncList
&VTableFuncs
) {
489 // First check if this is a function pointer.
490 if (I
->getType()->isPointerTy()) {
491 auto Fn
= dyn_cast
<Function
>(I
->stripPointerCasts());
492 // We can disregard __cxa_pure_virtual as a possible call target, as
493 // calls to pure virtuals are UB.
494 if (Fn
&& Fn
->getName() != "__cxa_pure_virtual")
495 VTableFuncs
.push_back({Index
.getOrInsertValueInfo(Fn
), StartingOffset
});
499 // Walk through the elements in the constant struct or array and recursively
500 // look for virtual function pointers.
501 const DataLayout
&DL
= M
.getDataLayout();
502 if (auto *C
= dyn_cast
<ConstantStruct
>(I
)) {
503 StructType
*STy
= dyn_cast
<StructType
>(C
->getType());
505 const StructLayout
*SL
= DL
.getStructLayout(C
->getType());
507 for (StructType::element_iterator EB
= STy
->element_begin(), EI
= EB
,
508 EE
= STy
->element_end();
510 auto Offset
= SL
->getElementOffset(EI
- EB
);
511 unsigned Op
= SL
->getElementContainingOffset(Offset
);
512 findFuncPointers(cast
<Constant
>(I
->getOperand(Op
)),
513 StartingOffset
+ Offset
, M
, Index
, VTableFuncs
);
515 } else if (auto *C
= dyn_cast
<ConstantArray
>(I
)) {
516 ArrayType
*ATy
= C
->getType();
517 Type
*EltTy
= ATy
->getElementType();
518 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
519 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
520 findFuncPointers(cast
<Constant
>(I
->getOperand(i
)),
521 StartingOffset
+ i
* EltSize
, M
, Index
, VTableFuncs
);
526 // Identify the function pointers referenced by vtable definition \p V.
527 static void computeVTableFuncs(ModuleSummaryIndex
&Index
,
528 const GlobalVariable
&V
, const Module
&M
,
529 VTableFuncList
&VTableFuncs
) {
533 findFuncPointers(V
.getInitializer(), /*StartingOffset=*/0, M
, Index
,
537 // Validate that the VTableFuncs list is ordered by offset.
538 uint64_t PrevOffset
= 0;
539 for (auto &P
: VTableFuncs
) {
540 // The findVFuncPointers traversal should have encountered the
541 // functions in offset order. We need to use ">=" since PrevOffset
543 assert(P
.VTableOffset
>= PrevOffset
);
544 PrevOffset
= P
.VTableOffset
;
549 /// Record vtable definition \p V for each type metadata it references.
551 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex
&Index
,
552 const GlobalVariable
&V
,
553 SmallVectorImpl
<MDNode
*> &Types
) {
554 for (MDNode
*Type
: Types
) {
555 auto TypeID
= Type
->getOperand(1).get();
559 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
562 if (auto *TypeId
= dyn_cast
<MDString
>(TypeID
))
563 Index
.getOrInsertTypeIdCompatibleVtableSummary(TypeId
->getString())
564 .push_back({Offset
, Index
.getOrInsertValueInfo(&V
)});
568 static void computeVariableSummary(ModuleSummaryIndex
&Index
,
569 const GlobalVariable
&V
,
570 DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
572 SmallVectorImpl
<MDNode
*> &Types
) {
573 SetVector
<ValueInfo
> RefEdges
;
574 SmallPtrSet
<const User
*, 8> Visited
;
575 bool HasBlockAddress
= findRefEdges(Index
, &V
, RefEdges
, Visited
);
576 bool NonRenamableLocal
= isNonRenamableLocal(V
);
577 GlobalValueSummary::GVFlags
Flags(V
.getLinkage(), NonRenamableLocal
,
578 /* Live = */ false, V
.isDSOLocal(),
579 V
.hasLinkOnceODRLinkage() && V
.hasGlobalUnnamedAddr());
581 VTableFuncList VTableFuncs
;
582 // If splitting is not enabled, then we compute the summary information
583 // necessary for index-based whole program devirtualization.
584 if (!Index
.enableSplitLTOUnit()) {
586 V
.getMetadata(LLVMContext::MD_type
, Types
);
587 if (!Types
.empty()) {
588 // Identify the function pointers referenced by this vtable definition.
589 computeVTableFuncs(Index
, V
, M
, VTableFuncs
);
591 // Record this vtable definition for each type metadata it references.
592 recordTypeIdCompatibleVtableReferences(Index
, V
, Types
);
596 // Don't mark variables we won't be able to internalize as read/write-only.
597 bool CanBeInternalized
=
598 !V
.hasComdat() && !V
.hasAppendingLinkage() && !V
.isInterposable() &&
599 !V
.hasAvailableExternallyLinkage() && !V
.hasDLLExportStorageClass();
600 GlobalVarSummary::GVarFlags
VarFlags(CanBeInternalized
, CanBeInternalized
);
601 auto GVarSummary
= std::make_unique
<GlobalVarSummary
>(Flags
, VarFlags
,
602 RefEdges
.takeVector());
603 if (NonRenamableLocal
)
604 CantBePromoted
.insert(V
.getGUID());
606 GVarSummary
->setNotEligibleToImport();
607 if (!VTableFuncs
.empty())
608 GVarSummary
->setVTableFuncs(VTableFuncs
);
609 Index
.addGlobalValueSummary(V
, std::move(GVarSummary
));
613 computeAliasSummary(ModuleSummaryIndex
&Index
, const GlobalAlias
&A
,
614 DenseSet
<GlobalValue::GUID
> &CantBePromoted
) {
615 bool NonRenamableLocal
= isNonRenamableLocal(A
);
616 GlobalValueSummary::GVFlags
Flags(A
.getLinkage(), NonRenamableLocal
,
617 /* Live = */ false, A
.isDSOLocal(),
618 A
.hasLinkOnceODRLinkage() && A
.hasGlobalUnnamedAddr());
619 auto AS
= std::make_unique
<AliasSummary
>(Flags
);
620 auto *Aliasee
= A
.getBaseObject();
621 auto AliaseeVI
= Index
.getValueInfo(Aliasee
->getGUID());
622 assert(AliaseeVI
&& "Alias expects aliasee summary to be available");
623 assert(AliaseeVI
.getSummaryList().size() == 1 &&
624 "Expected a single entry per aliasee in per-module index");
625 AS
->setAliasee(AliaseeVI
, AliaseeVI
.getSummaryList()[0].get());
626 if (NonRenamableLocal
)
627 CantBePromoted
.insert(A
.getGUID());
628 Index
.addGlobalValueSummary(A
, std::move(AS
));
631 // Set LiveRoot flag on entries matching the given value name.
632 static void setLiveRoot(ModuleSummaryIndex
&Index
, StringRef Name
) {
633 if (ValueInfo VI
= Index
.getValueInfo(GlobalValue::getGUID(Name
)))
634 for (auto &Summary
: VI
.getSummaryList())
635 Summary
->setLive(true);
638 ModuleSummaryIndex
llvm::buildModuleSummaryIndex(
640 std::function
<BlockFrequencyInfo
*(const Function
&F
)> GetBFICallback
,
641 ProfileSummaryInfo
*PSI
) {
643 bool EnableSplitLTOUnit
= false;
644 if (auto *MD
= mdconst::extract_or_null
<ConstantInt
>(
645 M
.getModuleFlag("EnableSplitLTOUnit")))
646 EnableSplitLTOUnit
= MD
->getZExtValue();
647 ModuleSummaryIndex
Index(/*HaveGVs=*/true, EnableSplitLTOUnit
);
649 // Identify the local values in the llvm.used and llvm.compiler.used sets,
650 // which should not be exported as they would then require renaming and
651 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
652 // here because we use this information to mark functions containing inline
653 // assembly calls as not importable.
654 SmallPtrSet
<GlobalValue
*, 8> LocalsUsed
;
655 SmallPtrSet
<GlobalValue
*, 8> Used
;
656 // First collect those in the llvm.used set.
657 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed*/ false);
658 // Next collect those in the llvm.compiler.used set.
659 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed*/ true);
660 DenseSet
<GlobalValue::GUID
> CantBePromoted
;
661 for (auto *V
: Used
) {
662 if (V
->hasLocalLinkage()) {
663 LocalsUsed
.insert(V
);
664 CantBePromoted
.insert(V
->getGUID());
668 bool HasLocalInlineAsmSymbol
= false;
669 if (!M
.getModuleInlineAsm().empty()) {
670 // Collect the local values defined by module level asm, and set up
671 // summaries for these symbols so that they can be marked as NoRename,
672 // to prevent export of any use of them in regular IR that would require
673 // renaming within the module level asm. Note we don't need to create a
674 // summary for weak or global defs, as they don't need to be flagged as
675 // NoRename, and defs in module level asm can't be imported anyway.
676 // Also, any values used but not defined within module level asm should
677 // be listed on the llvm.used or llvm.compiler.used global and marked as
678 // referenced from there.
679 ModuleSymbolTable::CollectAsmSymbols(
680 M
, [&](StringRef Name
, object::BasicSymbolRef::Flags Flags
) {
681 // Symbols not marked as Weak or Global are local definitions.
682 if (Flags
& (object::BasicSymbolRef::SF_Weak
|
683 object::BasicSymbolRef::SF_Global
))
685 HasLocalInlineAsmSymbol
= true;
686 GlobalValue
*GV
= M
.getNamedValue(Name
);
689 assert(GV
->isDeclaration() && "Def in module asm already has definition");
690 GlobalValueSummary::GVFlags
GVFlags(GlobalValue::InternalLinkage
,
691 /* NotEligibleToImport = */ true,
693 /* Local */ GV
->isDSOLocal(),
694 GV
->hasLinkOnceODRLinkage() && GV
->hasGlobalUnnamedAddr());
695 CantBePromoted
.insert(GV
->getGUID());
696 // Create the appropriate summary type.
697 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
698 std::unique_ptr
<FunctionSummary
> Summary
=
699 std::make_unique
<FunctionSummary
>(
700 GVFlags
, /*InstCount=*/0,
701 FunctionSummary::FFlags
{
702 F
->hasFnAttribute(Attribute::ReadNone
),
703 F
->hasFnAttribute(Attribute::ReadOnly
),
704 F
->hasFnAttribute(Attribute::NoRecurse
),
705 F
->returnDoesNotAlias(),
706 /* NoInline = */ false},
707 /*EntryCount=*/0, ArrayRef
<ValueInfo
>{},
708 ArrayRef
<FunctionSummary::EdgeTy
>{},
709 ArrayRef
<GlobalValue::GUID
>{},
710 ArrayRef
<FunctionSummary::VFuncId
>{},
711 ArrayRef
<FunctionSummary::VFuncId
>{},
712 ArrayRef
<FunctionSummary::ConstVCall
>{},
713 ArrayRef
<FunctionSummary::ConstVCall
>{});
714 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
716 std::unique_ptr
<GlobalVarSummary
> Summary
=
717 std::make_unique
<GlobalVarSummary
>(
718 GVFlags
, GlobalVarSummary::GVarFlags(false, false),
719 ArrayRef
<ValueInfo
>{});
720 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
725 bool IsThinLTO
= true;
727 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
728 IsThinLTO
= MD
->getZExtValue();
730 // Compute summaries for all functions defined in module, and save in the
733 if (F
.isDeclaration())
736 DominatorTree
DT(const_cast<Function
&>(F
));
737 BlockFrequencyInfo
*BFI
= nullptr;
738 std::unique_ptr
<BlockFrequencyInfo
> BFIPtr
;
740 BFI
= GetBFICallback(F
);
741 else if (F
.hasProfileData()) {
743 BranchProbabilityInfo BPI
{F
, LI
};
744 BFIPtr
= std::make_unique
<BlockFrequencyInfo
>(F
, BPI
, LI
);
748 computeFunctionSummary(Index
, M
, F
, BFI
, PSI
, DT
,
749 !LocalsUsed
.empty() || HasLocalInlineAsmSymbol
,
750 CantBePromoted
, IsThinLTO
);
753 // Compute summaries for all variables defined in module, and save in the
755 SmallVector
<MDNode
*, 2> Types
;
756 for (const GlobalVariable
&G
: M
.globals()) {
757 if (G
.isDeclaration())
759 computeVariableSummary(Index
, G
, CantBePromoted
, M
, Types
);
762 // Compute summaries for all aliases defined in module, and save in the
764 for (const GlobalAlias
&A
: M
.aliases())
765 computeAliasSummary(Index
, A
, CantBePromoted
);
767 for (auto *V
: LocalsUsed
) {
768 auto *Summary
= Index
.getGlobalValueSummary(*V
);
769 assert(Summary
&& "Missing summary for global value");
770 Summary
->setNotEligibleToImport();
773 // The linker doesn't know about these LLVM produced values, so we need
774 // to flag them as live in the index to ensure index-based dead value
775 // analysis treats them as live roots of the analysis.
776 setLiveRoot(Index
, "llvm.used");
777 setLiveRoot(Index
, "llvm.compiler.used");
778 setLiveRoot(Index
, "llvm.global_ctors");
779 setLiveRoot(Index
, "llvm.global_dtors");
780 setLiveRoot(Index
, "llvm.global.annotations");
782 for (auto &GlobalList
: Index
) {
783 // Ignore entries for references that are undefined in the current module.
784 if (GlobalList
.second
.SummaryList
.empty())
787 assert(GlobalList
.second
.SummaryList
.size() == 1 &&
788 "Expected module's index to have one summary per GUID");
789 auto &Summary
= GlobalList
.second
.SummaryList
[0];
791 Summary
->setNotEligibleToImport();
795 bool AllRefsCanBeExternallyReferenced
=
796 llvm::all_of(Summary
->refs(), [&](const ValueInfo
&VI
) {
797 return !CantBePromoted
.count(VI
.getGUID());
799 if (!AllRefsCanBeExternallyReferenced
) {
800 Summary
->setNotEligibleToImport();
804 if (auto *FuncSummary
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
805 bool AllCallsCanBeExternallyReferenced
= llvm::all_of(
806 FuncSummary
->calls(), [&](const FunctionSummary::EdgeTy
&Edge
) {
807 return !CantBePromoted
.count(Edge
.first
.getGUID());
809 if (!AllCallsCanBeExternallyReferenced
)
810 Summary
->setNotEligibleToImport();
814 if (!ModuleSummaryDotFile
.empty()) {
816 raw_fd_ostream
OSDot(ModuleSummaryDotFile
, EC
, sys::fs::OpenFlags::OF_None
);
818 report_fatal_error(Twine("Failed to open dot file ") +
819 ModuleSummaryDotFile
+ ": " + EC
.message() + "\n");
820 Index
.exportToDot(OSDot
);
826 AnalysisKey
ModuleSummaryIndexAnalysis::Key
;
829 ModuleSummaryIndexAnalysis::run(Module
&M
, ModuleAnalysisManager
&AM
) {
830 ProfileSummaryInfo
&PSI
= AM
.getResult
<ProfileSummaryAnalysis
>(M
);
831 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
832 return buildModuleSummaryIndex(
834 [&FAM
](const Function
&F
) {
835 return &FAM
.getResult
<BlockFrequencyAnalysis
>(
836 *const_cast<Function
*>(&F
));
841 char ModuleSummaryIndexWrapperPass::ID
= 0;
843 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
844 "Module Summary Analysis", false, true)
845 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
846 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
847 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
848 "Module Summary Analysis", false, true)
850 ModulePass
*llvm::createModuleSummaryIndexWrapperPass() {
851 return new ModuleSummaryIndexWrapperPass();
854 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
856 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
859 bool ModuleSummaryIndexWrapperPass::runOnModule(Module
&M
) {
860 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
861 Index
.emplace(buildModuleSummaryIndex(
863 [this](const Function
&F
) {
864 return &(this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(
865 *const_cast<Function
*>(&F
))
872 bool ModuleSummaryIndexWrapperPass::doFinalization(Module
&M
) {
877 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
878 AU
.setPreservesAll();
879 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
880 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();