[ARM] Generate 8.1-m CSINC, CSNEG and CSINV instructions.
[llvm-core.git] / lib / Analysis / SyncDependenceAnalysis.cpp
blob3cf248a3114281e190a9cfaf6db19a4ae0fde557
1 //===- SyncDependenceAnalysis.cpp - Divergent Branch Dependence Calculation
2 //--===//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an algorithm that returns for a divergent branch
11 // the set of basic blocks whose phi nodes become divergent due to divergent
12 // control. These are the blocks that are reachable by two disjoint paths from
13 // the branch or loop exits that have a reaching path that is disjoint from a
14 // path to the loop latch.
16 // The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
17 // control-induced divergence in phi nodes.
19 // -- Summary --
20 // The SyncDependenceAnalysis lazily computes sync dependences [3].
21 // The analysis evaluates the disjoint path criterion [2] by a reduction
22 // to SSA construction. The SSA construction algorithm is implemented as
23 // a simple data-flow analysis [1].
25 // [1] "A Simple, Fast Dominance Algorithm", SPI '01, Cooper, Harvey and Kennedy
26 // [2] "Efficiently Computing Static Single Assignment Form
27 // and the Control Dependence Graph", TOPLAS '91,
28 // Cytron, Ferrante, Rosen, Wegman and Zadeck
29 // [3] "Improving Performance of OpenCL on CPUs", CC '12, Karrenberg and Hack
30 // [4] "Divergence Analysis", TOPLAS '13, Sampaio, Souza, Collange and Pereira
32 // -- Sync dependence --
33 // Sync dependence [4] characterizes the control flow aspect of the
34 // propagation of branch divergence. For example,
36 // %cond = icmp slt i32 %tid, 10
37 // br i1 %cond, label %then, label %else
38 // then:
39 // br label %merge
40 // else:
41 // br label %merge
42 // merge:
43 // %a = phi i32 [ 0, %then ], [ 1, %else ]
45 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
46 // because %tid is not on its use-def chains, %a is sync dependent on %tid
47 // because the branch "br i1 %cond" depends on %tid and affects which value %a
48 // is assigned to.
50 // -- Reduction to SSA construction --
51 // There are two disjoint paths from A to X, if a certain variant of SSA
52 // construction places a phi node in X under the following set-up scheme [2].
54 // This variant of SSA construction ignores incoming undef values.
55 // That is paths from the entry without a definition do not result in
56 // phi nodes.
58 // entry
59 // / \
60 // A \
61 // / \ Y
62 // B C /
63 // \ / \ /
64 // D E
65 // \ /
66 // F
67 // Assume that A contains a divergent branch. We are interested
68 // in the set of all blocks where each block is reachable from A
69 // via two disjoint paths. This would be the set {D, F} in this
70 // case.
71 // To generally reduce this query to SSA construction we introduce
72 // a virtual variable x and assign to x different values in each
73 // successor block of A.
74 // entry
75 // / \
76 // A \
77 // / \ Y
78 // x = 0 x = 1 /
79 // \ / \ /
80 // D E
81 // \ /
82 // F
83 // Our flavor of SSA construction for x will construct the following
84 // entry
85 // / \
86 // A \
87 // / \ Y
88 // x0 = 0 x1 = 1 /
89 // \ / \ /
90 // x2=phi E
91 // \ /
92 // x3=phi
93 // The blocks D and F contain phi nodes and are thus each reachable
94 // by two disjoins paths from A.
96 // -- Remarks --
97 // In case of loop exits we need to check the disjoint path criterion for loops
98 // [2]. To this end, we check whether the definition of x differs between the
99 // loop exit and the loop header (_after_ SSA construction).
101 //===----------------------------------------------------------------------===//
102 #include "llvm/ADT/PostOrderIterator.h"
103 #include "llvm/ADT/SmallPtrSet.h"
104 #include "llvm/Analysis/PostDominators.h"
105 #include "llvm/Analysis/SyncDependenceAnalysis.h"
106 #include "llvm/IR/BasicBlock.h"
107 #include "llvm/IR/CFG.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
111 #include <stack>
112 #include <unordered_set>
114 #define DEBUG_TYPE "sync-dependence"
116 namespace llvm {
118 ConstBlockSet SyncDependenceAnalysis::EmptyBlockSet;
120 SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
121 const PostDominatorTree &PDT,
122 const LoopInfo &LI)
123 : FuncRPOT(DT.getRoot()->getParent()), DT(DT), PDT(PDT), LI(LI) {}
125 SyncDependenceAnalysis::~SyncDependenceAnalysis() {}
127 using FunctionRPOT = ReversePostOrderTraversal<const Function *>;
129 // divergence propagator for reducible CFGs
130 struct DivergencePropagator {
131 const FunctionRPOT &FuncRPOT;
132 const DominatorTree &DT;
133 const PostDominatorTree &PDT;
134 const LoopInfo &LI;
136 // identified join points
137 std::unique_ptr<ConstBlockSet> JoinBlocks;
139 // reached loop exits (by a path disjoint to a path to the loop header)
140 SmallPtrSet<const BasicBlock *, 4> ReachedLoopExits;
142 // if DefMap[B] == C then C is the dominating definition at block B
143 // if DefMap[B] ~ undef then we haven't seen B yet
144 // if DefMap[B] == B then B is a join point of disjoint paths from X or B is
145 // an immediate successor of X (initial value).
146 using DefiningBlockMap = std::map<const BasicBlock *, const BasicBlock *>;
147 DefiningBlockMap DefMap;
149 // all blocks with pending visits
150 std::unordered_set<const BasicBlock *> PendingUpdates;
152 DivergencePropagator(const FunctionRPOT &FuncRPOT, const DominatorTree &DT,
153 const PostDominatorTree &PDT, const LoopInfo &LI)
154 : FuncRPOT(FuncRPOT), DT(DT), PDT(PDT), LI(LI),
155 JoinBlocks(new ConstBlockSet) {}
157 // set the definition at @block and mark @block as pending for a visit
158 void addPending(const BasicBlock &Block, const BasicBlock &DefBlock) {
159 bool WasAdded = DefMap.emplace(&Block, &DefBlock).second;
160 if (WasAdded)
161 PendingUpdates.insert(&Block);
164 void printDefs(raw_ostream &Out) {
165 Out << "Propagator::DefMap {\n";
166 for (const auto *Block : FuncRPOT) {
167 auto It = DefMap.find(Block);
168 Out << Block->getName() << " : ";
169 if (It == DefMap.end()) {
170 Out << "\n";
171 } else {
172 const auto *DefBlock = It->second;
173 Out << (DefBlock ? DefBlock->getName() : "<null>") << "\n";
176 Out << "}\n";
179 // process @succBlock with reaching definition @defBlock
180 // the original divergent branch was in @parentLoop (if any)
181 void visitSuccessor(const BasicBlock &SuccBlock, const Loop *ParentLoop,
182 const BasicBlock &DefBlock) {
184 // @succBlock is a loop exit
185 if (ParentLoop && !ParentLoop->contains(&SuccBlock)) {
186 DefMap.emplace(&SuccBlock, &DefBlock);
187 ReachedLoopExits.insert(&SuccBlock);
188 return;
191 // first reaching def?
192 auto ItLastDef = DefMap.find(&SuccBlock);
193 if (ItLastDef == DefMap.end()) {
194 addPending(SuccBlock, DefBlock);
195 return;
198 // a join of at least two definitions
199 if (ItLastDef->second != &DefBlock) {
200 // do we know this join already?
201 if (!JoinBlocks->insert(&SuccBlock).second)
202 return;
204 // update the definition
205 addPending(SuccBlock, SuccBlock);
209 // find all blocks reachable by two disjoint paths from @rootTerm.
210 // This method works for both divergent terminators and loops with
211 // divergent exits.
212 // @rootBlock is either the block containing the branch or the header of the
213 // divergent loop.
214 // @nodeSuccessors is the set of successors of the node (Loop or Terminator)
215 // headed by @rootBlock.
216 // @parentLoop is the parent loop of the Loop or the loop that contains the
217 // Terminator.
218 template <typename SuccessorIterable>
219 std::unique_ptr<ConstBlockSet>
220 computeJoinPoints(const BasicBlock &RootBlock,
221 SuccessorIterable NodeSuccessors, const Loop *ParentLoop, const BasicBlock * PdBoundBlock) {
222 assert(JoinBlocks);
224 // bootstrap with branch targets
225 for (const auto *SuccBlock : NodeSuccessors) {
226 DefMap.emplace(SuccBlock, SuccBlock);
228 if (ParentLoop && !ParentLoop->contains(SuccBlock)) {
229 // immediate loop exit from node.
230 ReachedLoopExits.insert(SuccBlock);
231 continue;
232 } else {
233 // regular successor
234 PendingUpdates.insert(SuccBlock);
238 auto ItBeginRPO = FuncRPOT.begin();
240 // skip until term (TODO RPOT won't let us start at @term directly)
241 for (; *ItBeginRPO != &RootBlock; ++ItBeginRPO) {}
243 auto ItEndRPO = FuncRPOT.end();
244 assert(ItBeginRPO != ItEndRPO);
246 // propagate definitions at the immediate successors of the node in RPO
247 auto ItBlockRPO = ItBeginRPO;
248 while (++ItBlockRPO != ItEndRPO && *ItBlockRPO != PdBoundBlock) {
249 const auto *Block = *ItBlockRPO;
251 // skip @block if not pending update
252 auto ItPending = PendingUpdates.find(Block);
253 if (ItPending == PendingUpdates.end())
254 continue;
255 PendingUpdates.erase(ItPending);
257 // propagate definition at @block to its successors
258 auto ItDef = DefMap.find(Block);
259 const auto *DefBlock = ItDef->second;
260 assert(DefBlock);
262 auto *BlockLoop = LI.getLoopFor(Block);
263 if (ParentLoop &&
264 (ParentLoop != BlockLoop && ParentLoop->contains(BlockLoop))) {
265 // if the successor is the header of a nested loop pretend its a
266 // single node with the loop's exits as successors
267 SmallVector<BasicBlock *, 4> BlockLoopExits;
268 BlockLoop->getExitBlocks(BlockLoopExits);
269 for (const auto *BlockLoopExit : BlockLoopExits) {
270 visitSuccessor(*BlockLoopExit, ParentLoop, *DefBlock);
273 } else {
274 // the successors are either on the same loop level or loop exits
275 for (const auto *SuccBlock : successors(Block)) {
276 visitSuccessor(*SuccBlock, ParentLoop, *DefBlock);
281 // We need to know the definition at the parent loop header to decide
282 // whether the definition at the header is different from the definition at
283 // the loop exits, which would indicate a divergent loop exits.
285 // A // loop header
286 // |
287 // B // nested loop header
288 // |
289 // C -> X (exit from B loop) -..-> (A latch)
290 // |
291 // D -> back to B (B latch)
292 // |
293 // proper exit from both loops
295 // D post-dominates B as it is the only proper exit from the "A loop".
296 // If C has a divergent branch, propagation will therefore stop at D.
297 // That implies that B will never receive a definition.
298 // But that definition can only be the same as at D (D itself in thise case)
299 // because all paths to anywhere have to pass through D.
301 const BasicBlock *ParentLoopHeader =
302 ParentLoop ? ParentLoop->getHeader() : nullptr;
303 if (ParentLoop && ParentLoop->contains(PdBoundBlock)) {
304 DefMap[ParentLoopHeader] = DefMap[PdBoundBlock];
307 // analyze reached loop exits
308 if (!ReachedLoopExits.empty()) {
309 assert(ParentLoop);
310 const auto *HeaderDefBlock = DefMap[ParentLoopHeader];
311 LLVM_DEBUG(printDefs(dbgs()));
312 assert(HeaderDefBlock && "no definition in header of carrying loop");
314 for (const auto *ExitBlock : ReachedLoopExits) {
315 auto ItExitDef = DefMap.find(ExitBlock);
316 assert((ItExitDef != DefMap.end()) &&
317 "no reaching def at reachable loop exit");
318 if (ItExitDef->second != HeaderDefBlock) {
319 JoinBlocks->insert(ExitBlock);
324 return std::move(JoinBlocks);
328 const ConstBlockSet &SyncDependenceAnalysis::join_blocks(const Loop &Loop) {
329 using LoopExitVec = SmallVector<BasicBlock *, 4>;
330 LoopExitVec LoopExits;
331 Loop.getExitBlocks(LoopExits);
332 if (LoopExits.size() < 1) {
333 return EmptyBlockSet;
336 // already available in cache?
337 auto ItCached = CachedLoopExitJoins.find(&Loop);
338 if (ItCached != CachedLoopExitJoins.end()) {
339 return *ItCached->second;
342 // dont propagte beyond the immediate post dom of the loop
343 const auto *PdNode = PDT.getNode(const_cast<BasicBlock *>(Loop.getHeader()));
344 const auto *IpdNode = PdNode->getIDom();
345 const auto *PdBoundBlock = IpdNode ? IpdNode->getBlock() : nullptr;
346 while (PdBoundBlock && Loop.contains(PdBoundBlock)) {
347 IpdNode = IpdNode->getIDom();
348 PdBoundBlock = IpdNode ? IpdNode->getBlock() : nullptr;
351 // compute all join points
352 DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
353 auto JoinBlocks = Propagator.computeJoinPoints<const LoopExitVec &>(
354 *Loop.getHeader(), LoopExits, Loop.getParentLoop(), PdBoundBlock);
356 auto ItInserted = CachedLoopExitJoins.emplace(&Loop, std::move(JoinBlocks));
357 assert(ItInserted.second);
358 return *ItInserted.first->second;
361 const ConstBlockSet &
362 SyncDependenceAnalysis::join_blocks(const Instruction &Term) {
363 // trivial case
364 if (Term.getNumSuccessors() < 1) {
365 return EmptyBlockSet;
368 // already available in cache?
369 auto ItCached = CachedBranchJoins.find(&Term);
370 if (ItCached != CachedBranchJoins.end())
371 return *ItCached->second;
373 // dont propagate beyond the immediate post dominator of the branch
374 const auto *PdNode = PDT.getNode(const_cast<BasicBlock *>(Term.getParent()));
375 const auto *IpdNode = PdNode->getIDom();
376 const auto *PdBoundBlock = IpdNode ? IpdNode->getBlock() : nullptr;
378 // compute all join points
379 DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
380 const auto &TermBlock = *Term.getParent();
381 auto JoinBlocks = Propagator.computeJoinPoints<succ_const_range>(
382 TermBlock, successors(Term.getParent()), LI.getLoopFor(&TermBlock), PdBoundBlock);
384 auto ItInserted = CachedBranchJoins.emplace(&Term, std::move(JoinBlocks));
385 assert(ItInserted.second);
386 return *ItInserted.first->second;
389 } // namespace llvm