[SLP] limit vectorization of Constant subclasses (PR33958)
[llvm-core.git] / include / llvm / ADT / DenseMap.h
blob948a6e6bfb38b3fc737a4df4491a8add4abfa079
1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DenseMap class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ADT_DENSEMAP_H
14 #define LLVM_ADT_DENSEMAP_H
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/EpochTracker.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/ReverseIteration.h"
22 #include "llvm/Support/type_traits.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstring>
27 #include <initializer_list>
28 #include <iterator>
29 #include <new>
30 #include <type_traits>
31 #include <utility>
33 namespace llvm {
35 namespace detail {
37 // We extend a pair to allow users to override the bucket type with their own
38 // implementation without requiring two members.
39 template <typename KeyT, typename ValueT>
40 struct DenseMapPair : public std::pair<KeyT, ValueT> {
41 using std::pair<KeyT, ValueT>::pair;
43 KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
44 const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
45 ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
46 const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
49 } // end namespace detail
51 template <typename KeyT, typename ValueT,
52 typename KeyInfoT = DenseMapInfo<KeyT>,
53 typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
54 bool IsConst = false>
55 class DenseMapIterator;
57 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
58 typename BucketT>
59 class DenseMapBase : public DebugEpochBase {
60 template <typename T>
61 using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
63 public:
64 using size_type = unsigned;
65 using key_type = KeyT;
66 using mapped_type = ValueT;
67 using value_type = BucketT;
69 using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
70 using const_iterator =
71 DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
73 inline iterator begin() {
74 // When the map is empty, avoid the overhead of advancing/retreating past
75 // empty buckets.
76 if (empty())
77 return end();
78 if (shouldReverseIterate<KeyT>())
79 return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
80 return makeIterator(getBuckets(), getBucketsEnd(), *this);
82 inline iterator end() {
83 return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
85 inline const_iterator begin() const {
86 if (empty())
87 return end();
88 if (shouldReverseIterate<KeyT>())
89 return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
90 return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
92 inline const_iterator end() const {
93 return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
96 LLVM_NODISCARD bool empty() const {
97 return getNumEntries() == 0;
99 unsigned size() const { return getNumEntries(); }
101 /// Grow the densemap so that it can contain at least \p NumEntries items
102 /// before resizing again.
103 void reserve(size_type NumEntries) {
104 auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
105 incrementEpoch();
106 if (NumBuckets > getNumBuckets())
107 grow(NumBuckets);
110 void clear() {
111 incrementEpoch();
112 if (getNumEntries() == 0 && getNumTombstones() == 0) return;
114 // If the capacity of the array is huge, and the # elements used is small,
115 // shrink the array.
116 if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
117 shrink_and_clear();
118 return;
121 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
122 if (is_trivially_copyable<KeyT>::value &&
123 is_trivially_copyable<ValueT>::value) {
124 // Use a simpler loop when these are trivial types.
125 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
126 P->getFirst() = EmptyKey;
127 } else {
128 unsigned NumEntries = getNumEntries();
129 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
130 if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
131 if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
132 P->getSecond().~ValueT();
133 --NumEntries;
135 P->getFirst() = EmptyKey;
138 assert(NumEntries == 0 && "Node count imbalance!");
140 setNumEntries(0);
141 setNumTombstones(0);
144 /// Return 1 if the specified key is in the map, 0 otherwise.
145 size_type count(const_arg_type_t<KeyT> Val) const {
146 const BucketT *TheBucket;
147 return LookupBucketFor(Val, TheBucket) ? 1 : 0;
150 iterator find(const_arg_type_t<KeyT> Val) {
151 BucketT *TheBucket;
152 if (LookupBucketFor(Val, TheBucket))
153 return makeIterator(TheBucket, getBucketsEnd(), *this, true);
154 return end();
156 const_iterator find(const_arg_type_t<KeyT> Val) const {
157 const BucketT *TheBucket;
158 if (LookupBucketFor(Val, TheBucket))
159 return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
160 return end();
163 /// Alternate version of find() which allows a different, and possibly
164 /// less expensive, key type.
165 /// The DenseMapInfo is responsible for supplying methods
166 /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
167 /// type used.
168 template<class LookupKeyT>
169 iterator find_as(const LookupKeyT &Val) {
170 BucketT *TheBucket;
171 if (LookupBucketFor(Val, TheBucket))
172 return makeIterator(TheBucket, getBucketsEnd(), *this, true);
173 return end();
175 template<class LookupKeyT>
176 const_iterator find_as(const LookupKeyT &Val) const {
177 const BucketT *TheBucket;
178 if (LookupBucketFor(Val, TheBucket))
179 return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
180 return end();
183 /// lookup - Return the entry for the specified key, or a default
184 /// constructed value if no such entry exists.
185 ValueT lookup(const_arg_type_t<KeyT> Val) const {
186 const BucketT *TheBucket;
187 if (LookupBucketFor(Val, TheBucket))
188 return TheBucket->getSecond();
189 return ValueT();
192 // Inserts key,value pair into the map if the key isn't already in the map.
193 // If the key is already in the map, it returns false and doesn't update the
194 // value.
195 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
196 return try_emplace(KV.first, KV.second);
199 // Inserts key,value pair into the map if the key isn't already in the map.
200 // If the key is already in the map, it returns false and doesn't update the
201 // value.
202 std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
203 return try_emplace(std::move(KV.first), std::move(KV.second));
206 // Inserts key,value pair into the map if the key isn't already in the map.
207 // The value is constructed in-place if the key is not in the map, otherwise
208 // it is not moved.
209 template <typename... Ts>
210 std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
211 BucketT *TheBucket;
212 if (LookupBucketFor(Key, TheBucket))
213 return std::make_pair(
214 makeIterator(TheBucket, getBucketsEnd(), *this, true),
215 false); // Already in map.
217 // Otherwise, insert the new element.
218 TheBucket =
219 InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
220 return std::make_pair(
221 makeIterator(TheBucket, getBucketsEnd(), *this, true),
222 true);
225 // Inserts key,value pair into the map if the key isn't already in the map.
226 // The value is constructed in-place if the key is not in the map, otherwise
227 // it is not moved.
228 template <typename... Ts>
229 std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
230 BucketT *TheBucket;
231 if (LookupBucketFor(Key, TheBucket))
232 return std::make_pair(
233 makeIterator(TheBucket, getBucketsEnd(), *this, true),
234 false); // Already in map.
236 // Otherwise, insert the new element.
237 TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
238 return std::make_pair(
239 makeIterator(TheBucket, getBucketsEnd(), *this, true),
240 true);
243 /// Alternate version of insert() which allows a different, and possibly
244 /// less expensive, key type.
245 /// The DenseMapInfo is responsible for supplying methods
246 /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
247 /// type used.
248 template <typename LookupKeyT>
249 std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
250 const LookupKeyT &Val) {
251 BucketT *TheBucket;
252 if (LookupBucketFor(Val, TheBucket))
253 return std::make_pair(
254 makeIterator(TheBucket, getBucketsEnd(), *this, true),
255 false); // Already in map.
257 // Otherwise, insert the new element.
258 TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
259 std::move(KV.second), Val);
260 return std::make_pair(
261 makeIterator(TheBucket, getBucketsEnd(), *this, true),
262 true);
265 /// insert - Range insertion of pairs.
266 template<typename InputIt>
267 void insert(InputIt I, InputIt E) {
268 for (; I != E; ++I)
269 insert(*I);
272 bool erase(const KeyT &Val) {
273 BucketT *TheBucket;
274 if (!LookupBucketFor(Val, TheBucket))
275 return false; // not in map.
277 TheBucket->getSecond().~ValueT();
278 TheBucket->getFirst() = getTombstoneKey();
279 decrementNumEntries();
280 incrementNumTombstones();
281 return true;
283 void erase(iterator I) {
284 BucketT *TheBucket = &*I;
285 TheBucket->getSecond().~ValueT();
286 TheBucket->getFirst() = getTombstoneKey();
287 decrementNumEntries();
288 incrementNumTombstones();
291 value_type& FindAndConstruct(const KeyT &Key) {
292 BucketT *TheBucket;
293 if (LookupBucketFor(Key, TheBucket))
294 return *TheBucket;
296 return *InsertIntoBucket(TheBucket, Key);
299 ValueT &operator[](const KeyT &Key) {
300 return FindAndConstruct(Key).second;
303 value_type& FindAndConstruct(KeyT &&Key) {
304 BucketT *TheBucket;
305 if (LookupBucketFor(Key, TheBucket))
306 return *TheBucket;
308 return *InsertIntoBucket(TheBucket, std::move(Key));
311 ValueT &operator[](KeyT &&Key) {
312 return FindAndConstruct(std::move(Key)).second;
315 /// isPointerIntoBucketsArray - Return true if the specified pointer points
316 /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
317 /// value in the DenseMap).
318 bool isPointerIntoBucketsArray(const void *Ptr) const {
319 return Ptr >= getBuckets() && Ptr < getBucketsEnd();
322 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
323 /// array. In conjunction with the previous method, this can be used to
324 /// determine whether an insertion caused the DenseMap to reallocate.
325 const void *getPointerIntoBucketsArray() const { return getBuckets(); }
327 protected:
328 DenseMapBase() = default;
330 void destroyAll() {
331 if (getNumBuckets() == 0) // Nothing to do.
332 return;
334 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
335 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
336 if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
337 !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
338 P->getSecond().~ValueT();
339 P->getFirst().~KeyT();
343 void initEmpty() {
344 setNumEntries(0);
345 setNumTombstones(0);
347 assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
348 "# initial buckets must be a power of two!");
349 const KeyT EmptyKey = getEmptyKey();
350 for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
351 ::new (&B->getFirst()) KeyT(EmptyKey);
354 /// Returns the number of buckets to allocate to ensure that the DenseMap can
355 /// accommodate \p NumEntries without need to grow().
356 unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
357 // Ensure that "NumEntries * 4 < NumBuckets * 3"
358 if (NumEntries == 0)
359 return 0;
360 // +1 is required because of the strict equality.
361 // For example if NumEntries is 48, we need to return 401.
362 return NextPowerOf2(NumEntries * 4 / 3 + 1);
365 void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
366 initEmpty();
368 // Insert all the old elements.
369 const KeyT EmptyKey = getEmptyKey();
370 const KeyT TombstoneKey = getTombstoneKey();
371 for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
372 if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
373 !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
374 // Insert the key/value into the new table.
375 BucketT *DestBucket;
376 bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
377 (void)FoundVal; // silence warning.
378 assert(!FoundVal && "Key already in new map?");
379 DestBucket->getFirst() = std::move(B->getFirst());
380 ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
381 incrementNumEntries();
383 // Free the value.
384 B->getSecond().~ValueT();
386 B->getFirst().~KeyT();
390 template <typename OtherBaseT>
391 void copyFrom(
392 const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
393 assert(&other != this);
394 assert(getNumBuckets() == other.getNumBuckets());
396 setNumEntries(other.getNumEntries());
397 setNumTombstones(other.getNumTombstones());
399 if (is_trivially_copyable<KeyT>::value &&
400 is_trivially_copyable<ValueT>::value)
401 memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
402 getNumBuckets() * sizeof(BucketT));
403 else
404 for (size_t i = 0; i < getNumBuckets(); ++i) {
405 ::new (&getBuckets()[i].getFirst())
406 KeyT(other.getBuckets()[i].getFirst());
407 if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
408 !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
409 ::new (&getBuckets()[i].getSecond())
410 ValueT(other.getBuckets()[i].getSecond());
414 static unsigned getHashValue(const KeyT &Val) {
415 return KeyInfoT::getHashValue(Val);
418 template<typename LookupKeyT>
419 static unsigned getHashValue(const LookupKeyT &Val) {
420 return KeyInfoT::getHashValue(Val);
423 static const KeyT getEmptyKey() {
424 static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
425 "Must pass the derived type to this template!");
426 return KeyInfoT::getEmptyKey();
429 static const KeyT getTombstoneKey() {
430 return KeyInfoT::getTombstoneKey();
433 private:
434 iterator makeIterator(BucketT *P, BucketT *E,
435 DebugEpochBase &Epoch,
436 bool NoAdvance=false) {
437 if (shouldReverseIterate<KeyT>()) {
438 BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
439 return iterator(B, E, Epoch, NoAdvance);
441 return iterator(P, E, Epoch, NoAdvance);
444 const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
445 const DebugEpochBase &Epoch,
446 const bool NoAdvance=false) const {
447 if (shouldReverseIterate<KeyT>()) {
448 const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
449 return const_iterator(B, E, Epoch, NoAdvance);
451 return const_iterator(P, E, Epoch, NoAdvance);
454 unsigned getNumEntries() const {
455 return static_cast<const DerivedT *>(this)->getNumEntries();
458 void setNumEntries(unsigned Num) {
459 static_cast<DerivedT *>(this)->setNumEntries(Num);
462 void incrementNumEntries() {
463 setNumEntries(getNumEntries() + 1);
466 void decrementNumEntries() {
467 setNumEntries(getNumEntries() - 1);
470 unsigned getNumTombstones() const {
471 return static_cast<const DerivedT *>(this)->getNumTombstones();
474 void setNumTombstones(unsigned Num) {
475 static_cast<DerivedT *>(this)->setNumTombstones(Num);
478 void incrementNumTombstones() {
479 setNumTombstones(getNumTombstones() + 1);
482 void decrementNumTombstones() {
483 setNumTombstones(getNumTombstones() - 1);
486 const BucketT *getBuckets() const {
487 return static_cast<const DerivedT *>(this)->getBuckets();
490 BucketT *getBuckets() {
491 return static_cast<DerivedT *>(this)->getBuckets();
494 unsigned getNumBuckets() const {
495 return static_cast<const DerivedT *>(this)->getNumBuckets();
498 BucketT *getBucketsEnd() {
499 return getBuckets() + getNumBuckets();
502 const BucketT *getBucketsEnd() const {
503 return getBuckets() + getNumBuckets();
506 void grow(unsigned AtLeast) {
507 static_cast<DerivedT *>(this)->grow(AtLeast);
510 void shrink_and_clear() {
511 static_cast<DerivedT *>(this)->shrink_and_clear();
514 template <typename KeyArg, typename... ValueArgs>
515 BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
516 ValueArgs &&... Values) {
517 TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
519 TheBucket->getFirst() = std::forward<KeyArg>(Key);
520 ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
521 return TheBucket;
524 template <typename LookupKeyT>
525 BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
526 ValueT &&Value, LookupKeyT &Lookup) {
527 TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
529 TheBucket->getFirst() = std::move(Key);
530 ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
531 return TheBucket;
534 template <typename LookupKeyT>
535 BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
536 BucketT *TheBucket) {
537 incrementEpoch();
539 // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
540 // the buckets are empty (meaning that many are filled with tombstones),
541 // grow the table.
543 // The later case is tricky. For example, if we had one empty bucket with
544 // tons of tombstones, failing lookups (e.g. for insertion) would have to
545 // probe almost the entire table until it found the empty bucket. If the
546 // table completely filled with tombstones, no lookup would ever succeed,
547 // causing infinite loops in lookup.
548 unsigned NewNumEntries = getNumEntries() + 1;
549 unsigned NumBuckets = getNumBuckets();
550 if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
551 this->grow(NumBuckets * 2);
552 LookupBucketFor(Lookup, TheBucket);
553 NumBuckets = getNumBuckets();
554 } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
555 NumBuckets/8)) {
556 this->grow(NumBuckets);
557 LookupBucketFor(Lookup, TheBucket);
559 assert(TheBucket);
561 // Only update the state after we've grown our bucket space appropriately
562 // so that when growing buckets we have self-consistent entry count.
563 incrementNumEntries();
565 // If we are writing over a tombstone, remember this.
566 const KeyT EmptyKey = getEmptyKey();
567 if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
568 decrementNumTombstones();
570 return TheBucket;
573 /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
574 /// FoundBucket. If the bucket contains the key and a value, this returns
575 /// true, otherwise it returns a bucket with an empty marker or tombstone and
576 /// returns false.
577 template<typename LookupKeyT>
578 bool LookupBucketFor(const LookupKeyT &Val,
579 const BucketT *&FoundBucket) const {
580 const BucketT *BucketsPtr = getBuckets();
581 const unsigned NumBuckets = getNumBuckets();
583 if (NumBuckets == 0) {
584 FoundBucket = nullptr;
585 return false;
588 // FoundTombstone - Keep track of whether we find a tombstone while probing.
589 const BucketT *FoundTombstone = nullptr;
590 const KeyT EmptyKey = getEmptyKey();
591 const KeyT TombstoneKey = getTombstoneKey();
592 assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
593 !KeyInfoT::isEqual(Val, TombstoneKey) &&
594 "Empty/Tombstone value shouldn't be inserted into map!");
596 unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
597 unsigned ProbeAmt = 1;
598 while (true) {
599 const BucketT *ThisBucket = BucketsPtr + BucketNo;
600 // Found Val's bucket? If so, return it.
601 if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
602 FoundBucket = ThisBucket;
603 return true;
606 // If we found an empty bucket, the key doesn't exist in the set.
607 // Insert it and return the default value.
608 if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
609 // If we've already seen a tombstone while probing, fill it in instead
610 // of the empty bucket we eventually probed to.
611 FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
612 return false;
615 // If this is a tombstone, remember it. If Val ends up not in the map, we
616 // prefer to return it than something that would require more probing.
617 if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
618 !FoundTombstone)
619 FoundTombstone = ThisBucket; // Remember the first tombstone found.
621 // Otherwise, it's a hash collision or a tombstone, continue quadratic
622 // probing.
623 BucketNo += ProbeAmt++;
624 BucketNo &= (NumBuckets-1);
628 template <typename LookupKeyT>
629 bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
630 const BucketT *ConstFoundBucket;
631 bool Result = const_cast<const DenseMapBase *>(this)
632 ->LookupBucketFor(Val, ConstFoundBucket);
633 FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
634 return Result;
637 public:
638 /// Return the approximate size (in bytes) of the actual map.
639 /// This is just the raw memory used by DenseMap.
640 /// If entries are pointers to objects, the size of the referenced objects
641 /// are not included.
642 size_t getMemorySize() const {
643 return getNumBuckets() * sizeof(BucketT);
647 /// Equality comparison for DenseMap.
649 /// Iterates over elements of LHS confirming that each (key, value) pair in LHS
650 /// is also in RHS, and that no additional pairs are in RHS.
651 /// Equivalent to N calls to RHS.find and N value comparisons. Amortized
652 /// complexity is linear, worst case is O(N^2) (if every hash collides).
653 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
654 typename BucketT>
655 bool operator==(
656 const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
657 const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
658 if (LHS.size() != RHS.size())
659 return false;
661 for (auto &KV : LHS) {
662 auto I = RHS.find(KV.first);
663 if (I == RHS.end() || I->second != KV.second)
664 return false;
667 return true;
670 /// Inequality comparison for DenseMap.
672 /// Equivalent to !(LHS == RHS). See operator== for performance notes.
673 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
674 typename BucketT>
675 bool operator!=(
676 const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
677 const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
678 return !(LHS == RHS);
681 template <typename KeyT, typename ValueT,
682 typename KeyInfoT = DenseMapInfo<KeyT>,
683 typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
684 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
685 KeyT, ValueT, KeyInfoT, BucketT> {
686 friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
688 // Lift some types from the dependent base class into this class for
689 // simplicity of referring to them.
690 using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
692 BucketT *Buckets;
693 unsigned NumEntries;
694 unsigned NumTombstones;
695 unsigned NumBuckets;
697 public:
698 /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
699 /// this number of elements can be inserted in the map without grow()
700 explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
702 DenseMap(const DenseMap &other) : BaseT() {
703 init(0);
704 copyFrom(other);
707 DenseMap(DenseMap &&other) : BaseT() {
708 init(0);
709 swap(other);
712 template<typename InputIt>
713 DenseMap(const InputIt &I, const InputIt &E) {
714 init(std::distance(I, E));
715 this->insert(I, E);
718 DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
719 init(Vals.size());
720 this->insert(Vals.begin(), Vals.end());
723 ~DenseMap() {
724 this->destroyAll();
725 deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
728 void swap(DenseMap& RHS) {
729 this->incrementEpoch();
730 RHS.incrementEpoch();
731 std::swap(Buckets, RHS.Buckets);
732 std::swap(NumEntries, RHS.NumEntries);
733 std::swap(NumTombstones, RHS.NumTombstones);
734 std::swap(NumBuckets, RHS.NumBuckets);
737 DenseMap& operator=(const DenseMap& other) {
738 if (&other != this)
739 copyFrom(other);
740 return *this;
743 DenseMap& operator=(DenseMap &&other) {
744 this->destroyAll();
745 deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
746 init(0);
747 swap(other);
748 return *this;
751 void copyFrom(const DenseMap& other) {
752 this->destroyAll();
753 deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
754 if (allocateBuckets(other.NumBuckets)) {
755 this->BaseT::copyFrom(other);
756 } else {
757 NumEntries = 0;
758 NumTombstones = 0;
762 void init(unsigned InitNumEntries) {
763 auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
764 if (allocateBuckets(InitBuckets)) {
765 this->BaseT::initEmpty();
766 } else {
767 NumEntries = 0;
768 NumTombstones = 0;
772 void grow(unsigned AtLeast) {
773 unsigned OldNumBuckets = NumBuckets;
774 BucketT *OldBuckets = Buckets;
776 allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
777 assert(Buckets);
778 if (!OldBuckets) {
779 this->BaseT::initEmpty();
780 return;
783 this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
785 // Free the old table.
786 deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
787 alignof(BucketT));
790 void shrink_and_clear() {
791 unsigned OldNumBuckets = NumBuckets;
792 unsigned OldNumEntries = NumEntries;
793 this->destroyAll();
795 // Reduce the number of buckets.
796 unsigned NewNumBuckets = 0;
797 if (OldNumEntries)
798 NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
799 if (NewNumBuckets == NumBuckets) {
800 this->BaseT::initEmpty();
801 return;
804 deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
805 alignof(BucketT));
806 init(NewNumBuckets);
809 private:
810 unsigned getNumEntries() const {
811 return NumEntries;
814 void setNumEntries(unsigned Num) {
815 NumEntries = Num;
818 unsigned getNumTombstones() const {
819 return NumTombstones;
822 void setNumTombstones(unsigned Num) {
823 NumTombstones = Num;
826 BucketT *getBuckets() const {
827 return Buckets;
830 unsigned getNumBuckets() const {
831 return NumBuckets;
834 bool allocateBuckets(unsigned Num) {
835 NumBuckets = Num;
836 if (NumBuckets == 0) {
837 Buckets = nullptr;
838 return false;
841 Buckets = static_cast<BucketT *>(
842 allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
843 return true;
847 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
848 typename KeyInfoT = DenseMapInfo<KeyT>,
849 typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
850 class SmallDenseMap
851 : public DenseMapBase<
852 SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
853 ValueT, KeyInfoT, BucketT> {
854 friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
856 // Lift some types from the dependent base class into this class for
857 // simplicity of referring to them.
858 using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
860 static_assert(isPowerOf2_64(InlineBuckets),
861 "InlineBuckets must be a power of 2.");
863 unsigned Small : 1;
864 unsigned NumEntries : 31;
865 unsigned NumTombstones;
867 struct LargeRep {
868 BucketT *Buckets;
869 unsigned NumBuckets;
872 /// A "union" of an inline bucket array and the struct representing
873 /// a large bucket. This union will be discriminated by the 'Small' bit.
874 AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
876 public:
877 explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
878 init(NumInitBuckets);
881 SmallDenseMap(const SmallDenseMap &other) : BaseT() {
882 init(0);
883 copyFrom(other);
886 SmallDenseMap(SmallDenseMap &&other) : BaseT() {
887 init(0);
888 swap(other);
891 template<typename InputIt>
892 SmallDenseMap(const InputIt &I, const InputIt &E) {
893 init(NextPowerOf2(std::distance(I, E)));
894 this->insert(I, E);
897 ~SmallDenseMap() {
898 this->destroyAll();
899 deallocateBuckets();
902 void swap(SmallDenseMap& RHS) {
903 unsigned TmpNumEntries = RHS.NumEntries;
904 RHS.NumEntries = NumEntries;
905 NumEntries = TmpNumEntries;
906 std::swap(NumTombstones, RHS.NumTombstones);
908 const KeyT EmptyKey = this->getEmptyKey();
909 const KeyT TombstoneKey = this->getTombstoneKey();
910 if (Small && RHS.Small) {
911 // If we're swapping inline bucket arrays, we have to cope with some of
912 // the tricky bits of DenseMap's storage system: the buckets are not
913 // fully initialized. Thus we swap every key, but we may have
914 // a one-directional move of the value.
915 for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
916 BucketT *LHSB = &getInlineBuckets()[i],
917 *RHSB = &RHS.getInlineBuckets()[i];
918 bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
919 !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
920 bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
921 !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
922 if (hasLHSValue && hasRHSValue) {
923 // Swap together if we can...
924 std::swap(*LHSB, *RHSB);
925 continue;
927 // Swap separately and handle any assymetry.
928 std::swap(LHSB->getFirst(), RHSB->getFirst());
929 if (hasLHSValue) {
930 ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
931 LHSB->getSecond().~ValueT();
932 } else if (hasRHSValue) {
933 ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
934 RHSB->getSecond().~ValueT();
937 return;
939 if (!Small && !RHS.Small) {
940 std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
941 std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
942 return;
945 SmallDenseMap &SmallSide = Small ? *this : RHS;
946 SmallDenseMap &LargeSide = Small ? RHS : *this;
948 // First stash the large side's rep and move the small side across.
949 LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
950 LargeSide.getLargeRep()->~LargeRep();
951 LargeSide.Small = true;
952 // This is similar to the standard move-from-old-buckets, but the bucket
953 // count hasn't actually rotated in this case. So we have to carefully
954 // move construct the keys and values into their new locations, but there
955 // is no need to re-hash things.
956 for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
957 BucketT *NewB = &LargeSide.getInlineBuckets()[i],
958 *OldB = &SmallSide.getInlineBuckets()[i];
959 ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
960 OldB->getFirst().~KeyT();
961 if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
962 !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
963 ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
964 OldB->getSecond().~ValueT();
968 // The hard part of moving the small buckets across is done, just move
969 // the TmpRep into its new home.
970 SmallSide.Small = false;
971 new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
974 SmallDenseMap& operator=(const SmallDenseMap& other) {
975 if (&other != this)
976 copyFrom(other);
977 return *this;
980 SmallDenseMap& operator=(SmallDenseMap &&other) {
981 this->destroyAll();
982 deallocateBuckets();
983 init(0);
984 swap(other);
985 return *this;
988 void copyFrom(const SmallDenseMap& other) {
989 this->destroyAll();
990 deallocateBuckets();
991 Small = true;
992 if (other.getNumBuckets() > InlineBuckets) {
993 Small = false;
994 new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
996 this->BaseT::copyFrom(other);
999 void init(unsigned InitBuckets) {
1000 Small = true;
1001 if (InitBuckets > InlineBuckets) {
1002 Small = false;
1003 new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
1005 this->BaseT::initEmpty();
1008 void grow(unsigned AtLeast) {
1009 if (AtLeast >= InlineBuckets)
1010 AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
1012 if (Small) {
1013 if (AtLeast < InlineBuckets)
1014 return; // Nothing to do.
1016 // First move the inline buckets into a temporary storage.
1017 AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
1018 BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
1019 BucketT *TmpEnd = TmpBegin;
1021 // Loop over the buckets, moving non-empty, non-tombstones into the
1022 // temporary storage. Have the loop move the TmpEnd forward as it goes.
1023 const KeyT EmptyKey = this->getEmptyKey();
1024 const KeyT TombstoneKey = this->getTombstoneKey();
1025 for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
1026 if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
1027 !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
1028 assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
1029 "Too many inline buckets!");
1030 ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
1031 ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
1032 ++TmpEnd;
1033 P->getSecond().~ValueT();
1035 P->getFirst().~KeyT();
1038 // Now make this map use the large rep, and move all the entries back
1039 // into it.
1040 Small = false;
1041 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1042 this->moveFromOldBuckets(TmpBegin, TmpEnd);
1043 return;
1046 LargeRep OldRep = std::move(*getLargeRep());
1047 getLargeRep()->~LargeRep();
1048 if (AtLeast <= InlineBuckets) {
1049 Small = true;
1050 } else {
1051 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1054 this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
1056 // Free the old table.
1057 deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
1058 alignof(BucketT));
1061 void shrink_and_clear() {
1062 unsigned OldSize = this->size();
1063 this->destroyAll();
1065 // Reduce the number of buckets.
1066 unsigned NewNumBuckets = 0;
1067 if (OldSize) {
1068 NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
1069 if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
1070 NewNumBuckets = 64;
1072 if ((Small && NewNumBuckets <= InlineBuckets) ||
1073 (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
1074 this->BaseT::initEmpty();
1075 return;
1078 deallocateBuckets();
1079 init(NewNumBuckets);
1082 private:
1083 unsigned getNumEntries() const {
1084 return NumEntries;
1087 void setNumEntries(unsigned Num) {
1088 // NumEntries is hardcoded to be 31 bits wide.
1089 assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1090 NumEntries = Num;
1093 unsigned getNumTombstones() const {
1094 return NumTombstones;
1097 void setNumTombstones(unsigned Num) {
1098 NumTombstones = Num;
1101 const BucketT *getInlineBuckets() const {
1102 assert(Small);
1103 // Note that this cast does not violate aliasing rules as we assert that
1104 // the memory's dynamic type is the small, inline bucket buffer, and the
1105 // 'storage.buffer' static type is 'char *'.
1106 return reinterpret_cast<const BucketT *>(storage.buffer);
1109 BucketT *getInlineBuckets() {
1110 return const_cast<BucketT *>(
1111 const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1114 const LargeRep *getLargeRep() const {
1115 assert(!Small);
1116 // Note, same rule about aliasing as with getInlineBuckets.
1117 return reinterpret_cast<const LargeRep *>(storage.buffer);
1120 LargeRep *getLargeRep() {
1121 return const_cast<LargeRep *>(
1122 const_cast<const SmallDenseMap *>(this)->getLargeRep());
1125 const BucketT *getBuckets() const {
1126 return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1129 BucketT *getBuckets() {
1130 return const_cast<BucketT *>(
1131 const_cast<const SmallDenseMap *>(this)->getBuckets());
1134 unsigned getNumBuckets() const {
1135 return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1138 void deallocateBuckets() {
1139 if (Small)
1140 return;
1142 deallocate_buffer(getLargeRep()->Buckets,
1143 sizeof(BucketT) * getLargeRep()->NumBuckets,
1144 alignof(BucketT));
1145 getLargeRep()->~LargeRep();
1148 LargeRep allocateBuckets(unsigned Num) {
1149 assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1150 LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
1151 sizeof(BucketT) * Num, alignof(BucketT))),
1152 Num};
1153 return Rep;
1157 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1158 bool IsConst>
1159 class DenseMapIterator : DebugEpochBase::HandleBase {
1160 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1161 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1163 using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1165 public:
1166 using difference_type = ptrdiff_t;
1167 using value_type =
1168 typename std::conditional<IsConst, const Bucket, Bucket>::type;
1169 using pointer = value_type *;
1170 using reference = value_type &;
1171 using iterator_category = std::forward_iterator_tag;
1173 private:
1174 pointer Ptr = nullptr;
1175 pointer End = nullptr;
1177 public:
1178 DenseMapIterator() = default;
1180 DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1181 bool NoAdvance = false)
1182 : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1183 assert(isHandleInSync() && "invalid construction!");
1185 if (NoAdvance) return;
1186 if (shouldReverseIterate<KeyT>()) {
1187 RetreatPastEmptyBuckets();
1188 return;
1190 AdvancePastEmptyBuckets();
1193 // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1194 // for const iterator destinations so it doesn't end up as a user defined copy
1195 // constructor.
1196 template <bool IsConstSrc,
1197 typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
1198 DenseMapIterator(
1199 const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1200 : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1202 reference operator*() const {
1203 assert(isHandleInSync() && "invalid iterator access!");
1204 if (shouldReverseIterate<KeyT>())
1205 return Ptr[-1];
1206 return *Ptr;
1208 pointer operator->() const {
1209 assert(isHandleInSync() && "invalid iterator access!");
1210 if (shouldReverseIterate<KeyT>())
1211 return &(Ptr[-1]);
1212 return Ptr;
1215 bool operator==(const ConstIterator &RHS) const {
1216 assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1217 assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1218 assert(getEpochAddress() == RHS.getEpochAddress() &&
1219 "comparing incomparable iterators!");
1220 return Ptr == RHS.Ptr;
1222 bool operator!=(const ConstIterator &RHS) const {
1223 assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1224 assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1225 assert(getEpochAddress() == RHS.getEpochAddress() &&
1226 "comparing incomparable iterators!");
1227 return Ptr != RHS.Ptr;
1230 inline DenseMapIterator& operator++() { // Preincrement
1231 assert(isHandleInSync() && "invalid iterator access!");
1232 if (shouldReverseIterate<KeyT>()) {
1233 --Ptr;
1234 RetreatPastEmptyBuckets();
1235 return *this;
1237 ++Ptr;
1238 AdvancePastEmptyBuckets();
1239 return *this;
1241 DenseMapIterator operator++(int) { // Postincrement
1242 assert(isHandleInSync() && "invalid iterator access!");
1243 DenseMapIterator tmp = *this; ++*this; return tmp;
1246 private:
1247 void AdvancePastEmptyBuckets() {
1248 assert(Ptr <= End);
1249 const KeyT Empty = KeyInfoT::getEmptyKey();
1250 const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1252 while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1253 KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1254 ++Ptr;
1257 void RetreatPastEmptyBuckets() {
1258 assert(Ptr >= End);
1259 const KeyT Empty = KeyInfoT::getEmptyKey();
1260 const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1262 while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
1263 KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
1264 --Ptr;
1268 template <typename KeyT, typename ValueT, typename KeyInfoT>
1269 inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1270 return X.getMemorySize();
1273 } // end namespace llvm
1275 #endif // LLVM_ADT_DENSEMAP_H