[SLP] limit vectorization of Constant subclasses (PR33958)
[llvm-core.git] / include / llvm / ADT / EquivalenceClasses.h
blob2cb7108c07948876ed9ddc5c2eedc00fed256c36
1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Generic implementation of equivalence classes through the use Tarjan's
10 // efficient union-find algorithm.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
15 #define LLVM_ADT_EQUIVALENCECLASSES_H
17 #include <cassert>
18 #include <cstddef>
19 #include <cstdint>
20 #include <iterator>
21 #include <set>
23 namespace llvm {
25 /// EquivalenceClasses - This represents a collection of equivalence classes and
26 /// supports three efficient operations: insert an element into a class of its
27 /// own, union two classes, and find the class for a given element. In
28 /// addition to these modification methods, it is possible to iterate over all
29 /// of the equivalence classes and all of the elements in a class.
30 ///
31 /// This implementation is an efficient implementation that only stores one copy
32 /// of the element being indexed per entry in the set, and allows any arbitrary
33 /// type to be indexed (as long as it can be ordered with operator<).
34 ///
35 /// Here is a simple example using integers:
36 ///
37 /// \code
38 /// EquivalenceClasses<int> EC;
39 /// EC.unionSets(1, 2); // insert 1, 2 into the same set
40 /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets
41 /// EC.unionSets(5, 1); // merge the set for 1 with 5's set.
42 ///
43 /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
44 /// I != E; ++I) { // Iterate over all of the equivalence sets.
45 /// if (!I->isLeader()) continue; // Ignore non-leader sets.
46 /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
47 /// MI != EC.member_end(); ++MI) // Loop over members in this set.
48 /// cerr << *MI << " "; // Print member.
49 /// cerr << "\n"; // Finish set.
50 /// }
51 /// \endcode
52 ///
53 /// This example prints:
54 /// 4
55 /// 5 1 2
56 ///
57 template <class ElemTy>
58 class EquivalenceClasses {
59 /// ECValue - The EquivalenceClasses data structure is just a set of these.
60 /// Each of these represents a relation for a value. First it stores the
61 /// value itself, which provides the ordering that the set queries. Next, it
62 /// provides a "next pointer", which is used to enumerate all of the elements
63 /// in the unioned set. Finally, it defines either a "end of list pointer" or
64 /// "leader pointer" depending on whether the value itself is a leader. A
65 /// "leader pointer" points to the node that is the leader for this element,
66 /// if the node is not a leader. A "end of list pointer" points to the last
67 /// node in the list of members of this list. Whether or not a node is a
68 /// leader is determined by a bit stolen from one of the pointers.
69 class ECValue {
70 friend class EquivalenceClasses;
72 mutable const ECValue *Leader, *Next;
73 ElemTy Data;
75 // ECValue ctor - Start out with EndOfList pointing to this node, Next is
76 // Null, isLeader = true.
77 ECValue(const ElemTy &Elt)
78 : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
80 const ECValue *getLeader() const {
81 if (isLeader()) return this;
82 if (Leader->isLeader()) return Leader;
83 // Path compression.
84 return Leader = Leader->getLeader();
87 const ECValue *getEndOfList() const {
88 assert(isLeader() && "Cannot get the end of a list for a non-leader!");
89 return Leader;
92 void setNext(const ECValue *NewNext) const {
93 assert(getNext() == nullptr && "Already has a next pointer!");
94 Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
97 public:
98 ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
99 Data(RHS.Data) {
100 // Only support copying of singleton nodes.
101 assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
104 bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
106 bool isLeader() const { return (intptr_t)Next & 1; }
107 const ElemTy &getData() const { return Data; }
109 const ECValue *getNext() const {
110 return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
113 template<typename T>
114 bool operator<(const T &Val) const { return Data < Val; }
117 /// TheMapping - This implicitly provides a mapping from ElemTy values to the
118 /// ECValues, it just keeps the key as part of the value.
119 std::set<ECValue> TheMapping;
121 public:
122 EquivalenceClasses() = default;
123 EquivalenceClasses(const EquivalenceClasses &RHS) {
124 operator=(RHS);
127 const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
128 TheMapping.clear();
129 for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
130 if (I->isLeader()) {
131 member_iterator MI = RHS.member_begin(I);
132 member_iterator LeaderIt = member_begin(insert(*MI));
133 for (++MI; MI != member_end(); ++MI)
134 unionSets(LeaderIt, member_begin(insert(*MI)));
136 return *this;
139 //===--------------------------------------------------------------------===//
140 // Inspection methods
143 /// iterator* - Provides a way to iterate over all values in the set.
144 using iterator = typename std::set<ECValue>::const_iterator;
146 iterator begin() const { return TheMapping.begin(); }
147 iterator end() const { return TheMapping.end(); }
149 bool empty() const { return TheMapping.empty(); }
151 /// member_* Iterate over the members of an equivalence class.
152 class member_iterator;
153 member_iterator member_begin(iterator I) const {
154 // Only leaders provide anything to iterate over.
155 return member_iterator(I->isLeader() ? &*I : nullptr);
157 member_iterator member_end() const {
158 return member_iterator(nullptr);
161 /// findValue - Return an iterator to the specified value. If it does not
162 /// exist, end() is returned.
163 iterator findValue(const ElemTy &V) const {
164 return TheMapping.find(V);
167 /// getLeaderValue - Return the leader for the specified value that is in the
168 /// set. It is an error to call this method for a value that is not yet in
169 /// the set. For that, call getOrInsertLeaderValue(V).
170 const ElemTy &getLeaderValue(const ElemTy &V) const {
171 member_iterator MI = findLeader(V);
172 assert(MI != member_end() && "Value is not in the set!");
173 return *MI;
176 /// getOrInsertLeaderValue - Return the leader for the specified value that is
177 /// in the set. If the member is not in the set, it is inserted, then
178 /// returned.
179 const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
180 member_iterator MI = findLeader(insert(V));
181 assert(MI != member_end() && "Value is not in the set!");
182 return *MI;
185 /// getNumClasses - Return the number of equivalence classes in this set.
186 /// Note that this is a linear time operation.
187 unsigned getNumClasses() const {
188 unsigned NC = 0;
189 for (iterator I = begin(), E = end(); I != E; ++I)
190 if (I->isLeader()) ++NC;
191 return NC;
194 //===--------------------------------------------------------------------===//
195 // Mutation methods
197 /// insert - Insert a new value into the union/find set, ignoring the request
198 /// if the value already exists.
199 iterator insert(const ElemTy &Data) {
200 return TheMapping.insert(ECValue(Data)).first;
203 /// findLeader - Given a value in the set, return a member iterator for the
204 /// equivalence class it is in. This does the path-compression part that
205 /// makes union-find "union findy". This returns an end iterator if the value
206 /// is not in the equivalence class.
207 member_iterator findLeader(iterator I) const {
208 if (I == TheMapping.end()) return member_end();
209 return member_iterator(I->getLeader());
211 member_iterator findLeader(const ElemTy &V) const {
212 return findLeader(TheMapping.find(V));
215 /// union - Merge the two equivalence sets for the specified values, inserting
216 /// them if they do not already exist in the equivalence set.
217 member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
218 iterator V1I = insert(V1), V2I = insert(V2);
219 return unionSets(findLeader(V1I), findLeader(V2I));
221 member_iterator unionSets(member_iterator L1, member_iterator L2) {
222 assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
223 if (L1 == L2) return L1; // Unifying the same two sets, noop.
225 // Otherwise, this is a real union operation. Set the end of the L1 list to
226 // point to the L2 leader node.
227 const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
228 L1LV.getEndOfList()->setNext(&L2LV);
230 // Update L1LV's end of list pointer.
231 L1LV.Leader = L2LV.getEndOfList();
233 // Clear L2's leader flag:
234 L2LV.Next = L2LV.getNext();
236 // L2's leader is now L1.
237 L2LV.Leader = &L1LV;
238 return L1;
241 // isEquivalent - Return true if V1 is equivalent to V2. This can happen if
242 // V1 is equal to V2 or if they belong to one equivalence class.
243 bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
244 // Fast path: any element is equivalent to itself.
245 if (V1 == V2)
246 return true;
247 auto It = findLeader(V1);
248 return It != member_end() && It == findLeader(V2);
251 class member_iterator : public std::iterator<std::forward_iterator_tag,
252 const ElemTy, ptrdiff_t> {
253 friend class EquivalenceClasses;
255 using super = std::iterator<std::forward_iterator_tag,
256 const ElemTy, ptrdiff_t>;
258 const ECValue *Node;
260 public:
261 using size_type = size_t;
262 using pointer = typename super::pointer;
263 using reference = typename super::reference;
265 explicit member_iterator() = default;
266 explicit member_iterator(const ECValue *N) : Node(N) {}
268 reference operator*() const {
269 assert(Node != nullptr && "Dereferencing end()!");
270 return Node->getData();
272 pointer operator->() const { return &operator*(); }
274 member_iterator &operator++() {
275 assert(Node != nullptr && "++'d off the end of the list!");
276 Node = Node->getNext();
277 return *this;
280 member_iterator operator++(int) { // postincrement operators.
281 member_iterator tmp = *this;
282 ++*this;
283 return tmp;
286 bool operator==(const member_iterator &RHS) const {
287 return Node == RHS.Node;
289 bool operator!=(const member_iterator &RHS) const {
290 return Node != RHS.Node;
295 } // end namespace llvm
297 #endif // LLVM_ADT_EQUIVALENCECLASSES_H