1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
38 // When adding a NEW PPCISD node please add it to the correct position in
39 // the enum. The order of elements in this enum matters!
40 // Values that are added after this entry:
41 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
42 // are considered memory opcodes and are treated differently than entries
43 // that come before it. For example, ADD or MUL should be placed before
44 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46 enum NodeType
: unsigned {
47 // Start the numbering where the builtin ops and target ops leave off.
48 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
50 /// FSEL - Traditional three-operand fsel node.
54 /// FCFID - The FCFID instruction, taking an f64 operand and producing
55 /// and f64 value containing the FP representation of the integer that
56 /// was temporarily in the f64 operand.
59 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
60 /// unsigned integers and single-precision outputs.
61 FCFIDU
, FCFIDS
, FCFIDUS
,
63 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
64 /// operand, producing an f64 value containing the integer representation
68 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
69 /// unsigned integers with round toward zero.
72 /// Floating-point-to-interger conversion instructions
73 FP_TO_UINT_IN_VSR
, FP_TO_SINT_IN_VSR
,
75 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
76 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
79 /// SExtVElems, takes an input vector of a smaller type and sign
80 /// extends to an output vector of a larger type.
83 /// Reciprocal estimate instructions (unary FP ops).
86 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
87 // three v4f32 operands and producing a v4f32 result.
90 /// VPERM - The PPC VPERM Instruction.
94 /// XXSPLT - The PPC VSX splat instructions
98 /// VECINSERT - The PPC vector insert instruction
102 /// XXREVERSE - The PPC VSX reverse instruction
106 /// VECSHL - The PPC vector shift left instruction
110 /// XXPERMDI - The PPC XXPERMDI instruction
114 /// The CMPB instruction (takes two operands of i32 or i64).
117 /// Hi/Lo - These represent the high and low 16-bit parts of a global
118 /// address respectively. These nodes have two operands, the first of
119 /// which must be a TargetGlobalAddress, and the second of which must be a
120 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
121 /// though these are usually folded into other nodes.
124 /// The following two target-specific nodes are used for calls through
125 /// function pointers in the 64-bit SVR4 ABI.
127 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
128 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
129 /// compute an allocation on the stack.
132 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
133 /// compute an offset from native SP to the address of the most recent
137 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
138 /// at function entry, used for PIC code.
141 /// These nodes represent PPC shifts.
143 /// For scalar types, only the last `n + 1` bits of the shift amounts
144 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
145 /// for exact behaviors.
147 /// For vector types, only the last n bits are used. See vsld.
150 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
151 /// word and shift left immediate.
154 /// The combination of sra[wd]i and addze used to implemented signed
155 /// integer division by a power of 2. The first operand is the dividend,
156 /// and the second is the constant shift amount (representing the
160 /// CALL - A direct function call.
161 /// CALL_NOP is a call with the special NOP which follows 64-bit
162 /// SVR4 calls and 32-bit/64-bit AIX calls.
165 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
166 /// MTCTR instruction.
169 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
170 /// BCTRL instruction.
173 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
174 /// instruction and the TOC reload required on SVR4 PPC64.
177 /// Return with a flag operand, matched by 'blr'
180 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
181 /// This copies the bits corresponding to the specified CRREG into the
182 /// resultant GPR. Bits corresponding to other CR regs are undefined.
185 /// Direct move from a VSX register to a GPR
188 /// Direct move from a GPR to a VSX register (algebraic)
191 /// Direct move from a GPR to a VSX register (zero)
194 /// Direct move of 2 consecutive GPR to a VSX register.
197 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
198 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
199 /// unsupported for this target.
200 /// Merge 2 GPRs to a single SPE register.
203 /// Extract SPE register component, second argument is high or low.
206 /// Extract a subvector from signed integer vector and convert to FP.
207 /// It is primarily used to convert a (widened) illegal integer vector
208 /// type to a legal floating point vector type.
209 /// For example v2i32 -> widened to v4i32 -> v2f64
212 /// Extract a subvector from unsigned integer vector and convert to FP.
213 /// As with SINT_VEC_TO_FP, used for converting illegal types.
216 // FIXME: Remove these once the ANDI glue bug is fixed:
217 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
218 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
219 /// implement truncation of i32 or i64 to i1.
220 ANDIo_1_EQ_BIT
, ANDIo_1_GT_BIT
,
222 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
223 // target (returns (Lo, Hi)). It takes a chain operand.
226 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
229 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
232 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
233 /// instructions. For lack of better number, we use the opcode number
234 /// encoding for the OPC field to identify the compare. For example, 838
238 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
239 /// altivec VCMP*o instructions. For lack of better number, we use the
240 /// opcode number encoding for the OPC field to identify the compare. For
241 /// example, 838 is VCMPGTSH.
244 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
245 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
246 /// condition register to branch on, OPC is the branch opcode to use (e.g.
247 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
248 /// an optional input flag argument.
251 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
255 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
256 /// towards zero. Used only as part of the long double-to-int
257 /// conversion sequence.
260 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
263 /// TC_RETURN - A tail call return.
265 /// operand #1 callee (register or absolute)
266 /// operand #2 stack adjustment
267 /// operand #3 optional in flag
270 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
274 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
275 /// for non-position independent code on PPC32.
278 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
279 /// local dynamic TLS and position indendepent code on PPC32.
282 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
283 /// TLS model, produces an ADDIS8 instruction that adds the GOT
284 /// base to sym\@got\@tprel\@ha.
287 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
288 /// TLS model, produces a LD instruction with base register G8RReg
289 /// and offset sym\@got\@tprel\@l. This completes the addition that
290 /// finds the offset of "sym" relative to the thread pointer.
293 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
294 /// model, produces an ADD instruction that adds the contents of
295 /// G8RReg to the thread pointer. Symbol contains a relocation
296 /// sym\@tls which is to be replaced by the thread pointer and
297 /// identifies to the linker that the instruction is part of a
301 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
302 /// model, produces an ADDIS8 instruction that adds the GOT base
303 /// register to sym\@got\@tlsgd\@ha.
306 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
307 /// model, produces an ADDI8 instruction that adds G8RReg to
308 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
309 /// ADDIS_TLSGD_L_ADDR until after register assignment.
312 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
313 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
314 /// ADDIS_TLSGD_L_ADDR until after register assignment.
317 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
318 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
319 /// register assignment.
322 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
323 /// model, produces an ADDIS8 instruction that adds the GOT base
324 /// register to sym\@got\@tlsld\@ha.
327 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
328 /// model, produces an ADDI8 instruction that adds G8RReg to
329 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
330 /// ADDIS_TLSLD_L_ADDR until after register assignment.
333 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
334 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
335 /// ADDIS_TLSLD_L_ADDR until after register assignment.
338 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
339 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
340 /// following register assignment.
343 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
344 /// model, produces an ADDIS8 instruction that adds X3 to
348 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
349 /// model, produces an ADDI8 instruction that adds G8RReg to
350 /// sym\@got\@dtprel\@l.
353 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
354 /// during instruction selection to optimize a BUILD_VECTOR into
355 /// operations on splats. This is necessary to avoid losing these
356 /// optimizations due to constant folding.
359 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
360 /// operand identifies the operating system entry point.
363 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
366 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
367 /// history rolling buffer entry.
370 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
373 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
374 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
375 /// or stxvd2x instruction. The chain is necessary because the
376 /// sequence replaces a load and needs to provide the same number
380 /// An SDNode for swaps that are not associated with any loads/stores
381 /// and thereby have no chain.
384 /// An SDNode for Power9 vector absolute value difference.
385 /// operand #0 vector
386 /// operand #1 vector
387 /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
388 /// the most significant bit for signed i32
390 /// Power9 VABSD* instructions are designed to support unsigned integer
391 /// vectors (byte/halfword/word), if we want to make use of them for signed
392 /// integer vectors, we have to flip their sign bits first. To flip sign bit
393 /// for byte/halfword integer vector would become inefficient, but for word
394 /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
395 /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
396 /// => VABSDUW((XVNEGSP a), (XVNEGSP b))
399 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
402 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
405 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
408 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
411 /// QBFLT = Access the underlying QPX floating-point boolean
415 /// Custom extend v4f32 to v2f64.
418 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
419 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
420 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
422 STBRX
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
424 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
425 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
426 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
430 /// STFIWX - The STFIWX instruction. The first operand is an input token
431 /// chain, then an f64 value to store, then an address to store it to.
434 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
435 /// load which sign-extends from a 32-bit integer value into the
436 /// destination 64-bit register.
439 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
440 /// load which zero-extends from a 32-bit integer value into the
441 /// destination 64-bit register.
444 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
445 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
446 /// This can be used for converting loaded integers to floating point.
449 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
450 /// chain, then an f64 value to store, then an address to store it to,
451 /// followed by a byte-width for the store.
454 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
455 /// Maps directly to an lxvd2x instruction that will be followed by
459 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
460 /// v2f32 value into the lower half of a VSR register.
463 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
464 /// Maps directly to an stxvd2x instruction that will be preceded by
468 /// Store scalar integers from VSR.
471 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
472 /// The 4xf32 load used for v4i1 constants.
475 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
476 /// except they ensure that the compare input is zero-extended for
477 /// sub-word versions because the atomic loads zero-extend.
478 ATOMIC_CMP_SWAP_8
, ATOMIC_CMP_SWAP_16
,
480 /// GPRC = TOC_ENTRY GA, TOC
481 /// Loads the entry for GA from the TOC, where the TOC base is given by
482 /// the last operand.
486 } // end namespace PPCISD
488 /// Define some predicates that are used for node matching.
491 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
492 /// VPKUHUM instruction.
493 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
496 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
497 /// VPKUWUM instruction.
498 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
501 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
502 /// VPKUDUM instruction.
503 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
506 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
507 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
508 bool isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
509 unsigned ShuffleKind
, SelectionDAG
&DAG
);
511 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
512 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
513 bool isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
514 unsigned ShuffleKind
, SelectionDAG
&DAG
);
516 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
517 /// a VMRGEW or VMRGOW instruction
518 bool isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
519 unsigned ShuffleKind
, SelectionDAG
&DAG
);
520 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
521 /// for a XXSLDWI instruction.
522 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
523 bool &Swap
, bool IsLE
);
525 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
526 /// for a XXBRH instruction.
527 bool isXXBRHShuffleMask(ShuffleVectorSDNode
*N
);
529 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
530 /// for a XXBRW instruction.
531 bool isXXBRWShuffleMask(ShuffleVectorSDNode
*N
);
533 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
534 /// for a XXBRD instruction.
535 bool isXXBRDShuffleMask(ShuffleVectorSDNode
*N
);
537 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
538 /// for a XXBRQ instruction.
539 bool isXXBRQShuffleMask(ShuffleVectorSDNode
*N
);
541 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
542 /// for a XXPERMDI instruction.
543 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
544 bool &Swap
, bool IsLE
);
546 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
547 /// shift amount, otherwise return -1.
548 int isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
551 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
552 /// specifies a splat of a single element that is suitable for input to
553 /// VSPLTB/VSPLTH/VSPLTW.
554 bool isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
);
556 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
557 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
558 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
559 /// vector into the other. This function will also set a couple of
560 /// output parameters for how much the source vector needs to be shifted and
561 /// what byte number needs to be specified for the instruction to put the
562 /// element in the desired location of the target vector.
563 bool isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
564 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
);
566 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
567 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
568 unsigned getVSPLTImmediate(SDNode
*N
, unsigned EltSize
, SelectionDAG
&DAG
);
570 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
571 /// formed by using a vspltis[bhw] instruction of the specified element
572 /// size, return the constant being splatted. The ByteSize field indicates
573 /// the number of bytes of each element [124] -> [bhw].
574 SDValue
get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
);
576 /// If this is a qvaligni shuffle mask, return the shift
577 /// amount, otherwise return -1.
578 int isQVALIGNIShuffleMask(SDNode
*N
);
580 } // end namespace PPC
582 class PPCTargetLowering
: public TargetLowering
{
583 const PPCSubtarget
&Subtarget
;
586 explicit PPCTargetLowering(const PPCTargetMachine
&TM
,
587 const PPCSubtarget
&STI
);
589 /// getTargetNodeName() - This method returns the name of a target specific
591 const char *getTargetNodeName(unsigned Opcode
) const override
;
593 bool isSelectSupported(SelectSupportKind Kind
) const override
{
594 // PowerPC does not support scalar condition selects on vectors.
595 return (Kind
!= SelectSupportKind::ScalarCondVectorVal
);
598 /// getPreferredVectorAction - The code we generate when vector types are
599 /// legalized by promoting the integer element type is often much worse
600 /// than code we generate if we widen the type for applicable vector types.
601 /// The issue with promoting is that the vector is scalaraized, individual
602 /// elements promoted and then the vector is rebuilt. So say we load a pair
603 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
604 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
605 /// then the VPERM for the shuffle. All in all a very slow sequence.
606 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT
)
608 if (VT
.getScalarSizeInBits() % 8 == 0)
609 return TypeWidenVector
;
610 return TargetLoweringBase::getPreferredVectorAction(VT
);
613 bool useSoftFloat() const override
;
617 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
621 bool isCheapToSpeculateCttz() const override
{
625 bool isCheapToSpeculateCtlz() const override
{
629 bool isCtlzFast() const override
{
633 bool hasAndNotCompare(SDValue
) const override
{
637 bool preferIncOfAddToSubOfNot(EVT VT
) const override
;
639 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
640 return VT
.isScalarInteger();
643 bool supportSplitCSR(MachineFunction
*MF
) const override
{
645 MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
646 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
649 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
651 void insertCopiesSplitCSR(
652 MachineBasicBlock
*Entry
,
653 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
655 /// getSetCCResultType - Return the ISD::SETCC ValueType
656 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
657 EVT VT
) const override
;
659 /// Return true if target always beneficiates from combining into FMA for a
660 /// given value type. This must typically return false on targets where FMA
661 /// takes more cycles to execute than FADD.
662 bool enableAggressiveFMAFusion(EVT VT
) const override
;
664 /// getPreIndexedAddressParts - returns true by value, base pointer and
665 /// offset pointer and addressing mode by reference if the node's address
666 /// can be legally represented as pre-indexed load / store address.
667 bool getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
669 ISD::MemIndexedMode
&AM
,
670 SelectionDAG
&DAG
) const override
;
672 /// SelectAddressRegReg - Given the specified addressed, check to see if it
673 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
674 /// is non-zero, only accept displacement which is not suitable for [r+imm].
675 /// Returns false if it can be represented by [r+imm], which are preferred.
676 bool SelectAddressRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
678 unsigned EncodingAlignment
= 0) const;
680 /// SelectAddressRegImm - Returns true if the address N can be represented
681 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
682 /// is not better represented as reg+reg. If \p EncodingAlignment is
683 /// non-zero, only accept displacements suitable for instruction encoding
684 /// requirement, i.e. multiples of 4 for DS form.
685 bool SelectAddressRegImm(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
687 unsigned EncodingAlignment
) const;
689 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
690 /// represented as an indexed [r+r] operation.
691 bool SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
,
692 SelectionDAG
&DAG
) const;
694 Sched::Preference
getSchedulingPreference(SDNode
*N
) const override
;
696 /// LowerOperation - Provide custom lowering hooks for some operations.
698 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
700 /// ReplaceNodeResults - Replace the results of node with an illegal result
701 /// type with new values built out of custom code.
703 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
704 SelectionDAG
&DAG
) const override
;
706 SDValue
expandVSXLoadForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
707 SDValue
expandVSXStoreForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
709 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
711 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
712 SmallVectorImpl
<SDNode
*> &Created
) const override
;
714 unsigned getRegisterByName(const char* RegName
, EVT VT
,
715 SelectionDAG
&DAG
) const override
;
717 void computeKnownBitsForTargetNode(const SDValue Op
,
719 const APInt
&DemandedElts
,
720 const SelectionDAG
&DAG
,
721 unsigned Depth
= 0) const override
;
723 unsigned getPrefLoopAlignment(MachineLoop
*ML
) const override
;
725 bool shouldInsertFencesForAtomic(const Instruction
*I
) const override
{
729 Instruction
*emitLeadingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
730 AtomicOrdering Ord
) const override
;
731 Instruction
*emitTrailingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
732 AtomicOrdering Ord
) const override
;
735 EmitInstrWithCustomInserter(MachineInstr
&MI
,
736 MachineBasicBlock
*MBB
) const override
;
737 MachineBasicBlock
*EmitAtomicBinary(MachineInstr
&MI
,
738 MachineBasicBlock
*MBB
,
741 unsigned CmpOpcode
= 0,
742 unsigned CmpPred
= 0) const;
743 MachineBasicBlock
*EmitPartwordAtomicBinary(MachineInstr
&MI
,
744 MachineBasicBlock
*MBB
,
747 unsigned CmpOpcode
= 0,
748 unsigned CmpPred
= 0) const;
750 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
751 MachineBasicBlock
*MBB
) const;
753 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
754 MachineBasicBlock
*MBB
) const;
756 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
758 /// Examine constraint string and operand type and determine a weight value.
759 /// The operand object must already have been set up with the operand type.
760 ConstraintWeight
getSingleConstraintMatchWeight(
761 AsmOperandInfo
&info
, const char *constraint
) const override
;
763 std::pair
<unsigned, const TargetRegisterClass
*>
764 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
765 StringRef Constraint
, MVT VT
) const override
;
767 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
768 /// function arguments in the caller parameter area. This is the actual
769 /// alignment, not its logarithm.
770 unsigned getByValTypeAlignment(Type
*Ty
,
771 const DataLayout
&DL
) const override
;
773 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
774 /// vector. If it is invalid, don't add anything to Ops.
775 void LowerAsmOperandForConstraint(SDValue Op
,
776 std::string
&Constraint
,
777 std::vector
<SDValue
> &Ops
,
778 SelectionDAG
&DAG
) const override
;
781 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
782 if (ConstraintCode
== "es")
783 return InlineAsm::Constraint_es
;
784 else if (ConstraintCode
== "o")
785 return InlineAsm::Constraint_o
;
786 else if (ConstraintCode
== "Q")
787 return InlineAsm::Constraint_Q
;
788 else if (ConstraintCode
== "Z")
789 return InlineAsm::Constraint_Z
;
790 else if (ConstraintCode
== "Zy")
791 return InlineAsm::Constraint_Zy
;
792 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
795 /// isLegalAddressingMode - Return true if the addressing mode represented
796 /// by AM is legal for this target, for a load/store of the specified type.
797 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
798 Type
*Ty
, unsigned AS
,
799 Instruction
*I
= nullptr) const override
;
801 /// isLegalICmpImmediate - Return true if the specified immediate is legal
802 /// icmp immediate, that is the target has icmp instructions which can
803 /// compare a register against the immediate without having to materialize
804 /// the immediate into a register.
805 bool isLegalICmpImmediate(int64_t Imm
) const override
;
807 /// isLegalAddImmediate - Return true if the specified immediate is legal
808 /// add immediate, that is the target has add instructions which can
809 /// add a register and the immediate without having to materialize
810 /// the immediate into a register.
811 bool isLegalAddImmediate(int64_t Imm
) const override
;
813 /// isTruncateFree - Return true if it's free to truncate a value of
814 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
815 /// register X1 to i32 by referencing its sub-register R1.
816 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
817 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
819 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
821 bool isFPExtFree(EVT DestVT
, EVT SrcVT
) const override
;
823 /// Returns true if it is beneficial to convert a load of a constant
824 /// to just the constant itself.
825 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
826 Type
*Ty
) const override
;
828 bool convertSelectOfConstantsToMath(EVT VT
) const override
{
832 // Returns true if the address of the global is stored in TOC entry.
833 bool isAccessedAsGotIndirect(SDValue N
) const;
835 bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const override
;
837 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
,
840 unsigned Intrinsic
) const override
;
842 /// getOptimalMemOpType - Returns the target specific optimal type for load
843 /// and store operations as a result of memset, memcpy, and memmove
844 /// lowering. If DstAlign is zero that means it's safe to destination
845 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
846 /// means there isn't a need to check it against alignment requirement,
847 /// probably because the source does not need to be loaded. If 'IsMemset' is
848 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
849 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
850 /// source is constant so it does not need to be loaded.
851 /// It returns EVT::Other if the type should be determined using generic
852 /// target-independent logic.
854 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
855 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
856 const AttributeList
&FuncAttributes
) const override
;
858 /// Is unaligned memory access allowed for the given type, and is it fast
859 /// relative to software emulation.
860 bool allowsMisalignedMemoryAccesses(
861 EVT VT
, unsigned AddrSpace
, unsigned Align
= 1,
862 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
,
863 bool *Fast
= nullptr) const override
;
865 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
866 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
867 /// expanded to FMAs when this method returns true, otherwise fmuladd is
868 /// expanded to fmul + fadd.
869 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
871 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
873 // Should we expand the build vector with shuffles?
875 shouldExpandBuildVectorWithShuffles(EVT VT
,
876 unsigned DefinedValues
) const override
;
878 /// createFastISel - This method returns a target-specific FastISel object,
879 /// or null if the target does not support "fast" instruction selection.
880 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
881 const TargetLibraryInfo
*LibInfo
) const override
;
883 /// Returns true if an argument of type Ty needs to be passed in a
884 /// contiguous block of registers in calling convention CallConv.
885 bool functionArgumentNeedsConsecutiveRegisters(
886 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const override
{
887 // We support any array type as "consecutive" block in the parameter
888 // save area. The element type defines the alignment requirement and
889 // whether the argument should go in GPRs, FPRs, or VRs if available.
891 // Note that clang uses this capability both to implement the ELFv2
892 // homogeneous float/vector aggregate ABI, and to avoid having to use
893 // "byval" when passing aggregates that might fully fit in registers.
894 return Ty
->isArrayTy();
897 /// If a physical register, this returns the register that receives the
898 /// exception address on entry to an EH pad.
900 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
902 /// If a physical register, this returns the register that receives the
903 /// exception typeid on entry to a landing pad.
905 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
907 /// Override to support customized stack guard loading.
908 bool useLoadStackGuardNode() const override
;
909 void insertSSPDeclarations(Module
&M
) const override
;
911 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
912 bool ForCodeSize
) const override
;
914 unsigned getJumpTableEncoding() const override
;
915 bool isJumpTableRelative() const override
;
916 SDValue
getPICJumpTableRelocBase(SDValue Table
,
917 SelectionDAG
&DAG
) const override
;
918 const MCExpr
*getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
920 MCContext
&Ctx
) const override
;
923 struct ReuseLoadInfo
{
927 MachinePointerInfo MPI
;
928 bool IsDereferenceable
= false;
929 bool IsInvariant
= false;
930 unsigned Alignment
= 0;
932 const MDNode
*Ranges
= nullptr;
934 ReuseLoadInfo() = default;
936 MachineMemOperand::Flags
MMOFlags() const {
937 MachineMemOperand::Flags F
= MachineMemOperand::MONone
;
938 if (IsDereferenceable
)
939 F
|= MachineMemOperand::MODereferenceable
;
941 F
|= MachineMemOperand::MOInvariant
;
946 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
{
947 // Addrspacecasts are always noops.
951 bool canReuseLoadAddress(SDValue Op
, EVT MemVT
, ReuseLoadInfo
&RLI
,
953 ISD::LoadExtType ET
= ISD::NON_EXTLOAD
) const;
954 void spliceIntoChain(SDValue ResChain
, SDValue NewResChain
,
955 SelectionDAG
&DAG
) const;
957 void LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
958 SelectionDAG
&DAG
, const SDLoc
&dl
) const;
959 SDValue
LowerFP_TO_INTDirectMove(SDValue Op
, SelectionDAG
&DAG
,
960 const SDLoc
&dl
) const;
962 bool directMoveIsProfitable(const SDValue
&Op
) const;
963 SDValue
LowerINT_TO_FPDirectMove(SDValue Op
, SelectionDAG
&DAG
,
964 const SDLoc
&dl
) const;
966 SDValue
LowerINT_TO_FPVector(SDValue Op
, SelectionDAG
&DAG
,
967 const SDLoc
&dl
) const;
969 SDValue
LowerTRUNCATEVector(SDValue Op
, SelectionDAG
&DAG
) const;
971 SDValue
getFramePointerFrameIndex(SelectionDAG
& DAG
) const;
972 SDValue
getReturnAddrFrameIndex(SelectionDAG
& DAG
) const;
975 IsEligibleForTailCallOptimization(SDValue Callee
,
976 CallingConv::ID CalleeCC
,
978 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
979 SelectionDAG
& DAG
) const;
982 IsEligibleForTailCallOptimization_64SVR4(
984 CallingConv::ID CalleeCC
,
985 ImmutableCallSite CS
,
987 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
988 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
989 SelectionDAG
& DAG
) const;
991 SDValue
EmitTailCallLoadFPAndRetAddr(SelectionDAG
&DAG
, int SPDiff
,
992 SDValue Chain
, SDValue
&LROpOut
,
994 const SDLoc
&dl
) const;
996 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
997 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
998 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
999 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1000 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1001 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1002 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
1003 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
1004 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1005 SDValue
LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1006 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
1007 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
1008 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
1009 SDValue
LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
1010 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
1011 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
1012 SDValue
LowerEH_DWARF_CFA(SDValue Op
, SelectionDAG
&DAG
) const;
1013 SDValue
LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const;
1014 SDValue
LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const;
1015 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
1016 SDValue
LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
1017 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
1018 const SDLoc
&dl
) const;
1019 SDValue
LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1020 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
1021 SDValue
LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
1022 SDValue
LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
1023 SDValue
LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
1024 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1025 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
1026 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1027 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1028 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
1029 SDValue
LowerINTRINSIC_VOID(SDValue Op
, SelectionDAG
&DAG
) const;
1030 SDValue
LowerREM(SDValue Op
, SelectionDAG
&DAG
) const;
1031 SDValue
LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const;
1032 SDValue
LowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
1033 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1034 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
1035 SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const;
1036 SDValue
LowerABS(SDValue Op
, SelectionDAG
&DAG
) const;
1037 SDValue
LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const;
1039 SDValue
LowerVectorLoad(SDValue Op
, SelectionDAG
&DAG
) const;
1040 SDValue
LowerVectorStore(SDValue Op
, SelectionDAG
&DAG
) const;
1042 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1043 CallingConv::ID CallConv
, bool isVarArg
,
1044 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1045 const SDLoc
&dl
, SelectionDAG
&DAG
,
1046 SmallVectorImpl
<SDValue
> &InVals
) const;
1047 SDValue
FinishCall(CallingConv::ID CallConv
, const SDLoc
&dl
,
1048 bool isTailCall
, bool isVarArg
, bool isPatchPoint
,
1049 bool hasNest
, SelectionDAG
&DAG
,
1050 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
1051 SDValue InFlag
, SDValue Chain
, SDValue CallSeqStart
,
1052 SDValue
&Callee
, int SPDiff
, unsigned NumBytes
,
1053 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1054 SmallVectorImpl
<SDValue
> &InVals
,
1055 ImmutableCallSite CS
) const;
1058 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1059 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1060 const SDLoc
&dl
, SelectionDAG
&DAG
,
1061 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1063 SDValue
LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1064 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1066 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1068 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1069 LLVMContext
&Context
) const override
;
1071 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1072 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1073 const SmallVectorImpl
<SDValue
> &OutVals
,
1074 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1076 SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags
, EVT ObjectVT
,
1077 SelectionDAG
&DAG
, SDValue ArgVal
,
1078 const SDLoc
&dl
) const;
1080 SDValue
LowerFormalArguments_Darwin(
1081 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1082 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1083 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1084 SDValue
LowerFormalArguments_64SVR4(
1085 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1086 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1087 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1088 SDValue
LowerFormalArguments_32SVR4(
1089 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1090 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1091 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1093 SDValue
createMemcpyOutsideCallSeq(SDValue Arg
, SDValue PtrOff
,
1094 SDValue CallSeqStart
,
1095 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1096 const SDLoc
&dl
) const;
1098 SDValue
LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
1099 CallingConv::ID CallConv
, bool isVarArg
,
1100 bool isTailCall
, bool isPatchPoint
,
1101 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1102 const SmallVectorImpl
<SDValue
> &OutVals
,
1103 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1104 const SDLoc
&dl
, SelectionDAG
&DAG
,
1105 SmallVectorImpl
<SDValue
> &InVals
,
1106 ImmutableCallSite CS
) const;
1107 SDValue
LowerCall_64SVR4(SDValue Chain
, SDValue Callee
,
1108 CallingConv::ID CallConv
, bool isVarArg
,
1109 bool isTailCall
, bool isPatchPoint
,
1110 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1111 const SmallVectorImpl
<SDValue
> &OutVals
,
1112 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1113 const SDLoc
&dl
, SelectionDAG
&DAG
,
1114 SmallVectorImpl
<SDValue
> &InVals
,
1115 ImmutableCallSite CS
) const;
1116 SDValue
LowerCall_32SVR4(SDValue Chain
, SDValue Callee
,
1117 CallingConv::ID CallConv
, bool isVarArg
,
1118 bool isTailCall
, bool isPatchPoint
,
1119 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1120 const SmallVectorImpl
<SDValue
> &OutVals
,
1121 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1122 const SDLoc
&dl
, SelectionDAG
&DAG
,
1123 SmallVectorImpl
<SDValue
> &InVals
,
1124 ImmutableCallSite CS
) const;
1125 SDValue
LowerCall_AIX(SDValue Chain
, SDValue Callee
,
1126 CallingConv::ID CallConv
, bool isVarArg
,
1127 bool isTailCall
, bool isPatchPoint
,
1128 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1129 const SmallVectorImpl
<SDValue
> &OutVals
,
1130 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1131 const SDLoc
&dl
, SelectionDAG
&DAG
,
1132 SmallVectorImpl
<SDValue
> &InVals
,
1133 ImmutableCallSite CS
) const;
1135 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1136 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1137 SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
1139 SDValue
DAGCombineExtBoolTrunc(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1140 SDValue
DAGCombineBuildVector(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1141 SDValue
DAGCombineTruncBoolExt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1142 SDValue
combineStoreFPToInt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1143 SDValue
combineFPToIntToFP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1144 SDValue
combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1145 SDValue
combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1146 SDValue
combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1147 SDValue
combineMUL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1148 SDValue
combineADD(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1149 SDValue
combineTRUNCATE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1150 SDValue
combineSetCC(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1151 SDValue
combineABS(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1152 SDValue
combineVSelect(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1154 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1155 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1156 /// (2) keeping the result of comparison in GPR has performance benefit.
1157 SDValue
ConvertSETCCToSubtract(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1159 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1160 int &RefinementSteps
, bool &UseOneConstNR
,
1161 bool Reciprocal
) const override
;
1162 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1163 int &RefinementSteps
) const override
;
1164 unsigned combineRepeatedFPDivisors() const override
;
1167 combineElementTruncationToVectorTruncation(SDNode
*N
,
1168 DAGCombinerInfo
&DCI
) const;
1170 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1171 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1172 /// essentially any shuffle of v8i16 vectors that just inserts one element
1173 /// from one vector into the other.
1174 SDValue
lowerToVINSERTH(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1176 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1177 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1178 /// essentially v16i8 vector version of VINSERTH.
1179 SDValue
lowerToVINSERTB(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1181 // Return whether the call instruction can potentially be optimized to a
1182 // tail call. This will cause the optimizers to attempt to move, or
1183 // duplicate return instructions to help enable tail call optimizations.
1184 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1185 bool hasBitPreservingFPLogic(EVT VT
) const override
;
1186 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
1187 }; // end class PPCTargetLowering
1191 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
1192 const TargetLibraryInfo
*LibInfo
);
1194 } // end namespace PPC
1196 bool isIntS16Immediate(SDNode
*N
, int16_t &Imm
);
1197 bool isIntS16Immediate(SDValue Op
, int16_t &Imm
);
1199 } // end namespace llvm
1201 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H