[ARM] MVE integer min and max
[llvm-core.git] / lib / Target / PowerPC / PPCISelLowering.h
blob73c6dcd7c859e7cc9190ddb96f627820d01dff3c
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include <utility>
34 namespace llvm {
36 namespace PPCISD {
38 // When adding a NEW PPCISD node please add it to the correct position in
39 // the enum. The order of elements in this enum matters!
40 // Values that are added after this entry:
41 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
42 // are considered memory opcodes and are treated differently than entries
43 // that come before it. For example, ADD or MUL should be placed before
44 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
45 // after it.
46 enum NodeType : unsigned {
47 // Start the numbering where the builtin ops and target ops leave off.
48 FIRST_NUMBER = ISD::BUILTIN_OP_END,
50 /// FSEL - Traditional three-operand fsel node.
51 ///
52 FSEL,
54 /// FCFID - The FCFID instruction, taking an f64 operand and producing
55 /// and f64 value containing the FP representation of the integer that
56 /// was temporarily in the f64 operand.
57 FCFID,
59 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
60 /// unsigned integers and single-precision outputs.
61 FCFIDU, FCFIDS, FCFIDUS,
63 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
64 /// operand, producing an f64 value containing the integer representation
65 /// of that FP value.
66 FCTIDZ, FCTIWZ,
68 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
69 /// unsigned integers with round toward zero.
70 FCTIDUZ, FCTIWUZ,
72 /// Floating-point-to-interger conversion instructions
73 FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR,
75 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
76 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
77 VEXTS,
79 /// SExtVElems, takes an input vector of a smaller type and sign
80 /// extends to an output vector of a larger type.
81 SExtVElems,
83 /// Reciprocal estimate instructions (unary FP ops).
84 FRE, FRSQRTE,
86 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
87 // three v4f32 operands and producing a v4f32 result.
88 VMADDFP, VNMSUBFP,
90 /// VPERM - The PPC VPERM Instruction.
91 ///
92 VPERM,
94 /// XXSPLT - The PPC VSX splat instructions
95 ///
96 XXSPLT,
98 /// VECINSERT - The PPC vector insert instruction
99 ///
100 VECINSERT,
102 /// XXREVERSE - The PPC VSX reverse instruction
104 XXREVERSE,
106 /// VECSHL - The PPC vector shift left instruction
108 VECSHL,
110 /// XXPERMDI - The PPC XXPERMDI instruction
112 XXPERMDI,
114 /// The CMPB instruction (takes two operands of i32 or i64).
115 CMPB,
117 /// Hi/Lo - These represent the high and low 16-bit parts of a global
118 /// address respectively. These nodes have two operands, the first of
119 /// which must be a TargetGlobalAddress, and the second of which must be a
120 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
121 /// though these are usually folded into other nodes.
122 Hi, Lo,
124 /// The following two target-specific nodes are used for calls through
125 /// function pointers in the 64-bit SVR4 ABI.
127 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
128 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
129 /// compute an allocation on the stack.
130 DYNALLOC,
132 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
133 /// compute an offset from native SP to the address of the most recent
134 /// dynamic alloca.
135 DYNAREAOFFSET,
137 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
138 /// at function entry, used for PIC code.
139 GlobalBaseReg,
141 /// These nodes represent PPC shifts.
143 /// For scalar types, only the last `n + 1` bits of the shift amounts
144 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
145 /// for exact behaviors.
147 /// For vector types, only the last n bits are used. See vsld.
148 SRL, SRA, SHL,
150 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
151 /// word and shift left immediate.
152 EXTSWSLI,
154 /// The combination of sra[wd]i and addze used to implemented signed
155 /// integer division by a power of 2. The first operand is the dividend,
156 /// and the second is the constant shift amount (representing the
157 /// divisor).
158 SRA_ADDZE,
160 /// CALL - A direct function call.
161 /// CALL_NOP is a call with the special NOP which follows 64-bit
162 /// SVR4 calls and 32-bit/64-bit AIX calls.
163 CALL, CALL_NOP,
165 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
166 /// MTCTR instruction.
167 MTCTR,
169 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
170 /// BCTRL instruction.
171 BCTRL,
173 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
174 /// instruction and the TOC reload required on SVR4 PPC64.
175 BCTRL_LOAD_TOC,
177 /// Return with a flag operand, matched by 'blr'
178 RET_FLAG,
180 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
181 /// This copies the bits corresponding to the specified CRREG into the
182 /// resultant GPR. Bits corresponding to other CR regs are undefined.
183 MFOCRF,
185 /// Direct move from a VSX register to a GPR
186 MFVSR,
188 /// Direct move from a GPR to a VSX register (algebraic)
189 MTVSRA,
191 /// Direct move from a GPR to a VSX register (zero)
192 MTVSRZ,
194 /// Direct move of 2 consecutive GPR to a VSX register.
195 BUILD_FP128,
197 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
198 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
199 /// unsupported for this target.
200 /// Merge 2 GPRs to a single SPE register.
201 BUILD_SPE64,
203 /// Extract SPE register component, second argument is high or low.
204 EXTRACT_SPE,
206 /// Extract a subvector from signed integer vector and convert to FP.
207 /// It is primarily used to convert a (widened) illegal integer vector
208 /// type to a legal floating point vector type.
209 /// For example v2i32 -> widened to v4i32 -> v2f64
210 SINT_VEC_TO_FP,
212 /// Extract a subvector from unsigned integer vector and convert to FP.
213 /// As with SINT_VEC_TO_FP, used for converting illegal types.
214 UINT_VEC_TO_FP,
216 // FIXME: Remove these once the ANDI glue bug is fixed:
217 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
218 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
219 /// implement truncation of i32 or i64 to i1.
220 ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
222 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
223 // target (returns (Lo, Hi)). It takes a chain operand.
224 READ_TIME_BASE,
226 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
227 EH_SJLJ_SETJMP,
229 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
230 EH_SJLJ_LONGJMP,
232 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
233 /// instructions. For lack of better number, we use the opcode number
234 /// encoding for the OPC field to identify the compare. For example, 838
235 /// is VCMPGTSH.
236 VCMP,
238 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
239 /// altivec VCMP*o instructions. For lack of better number, we use the
240 /// opcode number encoding for the OPC field to identify the compare. For
241 /// example, 838 is VCMPGTSH.
242 VCMPo,
244 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
245 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
246 /// condition register to branch on, OPC is the branch opcode to use (e.g.
247 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
248 /// an optional input flag argument.
249 COND_BRANCH,
251 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
252 /// loops.
253 BDNZ, BDZ,
255 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
256 /// towards zero. Used only as part of the long double-to-int
257 /// conversion sequence.
258 FADDRTZ,
260 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
261 MFFS,
263 /// TC_RETURN - A tail call return.
264 /// operand #0 chain
265 /// operand #1 callee (register or absolute)
266 /// operand #2 stack adjustment
267 /// operand #3 optional in flag
268 TC_RETURN,
270 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
271 CR6SET,
272 CR6UNSET,
274 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
275 /// for non-position independent code on PPC32.
276 PPC32_GOT,
278 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
279 /// local dynamic TLS and position indendepent code on PPC32.
280 PPC32_PICGOT,
282 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
283 /// TLS model, produces an ADDIS8 instruction that adds the GOT
284 /// base to sym\@got\@tprel\@ha.
285 ADDIS_GOT_TPREL_HA,
287 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
288 /// TLS model, produces a LD instruction with base register G8RReg
289 /// and offset sym\@got\@tprel\@l. This completes the addition that
290 /// finds the offset of "sym" relative to the thread pointer.
291 LD_GOT_TPREL_L,
293 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
294 /// model, produces an ADD instruction that adds the contents of
295 /// G8RReg to the thread pointer. Symbol contains a relocation
296 /// sym\@tls which is to be replaced by the thread pointer and
297 /// identifies to the linker that the instruction is part of a
298 /// TLS sequence.
299 ADD_TLS,
301 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
302 /// model, produces an ADDIS8 instruction that adds the GOT base
303 /// register to sym\@got\@tlsgd\@ha.
304 ADDIS_TLSGD_HA,
306 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
307 /// model, produces an ADDI8 instruction that adds G8RReg to
308 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
309 /// ADDIS_TLSGD_L_ADDR until after register assignment.
310 ADDI_TLSGD_L,
312 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
313 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
314 /// ADDIS_TLSGD_L_ADDR until after register assignment.
315 GET_TLS_ADDR,
317 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
318 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
319 /// register assignment.
320 ADDI_TLSGD_L_ADDR,
322 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
323 /// model, produces an ADDIS8 instruction that adds the GOT base
324 /// register to sym\@got\@tlsld\@ha.
325 ADDIS_TLSLD_HA,
327 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
328 /// model, produces an ADDI8 instruction that adds G8RReg to
329 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
330 /// ADDIS_TLSLD_L_ADDR until after register assignment.
331 ADDI_TLSLD_L,
333 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
334 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
335 /// ADDIS_TLSLD_L_ADDR until after register assignment.
336 GET_TLSLD_ADDR,
338 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
339 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
340 /// following register assignment.
341 ADDI_TLSLD_L_ADDR,
343 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
344 /// model, produces an ADDIS8 instruction that adds X3 to
345 /// sym\@dtprel\@ha.
346 ADDIS_DTPREL_HA,
348 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
349 /// model, produces an ADDI8 instruction that adds G8RReg to
350 /// sym\@got\@dtprel\@l.
351 ADDI_DTPREL_L,
353 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
354 /// during instruction selection to optimize a BUILD_VECTOR into
355 /// operations on splats. This is necessary to avoid losing these
356 /// optimizations due to constant folding.
357 VADD_SPLAT,
359 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
360 /// operand identifies the operating system entry point.
363 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
364 CLRBHRB,
366 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
367 /// history rolling buffer entry.
368 MFBHRBE,
370 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
371 RFEBB,
373 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
374 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
375 /// or stxvd2x instruction. The chain is necessary because the
376 /// sequence replaces a load and needs to provide the same number
377 /// of outputs.
378 XXSWAPD,
380 /// An SDNode for swaps that are not associated with any loads/stores
381 /// and thereby have no chain.
382 SWAP_NO_CHAIN,
384 /// An SDNode for Power9 vector absolute value difference.
385 /// operand #0 vector
386 /// operand #1 vector
387 /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
388 /// the most significant bit for signed i32
390 /// Power9 VABSD* instructions are designed to support unsigned integer
391 /// vectors (byte/halfword/word), if we want to make use of them for signed
392 /// integer vectors, we have to flip their sign bits first. To flip sign bit
393 /// for byte/halfword integer vector would become inefficient, but for word
394 /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
395 /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
396 /// => VABSDUW((XVNEGSP a), (XVNEGSP b))
397 VABSD,
399 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
400 QVFPERM,
402 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
403 QVGPCI,
405 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
406 QVALIGNI,
408 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
409 QVESPLATI,
411 /// QBFLT = Access the underlying QPX floating-point boolean
412 /// representation.
413 QBFLT,
415 /// Custom extend v4f32 to v2f64.
416 FP_EXTEND_LH,
418 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
419 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
420 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
421 /// i32.
422 STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
424 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
425 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
426 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
427 /// or i32.
428 LBRX,
430 /// STFIWX - The STFIWX instruction. The first operand is an input token
431 /// chain, then an f64 value to store, then an address to store it to.
432 STFIWX,
434 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
435 /// load which sign-extends from a 32-bit integer value into the
436 /// destination 64-bit register.
437 LFIWAX,
439 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
440 /// load which zero-extends from a 32-bit integer value into the
441 /// destination 64-bit register.
442 LFIWZX,
444 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
445 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
446 /// This can be used for converting loaded integers to floating point.
447 LXSIZX,
449 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
450 /// chain, then an f64 value to store, then an address to store it to,
451 /// followed by a byte-width for the store.
452 STXSIX,
454 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
455 /// Maps directly to an lxvd2x instruction that will be followed by
456 /// an xxswapd.
457 LXVD2X,
459 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
460 /// v2f32 value into the lower half of a VSR register.
461 LD_VSX_LH,
463 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
464 /// Maps directly to an stxvd2x instruction that will be preceded by
465 /// an xxswapd.
466 STXVD2X,
468 /// Store scalar integers from VSR.
469 ST_VSR_SCAL_INT,
471 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
472 /// The 4xf32 load used for v4i1 constants.
473 QVLFSb,
475 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
476 /// except they ensure that the compare input is zero-extended for
477 /// sub-word versions because the atomic loads zero-extend.
478 ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
480 /// GPRC = TOC_ENTRY GA, TOC
481 /// Loads the entry for GA from the TOC, where the TOC base is given by
482 /// the last operand.
483 TOC_ENTRY
486 } // end namespace PPCISD
488 /// Define some predicates that are used for node matching.
489 namespace PPC {
491 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
492 /// VPKUHUM instruction.
493 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
494 SelectionDAG &DAG);
496 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
497 /// VPKUWUM instruction.
498 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
499 SelectionDAG &DAG);
501 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
502 /// VPKUDUM instruction.
503 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
504 SelectionDAG &DAG);
506 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
507 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
508 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
509 unsigned ShuffleKind, SelectionDAG &DAG);
511 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
512 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
513 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
514 unsigned ShuffleKind, SelectionDAG &DAG);
516 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
517 /// a VMRGEW or VMRGOW instruction
518 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
519 unsigned ShuffleKind, SelectionDAG &DAG);
520 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
521 /// for a XXSLDWI instruction.
522 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
523 bool &Swap, bool IsLE);
525 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
526 /// for a XXBRH instruction.
527 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
529 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
530 /// for a XXBRW instruction.
531 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
533 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
534 /// for a XXBRD instruction.
535 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
537 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
538 /// for a XXBRQ instruction.
539 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
541 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
542 /// for a XXPERMDI instruction.
543 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
544 bool &Swap, bool IsLE);
546 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
547 /// shift amount, otherwise return -1.
548 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
549 SelectionDAG &DAG);
551 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
552 /// specifies a splat of a single element that is suitable for input to
553 /// VSPLTB/VSPLTH/VSPLTW.
554 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
556 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
557 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
558 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
559 /// vector into the other. This function will also set a couple of
560 /// output parameters for how much the source vector needs to be shifted and
561 /// what byte number needs to be specified for the instruction to put the
562 /// element in the desired location of the target vector.
563 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
564 unsigned &InsertAtByte, bool &Swap, bool IsLE);
566 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
567 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
568 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
570 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
571 /// formed by using a vspltis[bhw] instruction of the specified element
572 /// size, return the constant being splatted. The ByteSize field indicates
573 /// the number of bytes of each element [124] -> [bhw].
574 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
576 /// If this is a qvaligni shuffle mask, return the shift
577 /// amount, otherwise return -1.
578 int isQVALIGNIShuffleMask(SDNode *N);
580 } // end namespace PPC
582 class PPCTargetLowering : public TargetLowering {
583 const PPCSubtarget &Subtarget;
585 public:
586 explicit PPCTargetLowering(const PPCTargetMachine &TM,
587 const PPCSubtarget &STI);
589 /// getTargetNodeName() - This method returns the name of a target specific
590 /// DAG node.
591 const char *getTargetNodeName(unsigned Opcode) const override;
593 bool isSelectSupported(SelectSupportKind Kind) const override {
594 // PowerPC does not support scalar condition selects on vectors.
595 return (Kind != SelectSupportKind::ScalarCondVectorVal);
598 /// getPreferredVectorAction - The code we generate when vector types are
599 /// legalized by promoting the integer element type is often much worse
600 /// than code we generate if we widen the type for applicable vector types.
601 /// The issue with promoting is that the vector is scalaraized, individual
602 /// elements promoted and then the vector is rebuilt. So say we load a pair
603 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
604 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
605 /// then the VPERM for the shuffle. All in all a very slow sequence.
606 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
607 const override {
608 if (VT.getScalarSizeInBits() % 8 == 0)
609 return TypeWidenVector;
610 return TargetLoweringBase::getPreferredVectorAction(VT);
613 bool useSoftFloat() const override;
615 bool hasSPE() const;
617 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
618 return MVT::i32;
621 bool isCheapToSpeculateCttz() const override {
622 return true;
625 bool isCheapToSpeculateCtlz() const override {
626 return true;
629 bool isCtlzFast() const override {
630 return true;
633 bool hasAndNotCompare(SDValue) const override {
634 return true;
637 bool preferIncOfAddToSubOfNot(EVT VT) const override;
639 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
640 return VT.isScalarInteger();
643 bool supportSplitCSR(MachineFunction *MF) const override {
644 return
645 MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
646 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
649 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
651 void insertCopiesSplitCSR(
652 MachineBasicBlock *Entry,
653 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
655 /// getSetCCResultType - Return the ISD::SETCC ValueType
656 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
657 EVT VT) const override;
659 /// Return true if target always beneficiates from combining into FMA for a
660 /// given value type. This must typically return false on targets where FMA
661 /// takes more cycles to execute than FADD.
662 bool enableAggressiveFMAFusion(EVT VT) const override;
664 /// getPreIndexedAddressParts - returns true by value, base pointer and
665 /// offset pointer and addressing mode by reference if the node's address
666 /// can be legally represented as pre-indexed load / store address.
667 bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
668 SDValue &Offset,
669 ISD::MemIndexedMode &AM,
670 SelectionDAG &DAG) const override;
672 /// SelectAddressRegReg - Given the specified addressed, check to see if it
673 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
674 /// is non-zero, only accept displacement which is not suitable for [r+imm].
675 /// Returns false if it can be represented by [r+imm], which are preferred.
676 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
677 SelectionDAG &DAG,
678 unsigned EncodingAlignment = 0) const;
680 /// SelectAddressRegImm - Returns true if the address N can be represented
681 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
682 /// is not better represented as reg+reg. If \p EncodingAlignment is
683 /// non-zero, only accept displacements suitable for instruction encoding
684 /// requirement, i.e. multiples of 4 for DS form.
685 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
686 SelectionDAG &DAG,
687 unsigned EncodingAlignment) const;
689 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
690 /// represented as an indexed [r+r] operation.
691 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
692 SelectionDAG &DAG) const;
694 Sched::Preference getSchedulingPreference(SDNode *N) const override;
696 /// LowerOperation - Provide custom lowering hooks for some operations.
698 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
700 /// ReplaceNodeResults - Replace the results of node with an illegal result
701 /// type with new values built out of custom code.
703 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
704 SelectionDAG &DAG) const override;
706 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
707 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
709 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
711 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
712 SmallVectorImpl<SDNode *> &Created) const override;
714 unsigned getRegisterByName(const char* RegName, EVT VT,
715 SelectionDAG &DAG) const override;
717 void computeKnownBitsForTargetNode(const SDValue Op,
718 KnownBits &Known,
719 const APInt &DemandedElts,
720 const SelectionDAG &DAG,
721 unsigned Depth = 0) const override;
723 unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
725 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
726 return true;
729 Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
730 AtomicOrdering Ord) const override;
731 Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
732 AtomicOrdering Ord) const override;
734 MachineBasicBlock *
735 EmitInstrWithCustomInserter(MachineInstr &MI,
736 MachineBasicBlock *MBB) const override;
737 MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
738 MachineBasicBlock *MBB,
739 unsigned AtomicSize,
740 unsigned BinOpcode,
741 unsigned CmpOpcode = 0,
742 unsigned CmpPred = 0) const;
743 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
744 MachineBasicBlock *MBB,
745 bool is8bit,
746 unsigned Opcode,
747 unsigned CmpOpcode = 0,
748 unsigned CmpPred = 0) const;
750 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
751 MachineBasicBlock *MBB) const;
753 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
754 MachineBasicBlock *MBB) const;
756 ConstraintType getConstraintType(StringRef Constraint) const override;
758 /// Examine constraint string and operand type and determine a weight value.
759 /// The operand object must already have been set up with the operand type.
760 ConstraintWeight getSingleConstraintMatchWeight(
761 AsmOperandInfo &info, const char *constraint) const override;
763 std::pair<unsigned, const TargetRegisterClass *>
764 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
765 StringRef Constraint, MVT VT) const override;
767 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
768 /// function arguments in the caller parameter area. This is the actual
769 /// alignment, not its logarithm.
770 unsigned getByValTypeAlignment(Type *Ty,
771 const DataLayout &DL) const override;
773 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
774 /// vector. If it is invalid, don't add anything to Ops.
775 void LowerAsmOperandForConstraint(SDValue Op,
776 std::string &Constraint,
777 std::vector<SDValue> &Ops,
778 SelectionDAG &DAG) const override;
780 unsigned
781 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
782 if (ConstraintCode == "es")
783 return InlineAsm::Constraint_es;
784 else if (ConstraintCode == "o")
785 return InlineAsm::Constraint_o;
786 else if (ConstraintCode == "Q")
787 return InlineAsm::Constraint_Q;
788 else if (ConstraintCode == "Z")
789 return InlineAsm::Constraint_Z;
790 else if (ConstraintCode == "Zy")
791 return InlineAsm::Constraint_Zy;
792 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
795 /// isLegalAddressingMode - Return true if the addressing mode represented
796 /// by AM is legal for this target, for a load/store of the specified type.
797 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
798 Type *Ty, unsigned AS,
799 Instruction *I = nullptr) const override;
801 /// isLegalICmpImmediate - Return true if the specified immediate is legal
802 /// icmp immediate, that is the target has icmp instructions which can
803 /// compare a register against the immediate without having to materialize
804 /// the immediate into a register.
805 bool isLegalICmpImmediate(int64_t Imm) const override;
807 /// isLegalAddImmediate - Return true if the specified immediate is legal
808 /// add immediate, that is the target has add instructions which can
809 /// add a register and the immediate without having to materialize
810 /// the immediate into a register.
811 bool isLegalAddImmediate(int64_t Imm) const override;
813 /// isTruncateFree - Return true if it's free to truncate a value of
814 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
815 /// register X1 to i32 by referencing its sub-register R1.
816 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
817 bool isTruncateFree(EVT VT1, EVT VT2) const override;
819 bool isZExtFree(SDValue Val, EVT VT2) const override;
821 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
823 /// Returns true if it is beneficial to convert a load of a constant
824 /// to just the constant itself.
825 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
826 Type *Ty) const override;
828 bool convertSelectOfConstantsToMath(EVT VT) const override {
829 return true;
832 // Returns true if the address of the global is stored in TOC entry.
833 bool isAccessedAsGotIndirect(SDValue N) const;
835 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
837 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
838 const CallInst &I,
839 MachineFunction &MF,
840 unsigned Intrinsic) const override;
842 /// getOptimalMemOpType - Returns the target specific optimal type for load
843 /// and store operations as a result of memset, memcpy, and memmove
844 /// lowering. If DstAlign is zero that means it's safe to destination
845 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
846 /// means there isn't a need to check it against alignment requirement,
847 /// probably because the source does not need to be loaded. If 'IsMemset' is
848 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
849 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
850 /// source is constant so it does not need to be loaded.
851 /// It returns EVT::Other if the type should be determined using generic
852 /// target-independent logic.
854 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
855 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
856 const AttributeList &FuncAttributes) const override;
858 /// Is unaligned memory access allowed for the given type, and is it fast
859 /// relative to software emulation.
860 bool allowsMisalignedMemoryAccesses(
861 EVT VT, unsigned AddrSpace, unsigned Align = 1,
862 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
863 bool *Fast = nullptr) const override;
865 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
866 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
867 /// expanded to FMAs when this method returns true, otherwise fmuladd is
868 /// expanded to fmul + fadd.
869 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
871 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
873 // Should we expand the build vector with shuffles?
874 bool
875 shouldExpandBuildVectorWithShuffles(EVT VT,
876 unsigned DefinedValues) const override;
878 /// createFastISel - This method returns a target-specific FastISel object,
879 /// or null if the target does not support "fast" instruction selection.
880 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
881 const TargetLibraryInfo *LibInfo) const override;
883 /// Returns true if an argument of type Ty needs to be passed in a
884 /// contiguous block of registers in calling convention CallConv.
885 bool functionArgumentNeedsConsecutiveRegisters(
886 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
887 // We support any array type as "consecutive" block in the parameter
888 // save area. The element type defines the alignment requirement and
889 // whether the argument should go in GPRs, FPRs, or VRs if available.
891 // Note that clang uses this capability both to implement the ELFv2
892 // homogeneous float/vector aggregate ABI, and to avoid having to use
893 // "byval" when passing aggregates that might fully fit in registers.
894 return Ty->isArrayTy();
897 /// If a physical register, this returns the register that receives the
898 /// exception address on entry to an EH pad.
899 unsigned
900 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
902 /// If a physical register, this returns the register that receives the
903 /// exception typeid on entry to a landing pad.
904 unsigned
905 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
907 /// Override to support customized stack guard loading.
908 bool useLoadStackGuardNode() const override;
909 void insertSSPDeclarations(Module &M) const override;
911 bool isFPImmLegal(const APFloat &Imm, EVT VT,
912 bool ForCodeSize) const override;
914 unsigned getJumpTableEncoding() const override;
915 bool isJumpTableRelative() const override;
916 SDValue getPICJumpTableRelocBase(SDValue Table,
917 SelectionDAG &DAG) const override;
918 const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
919 unsigned JTI,
920 MCContext &Ctx) const override;
922 private:
923 struct ReuseLoadInfo {
924 SDValue Ptr;
925 SDValue Chain;
926 SDValue ResChain;
927 MachinePointerInfo MPI;
928 bool IsDereferenceable = false;
929 bool IsInvariant = false;
930 unsigned Alignment = 0;
931 AAMDNodes AAInfo;
932 const MDNode *Ranges = nullptr;
934 ReuseLoadInfo() = default;
936 MachineMemOperand::Flags MMOFlags() const {
937 MachineMemOperand::Flags F = MachineMemOperand::MONone;
938 if (IsDereferenceable)
939 F |= MachineMemOperand::MODereferenceable;
940 if (IsInvariant)
941 F |= MachineMemOperand::MOInvariant;
942 return F;
946 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
947 // Addrspacecasts are always noops.
948 return true;
951 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
952 SelectionDAG &DAG,
953 ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
954 void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
955 SelectionDAG &DAG) const;
957 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
958 SelectionDAG &DAG, const SDLoc &dl) const;
959 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
960 const SDLoc &dl) const;
962 bool directMoveIsProfitable(const SDValue &Op) const;
963 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
964 const SDLoc &dl) const;
966 SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
967 const SDLoc &dl) const;
969 SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
971 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
972 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
974 bool
975 IsEligibleForTailCallOptimization(SDValue Callee,
976 CallingConv::ID CalleeCC,
977 bool isVarArg,
978 const SmallVectorImpl<ISD::InputArg> &Ins,
979 SelectionDAG& DAG) const;
981 bool
982 IsEligibleForTailCallOptimization_64SVR4(
983 SDValue Callee,
984 CallingConv::ID CalleeCC,
985 ImmutableCallSite CS,
986 bool isVarArg,
987 const SmallVectorImpl<ISD::OutputArg> &Outs,
988 const SmallVectorImpl<ISD::InputArg> &Ins,
989 SelectionDAG& DAG) const;
991 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
992 SDValue Chain, SDValue &LROpOut,
993 SDValue &FPOpOut,
994 const SDLoc &dl) const;
996 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
997 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
998 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
999 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1000 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1001 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1002 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1003 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1004 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1005 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1006 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1007 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1008 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1009 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1010 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1011 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1012 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1013 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1014 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1015 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1016 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1017 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1018 const SDLoc &dl) const;
1019 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1020 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1021 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1022 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1023 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1024 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1025 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1026 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1027 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1028 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1029 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1030 SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
1031 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1032 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1033 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1034 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
1035 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1036 SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
1037 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1039 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1040 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1042 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1043 CallingConv::ID CallConv, bool isVarArg,
1044 const SmallVectorImpl<ISD::InputArg> &Ins,
1045 const SDLoc &dl, SelectionDAG &DAG,
1046 SmallVectorImpl<SDValue> &InVals) const;
1047 SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
1048 bool isTailCall, bool isVarArg, bool isPatchPoint,
1049 bool hasNest, SelectionDAG &DAG,
1050 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1051 SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
1052 SDValue &Callee, int SPDiff, unsigned NumBytes,
1053 const SmallVectorImpl<ISD::InputArg> &Ins,
1054 SmallVectorImpl<SDValue> &InVals,
1055 ImmutableCallSite CS) const;
1057 SDValue
1058 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1059 const SmallVectorImpl<ISD::InputArg> &Ins,
1060 const SDLoc &dl, SelectionDAG &DAG,
1061 SmallVectorImpl<SDValue> &InVals) const override;
1063 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1064 SmallVectorImpl<SDValue> &InVals) const override;
1066 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1067 bool isVarArg,
1068 const SmallVectorImpl<ISD::OutputArg> &Outs,
1069 LLVMContext &Context) const override;
1071 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1072 const SmallVectorImpl<ISD::OutputArg> &Outs,
1073 const SmallVectorImpl<SDValue> &OutVals,
1074 const SDLoc &dl, SelectionDAG &DAG) const override;
1076 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1077 SelectionDAG &DAG, SDValue ArgVal,
1078 const SDLoc &dl) const;
1080 SDValue LowerFormalArguments_Darwin(
1081 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1082 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1083 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1084 SDValue LowerFormalArguments_64SVR4(
1085 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1086 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1087 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1088 SDValue LowerFormalArguments_32SVR4(
1089 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1090 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1091 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1093 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1094 SDValue CallSeqStart,
1095 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1096 const SDLoc &dl) const;
1098 SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
1099 CallingConv::ID CallConv, bool isVarArg,
1100 bool isTailCall, bool isPatchPoint,
1101 const SmallVectorImpl<ISD::OutputArg> &Outs,
1102 const SmallVectorImpl<SDValue> &OutVals,
1103 const SmallVectorImpl<ISD::InputArg> &Ins,
1104 const SDLoc &dl, SelectionDAG &DAG,
1105 SmallVectorImpl<SDValue> &InVals,
1106 ImmutableCallSite CS) const;
1107 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
1108 CallingConv::ID CallConv, bool isVarArg,
1109 bool isTailCall, bool isPatchPoint,
1110 const SmallVectorImpl<ISD::OutputArg> &Outs,
1111 const SmallVectorImpl<SDValue> &OutVals,
1112 const SmallVectorImpl<ISD::InputArg> &Ins,
1113 const SDLoc &dl, SelectionDAG &DAG,
1114 SmallVectorImpl<SDValue> &InVals,
1115 ImmutableCallSite CS) const;
1116 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
1117 CallingConv::ID CallConv, bool isVarArg,
1118 bool isTailCall, bool isPatchPoint,
1119 const SmallVectorImpl<ISD::OutputArg> &Outs,
1120 const SmallVectorImpl<SDValue> &OutVals,
1121 const SmallVectorImpl<ISD::InputArg> &Ins,
1122 const SDLoc &dl, SelectionDAG &DAG,
1123 SmallVectorImpl<SDValue> &InVals,
1124 ImmutableCallSite CS) const;
1125 SDValue LowerCall_AIX(SDValue Chain, SDValue Callee,
1126 CallingConv::ID CallConv, bool isVarArg,
1127 bool isTailCall, bool isPatchPoint,
1128 const SmallVectorImpl<ISD::OutputArg> &Outs,
1129 const SmallVectorImpl<SDValue> &OutVals,
1130 const SmallVectorImpl<ISD::InputArg> &Ins,
1131 const SDLoc &dl, SelectionDAG &DAG,
1132 SmallVectorImpl<SDValue> &InVals,
1133 ImmutableCallSite CS) const;
1135 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1136 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1137 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1139 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1140 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1141 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1142 SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1143 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1144 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1145 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1146 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1147 SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1148 SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1149 SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1150 SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1151 SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
1152 SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
1154 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1155 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1156 /// (2) keeping the result of comparison in GPR has performance benefit.
1157 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1159 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1160 int &RefinementSteps, bool &UseOneConstNR,
1161 bool Reciprocal) const override;
1162 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1163 int &RefinementSteps) const override;
1164 unsigned combineRepeatedFPDivisors() const override;
1166 SDValue
1167 combineElementTruncationToVectorTruncation(SDNode *N,
1168 DAGCombinerInfo &DCI) const;
1170 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1171 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1172 /// essentially any shuffle of v8i16 vectors that just inserts one element
1173 /// from one vector into the other.
1174 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1176 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1177 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1178 /// essentially v16i8 vector version of VINSERTH.
1179 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1181 // Return whether the call instruction can potentially be optimized to a
1182 // tail call. This will cause the optimizers to attempt to move, or
1183 // duplicate return instructions to help enable tail call optimizations.
1184 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1185 bool hasBitPreservingFPLogic(EVT VT) const override;
1186 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1187 }; // end class PPCTargetLowering
1189 namespace PPC {
1191 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1192 const TargetLibraryInfo *LibInfo);
1194 } // end namespace PPC
1196 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1197 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1199 } // end namespace llvm
1201 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H