[ARM] MVE integer min and max
[llvm-core.git] / lib / Target / PowerPC / PPCMIPeephole.cpp
blob446246358e960a8b118d125e254f1943df46b8de
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
19 //===---------------------------------------------------------------------===//
21 #include "PPC.h"
22 #include "PPCInstrBuilder.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachinePostDominators.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/Support/Debug.h"
34 #include "MCTargetDesc/PPCPredicates.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "ppc-mi-peepholes"
40 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
41 STATISTIC(MultiTOCSaves,
42 "Number of functions with multiple TOC saves that must be kept");
43 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
44 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
45 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
46 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
47 STATISTIC(NumConvertedToImmediateForm,
48 "Number of instructions converted to their immediate form");
49 STATISTIC(NumFunctionsEnteredInMIPeephole,
50 "Number of functions entered in PPC MI Peepholes");
51 STATISTIC(NumFixedPointIterations,
52 "Number of fixed-point iterations converting reg-reg instructions "
53 "to reg-imm ones");
54 STATISTIC(NumRotatesCollapsed,
55 "Number of pairs of rotate left, clear left/right collapsed");
56 STATISTIC(NumEXTSWAndSLDICombined,
57 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
59 static cl::opt<bool>
60 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
61 cl::desc("Iterate to a fixed point when attempting to "
62 "convert reg-reg instructions to reg-imm"));
64 static cl::opt<bool>
65 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
66 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
68 static cl::opt<bool>
69 EnableSExtElimination("ppc-eliminate-signext",
70 cl::desc("enable elimination of sign-extensions"),
71 cl::init(false), cl::Hidden);
73 static cl::opt<bool>
74 EnableZExtElimination("ppc-eliminate-zeroext",
75 cl::desc("enable elimination of zero-extensions"),
76 cl::init(false), cl::Hidden);
78 namespace {
80 struct PPCMIPeephole : public MachineFunctionPass {
82 static char ID;
83 const PPCInstrInfo *TII;
84 MachineFunction *MF;
85 MachineRegisterInfo *MRI;
87 PPCMIPeephole() : MachineFunctionPass(ID) {
88 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
91 private:
92 MachineDominatorTree *MDT;
93 MachinePostDominatorTree *MPDT;
94 MachineBlockFrequencyInfo *MBFI;
95 uint64_t EntryFreq;
97 // Initialize class variables.
98 void initialize(MachineFunction &MFParm);
100 // Perform peepholes.
101 bool simplifyCode(void);
103 // Perform peepholes.
104 bool eliminateRedundantCompare(void);
105 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
106 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
107 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
108 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
109 MachineInstr *MI);
111 public:
113 void getAnalysisUsage(AnalysisUsage &AU) const override {
114 AU.addRequired<MachineDominatorTree>();
115 AU.addRequired<MachinePostDominatorTree>();
116 AU.addRequired<MachineBlockFrequencyInfo>();
117 AU.addPreserved<MachineDominatorTree>();
118 AU.addPreserved<MachinePostDominatorTree>();
119 AU.addPreserved<MachineBlockFrequencyInfo>();
120 MachineFunctionPass::getAnalysisUsage(AU);
123 // Main entry point for this pass.
124 bool runOnMachineFunction(MachineFunction &MF) override {
125 if (skipFunction(MF.getFunction()))
126 return false;
127 initialize(MF);
128 return simplifyCode();
132 // Initialize class variables.
133 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
134 MF = &MFParm;
135 MRI = &MF->getRegInfo();
136 MDT = &getAnalysis<MachineDominatorTree>();
137 MPDT = &getAnalysis<MachinePostDominatorTree>();
138 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
139 EntryFreq = MBFI->getEntryFreq();
140 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
141 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
142 LLVM_DEBUG(MF->dump());
145 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
146 MachineRegisterInfo *MRI) {
147 assert(Op && "Invalid Operand!");
148 if (!Op->isReg())
149 return nullptr;
151 unsigned Reg = Op->getReg();
152 if (!TargetRegisterInfo::isVirtualRegister(Reg))
153 return nullptr;
155 return MRI->getVRegDef(Reg);
158 // This function returns number of known zero bits in output of MI
159 // starting from the most significant bit.
160 static unsigned
161 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
162 unsigned Opcode = MI->getOpcode();
163 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
164 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo)
165 return MI->getOperand(3).getImm();
167 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
168 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
169 return MI->getOperand(3).getImm();
171 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
172 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
173 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
174 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
175 return 32 + MI->getOperand(3).getImm();
177 if (Opcode == PPC::ANDIo) {
178 uint16_t Imm = MI->getOperand(2).getImm();
179 return 48 + countLeadingZeros(Imm);
182 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
183 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
184 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
185 // The result ranges from 0 to 32.
186 return 58;
188 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
189 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo)
190 // The result ranges from 0 to 64.
191 return 57;
193 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
194 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
195 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
196 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
197 return 48;
199 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
200 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
201 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
202 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
203 return 56;
205 if (TII->isZeroExtended(*MI))
206 return 32;
208 return 0;
211 // This function maintains a map for the pairs <TOC Save Instr, Keep>
212 // Each time a new TOC save is encountered, it checks if any of the existing
213 // ones are dominated by the new one. If so, it marks the existing one as
214 // redundant by setting it's entry in the map as false. It then adds the new
215 // instruction to the map with either true or false depending on if any
216 // existing instructions dominated the new one.
217 void PPCMIPeephole::UpdateTOCSaves(
218 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
219 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
220 assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
221 "TOC-save removal only supported on ELFv2");
222 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
224 MachineBasicBlock *Entry = &MF->front();
225 uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
227 // If the block in which the TOC save resides is in a block that
228 // post-dominates Entry, or a block that is hotter than entry (keep in mind
229 // that early MachineLICM has already run so the TOC save won't be hoisted)
230 // we can just do the save in the prologue.
231 if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
232 FI->setMustSaveTOC(true);
234 // If we are saving the TOC in the prologue, all the TOC saves can be removed
235 // from the code.
236 if (FI->mustSaveTOC()) {
237 for (auto &TOCSave : TOCSaves)
238 TOCSave.second = false;
239 // Add new instruction to map.
240 TOCSaves[MI] = false;
241 return;
244 bool Keep = true;
245 for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
246 MachineInstr *CurrInst = It->first;
247 // If new instruction dominates an existing one, mark existing one as
248 // redundant.
249 if (It->second && MDT->dominates(MI, CurrInst))
250 It->second = false;
251 // Check if the new instruction is redundant.
252 if (MDT->dominates(CurrInst, MI)) {
253 Keep = false;
254 break;
257 // Add new instruction to map.
258 TOCSaves[MI] = Keep;
261 // Perform peephole optimizations.
262 bool PPCMIPeephole::simplifyCode(void) {
263 bool Simplified = false;
264 MachineInstr* ToErase = nullptr;
265 std::map<MachineInstr *, bool> TOCSaves;
266 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
267 NumFunctionsEnteredInMIPeephole++;
268 if (ConvertRegReg) {
269 // Fixed-point conversion of reg/reg instructions fed by load-immediate
270 // into reg/imm instructions. FIXME: This is expensive, control it with
271 // an option.
272 bool SomethingChanged = false;
273 do {
274 NumFixedPointIterations++;
275 SomethingChanged = false;
276 for (MachineBasicBlock &MBB : *MF) {
277 for (MachineInstr &MI : MBB) {
278 if (MI.isDebugInstr())
279 continue;
281 if (TII->convertToImmediateForm(MI)) {
282 // We don't erase anything in case the def has other uses. Let DCE
283 // remove it if it can be removed.
284 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
285 LLVM_DEBUG(MI.dump());
286 NumConvertedToImmediateForm++;
287 SomethingChanged = true;
288 Simplified = true;
289 continue;
293 } while (SomethingChanged && FixedPointRegToImm);
296 for (MachineBasicBlock &MBB : *MF) {
297 for (MachineInstr &MI : MBB) {
299 // If the previous instruction was marked for elimination,
300 // remove it now.
301 if (ToErase) {
302 ToErase->eraseFromParent();
303 ToErase = nullptr;
306 // Ignore debug instructions.
307 if (MI.isDebugInstr())
308 continue;
310 // Per-opcode peepholes.
311 switch (MI.getOpcode()) {
313 default:
314 break;
316 case PPC::STD: {
317 MachineFrameInfo &MFI = MF->getFrameInfo();
318 if (MFI.hasVarSizedObjects() ||
319 !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
320 break;
321 // When encountering a TOC save instruction, call UpdateTOCSaves
322 // to add it to the TOCSaves map and mark any existing TOC saves
323 // it dominates as redundant.
324 if (TII->isTOCSaveMI(MI))
325 UpdateTOCSaves(TOCSaves, &MI);
326 break;
328 case PPC::XXPERMDI: {
329 // Perform simplifications of 2x64 vector swaps and splats.
330 // A swap is identified by an immediate value of 2, and a splat
331 // is identified by an immediate value of 0 or 3.
332 int Immed = MI.getOperand(3).getImm();
334 if (Immed != 1) {
336 // For each of these simplifications, we need the two source
337 // regs to match. Unfortunately, MachineCSE ignores COPY and
338 // SUBREG_TO_REG, so for example we can see
339 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
340 // We have to look through chains of COPY and SUBREG_TO_REG
341 // to find the real source values for comparison.
342 unsigned TrueReg1 =
343 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
344 unsigned TrueReg2 =
345 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
347 if (TrueReg1 == TrueReg2
348 && TargetRegisterInfo::isVirtualRegister(TrueReg1)) {
349 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
350 unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
352 // If this is a splat fed by a splatting load, the splat is
353 // redundant. Replace with a copy. This doesn't happen directly due
354 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
355 // a load of a double to a vector of 64-bit integers.
356 auto isConversionOfLoadAndSplat = [=]() -> bool {
357 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
358 return false;
359 unsigned DefReg =
360 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
361 if (TargetRegisterInfo::isVirtualRegister(DefReg)) {
362 MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
363 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
364 return true;
366 return false;
368 if (DefMI && (Immed == 0 || Immed == 3)) {
369 if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
370 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
371 "to load-and-splat/copy: ");
372 LLVM_DEBUG(MI.dump());
373 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
374 MI.getOperand(0).getReg())
375 .add(MI.getOperand(1));
376 ToErase = &MI;
377 Simplified = true;
381 // If this is a splat or a swap fed by another splat, we
382 // can replace it with a copy.
383 if (DefOpc == PPC::XXPERMDI) {
384 unsigned FeedImmed = DefMI->getOperand(3).getImm();
385 unsigned FeedReg1 =
386 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
387 unsigned FeedReg2 =
388 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
390 if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
391 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
392 "to splat/copy: ");
393 LLVM_DEBUG(MI.dump());
394 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
395 MI.getOperand(0).getReg())
396 .add(MI.getOperand(1));
397 ToErase = &MI;
398 Simplified = true;
401 // If this is a splat fed by a swap, we can simplify modify
402 // the splat to splat the other value from the swap's input
403 // parameter.
404 else if ((Immed == 0 || Immed == 3)
405 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
406 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
407 LLVM_DEBUG(MI.dump());
408 MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
409 MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
410 MI.getOperand(3).setImm(3 - Immed);
411 Simplified = true;
414 // If this is a swap fed by a swap, we can replace it
415 // with a copy from the first swap's input.
416 else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
417 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
418 LLVM_DEBUG(MI.dump());
419 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
420 MI.getOperand(0).getReg())
421 .add(DefMI->getOperand(1));
422 ToErase = &MI;
423 Simplified = true;
425 } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
426 (DefMI->getOperand(2).getImm() == 0 ||
427 DefMI->getOperand(2).getImm() == 3)) {
428 // Splat fed by another splat - switch the output of the first
429 // and remove the second.
430 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
431 ToErase = &MI;
432 Simplified = true;
433 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
434 LLVM_DEBUG(MI.dump());
438 break;
440 case PPC::VSPLTB:
441 case PPC::VSPLTH:
442 case PPC::XXSPLTW: {
443 unsigned MyOpcode = MI.getOpcode();
444 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
445 unsigned TrueReg =
446 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
447 if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
448 break;
449 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
450 if (!DefMI)
451 break;
452 unsigned DefOpcode = DefMI->getOpcode();
453 auto isConvertOfSplat = [=]() -> bool {
454 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
455 return false;
456 unsigned ConvReg = DefMI->getOperand(1).getReg();
457 if (!TargetRegisterInfo::isVirtualRegister(ConvReg))
458 return false;
459 MachineInstr *Splt = MRI->getVRegDef(ConvReg);
460 return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
461 Splt->getOpcode() == PPC::XXSPLTW);
463 bool AlreadySplat = (MyOpcode == DefOpcode) ||
464 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
465 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
466 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
467 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
468 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
469 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
470 // If the instruction[s] that feed this splat have already splat
471 // the value, this splat is redundant.
472 if (AlreadySplat) {
473 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
474 LLVM_DEBUG(MI.dump());
475 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
476 MI.getOperand(0).getReg())
477 .add(MI.getOperand(OpNo));
478 ToErase = &MI;
479 Simplified = true;
481 // Splat fed by a shift. Usually when we align value to splat into
482 // vector element zero.
483 if (DefOpcode == PPC::XXSLDWI) {
484 unsigned ShiftRes = DefMI->getOperand(0).getReg();
485 unsigned ShiftOp1 = DefMI->getOperand(1).getReg();
486 unsigned ShiftOp2 = DefMI->getOperand(2).getReg();
487 unsigned ShiftImm = DefMI->getOperand(3).getImm();
488 unsigned SplatImm = MI.getOperand(2).getImm();
489 if (ShiftOp1 == ShiftOp2) {
490 unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
491 if (MRI->hasOneNonDBGUse(ShiftRes)) {
492 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
493 LLVM_DEBUG(DefMI->dump());
494 ToErase = DefMI;
496 Simplified = true;
497 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
498 << " to " << NewElem << " in instruction: ");
499 LLVM_DEBUG(MI.dump());
500 MI.getOperand(1).setReg(ShiftOp1);
501 MI.getOperand(2).setImm(NewElem);
504 break;
506 case PPC::XVCVDPSP: {
507 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
508 unsigned TrueReg =
509 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
510 if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
511 break;
512 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
514 // This can occur when building a vector of single precision or integer
515 // values.
516 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
517 unsigned DefsReg1 =
518 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
519 unsigned DefsReg2 =
520 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
521 if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) ||
522 !TargetRegisterInfo::isVirtualRegister(DefsReg2))
523 break;
524 MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
525 MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
527 if (!P1 || !P2)
528 break;
530 // Remove the passed FRSP instruction if it only feeds this MI and
531 // set any uses of that FRSP (in this MI) to the source of the FRSP.
532 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
533 if (RoundInstr->getOpcode() == PPC::FRSP &&
534 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
535 Simplified = true;
536 unsigned ConvReg1 = RoundInstr->getOperand(1).getReg();
537 unsigned FRSPDefines = RoundInstr->getOperand(0).getReg();
538 MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
539 for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
540 if (Use.getOperand(i).isReg() &&
541 Use.getOperand(i).getReg() == FRSPDefines)
542 Use.getOperand(i).setReg(ConvReg1);
543 LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
544 LLVM_DEBUG(RoundInstr->dump());
545 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
546 LLVM_DEBUG(MI.dump());
547 LLVM_DEBUG(dbgs() << "Through instruction:\n");
548 LLVM_DEBUG(DefMI->dump());
549 RoundInstr->eraseFromParent();
553 // If the input to XVCVDPSP is a vector that was built (even
554 // partially) out of FRSP's, the FRSP(s) can safely be removed
555 // since this instruction performs the same operation.
556 if (P1 != P2) {
557 removeFRSPIfPossible(P1);
558 removeFRSPIfPossible(P2);
559 break;
561 removeFRSPIfPossible(P1);
563 break;
565 case PPC::EXTSH:
566 case PPC::EXTSH8:
567 case PPC::EXTSH8_32_64: {
568 if (!EnableSExtElimination) break;
569 unsigned NarrowReg = MI.getOperand(1).getReg();
570 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
571 break;
573 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
574 // If we've used a zero-extending load that we will sign-extend,
575 // just do a sign-extending load.
576 if (SrcMI->getOpcode() == PPC::LHZ ||
577 SrcMI->getOpcode() == PPC::LHZX) {
578 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
579 break;
580 auto is64Bit = [] (unsigned Opcode) {
581 return Opcode == PPC::EXTSH8;
583 auto isXForm = [] (unsigned Opcode) {
584 return Opcode == PPC::LHZX;
586 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
587 if (is64Bit)
588 if (isXForm) return PPC::LHAX8;
589 else return PPC::LHA8;
590 else
591 if (isXForm) return PPC::LHAX;
592 else return PPC::LHA;
594 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
595 isXForm(SrcMI->getOpcode()));
596 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
597 LLVM_DEBUG(SrcMI->dump());
598 LLVM_DEBUG(dbgs() << "and sign-extension\n");
599 LLVM_DEBUG(MI.dump());
600 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
601 SrcMI->setDesc(TII->get(Opc));
602 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
603 ToErase = &MI;
604 Simplified = true;
605 NumEliminatedSExt++;
607 break;
609 case PPC::EXTSW:
610 case PPC::EXTSW_32:
611 case PPC::EXTSW_32_64: {
612 if (!EnableSExtElimination) break;
613 unsigned NarrowReg = MI.getOperand(1).getReg();
614 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
615 break;
617 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
618 // If we've used a zero-extending load that we will sign-extend,
619 // just do a sign-extending load.
620 if (SrcMI->getOpcode() == PPC::LWZ ||
621 SrcMI->getOpcode() == PPC::LWZX) {
622 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
623 break;
624 auto is64Bit = [] (unsigned Opcode) {
625 return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
627 auto isXForm = [] (unsigned Opcode) {
628 return Opcode == PPC::LWZX;
630 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
631 if (is64Bit)
632 if (isXForm) return PPC::LWAX;
633 else return PPC::LWA;
634 else
635 if (isXForm) return PPC::LWAX_32;
636 else return PPC::LWA_32;
638 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
639 isXForm(SrcMI->getOpcode()));
640 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
641 LLVM_DEBUG(SrcMI->dump());
642 LLVM_DEBUG(dbgs() << "and sign-extension\n");
643 LLVM_DEBUG(MI.dump());
644 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
645 SrcMI->setDesc(TII->get(Opc));
646 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
647 ToErase = &MI;
648 Simplified = true;
649 NumEliminatedSExt++;
650 } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
651 TII->isSignExtended(*SrcMI)) {
652 // We can eliminate EXTSW if the input is known to be already
653 // sign-extended.
654 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
655 unsigned TmpReg =
656 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
657 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
658 TmpReg);
659 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
660 MI.getOperand(0).getReg())
661 .addReg(TmpReg)
662 .addReg(NarrowReg)
663 .addImm(PPC::sub_32);
664 ToErase = &MI;
665 Simplified = true;
666 NumEliminatedSExt++;
668 break;
670 case PPC::RLDICL: {
671 // We can eliminate RLDICL (e.g. for zero-extension)
672 // if all bits to clear are already zero in the input.
673 // This code assume following code sequence for zero-extension.
674 // %6 = COPY %5:sub_32; (optional)
675 // %8 = IMPLICIT_DEF;
676 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
677 if (!EnableZExtElimination) break;
679 if (MI.getOperand(2).getImm() != 0)
680 break;
682 unsigned SrcReg = MI.getOperand(1).getReg();
683 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
684 break;
686 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
687 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
688 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
689 break;
691 MachineInstr *ImpDefMI, *SubRegMI;
692 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
693 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
694 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
696 SrcMI = SubRegMI;
697 if (SubRegMI->getOpcode() == PPC::COPY) {
698 unsigned CopyReg = SubRegMI->getOperand(1).getReg();
699 if (TargetRegisterInfo::isVirtualRegister(CopyReg))
700 SrcMI = MRI->getVRegDef(CopyReg);
703 unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
704 if (MI.getOperand(3).getImm() <= KnownZeroCount) {
705 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
706 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
707 MI.getOperand(0).getReg())
708 .addReg(SrcReg);
709 ToErase = &MI;
710 Simplified = true;
711 NumEliminatedZExt++;
713 break;
716 // TODO: Any instruction that has an immediate form fed only by a PHI
717 // whose operands are all load immediate can be folded away. We currently
718 // do this for ADD instructions, but should expand it to arithmetic and
719 // binary instructions with immediate forms in the future.
720 case PPC::ADD4:
721 case PPC::ADD8: {
722 auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
723 assert(PhiOp && "Invalid Operand!");
724 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
726 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
727 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
730 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
731 MachineOperand *PhiOp) {
732 assert(PhiOp && "Invalid Operand!");
733 assert(DominatorOp && "Invalid Operand!");
734 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
735 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
737 // Note: the vregs only show up at odd indices position of PHI Node,
738 // the even indices position save the BB info.
739 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
740 MachineInstr *LiMI =
741 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
742 if (!LiMI ||
743 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
744 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
745 !MDT->dominates(DefDomMI, LiMI))
746 return false;
749 return true;
752 MachineOperand Op1 = MI.getOperand(1);
753 MachineOperand Op2 = MI.getOperand(2);
754 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
755 std::swap(Op1, Op2);
756 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
757 break; // We don't have an ADD fed by LI's that can be transformed
759 // Now we know that Op1 is the PHI node and Op2 is the dominator
760 unsigned DominatorReg = Op2.getReg();
762 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
763 ? &PPC::G8RC_and_G8RC_NOX0RegClass
764 : &PPC::GPRC_and_GPRC_NOR0RegClass;
765 MRI->setRegClass(DominatorReg, TRC);
767 // replace LIs with ADDIs
768 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
769 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
770 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
771 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
772 LLVM_DEBUG(LiMI->dump());
774 // There could be repeated registers in the PHI, e.g: %1 =
775 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
776 // already replaced the def instruction, skip.
777 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
778 continue;
780 assert((LiMI->getOpcode() == PPC::LI ||
781 LiMI->getOpcode() == PPC::LI8) &&
782 "Invalid Opcode!");
783 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
784 LiMI->RemoveOperand(1); // remove the imm of LI
785 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
786 : PPC::ADDI8));
787 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
788 .addReg(DominatorReg)
789 .addImm(LiImm); // restore the imm of LI
790 LLVM_DEBUG(LiMI->dump());
793 // Replace ADD with COPY
794 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
795 LLVM_DEBUG(MI.dump());
796 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
797 MI.getOperand(0).getReg())
798 .add(Op1);
799 ToErase = &MI;
800 Simplified = true;
801 NumOptADDLIs++;
802 break;
804 case PPC::RLDICR: {
805 Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
806 combineSEXTAndSHL(MI, ToErase);
807 break;
812 // If the last instruction was marked for elimination,
813 // remove it now.
814 if (ToErase) {
815 ToErase->eraseFromParent();
816 ToErase = nullptr;
820 // Eliminate all the TOC save instructions which are redundant.
821 Simplified |= eliminateRedundantTOCSaves(TOCSaves);
822 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
823 if (FI->mustSaveTOC())
824 NumTOCSavesInPrologue++;
826 // We try to eliminate redundant compare instruction.
827 Simplified |= eliminateRedundantCompare();
829 return Simplified;
832 // helper functions for eliminateRedundantCompare
833 static bool isEqOrNe(MachineInstr *BI) {
834 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
835 unsigned PredCond = PPC::getPredicateCondition(Pred);
836 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
839 static bool isSupportedCmpOp(unsigned opCode) {
840 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
841 opCode == PPC::CMPLW || opCode == PPC::CMPW ||
842 opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
843 opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
846 static bool is64bitCmpOp(unsigned opCode) {
847 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
848 opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
851 static bool isSignedCmpOp(unsigned opCode) {
852 return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
853 opCode == PPC::CMPDI || opCode == PPC::CMPWI);
856 static unsigned getSignedCmpOpCode(unsigned opCode) {
857 if (opCode == PPC::CMPLD) return PPC::CMPD;
858 if (opCode == PPC::CMPLW) return PPC::CMPW;
859 if (opCode == PPC::CMPLDI) return PPC::CMPDI;
860 if (opCode == PPC::CMPLWI) return PPC::CMPWI;
861 return opCode;
864 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
865 // (LT x) to (LE x-1)
866 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
867 uint64_t Imm = CMPI->getOperand(2).getImm();
868 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
869 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
870 return 0;
872 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
873 unsigned PredCond = PPC::getPredicateCondition(Pred);
874 unsigned PredHint = PPC::getPredicateHint(Pred);
875 if (PredCond == PPC::PRED_GE)
876 return PPC::getPredicate(PPC::PRED_GT, PredHint);
877 if (PredCond == PPC::PRED_LT)
878 return PPC::getPredicate(PPC::PRED_LE, PredHint);
880 return 0;
883 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
884 // (LE x) to (LT x+1)
885 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
886 uint64_t Imm = CMPI->getOperand(2).getImm();
887 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
888 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
889 return 0;
891 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
892 unsigned PredCond = PPC::getPredicateCondition(Pred);
893 unsigned PredHint = PPC::getPredicateHint(Pred);
894 if (PredCond == PPC::PRED_GT)
895 return PPC::getPredicate(PPC::PRED_GE, PredHint);
896 if (PredCond == PPC::PRED_LE)
897 return PPC::getPredicate(PPC::PRED_LT, PredHint);
899 return 0;
902 // This takes a Phi node and returns a register value for the specified BB.
903 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
904 MachineBasicBlock *MBB) {
905 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
906 MachineOperand &MO = Phi->getOperand(I);
907 if (MO.getMBB() == MBB)
908 return Phi->getOperand(I-1).getReg();
910 llvm_unreachable("invalid src basic block for this Phi node\n");
911 return 0;
914 // This function tracks the source of the register through register copy.
915 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
916 // assuming that the control comes from BB1 into BB2.
917 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
918 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
919 unsigned SrcReg = Reg;
920 while (1) {
921 unsigned NextReg = SrcReg;
922 MachineInstr *Inst = MRI->getVRegDef(SrcReg);
923 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
924 NextReg = getIncomingRegForBlock(Inst, BB1);
925 // We track through PHI only once to avoid infinite loop.
926 BB1 = nullptr;
928 else if (Inst->isFullCopy())
929 NextReg = Inst->getOperand(1).getReg();
930 if (NextReg == SrcReg || !TargetRegisterInfo::isVirtualRegister(NextReg))
931 break;
932 SrcReg = NextReg;
934 return SrcReg;
937 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
938 MachineBasicBlock *&PredMBB,
939 MachineBasicBlock *&MBBtoMoveCmp,
940 MachineRegisterInfo *MRI) {
942 auto isEligibleBB = [&](MachineBasicBlock &BB) {
943 auto BII = BB.getFirstInstrTerminator();
944 // We optimize BBs ending with a conditional branch.
945 // We check only for BCC here, not BCCLR, because BCCLR
946 // will be formed only later in the pipeline.
947 if (BB.succ_size() == 2 &&
948 BII != BB.instr_end() &&
949 (*BII).getOpcode() == PPC::BCC &&
950 (*BII).getOperand(1).isReg()) {
951 // We optimize only if the condition code is used only by one BCC.
952 unsigned CndReg = (*BII).getOperand(1).getReg();
953 if (!TargetRegisterInfo::isVirtualRegister(CndReg) ||
954 !MRI->hasOneNonDBGUse(CndReg))
955 return false;
957 MachineInstr *CMPI = MRI->getVRegDef(CndReg);
958 // We assume compare and branch are in the same BB for ease of analysis.
959 if (CMPI->getParent() != &BB)
960 return false;
962 // We skip this BB if a physical register is used in comparison.
963 for (MachineOperand &MO : CMPI->operands())
964 if (MO.isReg() && !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
965 return false;
967 return true;
969 return false;
972 // If this BB has more than one successor, we can create a new BB and
973 // move the compare instruction in the new BB.
974 // So far, we do not move compare instruction to a BB having multiple
975 // successors to avoid potentially increasing code size.
976 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
977 return BB.succ_size() == 1;
980 if (!isEligibleBB(MBB))
981 return false;
983 unsigned NumPredBBs = MBB.pred_size();
984 if (NumPredBBs == 1) {
985 MachineBasicBlock *TmpMBB = *MBB.pred_begin();
986 if (isEligibleBB(*TmpMBB)) {
987 PredMBB = TmpMBB;
988 MBBtoMoveCmp = nullptr;
989 return true;
992 else if (NumPredBBs == 2) {
993 // We check for partially redundant case.
994 // So far, we support cases with only two predecessors
995 // to avoid increasing the number of instructions.
996 MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
997 MachineBasicBlock *Pred1MBB = *PI;
998 MachineBasicBlock *Pred2MBB = *(PI+1);
1000 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1001 // We assume Pred1MBB is the BB containing the compare to be merged and
1002 // Pred2MBB is the BB to which we will append a compare instruction.
1003 // Hence we can proceed as is.
1005 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1006 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1007 std::swap(Pred1MBB, Pred2MBB);
1009 else return false;
1011 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1012 // We cannot move the compare instruction if operands are not available
1013 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1014 MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1015 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1016 for (int I = 1; I <= 2; I++)
1017 if (CMPI->getOperand(I).isReg()) {
1018 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1019 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1020 return false;
1023 PredMBB = Pred1MBB;
1024 MBBtoMoveCmp = Pred2MBB;
1025 return true;
1028 return false;
1031 // This function will iterate over the input map containing a pair of TOC save
1032 // instruction and a flag. The flag will be set to false if the TOC save is
1033 // proven redundant. This function will erase from the basic block all the TOC
1034 // saves marked as redundant.
1035 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1036 std::map<MachineInstr *, bool> &TOCSaves) {
1037 bool Simplified = false;
1038 int NumKept = 0;
1039 for (auto TOCSave : TOCSaves) {
1040 if (!TOCSave.second) {
1041 TOCSave.first->eraseFromParent();
1042 RemoveTOCSave++;
1043 Simplified = true;
1044 } else {
1045 NumKept++;
1049 if (NumKept > 1)
1050 MultiTOCSaves++;
1052 return Simplified;
1055 // If multiple conditional branches are executed based on the (essentially)
1056 // same comparison, we merge compare instructions into one and make multiple
1057 // conditional branches on this comparison.
1058 // For example,
1059 // if (a == 0) { ... }
1060 // else if (a < 0) { ... }
1061 // can be executed by one compare and two conditional branches instead of
1062 // two pairs of a compare and a conditional branch.
1064 // This method merges two compare instructions in two MBBs and modifies the
1065 // compare and conditional branch instructions if needed.
1066 // For the above example, the input for this pass looks like:
1067 // cmplwi r3, 0
1068 // beq 0, .LBB0_3
1069 // cmpwi r3, -1
1070 // bgt 0, .LBB0_4
1071 // So, before merging two compares, we need to modify these instructions as
1072 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1073 // beq 0, .LBB0_3
1074 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1075 // bge 0, .LBB0_4
1077 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1078 bool Simplified = false;
1080 for (MachineBasicBlock &MBB2 : *MF) {
1081 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1083 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1084 // as an optimization target if
1085 // - both MBBs end with a conditional branch,
1086 // - MBB1 is the only predecessor of MBB2, and
1087 // - compare does not take a physical register as a operand in both MBBs.
1088 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1090 // As partially redundant case, we additionally handle if MBB2 has one
1091 // additional predecessor, which has only one successor (MBB2).
1092 // In this case, we move the compare instruction originally in MBB2 into
1093 // MBBtoMoveCmp. This partially redundant case is typically appear by
1094 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1096 // Overview of CFG of related basic blocks
1097 // Fully redundant case Partially redundant case
1098 // -------- ---------------- --------
1099 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1100 // -------- ---------------- --------
1101 // | \ (w/ 1 succ) \ | \
1102 // | \ \ | \
1103 // | \ |
1104 // -------- --------
1105 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1106 // -------- and 2 succ) -------- and 2 succ)
1107 // | \ | \
1108 // | \ | \
1110 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1111 continue;
1113 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
1114 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1116 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
1117 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1118 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1120 // We cannot optimize an unsupported compare opcode or
1121 // a mix of 32-bit and 64-bit comaprisons
1122 if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1123 !isSupportedCmpOp(CMPI2->getOpcode()) ||
1124 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1125 continue;
1127 unsigned NewOpCode = 0;
1128 unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1129 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1130 bool SwapOperands = false;
1132 if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1133 // Typically, unsigned comparison is used for equality check, but
1134 // we replace it with a signed comparison if the comparison
1135 // to be merged is a signed comparison.
1136 // In other cases of opcode mismatch, we cannot optimize this.
1138 // We cannot change opcode when comparing against an immediate
1139 // if the most significant bit of the immediate is one
1140 // due to the difference in sign extension.
1141 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1142 if (!I->getOperand(2).isImm())
1143 return false;
1144 int16_t Imm = (int16_t)I->getOperand(2).getImm();
1145 return Imm < 0;
1148 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1149 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1150 NewOpCode = CMPI1->getOpcode();
1151 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1152 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1153 NewOpCode = CMPI2->getOpcode();
1154 else continue;
1157 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1158 // In case of comparisons between two registers, these two registers
1159 // must be same to merge two comparisons.
1160 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1161 nullptr, nullptr, MRI);
1162 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1163 nullptr, nullptr, MRI);
1164 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1165 MBB1, &MBB2, MRI);
1166 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1167 MBB1, &MBB2, MRI);
1169 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1170 // Same pair of registers in the same order; ready to merge as is.
1172 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1173 // Same pair of registers in different order.
1174 // We reverse the predicate to merge compare instructions.
1175 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1176 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1177 // In case of partial redundancy, we need to swap operands
1178 // in another compare instruction.
1179 SwapOperands = true;
1181 else continue;
1183 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1184 // In case of comparisons between a register and an immediate,
1185 // the operand register must be same for two compare instructions.
1186 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1187 nullptr, nullptr, MRI);
1188 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1189 MBB1, &MBB2, MRI);
1190 if (Cmp1Operand1 != Cmp2Operand1)
1191 continue;
1193 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1194 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1196 // If immediate are not same, we try to adjust by changing predicate;
1197 // e.g. GT imm means GE (imm+1).
1198 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1199 int Diff = Imm1 - Imm2;
1200 if (Diff < -2 || Diff > 2)
1201 continue;
1203 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1204 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1205 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1206 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1207 if (Diff == 2) {
1208 if (PredToInc2 && PredToDec1) {
1209 NewPredicate2 = PredToInc2;
1210 NewPredicate1 = PredToDec1;
1211 NewImm2++;
1212 NewImm1--;
1215 else if (Diff == 1) {
1216 if (PredToInc2) {
1217 NewImm2++;
1218 NewPredicate2 = PredToInc2;
1220 else if (PredToDec1) {
1221 NewImm1--;
1222 NewPredicate1 = PredToDec1;
1225 else if (Diff == -1) {
1226 if (PredToDec2) {
1227 NewImm2--;
1228 NewPredicate2 = PredToDec2;
1230 else if (PredToInc1) {
1231 NewImm1++;
1232 NewPredicate1 = PredToInc1;
1235 else if (Diff == -2) {
1236 if (PredToDec2 && PredToInc1) {
1237 NewPredicate2 = PredToDec2;
1238 NewPredicate1 = PredToInc1;
1239 NewImm2--;
1240 NewImm1++;
1245 // We cannot merge two compares if the immediates are not same.
1246 if (NewImm2 != NewImm1)
1247 continue;
1250 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1251 LLVM_DEBUG(CMPI1->dump());
1252 LLVM_DEBUG(BI1->dump());
1253 LLVM_DEBUG(CMPI2->dump());
1254 LLVM_DEBUG(BI2->dump());
1256 // We adjust opcode, predicates and immediate as we determined above.
1257 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1258 CMPI1->setDesc(TII->get(NewOpCode));
1260 if (NewPredicate1) {
1261 BI1->getOperand(0).setImm(NewPredicate1);
1263 if (NewPredicate2) {
1264 BI2->getOperand(0).setImm(NewPredicate2);
1266 if (NewImm1 != Imm1) {
1267 CMPI1->getOperand(2).setImm(NewImm1);
1270 if (IsPartiallyRedundant) {
1271 // We touch up the compare instruction in MBB2 and move it to
1272 // a previous BB to handle partially redundant case.
1273 if (SwapOperands) {
1274 unsigned Op1 = CMPI2->getOperand(1).getReg();
1275 unsigned Op2 = CMPI2->getOperand(2).getReg();
1276 CMPI2->getOperand(1).setReg(Op2);
1277 CMPI2->getOperand(2).setReg(Op1);
1279 if (NewImm2 != Imm2)
1280 CMPI2->getOperand(2).setImm(NewImm2);
1282 for (int I = 1; I <= 2; I++) {
1283 if (CMPI2->getOperand(I).isReg()) {
1284 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1285 if (Inst->getParent() != &MBB2)
1286 continue;
1288 assert(Inst->getOpcode() == PPC::PHI &&
1289 "We cannot support if an operand comes from this BB.");
1290 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1291 CMPI2->getOperand(I).setReg(SrcReg);
1294 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1295 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1297 DebugLoc DL = CMPI2->getDebugLoc();
1298 unsigned NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1299 BuildMI(MBB2, MBB2.begin(), DL,
1300 TII->get(PPC::PHI), NewVReg)
1301 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1302 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1303 BI2->getOperand(1).setReg(NewVReg);
1305 else {
1306 // We finally eliminate compare instruction in MBB2.
1307 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1308 CMPI2->eraseFromParent();
1310 BI2->getOperand(1).setIsKill(true);
1311 BI1->getOperand(1).setIsKill(false);
1313 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1314 LLVM_DEBUG(CMPI1->dump());
1315 LLVM_DEBUG(BI1->dump());
1316 LLVM_DEBUG(BI2->dump());
1317 if (IsPartiallyRedundant) {
1318 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1319 << printMBBReference(*MBBtoMoveCmp)
1320 << " to handle partial redundancy.\n");
1321 LLVM_DEBUG(CMPI2->dump());
1324 Simplified = true;
1327 return Simplified;
1330 // We miss the opportunity to emit an RLDIC when lowering jump tables
1331 // since ISEL sees only a single basic block. When selecting, the clear
1332 // and shift left will be in different blocks.
1333 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1334 if (MI.getOpcode() != PPC::RLDICR)
1335 return false;
1337 unsigned SrcReg = MI.getOperand(1).getReg();
1338 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1339 return false;
1341 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1342 if (SrcMI->getOpcode() != PPC::RLDICL)
1343 return false;
1345 MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1346 MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1347 MachineOperand MOpSHMI = MI.getOperand(2);
1348 MachineOperand MOpMEMI = MI.getOperand(3);
1349 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1350 MOpMEMI.isImm()))
1351 return false;
1353 uint64_t SHSrc = MOpSHSrc.getImm();
1354 uint64_t MBSrc = MOpMBSrc.getImm();
1355 uint64_t SHMI = MOpSHMI.getImm();
1356 uint64_t MEMI = MOpMEMI.getImm();
1357 uint64_t NewSH = SHSrc + SHMI;
1358 uint64_t NewMB = MBSrc - SHMI;
1359 if (NewMB > 63 || NewSH > 63)
1360 return false;
1362 // The bits cleared with RLDICL are [0, MBSrc).
1363 // The bits cleared with RLDICR are (MEMI, 63].
1364 // After the sequence, the bits cleared are:
1365 // [0, MBSrc-SHMI) and (MEMI, 63).
1367 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1368 if ((63 - NewSH) != MEMI)
1369 return false;
1371 LLVM_DEBUG(dbgs() << "Converting pair: ");
1372 LLVM_DEBUG(SrcMI->dump());
1373 LLVM_DEBUG(MI.dump());
1375 MI.setDesc(TII->get(PPC::RLDIC));
1376 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1377 MI.getOperand(2).setImm(NewSH);
1378 MI.getOperand(3).setImm(NewMB);
1380 LLVM_DEBUG(dbgs() << "To: ");
1381 LLVM_DEBUG(MI.dump());
1382 NumRotatesCollapsed++;
1383 return true;
1386 // For case in LLVM IR
1387 // entry:
1388 // %iconv = sext i32 %index to i64
1389 // br i1 undef label %true, label %false
1390 // true:
1391 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1392 // ...
1393 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1394 // different BBs when conducting instruction selection. We can do a peephole
1395 // optimization to combine these two instructions into extswsli after
1396 // instruction selection.
1397 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1398 MachineInstr *&ToErase) {
1399 if (MI.getOpcode() != PPC::RLDICR)
1400 return false;
1402 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1403 return false;
1405 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1407 MachineOperand MOpSHMI = MI.getOperand(2);
1408 MachineOperand MOpMEMI = MI.getOperand(3);
1409 if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1410 return false;
1412 uint64_t SHMI = MOpSHMI.getImm();
1413 uint64_t MEMI = MOpMEMI.getImm();
1414 if (SHMI + MEMI != 63)
1415 return false;
1417 unsigned SrcReg = MI.getOperand(1).getReg();
1418 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1419 return false;
1421 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1422 if (SrcMI->getOpcode() != PPC::EXTSW &&
1423 SrcMI->getOpcode() != PPC::EXTSW_32_64)
1424 return false;
1426 // If the register defined by extsw has more than one use, combination is not
1427 // needed.
1428 if (!MRI->hasOneNonDBGUse(SrcReg))
1429 return false;
1431 LLVM_DEBUG(dbgs() << "Combining pair: ");
1432 LLVM_DEBUG(SrcMI->dump());
1433 LLVM_DEBUG(MI.dump());
1435 MachineInstr *NewInstr =
1436 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1437 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1438 : TII->get(PPC::EXTSWSLI_32_64),
1439 MI.getOperand(0).getReg())
1440 .add(SrcMI->getOperand(1))
1441 .add(MOpSHMI);
1442 (void)NewInstr;
1444 LLVM_DEBUG(dbgs() << "TO: ");
1445 LLVM_DEBUG(NewInstr->dump());
1446 ++NumEXTSWAndSLDICombined;
1447 ToErase = &MI;
1448 // SrcMI, which is extsw, is of no use now, erase it.
1449 SrcMI->eraseFromParent();
1450 return true;
1453 } // end default namespace
1455 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1456 "PowerPC MI Peephole Optimization", false, false)
1457 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1458 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1459 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1460 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1461 "PowerPC MI Peephole Optimization", false, false)
1463 char PPCMIPeephole::ID = 0;
1464 FunctionPass*
1465 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }