1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines a pass that optimizes call sequences on x86.
10 // Currently, it converts movs of function parameters onto the stack into
11 // pushes. This is beneficial for two main reasons:
12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13 // 2) It is possible to push memory arguments directly. So, if the
14 // the transformation is performed pre-reg-alloc, it can help relieve
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86FrameLowering.h"
21 #include "X86InstrInfo.h"
22 #include "X86MachineFunctionInfo.h"
23 #include "X86RegisterInfo.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCDwarf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
51 #define DEBUG_TYPE "x86-cf-opt"
54 NoX86CFOpt("no-x86-call-frame-opt",
55 cl::desc("Avoid optimizing x86 call frames for size"),
56 cl::init(false), cl::Hidden
);
60 class X86CallFrameOptimization
: public MachineFunctionPass
{
62 X86CallFrameOptimization() : MachineFunctionPass(ID
) { }
64 bool runOnMachineFunction(MachineFunction
&MF
) override
;
69 // Information we know about a particular call site
71 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
73 // Iterator referring to the frame setup instruction
74 MachineBasicBlock::iterator FrameSetup
;
76 // Actual call instruction
77 MachineInstr
*Call
= nullptr;
79 // A copy of the stack pointer
80 MachineInstr
*SPCopy
= nullptr;
82 // The total displacement of all passed parameters
83 int64_t ExpectedDist
= 0;
85 // The sequence of storing instructions used to pass the parameters
86 SmallVector
<MachineInstr
*, 4> ArgStoreVector
;
88 // True if this call site has no stack parameters
89 bool NoStackParams
= false;
91 // True if this call site can use push instructions
95 typedef SmallVector
<CallContext
, 8> ContextVector
;
97 bool isLegal(MachineFunction
&MF
);
99 bool isProfitable(MachineFunction
&MF
, ContextVector
&CallSeqMap
);
101 void collectCallInfo(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
102 MachineBasicBlock::iterator I
, CallContext
&Context
);
104 void adjustCallSequence(MachineFunction
&MF
, const CallContext
&Context
);
106 MachineInstr
*canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup
,
109 enum InstClassification
{ Convert
, Skip
, Exit
};
111 InstClassification
classifyInstruction(MachineBasicBlock
&MBB
,
112 MachineBasicBlock::iterator MI
,
113 const X86RegisterInfo
&RegInfo
,
114 DenseSet
<unsigned int> &UsedRegs
);
116 StringRef
getPassName() const override
{ return "X86 Optimize Call Frame"; }
118 const X86InstrInfo
*TII
;
119 const X86FrameLowering
*TFL
;
120 const X86Subtarget
*STI
;
121 MachineRegisterInfo
*MRI
;
123 unsigned Log2SlotSize
;
126 } // end anonymous namespace
127 char X86CallFrameOptimization::ID
= 0;
128 INITIALIZE_PASS(X86CallFrameOptimization
, DEBUG_TYPE
,
129 "X86 Call Frame Optimization", false, false)
131 // This checks whether the transformation is legal.
132 // Also returns false in cases where it's potentially legal, but
133 // we don't even want to try.
134 bool X86CallFrameOptimization::isLegal(MachineFunction
&MF
) {
135 if (NoX86CFOpt
.getValue())
138 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
139 // in the compact unwind encoding that Darwin uses. So, bail if there
140 // is a danger of that being generated.
141 if (STI
->isTargetDarwin() &&
142 (!MF
.getLandingPads().empty() ||
143 (MF
.getFunction().needsUnwindTableEntry() && !TFL
->hasFP(MF
))))
146 // It is not valid to change the stack pointer outside the prolog/epilog
147 // on 64-bit Windows.
148 if (STI
->isTargetWin64())
151 // You would expect straight-line code between call-frame setup and
152 // call-frame destroy. You would be wrong. There are circumstances (e.g.
153 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
154 // end up with the setup and the destroy in different basic blocks.
155 // This is bad, and breaks SP adjustment.
156 // So, check that all of the frames in the function are closed inside
157 // the same block, and, for good measure, that there are no nested frames.
158 unsigned FrameSetupOpcode
= TII
->getCallFrameSetupOpcode();
159 unsigned FrameDestroyOpcode
= TII
->getCallFrameDestroyOpcode();
160 for (MachineBasicBlock
&BB
: MF
) {
161 bool InsideFrameSequence
= false;
162 for (MachineInstr
&MI
: BB
) {
163 if (MI
.getOpcode() == FrameSetupOpcode
) {
164 if (InsideFrameSequence
)
166 InsideFrameSequence
= true;
167 } else if (MI
.getOpcode() == FrameDestroyOpcode
) {
168 if (!InsideFrameSequence
)
170 InsideFrameSequence
= false;
174 if (InsideFrameSequence
)
181 // Check whether this transformation is profitable for a particular
182 // function - in terms of code size.
183 bool X86CallFrameOptimization::isProfitable(MachineFunction
&MF
,
184 ContextVector
&CallSeqVector
) {
185 // This transformation is always a win when we do not expect to have
186 // a reserved call frame. Under other circumstances, it may be either
187 // a win or a loss, and requires a heuristic.
188 bool CannotReserveFrame
= MF
.getFrameInfo().hasVarSizedObjects();
189 if (CannotReserveFrame
)
192 unsigned StackAlign
= TFL
->getStackAlignment();
194 int64_t Advantage
= 0;
195 for (auto CC
: CallSeqVector
) {
196 // Call sites where no parameters are passed on the stack
197 // do not affect the cost, since there needs to be no
199 if (CC
.NoStackParams
)
203 // If we don't use pushes for a particular call site,
204 // we pay for not having a reserved call frame with an
205 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
206 // depending on the size of the constant.
207 // TODO: Callee-pop functions should have a smaller penalty, because
208 // an add is needed even with a reserved call frame.
211 // We can use pushes. First, account for the fixed costs.
212 // We'll need a add after the call.
214 // If we have to realign the stack, we'll also need a sub before
215 if (CC
.ExpectedDist
% StackAlign
)
217 // Now, for each push, we save ~3 bytes. For small constants, we actually,
218 // save more (up to 5 bytes), but 3 should be a good approximation.
219 Advantage
+= (CC
.ExpectedDist
>> Log2SlotSize
) * 3;
223 return Advantage
>= 0;
226 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction
&MF
) {
227 STI
= &MF
.getSubtarget
<X86Subtarget
>();
228 TII
= STI
->getInstrInfo();
229 TFL
= STI
->getFrameLowering();
230 MRI
= &MF
.getRegInfo();
232 const X86RegisterInfo
&RegInfo
=
233 *static_cast<const X86RegisterInfo
*>(STI
->getRegisterInfo());
234 SlotSize
= RegInfo
.getSlotSize();
235 assert(isPowerOf2_32(SlotSize
) && "Expect power of 2 stack slot size");
236 Log2SlotSize
= Log2_32(SlotSize
);
238 if (skipFunction(MF
.getFunction()) || !isLegal(MF
))
241 unsigned FrameSetupOpcode
= TII
->getCallFrameSetupOpcode();
243 bool Changed
= false;
245 ContextVector CallSeqVector
;
249 if (MI
.getOpcode() == FrameSetupOpcode
) {
251 collectCallInfo(MF
, MBB
, MI
, Context
);
252 CallSeqVector
.push_back(Context
);
255 if (!isProfitable(MF
, CallSeqVector
))
258 for (auto CC
: CallSeqVector
) {
260 adjustCallSequence(MF
, CC
);
268 X86CallFrameOptimization::InstClassification
269 X86CallFrameOptimization::classifyInstruction(
270 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
271 const X86RegisterInfo
&RegInfo
, DenseSet
<unsigned int> &UsedRegs
) {
275 // The instructions we actually care about are movs onto the stack or special
276 // cases of constant-stores to stack
277 switch (MI
->getOpcode()) {
280 case X86::AND64mi8
: {
281 MachineOperand ImmOp
= MI
->getOperand(X86::AddrNumOperands
);
282 return ImmOp
.getImm() == 0 ? Convert
: Exit
;
287 MachineOperand ImmOp
= MI
->getOperand(X86::AddrNumOperands
);
288 return ImmOp
.getImm() == -1 ? Convert
: Exit
;
297 // Not all calling conventions have only stack MOVs between the stack
298 // adjust and the call.
300 // We want to tolerate other instructions, to cover more cases.
302 // a) PCrel calls, where we expect an additional COPY of the basereg.
303 // b) Passing frame-index addresses.
304 // c) Calling conventions that have inreg parameters. These generate
305 // both copies and movs into registers.
306 // To avoid creating lots of special cases, allow any instruction
307 // that does not write into memory, does not def or use the stack
308 // pointer, and does not def any register that was used by a preceding
310 // (Reading from memory is allowed, even if referenced through a
311 // frame index, since these will get adjusted properly in PEI)
313 // The reason for the last condition is that the pushes can't replace
314 // the movs in place, because the order must be reversed.
315 // So if we have a MOV32mr that uses EDX, then an instruction that defs
316 // EDX, and then the call, after the transformation the push will use
317 // the modified version of EDX, and not the original one.
318 // Since we are still in SSA form at this point, we only need to
319 // make sure we don't clobber any *physical* registers that were
320 // used by an earlier mov that will become a push.
322 if (MI
->isCall() || MI
->mayStore())
325 for (const MachineOperand
&MO
: MI
->operands()) {
328 unsigned int Reg
= MO
.getReg();
329 if (!RegInfo
.isPhysicalRegister(Reg
))
331 if (RegInfo
.regsOverlap(Reg
, RegInfo
.getStackRegister()))
334 for (unsigned int U
: UsedRegs
)
335 if (RegInfo
.regsOverlap(Reg
, U
))
343 void X86CallFrameOptimization::collectCallInfo(MachineFunction
&MF
,
344 MachineBasicBlock
&MBB
,
345 MachineBasicBlock::iterator I
,
346 CallContext
&Context
) {
347 // Check that this particular call sequence is amenable to the
349 const X86RegisterInfo
&RegInfo
=
350 *static_cast<const X86RegisterInfo
*>(STI
->getRegisterInfo());
352 // We expect to enter this at the beginning of a call sequence
353 assert(I
->getOpcode() == TII
->getCallFrameSetupOpcode());
354 MachineBasicBlock::iterator FrameSetup
= I
++;
355 Context
.FrameSetup
= FrameSetup
;
357 // How much do we adjust the stack? This puts an upper bound on
358 // the number of parameters actually passed on it.
359 unsigned int MaxAdjust
= TII
->getFrameSize(*FrameSetup
) >> Log2SlotSize
;
361 // A zero adjustment means no stack parameters
363 Context
.NoStackParams
= true;
367 // Skip over DEBUG_VALUE.
368 // For globals in PIC mode, we can have some LEAs here. Skip them as well.
369 // TODO: Extend this to something that covers more cases.
370 while (I
->getOpcode() == X86::LEA32r
|| I
->isDebugInstr())
373 unsigned StackPtr
= RegInfo
.getStackRegister();
374 auto StackPtrCopyInst
= MBB
.end();
375 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
376 // register. If it's there, use that virtual register as stack pointer
377 // instead. Also, we need to locate this instruction so that we can later
378 // safely ignore it while doing the conservative processing of the call chain.
379 // The COPY can be located anywhere between the call-frame setup
380 // instruction and its first use. We use the call instruction as a boundary
381 // because it is usually cheaper to check if an instruction is a call than
382 // checking if an instruction uses a register.
383 for (auto J
= I
; !J
->isCall(); ++J
)
384 if (J
->isCopy() && J
->getOperand(0).isReg() && J
->getOperand(1).isReg() &&
385 J
->getOperand(1).getReg() == StackPtr
) {
386 StackPtrCopyInst
= J
;
387 Context
.SPCopy
= &*J
++;
388 StackPtr
= Context
.SPCopy
->getOperand(0).getReg();
392 // Scan the call setup sequence for the pattern we're looking for.
393 // We only handle a simple case - a sequence of store instructions that
394 // push a sequence of stack-slot-aligned values onto the stack, with
395 // no gaps between them.
397 Context
.ArgStoreVector
.resize(MaxAdjust
, nullptr);
399 DenseSet
<unsigned int> UsedRegs
;
401 for (InstClassification Classification
= Skip
; Classification
!= Exit
; ++I
) {
402 // If this is the COPY of the stack pointer, it's ok to ignore.
403 if (I
== StackPtrCopyInst
)
405 Classification
= classifyInstruction(MBB
, I
, RegInfo
, UsedRegs
);
406 if (Classification
!= Convert
)
408 // We know the instruction has a supported store opcode.
409 // We only want movs of the form:
410 // mov imm/reg, k(%StackPtr)
411 // If we run into something else, bail.
412 // Note that AddrBaseReg may, counter to its name, not be a register,
413 // but rather a frame index.
414 // TODO: Support the fi case. This should probably work now that we
415 // have the infrastructure to track the stack pointer within a call
417 if (!I
->getOperand(X86::AddrBaseReg
).isReg() ||
418 (I
->getOperand(X86::AddrBaseReg
).getReg() != StackPtr
) ||
419 !I
->getOperand(X86::AddrScaleAmt
).isImm() ||
420 (I
->getOperand(X86::AddrScaleAmt
).getImm() != 1) ||
421 (I
->getOperand(X86::AddrIndexReg
).getReg() != X86::NoRegister
) ||
422 (I
->getOperand(X86::AddrSegmentReg
).getReg() != X86::NoRegister
) ||
423 !I
->getOperand(X86::AddrDisp
).isImm())
426 int64_t StackDisp
= I
->getOperand(X86::AddrDisp
).getImm();
427 assert(StackDisp
>= 0 &&
428 "Negative stack displacement when passing parameters");
430 // We really don't want to consider the unaligned case.
431 if (StackDisp
& (SlotSize
- 1))
433 StackDisp
>>= Log2SlotSize
;
435 assert((size_t)StackDisp
< Context
.ArgStoreVector
.size() &&
436 "Function call has more parameters than the stack is adjusted for.");
438 // If the same stack slot is being filled twice, something's fishy.
439 if (Context
.ArgStoreVector
[StackDisp
] != nullptr)
441 Context
.ArgStoreVector
[StackDisp
] = &*I
;
443 for (const MachineOperand
&MO
: I
->uses()) {
446 unsigned int Reg
= MO
.getReg();
447 if (RegInfo
.isPhysicalRegister(Reg
))
448 UsedRegs
.insert(Reg
);
454 // We now expect the end of the sequence. If we stopped early,
455 // or reached the end of the block without finding a call, bail.
456 if (I
== MBB
.end() || !I
->isCall())
460 if ((++I
)->getOpcode() != TII
->getCallFrameDestroyOpcode())
463 // Now, go through the vector, and see that we don't have any gaps,
464 // but only a series of storing instructions.
465 auto MMI
= Context
.ArgStoreVector
.begin(), MME
= Context
.ArgStoreVector
.end();
466 for (; MMI
!= MME
; ++MMI
, Context
.ExpectedDist
+= SlotSize
)
470 // If the call had no parameters, do nothing
471 if (MMI
== Context
.ArgStoreVector
.begin())
474 // We are either at the last parameter, or a gap.
475 // Make sure it's not a gap
476 for (; MMI
!= MME
; ++MMI
)
480 Context
.UsePush
= true;
483 void X86CallFrameOptimization::adjustCallSequence(MachineFunction
&MF
,
484 const CallContext
&Context
) {
485 // Ok, we can in fact do the transformation for this call.
486 // Do not remove the FrameSetup instruction, but adjust the parameters.
487 // PEI will end up finalizing the handling of this.
488 MachineBasicBlock::iterator FrameSetup
= Context
.FrameSetup
;
489 MachineBasicBlock
&MBB
= *(FrameSetup
->getParent());
490 TII
->setFrameAdjustment(*FrameSetup
, Context
.ExpectedDist
);
492 DebugLoc DL
= FrameSetup
->getDebugLoc();
493 bool Is64Bit
= STI
->is64Bit();
494 // Now, iterate through the vector in reverse order, and replace the store to
495 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
497 for (int Idx
= (Context
.ExpectedDist
>> Log2SlotSize
) - 1; Idx
>= 0; --Idx
) {
498 MachineBasicBlock::iterator Store
= *Context
.ArgStoreVector
[Idx
];
499 MachineOperand PushOp
= Store
->getOperand(X86::AddrNumOperands
);
500 MachineBasicBlock::iterator Push
= nullptr;
502 switch (Store
->getOpcode()) {
504 llvm_unreachable("Unexpected Opcode!");
513 PushOpcode
= Is64Bit
? X86::PUSH64i32
: X86::PUSHi32
;
514 // If the operand is a small (8-bit) immediate, we can use a
515 // PUSH instruction with a shorter encoding.
516 // Note that isImm() may fail even though this is a MOVmi, because
517 // the operand can also be a symbol.
518 if (PushOp
.isImm()) {
519 int64_t Val
= PushOp
.getImm();
521 PushOpcode
= Is64Bit
? X86::PUSH64i8
: X86::PUSH32i8
;
523 Push
= BuildMI(MBB
, Context
.Call
, DL
, TII
->get(PushOpcode
)).add(PushOp
);
527 unsigned int Reg
= PushOp
.getReg();
529 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
530 // in preparation for the PUSH64. The upper 32 bits can be undef.
531 if (Is64Bit
&& Store
->getOpcode() == X86::MOV32mr
) {
532 unsigned UndefReg
= MRI
->createVirtualRegister(&X86::GR64RegClass
);
533 Reg
= MRI
->createVirtualRegister(&X86::GR64RegClass
);
534 BuildMI(MBB
, Context
.Call
, DL
, TII
->get(X86::IMPLICIT_DEF
), UndefReg
);
535 BuildMI(MBB
, Context
.Call
, DL
, TII
->get(X86::INSERT_SUBREG
), Reg
)
538 .addImm(X86::sub_32bit
);
541 // If PUSHrmm is not slow on this target, try to fold the source of the
542 // push into the instruction.
543 bool SlowPUSHrmm
= STI
->isAtom() || STI
->isSLM();
545 // Check that this is legal to fold. Right now, we're extremely
546 // conservative about that.
547 MachineInstr
*DefMov
= nullptr;
548 if (!SlowPUSHrmm
&& (DefMov
= canFoldIntoRegPush(FrameSetup
, Reg
))) {
549 PushOpcode
= Is64Bit
? X86::PUSH64rmm
: X86::PUSH32rmm
;
550 Push
= BuildMI(MBB
, Context
.Call
, DL
, TII
->get(PushOpcode
));
552 unsigned NumOps
= DefMov
->getDesc().getNumOperands();
553 for (unsigned i
= NumOps
- X86::AddrNumOperands
; i
!= NumOps
; ++i
)
554 Push
->addOperand(DefMov
->getOperand(i
));
556 DefMov
->eraseFromParent();
558 PushOpcode
= Is64Bit
? X86::PUSH64r
: X86::PUSH32r
;
559 Push
= BuildMI(MBB
, Context
.Call
, DL
, TII
->get(PushOpcode
))
567 // For debugging, when using SP-based CFA, we need to adjust the CFA
568 // offset after each push.
569 // TODO: This is needed only if we require precise CFA.
572 MBB
, std::next(Push
), DL
,
573 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize
));
578 // The stack-pointer copy is no longer used in the call sequences.
579 // There should not be any other users, but we can't commit to that, so:
580 if (Context
.SPCopy
&& MRI
->use_empty(Context
.SPCopy
->getOperand(0).getReg()))
581 Context
.SPCopy
->eraseFromParent();
583 // Once we've done this, we need to make sure PEI doesn't assume a reserved
585 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
586 FuncInfo
->setHasPushSequences(true);
589 MachineInstr
*X86CallFrameOptimization::canFoldIntoRegPush(
590 MachineBasicBlock::iterator FrameSetup
, unsigned Reg
) {
591 // Do an extremely restricted form of load folding.
592 // ISel will often create patterns like:
593 // movl 4(%edi), %eax
594 // movl 8(%edi), %ecx
595 // movl 12(%edi), %edx
596 // movl %edx, 8(%esp)
597 // movl %ecx, 4(%esp)
600 // Get rid of those with prejudice.
601 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
604 // Make sure this is the only use of Reg.
605 if (!MRI
->hasOneNonDBGUse(Reg
))
608 MachineInstr
&DefMI
= *MRI
->getVRegDef(Reg
);
610 // Make sure the def is a MOV from memory.
611 // If the def is in another block, give up.
612 if ((DefMI
.getOpcode() != X86::MOV32rm
&&
613 DefMI
.getOpcode() != X86::MOV64rm
) ||
614 DefMI
.getParent() != FrameSetup
->getParent())
617 // Make sure we don't have any instructions between DefMI and the
618 // push that make folding the load illegal.
619 for (MachineBasicBlock::iterator I
= DefMI
; I
!= FrameSetup
; ++I
)
620 if (I
->isLoadFoldBarrier())
626 FunctionPass
*llvm::createX86CallFrameOptimization() {
627 return new X86CallFrameOptimization();