[ARM] MVE integer min and max
[llvm-core.git] / lib / Target / X86 / X86CallFrameOptimization.cpp
blob4df849a2e14cda0a5f7e2bd21d56f5bdf14fad73
1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pass that optimizes call sequences on x86.
10 // Currently, it converts movs of function parameters onto the stack into
11 // pushes. This is beneficial for two main reasons:
12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13 // 2) It is possible to push memory arguments directly. So, if the
14 // the transformation is performed pre-reg-alloc, it can help relieve
15 // register pressure.
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86FrameLowering.h"
21 #include "X86InstrInfo.h"
22 #include "X86MachineFunctionInfo.h"
23 #include "X86RegisterInfo.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCDwarf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <iterator>
49 using namespace llvm;
51 #define DEBUG_TYPE "x86-cf-opt"
53 static cl::opt<bool>
54 NoX86CFOpt("no-x86-call-frame-opt",
55 cl::desc("Avoid optimizing x86 call frames for size"),
56 cl::init(false), cl::Hidden);
58 namespace {
60 class X86CallFrameOptimization : public MachineFunctionPass {
61 public:
62 X86CallFrameOptimization() : MachineFunctionPass(ID) { }
64 bool runOnMachineFunction(MachineFunction &MF) override;
66 static char ID;
68 private:
69 // Information we know about a particular call site
70 struct CallContext {
71 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
73 // Iterator referring to the frame setup instruction
74 MachineBasicBlock::iterator FrameSetup;
76 // Actual call instruction
77 MachineInstr *Call = nullptr;
79 // A copy of the stack pointer
80 MachineInstr *SPCopy = nullptr;
82 // The total displacement of all passed parameters
83 int64_t ExpectedDist = 0;
85 // The sequence of storing instructions used to pass the parameters
86 SmallVector<MachineInstr *, 4> ArgStoreVector;
88 // True if this call site has no stack parameters
89 bool NoStackParams = false;
91 // True if this call site can use push instructions
92 bool UsePush = false;
95 typedef SmallVector<CallContext, 8> ContextVector;
97 bool isLegal(MachineFunction &MF);
99 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
101 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
102 MachineBasicBlock::iterator I, CallContext &Context);
104 void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
106 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
107 unsigned Reg);
109 enum InstClassification { Convert, Skip, Exit };
111 InstClassification classifyInstruction(MachineBasicBlock &MBB,
112 MachineBasicBlock::iterator MI,
113 const X86RegisterInfo &RegInfo,
114 DenseSet<unsigned int> &UsedRegs);
116 StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
118 const X86InstrInfo *TII;
119 const X86FrameLowering *TFL;
120 const X86Subtarget *STI;
121 MachineRegisterInfo *MRI;
122 unsigned SlotSize;
123 unsigned Log2SlotSize;
126 } // end anonymous namespace
127 char X86CallFrameOptimization::ID = 0;
128 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
129 "X86 Call Frame Optimization", false, false)
131 // This checks whether the transformation is legal.
132 // Also returns false in cases where it's potentially legal, but
133 // we don't even want to try.
134 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
135 if (NoX86CFOpt.getValue())
136 return false;
138 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
139 // in the compact unwind encoding that Darwin uses. So, bail if there
140 // is a danger of that being generated.
141 if (STI->isTargetDarwin() &&
142 (!MF.getLandingPads().empty() ||
143 (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
144 return false;
146 // It is not valid to change the stack pointer outside the prolog/epilog
147 // on 64-bit Windows.
148 if (STI->isTargetWin64())
149 return false;
151 // You would expect straight-line code between call-frame setup and
152 // call-frame destroy. You would be wrong. There are circumstances (e.g.
153 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
154 // end up with the setup and the destroy in different basic blocks.
155 // This is bad, and breaks SP adjustment.
156 // So, check that all of the frames in the function are closed inside
157 // the same block, and, for good measure, that there are no nested frames.
158 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
159 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
160 for (MachineBasicBlock &BB : MF) {
161 bool InsideFrameSequence = false;
162 for (MachineInstr &MI : BB) {
163 if (MI.getOpcode() == FrameSetupOpcode) {
164 if (InsideFrameSequence)
165 return false;
166 InsideFrameSequence = true;
167 } else if (MI.getOpcode() == FrameDestroyOpcode) {
168 if (!InsideFrameSequence)
169 return false;
170 InsideFrameSequence = false;
174 if (InsideFrameSequence)
175 return false;
178 return true;
181 // Check whether this transformation is profitable for a particular
182 // function - in terms of code size.
183 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
184 ContextVector &CallSeqVector) {
185 // This transformation is always a win when we do not expect to have
186 // a reserved call frame. Under other circumstances, it may be either
187 // a win or a loss, and requires a heuristic.
188 bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
189 if (CannotReserveFrame)
190 return true;
192 unsigned StackAlign = TFL->getStackAlignment();
194 int64_t Advantage = 0;
195 for (auto CC : CallSeqVector) {
196 // Call sites where no parameters are passed on the stack
197 // do not affect the cost, since there needs to be no
198 // stack adjustment.
199 if (CC.NoStackParams)
200 continue;
202 if (!CC.UsePush) {
203 // If we don't use pushes for a particular call site,
204 // we pay for not having a reserved call frame with an
205 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
206 // depending on the size of the constant.
207 // TODO: Callee-pop functions should have a smaller penalty, because
208 // an add is needed even with a reserved call frame.
209 Advantage -= 6;
210 } else {
211 // We can use pushes. First, account for the fixed costs.
212 // We'll need a add after the call.
213 Advantage -= 3;
214 // If we have to realign the stack, we'll also need a sub before
215 if (CC.ExpectedDist % StackAlign)
216 Advantage -= 3;
217 // Now, for each push, we save ~3 bytes. For small constants, we actually,
218 // save more (up to 5 bytes), but 3 should be a good approximation.
219 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
223 return Advantage >= 0;
226 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
227 STI = &MF.getSubtarget<X86Subtarget>();
228 TII = STI->getInstrInfo();
229 TFL = STI->getFrameLowering();
230 MRI = &MF.getRegInfo();
232 const X86RegisterInfo &RegInfo =
233 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
234 SlotSize = RegInfo.getSlotSize();
235 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
236 Log2SlotSize = Log2_32(SlotSize);
238 if (skipFunction(MF.getFunction()) || !isLegal(MF))
239 return false;
241 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
243 bool Changed = false;
245 ContextVector CallSeqVector;
247 for (auto &MBB : MF)
248 for (auto &MI : MBB)
249 if (MI.getOpcode() == FrameSetupOpcode) {
250 CallContext Context;
251 collectCallInfo(MF, MBB, MI, Context);
252 CallSeqVector.push_back(Context);
255 if (!isProfitable(MF, CallSeqVector))
256 return false;
258 for (auto CC : CallSeqVector) {
259 if (CC.UsePush) {
260 adjustCallSequence(MF, CC);
261 Changed = true;
265 return Changed;
268 X86CallFrameOptimization::InstClassification
269 X86CallFrameOptimization::classifyInstruction(
270 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
271 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
272 if (MI == MBB.end())
273 return Exit;
275 // The instructions we actually care about are movs onto the stack or special
276 // cases of constant-stores to stack
277 switch (MI->getOpcode()) {
278 case X86::AND16mi8:
279 case X86::AND32mi8:
280 case X86::AND64mi8: {
281 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
282 return ImmOp.getImm() == 0 ? Convert : Exit;
284 case X86::OR16mi8:
285 case X86::OR32mi8:
286 case X86::OR64mi8: {
287 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
288 return ImmOp.getImm() == -1 ? Convert : Exit;
290 case X86::MOV32mi:
291 case X86::MOV32mr:
292 case X86::MOV64mi32:
293 case X86::MOV64mr:
294 return Convert;
297 // Not all calling conventions have only stack MOVs between the stack
298 // adjust and the call.
300 // We want to tolerate other instructions, to cover more cases.
301 // In particular:
302 // a) PCrel calls, where we expect an additional COPY of the basereg.
303 // b) Passing frame-index addresses.
304 // c) Calling conventions that have inreg parameters. These generate
305 // both copies and movs into registers.
306 // To avoid creating lots of special cases, allow any instruction
307 // that does not write into memory, does not def or use the stack
308 // pointer, and does not def any register that was used by a preceding
309 // push.
310 // (Reading from memory is allowed, even if referenced through a
311 // frame index, since these will get adjusted properly in PEI)
313 // The reason for the last condition is that the pushes can't replace
314 // the movs in place, because the order must be reversed.
315 // So if we have a MOV32mr that uses EDX, then an instruction that defs
316 // EDX, and then the call, after the transformation the push will use
317 // the modified version of EDX, and not the original one.
318 // Since we are still in SSA form at this point, we only need to
319 // make sure we don't clobber any *physical* registers that were
320 // used by an earlier mov that will become a push.
322 if (MI->isCall() || MI->mayStore())
323 return Exit;
325 for (const MachineOperand &MO : MI->operands()) {
326 if (!MO.isReg())
327 continue;
328 unsigned int Reg = MO.getReg();
329 if (!RegInfo.isPhysicalRegister(Reg))
330 continue;
331 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
332 return Exit;
333 if (MO.isDef()) {
334 for (unsigned int U : UsedRegs)
335 if (RegInfo.regsOverlap(Reg, U))
336 return Exit;
340 return Skip;
343 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
344 MachineBasicBlock &MBB,
345 MachineBasicBlock::iterator I,
346 CallContext &Context) {
347 // Check that this particular call sequence is amenable to the
348 // transformation.
349 const X86RegisterInfo &RegInfo =
350 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
352 // We expect to enter this at the beginning of a call sequence
353 assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
354 MachineBasicBlock::iterator FrameSetup = I++;
355 Context.FrameSetup = FrameSetup;
357 // How much do we adjust the stack? This puts an upper bound on
358 // the number of parameters actually passed on it.
359 unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
361 // A zero adjustment means no stack parameters
362 if (!MaxAdjust) {
363 Context.NoStackParams = true;
364 return;
367 // Skip over DEBUG_VALUE.
368 // For globals in PIC mode, we can have some LEAs here. Skip them as well.
369 // TODO: Extend this to something that covers more cases.
370 while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
371 ++I;
373 unsigned StackPtr = RegInfo.getStackRegister();
374 auto StackPtrCopyInst = MBB.end();
375 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
376 // register. If it's there, use that virtual register as stack pointer
377 // instead. Also, we need to locate this instruction so that we can later
378 // safely ignore it while doing the conservative processing of the call chain.
379 // The COPY can be located anywhere between the call-frame setup
380 // instruction and its first use. We use the call instruction as a boundary
381 // because it is usually cheaper to check if an instruction is a call than
382 // checking if an instruction uses a register.
383 for (auto J = I; !J->isCall(); ++J)
384 if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
385 J->getOperand(1).getReg() == StackPtr) {
386 StackPtrCopyInst = J;
387 Context.SPCopy = &*J++;
388 StackPtr = Context.SPCopy->getOperand(0).getReg();
389 break;
392 // Scan the call setup sequence for the pattern we're looking for.
393 // We only handle a simple case - a sequence of store instructions that
394 // push a sequence of stack-slot-aligned values onto the stack, with
395 // no gaps between them.
396 if (MaxAdjust > 4)
397 Context.ArgStoreVector.resize(MaxAdjust, nullptr);
399 DenseSet<unsigned int> UsedRegs;
401 for (InstClassification Classification = Skip; Classification != Exit; ++I) {
402 // If this is the COPY of the stack pointer, it's ok to ignore.
403 if (I == StackPtrCopyInst)
404 continue;
405 Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
406 if (Classification != Convert)
407 continue;
408 // We know the instruction has a supported store opcode.
409 // We only want movs of the form:
410 // mov imm/reg, k(%StackPtr)
411 // If we run into something else, bail.
412 // Note that AddrBaseReg may, counter to its name, not be a register,
413 // but rather a frame index.
414 // TODO: Support the fi case. This should probably work now that we
415 // have the infrastructure to track the stack pointer within a call
416 // sequence.
417 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
418 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
419 !I->getOperand(X86::AddrScaleAmt).isImm() ||
420 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
421 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
422 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
423 !I->getOperand(X86::AddrDisp).isImm())
424 return;
426 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
427 assert(StackDisp >= 0 &&
428 "Negative stack displacement when passing parameters");
430 // We really don't want to consider the unaligned case.
431 if (StackDisp & (SlotSize - 1))
432 return;
433 StackDisp >>= Log2SlotSize;
435 assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
436 "Function call has more parameters than the stack is adjusted for.");
438 // If the same stack slot is being filled twice, something's fishy.
439 if (Context.ArgStoreVector[StackDisp] != nullptr)
440 return;
441 Context.ArgStoreVector[StackDisp] = &*I;
443 for (const MachineOperand &MO : I->uses()) {
444 if (!MO.isReg())
445 continue;
446 unsigned int Reg = MO.getReg();
447 if (RegInfo.isPhysicalRegister(Reg))
448 UsedRegs.insert(Reg);
452 --I;
454 // We now expect the end of the sequence. If we stopped early,
455 // or reached the end of the block without finding a call, bail.
456 if (I == MBB.end() || !I->isCall())
457 return;
459 Context.Call = &*I;
460 if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
461 return;
463 // Now, go through the vector, and see that we don't have any gaps,
464 // but only a series of storing instructions.
465 auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
466 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
467 if (*MMI == nullptr)
468 break;
470 // If the call had no parameters, do nothing
471 if (MMI == Context.ArgStoreVector.begin())
472 return;
474 // We are either at the last parameter, or a gap.
475 // Make sure it's not a gap
476 for (; MMI != MME; ++MMI)
477 if (*MMI != nullptr)
478 return;
480 Context.UsePush = true;
483 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
484 const CallContext &Context) {
485 // Ok, we can in fact do the transformation for this call.
486 // Do not remove the FrameSetup instruction, but adjust the parameters.
487 // PEI will end up finalizing the handling of this.
488 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
489 MachineBasicBlock &MBB = *(FrameSetup->getParent());
490 TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
492 DebugLoc DL = FrameSetup->getDebugLoc();
493 bool Is64Bit = STI->is64Bit();
494 // Now, iterate through the vector in reverse order, and replace the store to
495 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
496 // replace uses.
497 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
498 MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
499 MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
500 MachineBasicBlock::iterator Push = nullptr;
501 unsigned PushOpcode;
502 switch (Store->getOpcode()) {
503 default:
504 llvm_unreachable("Unexpected Opcode!");
505 case X86::AND16mi8:
506 case X86::AND32mi8:
507 case X86::AND64mi8:
508 case X86::OR16mi8:
509 case X86::OR32mi8:
510 case X86::OR64mi8:
511 case X86::MOV32mi:
512 case X86::MOV64mi32:
513 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
514 // If the operand is a small (8-bit) immediate, we can use a
515 // PUSH instruction with a shorter encoding.
516 // Note that isImm() may fail even though this is a MOVmi, because
517 // the operand can also be a symbol.
518 if (PushOp.isImm()) {
519 int64_t Val = PushOp.getImm();
520 if (isInt<8>(Val))
521 PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
523 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
524 break;
525 case X86::MOV32mr:
526 case X86::MOV64mr: {
527 unsigned int Reg = PushOp.getReg();
529 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
530 // in preparation for the PUSH64. The upper 32 bits can be undef.
531 if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
532 unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
533 Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
534 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
535 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
536 .addReg(UndefReg)
537 .add(PushOp)
538 .addImm(X86::sub_32bit);
541 // If PUSHrmm is not slow on this target, try to fold the source of the
542 // push into the instruction.
543 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
545 // Check that this is legal to fold. Right now, we're extremely
546 // conservative about that.
547 MachineInstr *DefMov = nullptr;
548 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
549 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
550 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
552 unsigned NumOps = DefMov->getDesc().getNumOperands();
553 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
554 Push->addOperand(DefMov->getOperand(i));
556 DefMov->eraseFromParent();
557 } else {
558 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
559 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
560 .addReg(Reg)
561 .getInstr();
563 break;
567 // For debugging, when using SP-based CFA, we need to adjust the CFA
568 // offset after each push.
569 // TODO: This is needed only if we require precise CFA.
570 if (!TFL->hasFP(MF))
571 TFL->BuildCFI(
572 MBB, std::next(Push), DL,
573 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
575 MBB.erase(Store);
578 // The stack-pointer copy is no longer used in the call sequences.
579 // There should not be any other users, but we can't commit to that, so:
580 if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
581 Context.SPCopy->eraseFromParent();
583 // Once we've done this, we need to make sure PEI doesn't assume a reserved
584 // frame.
585 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
586 FuncInfo->setHasPushSequences(true);
589 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
590 MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
591 // Do an extremely restricted form of load folding.
592 // ISel will often create patterns like:
593 // movl 4(%edi), %eax
594 // movl 8(%edi), %ecx
595 // movl 12(%edi), %edx
596 // movl %edx, 8(%esp)
597 // movl %ecx, 4(%esp)
598 // movl %eax, (%esp)
599 // call
600 // Get rid of those with prejudice.
601 if (!TargetRegisterInfo::isVirtualRegister(Reg))
602 return nullptr;
604 // Make sure this is the only use of Reg.
605 if (!MRI->hasOneNonDBGUse(Reg))
606 return nullptr;
608 MachineInstr &DefMI = *MRI->getVRegDef(Reg);
610 // Make sure the def is a MOV from memory.
611 // If the def is in another block, give up.
612 if ((DefMI.getOpcode() != X86::MOV32rm &&
613 DefMI.getOpcode() != X86::MOV64rm) ||
614 DefMI.getParent() != FrameSetup->getParent())
615 return nullptr;
617 // Make sure we don't have any instructions between DefMI and the
618 // push that make folding the load illegal.
619 for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
620 if (I->isLoadFoldBarrier())
621 return nullptr;
623 return &DefMI;
626 FunctionPass *llvm::createX86CallFrameOptimization() {
627 return new X86CallFrameOptimization();