[ARM] MVE integer min and max
[llvm-core.git] / lib / Target / X86 / X86InstrInfo.h
blob13ca17139494867145c4553916731b15c5d80cd3
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include <vector>
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
26 namespace llvm {
27 class MachineInstrBuilder;
28 class X86RegisterInfo;
29 class X86Subtarget;
31 namespace X86 {
33 enum AsmComments {
34 // For instr that was compressed from EVEX to VEX.
35 AC_EVEX_2_VEX = MachineInstr::TAsmComments
38 /// Return a pair of condition code for the given predicate and whether
39 /// the instruction operands should be swaped to match the condition code.
40 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
42 /// Return a setcc opcode based on whether it has a memory operand.
43 unsigned getSETOpc(bool HasMemoryOperand = false);
45 /// Return a cmov opcode for the given register size in bytes, and operand type.
46 unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
48 // Turn jCC instruction into condition code.
49 CondCode getCondFromBranch(const MachineInstr &MI);
51 // Turn setCC instruction into condition code.
52 CondCode getCondFromSETCC(const MachineInstr &MI);
54 // Turn CMov instruction into condition code.
55 CondCode getCondFromCMov(const MachineInstr &MI);
57 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
58 /// e.g. turning COND_E to COND_NE.
59 CondCode GetOppositeBranchCondition(CondCode CC);
61 /// Get the VPCMP immediate for the given condition.
62 unsigned getVPCMPImmForCond(ISD::CondCode CC);
64 /// Get the VPCMP immediate if the opcodes are swapped.
65 unsigned getSwappedVPCMPImm(unsigned Imm);
67 /// Get the VPCOM immediate if the opcodes are swapped.
68 unsigned getSwappedVPCOMImm(unsigned Imm);
70 } // namespace X86
72 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
73 /// a reference to a stub for a global, not the global itself.
74 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
75 switch (TargetFlag) {
76 case X86II::MO_DLLIMPORT: // dllimport stub.
77 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
78 case X86II::MO_GOT: // normal GOT reference.
79 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
80 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
81 case X86II::MO_COFFSTUB: // COFF .refptr stub.
82 return true;
83 default:
84 return false;
88 /// isGlobalRelativeToPICBase - Return true if the specified global value
89 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
90 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
91 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
92 switch (TargetFlag) {
93 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
94 case X86II::MO_GOT: // isPICStyleGOT: other global.
95 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
96 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
97 case X86II::MO_TLVP: // ??? Pretty sure..
98 return true;
99 default:
100 return false;
104 inline static bool isScale(const MachineOperand &MO) {
105 return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
106 MO.getImm() == 4 || MO.getImm() == 8);
109 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
110 if (MI.getOperand(Op).isFI())
111 return true;
112 return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
113 MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
114 isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
115 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
116 (MI.getOperand(Op + X86::AddrDisp).isImm() ||
117 MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
118 MI.getOperand(Op + X86::AddrDisp).isCPI() ||
119 MI.getOperand(Op + X86::AddrDisp).isJTI());
122 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
123 if (MI.getOperand(Op).isFI())
124 return true;
125 return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
126 MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
129 class X86InstrInfo final : public X86GenInstrInfo {
130 X86Subtarget &Subtarget;
131 const X86RegisterInfo RI;
133 virtual void anchor();
135 bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
136 MachineBasicBlock *&FBB,
137 SmallVectorImpl<MachineOperand> &Cond,
138 SmallVectorImpl<MachineInstr *> &CondBranches,
139 bool AllowModify) const;
141 public:
142 explicit X86InstrInfo(X86Subtarget &STI);
144 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
145 /// such, whenever a client has an instance of instruction info, it should
146 /// always be able to get register info as well (through this method).
148 const X86RegisterInfo &getRegisterInfo() const { return RI; }
150 /// Returns the stack pointer adjustment that happens inside the frame
151 /// setup..destroy sequence (e.g. by pushes, or inside the callee).
152 int64_t getFrameAdjustment(const MachineInstr &I) const {
153 assert(isFrameInstr(I));
154 if (isFrameSetup(I))
155 return I.getOperand(2).getImm();
156 return I.getOperand(1).getImm();
159 /// Sets the stack pointer adjustment made inside the frame made up by this
160 /// instruction.
161 void setFrameAdjustment(MachineInstr &I, int64_t V) const {
162 assert(isFrameInstr(I));
163 if (isFrameSetup(I))
164 I.getOperand(2).setImm(V);
165 else
166 I.getOperand(1).setImm(V);
169 /// getSPAdjust - This returns the stack pointer adjustment made by
170 /// this instruction. For x86, we need to handle more complex call
171 /// sequences involving PUSHes.
172 int getSPAdjust(const MachineInstr &MI) const override;
174 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
175 /// extension instruction. That is, it's like a copy where it's legal for the
176 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
177 /// true, then it's expected the pre-extension value is available as a subreg
178 /// of the result register. This also returns the sub-register index in
179 /// SubIdx.
180 bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
181 unsigned &DstReg, unsigned &SubIdx) const override;
183 unsigned isLoadFromStackSlot(const MachineInstr &MI,
184 int &FrameIndex) const override;
185 unsigned isLoadFromStackSlot(const MachineInstr &MI,
186 int &FrameIndex,
187 unsigned &MemBytes) const override;
188 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
189 /// stack locations as well. This uses a heuristic so it isn't
190 /// reliable for correctness.
191 unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
192 int &FrameIndex) const override;
194 unsigned isStoreToStackSlot(const MachineInstr &MI,
195 int &FrameIndex) const override;
196 unsigned isStoreToStackSlot(const MachineInstr &MI,
197 int &FrameIndex,
198 unsigned &MemBytes) const override;
199 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
200 /// stack locations as well. This uses a heuristic so it isn't
201 /// reliable for correctness.
202 unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
203 int &FrameIndex) const override;
205 bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
206 AliasAnalysis *AA) const override;
207 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
208 unsigned DestReg, unsigned SubIdx,
209 const MachineInstr &Orig,
210 const TargetRegisterInfo &TRI) const override;
212 /// Given an operand within a MachineInstr, insert preceding code to put it
213 /// into the right format for a particular kind of LEA instruction. This may
214 /// involve using an appropriate super-register instead (with an implicit use
215 /// of the original) or creating a new virtual register and inserting COPY
216 /// instructions to get the data into the right class.
218 /// Reference parameters are set to indicate how caller should add this
219 /// operand to the LEA instruction.
220 bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
221 unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
222 bool &isKill, MachineOperand &ImplicitOp,
223 LiveVariables *LV) const;
225 /// convertToThreeAddress - This method must be implemented by targets that
226 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
227 /// may be able to convert a two-address instruction into a true
228 /// three-address instruction on demand. This allows the X86 target (for
229 /// example) to convert ADD and SHL instructions into LEA instructions if they
230 /// would require register copies due to two-addressness.
232 /// This method returns a null pointer if the transformation cannot be
233 /// performed, otherwise it returns the new instruction.
235 MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
236 MachineInstr &MI,
237 LiveVariables *LV) const override;
239 /// Returns true iff the routine could find two commutable operands in the
240 /// given machine instruction.
241 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
242 /// input values can be re-defined in this method only if the input values
243 /// are not pre-defined, which is designated by the special value
244 /// 'CommuteAnyOperandIndex' assigned to it.
245 /// If both of indices are pre-defined and refer to some operands, then the
246 /// method simply returns true if the corresponding operands are commutable
247 /// and returns false otherwise.
249 /// For example, calling this method this way:
250 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
251 /// findCommutedOpIndices(MI, Op1, Op2);
252 /// can be interpreted as a query asking to find an operand that would be
253 /// commutable with the operand#1.
254 bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
255 unsigned &SrcOpIdx2) const override;
257 /// Returns an adjusted FMA opcode that must be used in FMA instruction that
258 /// performs the same computations as the given \p MI but which has the
259 /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
260 /// It may return 0 if it is unsafe to commute the operands.
261 /// Note that a machine instruction (instead of its opcode) is passed as the
262 /// first parameter to make it possible to analyze the instruction's uses and
263 /// commute the first operand of FMA even when it seems unsafe when you look
264 /// at the opcode. For example, it is Ok to commute the first operand of
265 /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
267 /// The returned FMA opcode may differ from the opcode in the given \p MI.
268 /// For example, commuting the operands #1 and #3 in the following FMA
269 /// FMA213 #1, #2, #3
270 /// results into instruction with adjusted opcode:
271 /// FMA231 #3, #2, #1
272 unsigned
273 getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
274 unsigned SrcOpIdx2,
275 const X86InstrFMA3Group &FMA3Group) const;
277 // Branch analysis.
278 bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
279 bool isUnconditionalTailCall(const MachineInstr &MI) const override;
280 bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
281 const MachineInstr &TailCall) const override;
282 void replaceBranchWithTailCall(MachineBasicBlock &MBB,
283 SmallVectorImpl<MachineOperand> &Cond,
284 const MachineInstr &TailCall) const override;
286 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
287 MachineBasicBlock *&FBB,
288 SmallVectorImpl<MachineOperand> &Cond,
289 bool AllowModify) const override;
291 bool getMemOperandWithOffset(const MachineInstr &LdSt,
292 const MachineOperand *&BaseOp,
293 int64_t &Offset,
294 const TargetRegisterInfo *TRI) const override;
295 bool analyzeBranchPredicate(MachineBasicBlock &MBB,
296 TargetInstrInfo::MachineBranchPredicate &MBP,
297 bool AllowModify = false) const override;
299 unsigned removeBranch(MachineBasicBlock &MBB,
300 int *BytesRemoved = nullptr) const override;
301 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
302 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
303 const DebugLoc &DL,
304 int *BytesAdded = nullptr) const override;
305 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
306 unsigned, unsigned, int &, int &, int &) const override;
307 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
308 const DebugLoc &DL, unsigned DstReg,
309 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
310 unsigned FalseReg) const override;
311 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
312 const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
313 bool KillSrc) const override;
314 void storeRegToStackSlot(MachineBasicBlock &MBB,
315 MachineBasicBlock::iterator MI, unsigned SrcReg,
316 bool isKill, int FrameIndex,
317 const TargetRegisterClass *RC,
318 const TargetRegisterInfo *TRI) const override;
320 void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
321 SmallVectorImpl<MachineOperand> &Addr,
322 const TargetRegisterClass *RC,
323 ArrayRef<MachineMemOperand *> MMOs,
324 SmallVectorImpl<MachineInstr *> &NewMIs) const;
326 void loadRegFromStackSlot(MachineBasicBlock &MBB,
327 MachineBasicBlock::iterator MI, unsigned DestReg,
328 int FrameIndex, const TargetRegisterClass *RC,
329 const TargetRegisterInfo *TRI) const override;
331 void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
332 SmallVectorImpl<MachineOperand> &Addr,
333 const TargetRegisterClass *RC,
334 ArrayRef<MachineMemOperand *> MMOs,
335 SmallVectorImpl<MachineInstr *> &NewMIs) const;
337 bool expandPostRAPseudo(MachineInstr &MI) const override;
339 /// Check whether the target can fold a load that feeds a subreg operand
340 /// (or a subreg operand that feeds a store).
341 bool isSubregFoldable() const override { return true; }
343 /// foldMemoryOperand - If this target supports it, fold a load or store of
344 /// the specified stack slot into the specified machine instruction for the
345 /// specified operand(s). If this is possible, the target should perform the
346 /// folding and return true, otherwise it should return false. If it folds
347 /// the instruction, it is likely that the MachineInstruction the iterator
348 /// references has been changed.
349 MachineInstr *
350 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
351 ArrayRef<unsigned> Ops,
352 MachineBasicBlock::iterator InsertPt, int FrameIndex,
353 LiveIntervals *LIS = nullptr,
354 VirtRegMap *VRM = nullptr) const override;
356 /// foldMemoryOperand - Same as the previous version except it allows folding
357 /// of any load and store from / to any address, not just from a specific
358 /// stack slot.
359 MachineInstr *foldMemoryOperandImpl(
360 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
361 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
362 LiveIntervals *LIS = nullptr) const override;
364 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
365 /// a store or a load and a store into two or more instruction. If this is
366 /// possible, returns true as well as the new instructions by reference.
367 bool
368 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
369 bool UnfoldLoad, bool UnfoldStore,
370 SmallVectorImpl<MachineInstr *> &NewMIs) const override;
372 bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
373 SmallVectorImpl<SDNode *> &NewNodes) const override;
375 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
376 /// instruction after load / store are unfolded from an instruction of the
377 /// specified opcode. It returns zero if the specified unfolding is not
378 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
379 /// index of the operand which will hold the register holding the loaded
380 /// value.
381 unsigned
382 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
383 unsigned *LoadRegIndex = nullptr) const override;
385 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
386 /// to determine if two loads are loading from the same base address. It
387 /// should only return true if the base pointers are the same and the
388 /// only differences between the two addresses are the offset. It also returns
389 /// the offsets by reference.
390 bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
391 int64_t &Offset2) const override;
393 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
394 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
395 /// should be scheduled togther. On some targets if two loads are loading from
396 /// addresses in the same cache line, it's better if they are scheduled
397 /// together. This function takes two integers that represent the load offsets
398 /// from the common base address. It returns true if it decides it's desirable
399 /// to schedule the two loads together. "NumLoads" is the number of loads that
400 /// have already been scheduled after Load1.
401 bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
402 int64_t Offset2,
403 unsigned NumLoads) const override;
405 void getNoop(MCInst &NopInst) const override;
407 bool
408 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
410 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
411 /// instruction that defines the specified register class.
412 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
414 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
415 /// would clobber the EFLAGS condition register. Note the result may be
416 /// conservative. If it cannot definitely determine the safety after visiting
417 /// a few instructions in each direction it assumes it's not safe.
418 bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
419 MachineBasicBlock::iterator I) const {
420 return MBB.computeRegisterLiveness(&RI, X86::EFLAGS, I, 4) ==
421 MachineBasicBlock::LQR_Dead;
424 /// True if MI has a condition code def, e.g. EFLAGS, that is
425 /// not marked dead.
426 bool hasLiveCondCodeDef(MachineInstr &MI) const;
428 /// getGlobalBaseReg - Return a virtual register initialized with the
429 /// the global base register value. Output instructions required to
430 /// initialize the register in the function entry block, if necessary.
432 unsigned getGlobalBaseReg(MachineFunction *MF) const;
434 std::pair<uint16_t, uint16_t>
435 getExecutionDomain(const MachineInstr &MI) const override;
437 uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
439 void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
441 bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
443 unsigned
444 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
445 const TargetRegisterInfo *TRI) const override;
446 unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
447 const TargetRegisterInfo *TRI) const override;
448 void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
449 const TargetRegisterInfo *TRI) const override;
451 MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
452 unsigned OpNum,
453 ArrayRef<MachineOperand> MOs,
454 MachineBasicBlock::iterator InsertPt,
455 unsigned Size, unsigned Alignment,
456 bool AllowCommute) const;
458 bool isHighLatencyDef(int opc) const override;
460 bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
461 const MachineRegisterInfo *MRI,
462 const MachineInstr &DefMI, unsigned DefIdx,
463 const MachineInstr &UseMI,
464 unsigned UseIdx) const override;
466 bool useMachineCombiner() const override { return true; }
468 bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
470 bool hasReassociableOperands(const MachineInstr &Inst,
471 const MachineBasicBlock *MBB) const override;
473 void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
474 MachineInstr &NewMI1,
475 MachineInstr &NewMI2) const override;
477 /// analyzeCompare - For a comparison instruction, return the source registers
478 /// in SrcReg and SrcReg2 if having two register operands, and the value it
479 /// compares against in CmpValue. Return true if the comparison instruction
480 /// can be analyzed.
481 bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
482 unsigned &SrcReg2, int &CmpMask,
483 int &CmpValue) const override;
485 /// optimizeCompareInstr - Check if there exists an earlier instruction that
486 /// operates on the same source operands and sets flags in the same way as
487 /// Compare; remove Compare if possible.
488 bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
489 unsigned SrcReg2, int CmpMask, int CmpValue,
490 const MachineRegisterInfo *MRI) const override;
492 /// optimizeLoadInstr - Try to remove the load by folding it to a register
493 /// operand at the use. We fold the load instructions if and only if the
494 /// def and use are in the same BB. We only look at one load and see
495 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
496 /// defined by the load we are trying to fold. DefMI returns the machine
497 /// instruction that defines FoldAsLoadDefReg, and the function returns
498 /// the machine instruction generated due to folding.
499 MachineInstr *optimizeLoadInstr(MachineInstr &MI,
500 const MachineRegisterInfo *MRI,
501 unsigned &FoldAsLoadDefReg,
502 MachineInstr *&DefMI) const override;
504 std::pair<unsigned, unsigned>
505 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
507 ArrayRef<std::pair<unsigned, const char *>>
508 getSerializableDirectMachineOperandTargetFlags() const override;
510 virtual outliner::OutlinedFunction getOutliningCandidateInfo(
511 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
513 bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
514 bool OutlineFromLinkOnceODRs) const override;
516 outliner::InstrType
517 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
519 void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
520 const outliner::OutlinedFunction &OF) const override;
522 MachineBasicBlock::iterator
523 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
524 MachineBasicBlock::iterator &It, MachineFunction &MF,
525 const outliner::Candidate &C) const override;
527 #define GET_INSTRINFO_HELPER_DECLS
528 #include "X86GenInstrInfo.inc"
530 protected:
531 /// Commutes the operands in the given instruction by changing the operands
532 /// order and/or changing the instruction's opcode and/or the immediate value
533 /// operand.
535 /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
536 /// to be commuted.
538 /// Do not call this method for a non-commutable instruction or
539 /// non-commutable operands.
540 /// Even though the instruction is commutable, the method may still
541 /// fail to commute the operands, null pointer is returned in such cases.
542 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
543 unsigned CommuteOpIdx1,
544 unsigned CommuteOpIdx2) const override;
546 /// If the specific machine instruction is a instruction that moves/copies
547 /// value from one register to another register return true along with
548 /// @Source machine operand and @Destination machine operand.
549 bool isCopyInstrImpl(const MachineInstr &MI, const MachineOperand *&Source,
550 const MachineOperand *&Destination) const override;
552 private:
553 /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
554 /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
555 /// super-register and then truncating back down to a 8/16-bit sub-register.
556 MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
557 MachineFunction::iterator &MFI,
558 MachineInstr &MI,
559 LiveVariables *LV,
560 bool Is8BitOp) const;
562 /// Handles memory folding for special case instructions, for instance those
563 /// requiring custom manipulation of the address.
564 MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
565 unsigned OpNum,
566 ArrayRef<MachineOperand> MOs,
567 MachineBasicBlock::iterator InsertPt,
568 unsigned Size, unsigned Align) const;
570 /// isFrameOperand - Return true and the FrameIndex if the specified
571 /// operand and follow operands form a reference to the stack frame.
572 bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
573 int &FrameIndex) const;
575 /// Returns true iff the routine could find two commutable operands in the
576 /// given machine instruction with 3 vector inputs.
577 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
578 /// input values can be re-defined in this method only if the input values
579 /// are not pre-defined, which is designated by the special value
580 /// 'CommuteAnyOperandIndex' assigned to it.
581 /// If both of indices are pre-defined and refer to some operands, then the
582 /// method simply returns true if the corresponding operands are commutable
583 /// and returns false otherwise.
585 /// For example, calling this method this way:
586 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
587 /// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
588 /// can be interpreted as a query asking to find an operand that would be
589 /// commutable with the operand#1.
591 /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
592 bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
593 unsigned &SrcOpIdx1,
594 unsigned &SrcOpIdx2,
595 bool IsIntrinsic = false) const;
598 } // namespace llvm
600 #endif