1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass that performs some optimizations with LEA
10 // instructions in order to improve performance and code size.
11 // Currently, it does two things:
12 // 1) If there are two LEA instructions calculating addresses which only differ
13 // by displacement inside a basic block, one of them is removed.
14 // 2) Address calculations in load and store instructions are replaced by
15 // existing LEA def registers where possible.
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseMapInfo.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
52 #define DEBUG_TYPE "x86-optimize-LEAs"
55 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden
,
56 cl::desc("X86: Disable LEA optimizations."),
59 STATISTIC(NumSubstLEAs
, "Number of LEA instruction substitutions");
60 STATISTIC(NumRedundantLEAs
, "Number of redundant LEA instructions removed");
62 /// Returns true if two machine operands are identical and they are not
63 /// physical registers.
64 static inline bool isIdenticalOp(const MachineOperand
&MO1
,
65 const MachineOperand
&MO2
);
67 /// Returns true if two address displacement operands are of the same
68 /// type and use the same symbol/index/address regardless of the offset.
69 static bool isSimilarDispOp(const MachineOperand
&MO1
,
70 const MachineOperand
&MO2
);
72 /// Returns true if the instruction is LEA.
73 static inline bool isLEA(const MachineInstr
&MI
);
77 /// A key based on instruction's memory operands.
80 MemOpKey(const MachineOperand
*Base
, const MachineOperand
*Scale
,
81 const MachineOperand
*Index
, const MachineOperand
*Segment
,
82 const MachineOperand
*Disp
)
87 Operands
[3] = Segment
;
90 bool operator==(const MemOpKey
&Other
) const {
91 // Addresses' bases, scales, indices and segments must be identical.
92 for (int i
= 0; i
< 4; ++i
)
93 if (!isIdenticalOp(*Operands
[i
], *Other
.Operands
[i
]))
96 // Addresses' displacements don't have to be exactly the same. It only
97 // matters that they use the same symbol/index/address. Immediates' or
98 // offsets' differences will be taken care of during instruction
100 return isSimilarDispOp(*Disp
, *Other
.Disp
);
103 // Address' base, scale, index and segment operands.
104 const MachineOperand
*Operands
[4];
106 // Address' displacement operand.
107 const MachineOperand
*Disp
;
110 } // end anonymous namespace
112 /// Provide DenseMapInfo for MemOpKey.
115 template <> struct DenseMapInfo
<MemOpKey
> {
116 using PtrInfo
= DenseMapInfo
<const MachineOperand
*>;
118 static inline MemOpKey
getEmptyKey() {
119 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
120 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
121 PtrInfo::getEmptyKey());
124 static inline MemOpKey
getTombstoneKey() {
125 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
126 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
127 PtrInfo::getTombstoneKey());
130 static unsigned getHashValue(const MemOpKey
&Val
) {
131 // Checking any field of MemOpKey is enough to determine if the key is
132 // empty or tombstone.
133 assert(Val
.Disp
!= PtrInfo::getEmptyKey() && "Cannot hash the empty key");
134 assert(Val
.Disp
!= PtrInfo::getTombstoneKey() &&
135 "Cannot hash the tombstone key");
137 hash_code Hash
= hash_combine(*Val
.Operands
[0], *Val
.Operands
[1],
138 *Val
.Operands
[2], *Val
.Operands
[3]);
140 // If the address displacement is an immediate, it should not affect the
141 // hash so that memory operands which differ only be immediate displacement
142 // would have the same hash. If the address displacement is something else,
143 // we should reflect symbol/index/address in the hash.
144 switch (Val
.Disp
->getType()) {
145 case MachineOperand::MO_Immediate
:
147 case MachineOperand::MO_ConstantPoolIndex
:
148 case MachineOperand::MO_JumpTableIndex
:
149 Hash
= hash_combine(Hash
, Val
.Disp
->getIndex());
151 case MachineOperand::MO_ExternalSymbol
:
152 Hash
= hash_combine(Hash
, Val
.Disp
->getSymbolName());
154 case MachineOperand::MO_GlobalAddress
:
155 Hash
= hash_combine(Hash
, Val
.Disp
->getGlobal());
157 case MachineOperand::MO_BlockAddress
:
158 Hash
= hash_combine(Hash
, Val
.Disp
->getBlockAddress());
160 case MachineOperand::MO_MCSymbol
:
161 Hash
= hash_combine(Hash
, Val
.Disp
->getMCSymbol());
163 case MachineOperand::MO_MachineBasicBlock
:
164 Hash
= hash_combine(Hash
, Val
.Disp
->getMBB());
167 llvm_unreachable("Invalid address displacement operand");
170 return (unsigned)Hash
;
173 static bool isEqual(const MemOpKey
&LHS
, const MemOpKey
&RHS
) {
174 // Checking any field of MemOpKey is enough to determine if the key is
175 // empty or tombstone.
176 if (RHS
.Disp
== PtrInfo::getEmptyKey())
177 return LHS
.Disp
== PtrInfo::getEmptyKey();
178 if (RHS
.Disp
== PtrInfo::getTombstoneKey())
179 return LHS
.Disp
== PtrInfo::getTombstoneKey();
184 } // end namespace llvm
186 /// Returns a hash table key based on memory operands of \p MI. The
187 /// number of the first memory operand of \p MI is specified through \p N.
188 static inline MemOpKey
getMemOpKey(const MachineInstr
&MI
, unsigned N
) {
189 assert((isLEA(MI
) || MI
.mayLoadOrStore()) &&
190 "The instruction must be a LEA, a load or a store");
191 return MemOpKey(&MI
.getOperand(N
+ X86::AddrBaseReg
),
192 &MI
.getOperand(N
+ X86::AddrScaleAmt
),
193 &MI
.getOperand(N
+ X86::AddrIndexReg
),
194 &MI
.getOperand(N
+ X86::AddrSegmentReg
),
195 &MI
.getOperand(N
+ X86::AddrDisp
));
198 static inline bool isIdenticalOp(const MachineOperand
&MO1
,
199 const MachineOperand
&MO2
) {
200 return MO1
.isIdenticalTo(MO2
) &&
202 !TargetRegisterInfo::isPhysicalRegister(MO1
.getReg()));
206 static bool isValidDispOp(const MachineOperand
&MO
) {
207 return MO
.isImm() || MO
.isCPI() || MO
.isJTI() || MO
.isSymbol() ||
208 MO
.isGlobal() || MO
.isBlockAddress() || MO
.isMCSymbol() || MO
.isMBB();
212 static bool isSimilarDispOp(const MachineOperand
&MO1
,
213 const MachineOperand
&MO2
) {
214 assert(isValidDispOp(MO1
) && isValidDispOp(MO2
) &&
215 "Address displacement operand is not valid");
216 return (MO1
.isImm() && MO2
.isImm()) ||
217 (MO1
.isCPI() && MO2
.isCPI() && MO1
.getIndex() == MO2
.getIndex()) ||
218 (MO1
.isJTI() && MO2
.isJTI() && MO1
.getIndex() == MO2
.getIndex()) ||
219 (MO1
.isSymbol() && MO2
.isSymbol() &&
220 MO1
.getSymbolName() == MO2
.getSymbolName()) ||
221 (MO1
.isGlobal() && MO2
.isGlobal() &&
222 MO1
.getGlobal() == MO2
.getGlobal()) ||
223 (MO1
.isBlockAddress() && MO2
.isBlockAddress() &&
224 MO1
.getBlockAddress() == MO2
.getBlockAddress()) ||
225 (MO1
.isMCSymbol() && MO2
.isMCSymbol() &&
226 MO1
.getMCSymbol() == MO2
.getMCSymbol()) ||
227 (MO1
.isMBB() && MO2
.isMBB() && MO1
.getMBB() == MO2
.getMBB());
230 static inline bool isLEA(const MachineInstr
&MI
) {
231 unsigned Opcode
= MI
.getOpcode();
232 return Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
||
233 Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
;
238 class OptimizeLEAPass
: public MachineFunctionPass
{
240 OptimizeLEAPass() : MachineFunctionPass(ID
) {}
242 StringRef
getPassName() const override
{ return "X86 LEA Optimize"; }
244 /// Loop over all of the basic blocks, replacing address
245 /// calculations in load and store instructions, if it's already
246 /// been calculated by LEA. Also, remove redundant LEAs.
247 bool runOnMachineFunction(MachineFunction
&MF
) override
;
250 using MemOpMap
= DenseMap
<MemOpKey
, SmallVector
<MachineInstr
*, 16>>;
252 /// Returns a distance between two instructions inside one basic block.
253 /// Negative result means, that instructions occur in reverse order.
254 int calcInstrDist(const MachineInstr
&First
, const MachineInstr
&Last
);
256 /// Choose the best \p LEA instruction from the \p List to replace
257 /// address calculation in \p MI instruction. Return the address displacement
258 /// and the distance between \p MI and the chosen \p BestLEA in
259 /// \p AddrDispShift and \p Dist.
260 bool chooseBestLEA(const SmallVectorImpl
<MachineInstr
*> &List
,
261 const MachineInstr
&MI
, MachineInstr
*&BestLEA
,
262 int64_t &AddrDispShift
, int &Dist
);
264 /// Returns the difference between addresses' displacements of \p MI1
265 /// and \p MI2. The numbers of the first memory operands for the instructions
266 /// are specified through \p N1 and \p N2.
267 int64_t getAddrDispShift(const MachineInstr
&MI1
, unsigned N1
,
268 const MachineInstr
&MI2
, unsigned N2
) const;
270 /// Returns true if the \p Last LEA instruction can be replaced by the
271 /// \p First. The difference between displacements of the addresses calculated
272 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
273 /// replacement of the \p Last LEA's uses with the \p First's def register.
274 bool isReplaceable(const MachineInstr
&First
, const MachineInstr
&Last
,
275 int64_t &AddrDispShift
) const;
277 /// Find all LEA instructions in the basic block. Also, assign position
278 /// numbers to all instructions in the basic block to speed up calculation of
279 /// distance between them.
280 void findLEAs(const MachineBasicBlock
&MBB
, MemOpMap
&LEAs
);
282 /// Removes redundant address calculations.
283 bool removeRedundantAddrCalc(MemOpMap
&LEAs
);
285 /// Replace debug value MI with a new debug value instruction using register
286 /// VReg with an appropriate offset and DIExpression to incorporate the
287 /// address displacement AddrDispShift. Return new debug value instruction.
288 MachineInstr
*replaceDebugValue(MachineInstr
&MI
, unsigned VReg
,
289 int64_t AddrDispShift
);
291 /// Removes LEAs which calculate similar addresses.
292 bool removeRedundantLEAs(MemOpMap
&LEAs
);
294 DenseMap
<const MachineInstr
*, unsigned> InstrPos
;
296 MachineRegisterInfo
*MRI
;
297 const X86InstrInfo
*TII
;
298 const X86RegisterInfo
*TRI
;
303 } // end anonymous namespace
305 char OptimizeLEAPass::ID
= 0;
307 FunctionPass
*llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
309 int OptimizeLEAPass::calcInstrDist(const MachineInstr
&First
,
310 const MachineInstr
&Last
) {
311 // Both instructions must be in the same basic block and they must be
312 // presented in InstrPos.
313 assert(Last
.getParent() == First
.getParent() &&
314 "Instructions are in different basic blocks");
315 assert(InstrPos
.find(&First
) != InstrPos
.end() &&
316 InstrPos
.find(&Last
) != InstrPos
.end() &&
317 "Instructions' positions are undefined");
319 return InstrPos
[&Last
] - InstrPos
[&First
];
322 // Find the best LEA instruction in the List to replace address recalculation in
323 // MI. Such LEA must meet these requirements:
324 // 1) The address calculated by the LEA differs only by the displacement from
325 // the address used in MI.
326 // 2) The register class of the definition of the LEA is compatible with the
327 // register class of the address base register of MI.
328 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
329 // 4) The LEA should be as close to MI as possible, and prior to it if
331 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl
<MachineInstr
*> &List
,
332 const MachineInstr
&MI
,
333 MachineInstr
*&BestLEA
,
334 int64_t &AddrDispShift
, int &Dist
) {
335 const MachineFunction
*MF
= MI
.getParent()->getParent();
336 const MCInstrDesc
&Desc
= MI
.getDesc();
337 int MemOpNo
= X86II::getMemoryOperandNo(Desc
.TSFlags
) +
338 X86II::getOperandBias(Desc
);
342 // Loop over all LEA instructions.
343 for (auto DefMI
: List
) {
344 // Get new address displacement.
345 int64_t AddrDispShiftTemp
= getAddrDispShift(MI
, MemOpNo
, *DefMI
, 1);
347 // Make sure address displacement fits 4 bytes.
348 if (!isInt
<32>(AddrDispShiftTemp
))
351 // Check that LEA def register can be used as MI address base. Some
352 // instructions can use a limited set of registers as address base, for
353 // example MOV8mr_NOREX. We could constrain the register class of the LEA
354 // def to suit MI, however since this case is very rare and hard to
355 // reproduce in a test it's just more reliable to skip the LEA.
356 if (TII
->getRegClass(Desc
, MemOpNo
+ X86::AddrBaseReg
, TRI
, *MF
) !=
357 MRI
->getRegClass(DefMI
->getOperand(0).getReg()))
360 // Choose the closest LEA instruction from the list, prior to MI if
361 // possible. Note that we took into account resulting address displacement
362 // as well. Also note that the list is sorted by the order in which the LEAs
363 // occur, so the break condition is pretty simple.
364 int DistTemp
= calcInstrDist(*DefMI
, MI
);
365 assert(DistTemp
!= 0 &&
366 "The distance between two different instructions cannot be zero");
367 if (DistTemp
> 0 || BestLEA
== nullptr) {
368 // Do not update return LEA, if the current one provides a displacement
369 // which fits in 1 byte, while the new candidate does not.
370 if (BestLEA
!= nullptr && !isInt
<8>(AddrDispShiftTemp
) &&
371 isInt
<8>(AddrDispShift
))
375 AddrDispShift
= AddrDispShiftTemp
;
379 // FIXME: Maybe we should not always stop at the first LEA after MI.
384 return BestLEA
!= nullptr;
387 // Get the difference between the addresses' displacements of the two
388 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
389 // passed through \p N1 and \p N2.
390 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr
&MI1
, unsigned N1
,
391 const MachineInstr
&MI2
,
393 const MachineOperand
&Op1
= MI1
.getOperand(N1
+ X86::AddrDisp
);
394 const MachineOperand
&Op2
= MI2
.getOperand(N2
+ X86::AddrDisp
);
396 assert(isSimilarDispOp(Op1
, Op2
) &&
397 "Address displacement operands are not compatible");
399 // After the assert above we can be sure that both operands are of the same
400 // valid type and use the same symbol/index/address, thus displacement shift
401 // calculation is rather simple.
404 return Op1
.isImm() ? Op1
.getImm() - Op2
.getImm()
405 : Op1
.getOffset() - Op2
.getOffset();
408 // Check that the Last LEA can be replaced by the First LEA. To be so,
409 // these requirements must be met:
410 // 1) Addresses calculated by LEAs differ only by displacement.
411 // 2) Def registers of LEAs belong to the same class.
412 // 3) All uses of the Last LEA def register are replaceable, thus the
413 // register is used only as address base.
414 bool OptimizeLEAPass::isReplaceable(const MachineInstr
&First
,
415 const MachineInstr
&Last
,
416 int64_t &AddrDispShift
) const {
417 assert(isLEA(First
) && isLEA(Last
) &&
418 "The function works only with LEA instructions");
420 // Make sure that LEA def registers belong to the same class. There may be
421 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
422 // be used as their operands, so we must be sure that replacing one LEA
423 // with another won't lead to putting a wrong register in the instruction.
424 if (MRI
->getRegClass(First
.getOperand(0).getReg()) !=
425 MRI
->getRegClass(Last
.getOperand(0).getReg()))
428 // Get new address displacement.
429 AddrDispShift
= getAddrDispShift(Last
, 1, First
, 1);
431 // Loop over all uses of the Last LEA to check that its def register is
432 // used only as address base for memory accesses. If so, it can be
433 // replaced, otherwise - no.
434 for (auto &MO
: MRI
->use_nodbg_operands(Last
.getOperand(0).getReg())) {
435 MachineInstr
&MI
= *MO
.getParent();
437 // Get the number of the first memory operand.
438 const MCInstrDesc
&Desc
= MI
.getDesc();
439 int MemOpNo
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
441 // If the use instruction has no memory operand - the LEA is not
446 MemOpNo
+= X86II::getOperandBias(Desc
);
448 // If the address base of the use instruction is not the LEA def register -
449 // the LEA is not replaceable.
450 if (!isIdenticalOp(MI
.getOperand(MemOpNo
+ X86::AddrBaseReg
), MO
))
453 // If the LEA def register is used as any other operand of the use
454 // instruction - the LEA is not replaceable.
455 for (unsigned i
= 0; i
< MI
.getNumOperands(); i
++)
456 if (i
!= (unsigned)(MemOpNo
+ X86::AddrBaseReg
) &&
457 isIdenticalOp(MI
.getOperand(i
), MO
))
460 // Check that the new address displacement will fit 4 bytes.
461 if (MI
.getOperand(MemOpNo
+ X86::AddrDisp
).isImm() &&
462 !isInt
<32>(MI
.getOperand(MemOpNo
+ X86::AddrDisp
).getImm() +
470 void OptimizeLEAPass::findLEAs(const MachineBasicBlock
&MBB
, MemOpMap
&LEAs
) {
472 for (auto &MI
: MBB
) {
473 // Assign the position number to the instruction. Note that we are going to
474 // move some instructions during the optimization however there will never
475 // be a need to move two instructions before any selected instruction. So to
476 // avoid multiple positions' updates during moves we just increase position
477 // counter by two leaving a free space for instructions which will be moved.
478 InstrPos
[&MI
] = Pos
+= 2;
481 LEAs
[getMemOpKey(MI
, 1)].push_back(const_cast<MachineInstr
*>(&MI
));
485 // Try to find load and store instructions which recalculate addresses already
486 // calculated by some LEA and replace their memory operands with its def
488 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap
&LEAs
) {
489 bool Changed
= false;
491 assert(!LEAs
.empty());
492 MachineBasicBlock
*MBB
= (*LEAs
.begin()->second
.begin())->getParent();
494 // Process all instructions in basic block.
495 for (auto I
= MBB
->begin(), E
= MBB
->end(); I
!= E
;) {
496 MachineInstr
&MI
= *I
++;
498 // Instruction must be load or store.
499 if (!MI
.mayLoadOrStore())
502 // Get the number of the first memory operand.
503 const MCInstrDesc
&Desc
= MI
.getDesc();
504 int MemOpNo
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
506 // If instruction has no memory operand - skip it.
510 MemOpNo
+= X86II::getOperandBias(Desc
);
512 // Do not call chooseBestLEA if there was no matching LEA
513 auto Insns
= LEAs
.find(getMemOpKey(MI
, MemOpNo
));
514 if (Insns
== LEAs
.end())
517 // Get the best LEA instruction to replace address calculation.
519 int64_t AddrDispShift
;
521 if (!chooseBestLEA(Insns
->second
, MI
, DefMI
, AddrDispShift
, Dist
))
524 // If LEA occurs before current instruction, we can freely replace
525 // the instruction. If LEA occurs after, we can lift LEA above the
526 // instruction and this way to be able to replace it. Since LEA and the
527 // instruction have similar memory operands (thus, the same def
528 // instructions for these operands), we can always do that, without
529 // worries of using registers before their defs.
531 DefMI
->removeFromParent();
532 MBB
->insert(MachineBasicBlock::iterator(&MI
), DefMI
);
533 InstrPos
[DefMI
] = InstrPos
[&MI
] - 1;
535 // Make sure the instructions' position numbers are sane.
536 assert(((InstrPos
[DefMI
] == 1 &&
537 MachineBasicBlock::iterator(DefMI
) == MBB
->begin()) ||
539 InstrPos
[&*std::prev(MachineBasicBlock::iterator(DefMI
))]) &&
540 "Instruction positioning is broken");
543 // Since we can possibly extend register lifetime, clear kill flags.
544 MRI
->clearKillFlags(DefMI
->getOperand(0).getReg());
547 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI
.dump(););
549 // Change instruction operands.
550 MI
.getOperand(MemOpNo
+ X86::AddrBaseReg
)
551 .ChangeToRegister(DefMI
->getOperand(0).getReg(), false);
552 MI
.getOperand(MemOpNo
+ X86::AddrScaleAmt
).ChangeToImmediate(1);
553 MI
.getOperand(MemOpNo
+ X86::AddrIndexReg
)
554 .ChangeToRegister(X86::NoRegister
, false);
555 MI
.getOperand(MemOpNo
+ X86::AddrDisp
).ChangeToImmediate(AddrDispShift
);
556 MI
.getOperand(MemOpNo
+ X86::AddrSegmentReg
)
557 .ChangeToRegister(X86::NoRegister
, false);
559 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI
.dump(););
567 MachineInstr
*OptimizeLEAPass::replaceDebugValue(MachineInstr
&MI
,
569 int64_t AddrDispShift
) {
570 DIExpression
*Expr
= const_cast<DIExpression
*>(MI
.getDebugExpression());
571 if (AddrDispShift
!= 0)
572 Expr
= DIExpression::prepend(Expr
, DIExpression::StackValue
, AddrDispShift
);
574 // Replace DBG_VALUE instruction with modified version.
575 MachineBasicBlock
*MBB
= MI
.getParent();
576 DebugLoc DL
= MI
.getDebugLoc();
577 bool IsIndirect
= MI
.isIndirectDebugValue();
578 const MDNode
*Var
= MI
.getDebugVariable();
580 assert(MI
.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
581 return BuildMI(*MBB
, MBB
->erase(&MI
), DL
, TII
->get(TargetOpcode::DBG_VALUE
),
582 IsIndirect
, VReg
, Var
, Expr
);
585 // Try to find similar LEAs in the list and replace one with another.
586 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap
&LEAs
) {
587 bool Changed
= false;
589 // Loop over all entries in the table.
590 for (auto &E
: LEAs
) {
591 auto &List
= E
.second
;
593 // Loop over all LEA pairs.
594 auto I1
= List
.begin();
595 while (I1
!= List
.end()) {
596 MachineInstr
&First
= **I1
;
597 auto I2
= std::next(I1
);
598 while (I2
!= List
.end()) {
599 MachineInstr
&Last
= **I2
;
600 int64_t AddrDispShift
;
602 // LEAs should be in occurrence order in the list, so we can freely
603 // replace later LEAs with earlier ones.
604 assert(calcInstrDist(First
, Last
) > 0 &&
605 "LEAs must be in occurrence order in the list");
607 // Check that the Last LEA instruction can be replaced by the First.
608 if (!isReplaceable(First
, Last
, AddrDispShift
)) {
613 // Loop over all uses of the Last LEA and update their operands. Note
614 // that the correctness of this has already been checked in the
615 // isReplaceable function.
616 unsigned FirstVReg
= First
.getOperand(0).getReg();
617 unsigned LastVReg
= Last
.getOperand(0).getReg();
618 for (auto UI
= MRI
->use_begin(LastVReg
), UE
= MRI
->use_end();
620 MachineOperand
&MO
= *UI
++;
621 MachineInstr
&MI
= *MO
.getParent();
623 if (MI
.isDebugValue()) {
624 // Replace DBG_VALUE instruction with modified version using the
625 // register from the replacing LEA and the address displacement
626 // between the LEA instructions.
627 replaceDebugValue(MI
, FirstVReg
, AddrDispShift
);
631 // Get the number of the first memory operand.
632 const MCInstrDesc
&Desc
= MI
.getDesc();
634 X86II::getMemoryOperandNo(Desc
.TSFlags
) +
635 X86II::getOperandBias(Desc
);
637 // Update address base.
638 MO
.setReg(FirstVReg
);
640 // Update address disp.
641 MachineOperand
&Op
= MI
.getOperand(MemOpNo
+ X86::AddrDisp
);
643 Op
.setImm(Op
.getImm() + AddrDispShift
);
644 else if (!Op
.isJTI())
645 Op
.setOffset(Op
.getOffset() + AddrDispShift
);
648 // Since we can possibly extend register lifetime, clear kill flags.
649 MRI
->clearKillFlags(FirstVReg
);
652 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
655 // By this moment, all of the Last LEA's uses must be replaced. So we
656 // can freely remove it.
657 assert(MRI
->use_empty(LastVReg
) &&
658 "The LEA's def register must have no uses");
659 Last
.eraseFromParent();
661 // Erase removed LEA from the list.
673 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction
&MF
) {
674 bool Changed
= false;
676 if (DisableX86LEAOpt
|| skipFunction(MF
.getFunction()))
679 MRI
= &MF
.getRegInfo();
680 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
681 TRI
= MF
.getSubtarget
<X86Subtarget
>().getRegisterInfo();
683 // Process all basic blocks.
684 for (auto &MBB
: MF
) {
688 // Find all LEA instructions in basic block.
691 // If current basic block has no LEAs, move on to the next one.
695 // Remove redundant LEA instructions.
696 Changed
|= removeRedundantLEAs(LEAs
);
698 // Remove redundant address calculations. Do it only for -Os/-Oz since only
699 // a code size gain is expected from this part of the pass.
700 if (MF
.getFunction().hasOptSize())
701 Changed
|= removeRedundantAddrCalc(LEAs
);