[ARM] MVE integer min and max
[llvm-core.git] / lib / Target / X86 / X86OptimizeLEAs.cpp
blob7f75598b06556628845a72a0b5cf33ca1a7aa721
1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that performs some optimizations with LEA
10 // instructions in order to improve performance and code size.
11 // Currently, it does two things:
12 // 1) If there are two LEA instructions calculating addresses which only differ
13 // by displacement inside a basic block, one of them is removed.
14 // 2) Address calculations in load and store instructions are replaced by
15 // existing LEA def registers where possible.
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseMapInfo.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
50 using namespace llvm;
52 #define DEBUG_TYPE "x86-optimize-LEAs"
54 static cl::opt<bool>
55 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
56 cl::desc("X86: Disable LEA optimizations."),
57 cl::init(false));
59 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
60 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
62 /// Returns true if two machine operands are identical and they are not
63 /// physical registers.
64 static inline bool isIdenticalOp(const MachineOperand &MO1,
65 const MachineOperand &MO2);
67 /// Returns true if two address displacement operands are of the same
68 /// type and use the same symbol/index/address regardless of the offset.
69 static bool isSimilarDispOp(const MachineOperand &MO1,
70 const MachineOperand &MO2);
72 /// Returns true if the instruction is LEA.
73 static inline bool isLEA(const MachineInstr &MI);
75 namespace {
77 /// A key based on instruction's memory operands.
78 class MemOpKey {
79 public:
80 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
81 const MachineOperand *Index, const MachineOperand *Segment,
82 const MachineOperand *Disp)
83 : Disp(Disp) {
84 Operands[0] = Base;
85 Operands[1] = Scale;
86 Operands[2] = Index;
87 Operands[3] = Segment;
90 bool operator==(const MemOpKey &Other) const {
91 // Addresses' bases, scales, indices and segments must be identical.
92 for (int i = 0; i < 4; ++i)
93 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
94 return false;
96 // Addresses' displacements don't have to be exactly the same. It only
97 // matters that they use the same symbol/index/address. Immediates' or
98 // offsets' differences will be taken care of during instruction
99 // substitution.
100 return isSimilarDispOp(*Disp, *Other.Disp);
103 // Address' base, scale, index and segment operands.
104 const MachineOperand *Operands[4];
106 // Address' displacement operand.
107 const MachineOperand *Disp;
110 } // end anonymous namespace
112 /// Provide DenseMapInfo for MemOpKey.
113 namespace llvm {
115 template <> struct DenseMapInfo<MemOpKey> {
116 using PtrInfo = DenseMapInfo<const MachineOperand *>;
118 static inline MemOpKey getEmptyKey() {
119 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
120 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
121 PtrInfo::getEmptyKey());
124 static inline MemOpKey getTombstoneKey() {
125 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
126 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
127 PtrInfo::getTombstoneKey());
130 static unsigned getHashValue(const MemOpKey &Val) {
131 // Checking any field of MemOpKey is enough to determine if the key is
132 // empty or tombstone.
133 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
134 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
135 "Cannot hash the tombstone key");
137 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
138 *Val.Operands[2], *Val.Operands[3]);
140 // If the address displacement is an immediate, it should not affect the
141 // hash so that memory operands which differ only be immediate displacement
142 // would have the same hash. If the address displacement is something else,
143 // we should reflect symbol/index/address in the hash.
144 switch (Val.Disp->getType()) {
145 case MachineOperand::MO_Immediate:
146 break;
147 case MachineOperand::MO_ConstantPoolIndex:
148 case MachineOperand::MO_JumpTableIndex:
149 Hash = hash_combine(Hash, Val.Disp->getIndex());
150 break;
151 case MachineOperand::MO_ExternalSymbol:
152 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
153 break;
154 case MachineOperand::MO_GlobalAddress:
155 Hash = hash_combine(Hash, Val.Disp->getGlobal());
156 break;
157 case MachineOperand::MO_BlockAddress:
158 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
159 break;
160 case MachineOperand::MO_MCSymbol:
161 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
162 break;
163 case MachineOperand::MO_MachineBasicBlock:
164 Hash = hash_combine(Hash, Val.Disp->getMBB());
165 break;
166 default:
167 llvm_unreachable("Invalid address displacement operand");
170 return (unsigned)Hash;
173 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
174 // Checking any field of MemOpKey is enough to determine if the key is
175 // empty or tombstone.
176 if (RHS.Disp == PtrInfo::getEmptyKey())
177 return LHS.Disp == PtrInfo::getEmptyKey();
178 if (RHS.Disp == PtrInfo::getTombstoneKey())
179 return LHS.Disp == PtrInfo::getTombstoneKey();
180 return LHS == RHS;
184 } // end namespace llvm
186 /// Returns a hash table key based on memory operands of \p MI. The
187 /// number of the first memory operand of \p MI is specified through \p N.
188 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
189 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
190 "The instruction must be a LEA, a load or a store");
191 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
192 &MI.getOperand(N + X86::AddrScaleAmt),
193 &MI.getOperand(N + X86::AddrIndexReg),
194 &MI.getOperand(N + X86::AddrSegmentReg),
195 &MI.getOperand(N + X86::AddrDisp));
198 static inline bool isIdenticalOp(const MachineOperand &MO1,
199 const MachineOperand &MO2) {
200 return MO1.isIdenticalTo(MO2) &&
201 (!MO1.isReg() ||
202 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
205 #ifndef NDEBUG
206 static bool isValidDispOp(const MachineOperand &MO) {
207 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
208 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
210 #endif
212 static bool isSimilarDispOp(const MachineOperand &MO1,
213 const MachineOperand &MO2) {
214 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
215 "Address displacement operand is not valid");
216 return (MO1.isImm() && MO2.isImm()) ||
217 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
218 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
219 (MO1.isSymbol() && MO2.isSymbol() &&
220 MO1.getSymbolName() == MO2.getSymbolName()) ||
221 (MO1.isGlobal() && MO2.isGlobal() &&
222 MO1.getGlobal() == MO2.getGlobal()) ||
223 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
224 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
225 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
226 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
227 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
230 static inline bool isLEA(const MachineInstr &MI) {
231 unsigned Opcode = MI.getOpcode();
232 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
233 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
236 namespace {
238 class OptimizeLEAPass : public MachineFunctionPass {
239 public:
240 OptimizeLEAPass() : MachineFunctionPass(ID) {}
242 StringRef getPassName() const override { return "X86 LEA Optimize"; }
244 /// Loop over all of the basic blocks, replacing address
245 /// calculations in load and store instructions, if it's already
246 /// been calculated by LEA. Also, remove redundant LEAs.
247 bool runOnMachineFunction(MachineFunction &MF) override;
249 private:
250 using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
252 /// Returns a distance between two instructions inside one basic block.
253 /// Negative result means, that instructions occur in reverse order.
254 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
256 /// Choose the best \p LEA instruction from the \p List to replace
257 /// address calculation in \p MI instruction. Return the address displacement
258 /// and the distance between \p MI and the chosen \p BestLEA in
259 /// \p AddrDispShift and \p Dist.
260 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
261 const MachineInstr &MI, MachineInstr *&BestLEA,
262 int64_t &AddrDispShift, int &Dist);
264 /// Returns the difference between addresses' displacements of \p MI1
265 /// and \p MI2. The numbers of the first memory operands for the instructions
266 /// are specified through \p N1 and \p N2.
267 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
268 const MachineInstr &MI2, unsigned N2) const;
270 /// Returns true if the \p Last LEA instruction can be replaced by the
271 /// \p First. The difference between displacements of the addresses calculated
272 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
273 /// replacement of the \p Last LEA's uses with the \p First's def register.
274 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
275 int64_t &AddrDispShift) const;
277 /// Find all LEA instructions in the basic block. Also, assign position
278 /// numbers to all instructions in the basic block to speed up calculation of
279 /// distance between them.
280 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
282 /// Removes redundant address calculations.
283 bool removeRedundantAddrCalc(MemOpMap &LEAs);
285 /// Replace debug value MI with a new debug value instruction using register
286 /// VReg with an appropriate offset and DIExpression to incorporate the
287 /// address displacement AddrDispShift. Return new debug value instruction.
288 MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
289 int64_t AddrDispShift);
291 /// Removes LEAs which calculate similar addresses.
292 bool removeRedundantLEAs(MemOpMap &LEAs);
294 DenseMap<const MachineInstr *, unsigned> InstrPos;
296 MachineRegisterInfo *MRI;
297 const X86InstrInfo *TII;
298 const X86RegisterInfo *TRI;
300 static char ID;
303 } // end anonymous namespace
305 char OptimizeLEAPass::ID = 0;
307 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
309 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
310 const MachineInstr &Last) {
311 // Both instructions must be in the same basic block and they must be
312 // presented in InstrPos.
313 assert(Last.getParent() == First.getParent() &&
314 "Instructions are in different basic blocks");
315 assert(InstrPos.find(&First) != InstrPos.end() &&
316 InstrPos.find(&Last) != InstrPos.end() &&
317 "Instructions' positions are undefined");
319 return InstrPos[&Last] - InstrPos[&First];
322 // Find the best LEA instruction in the List to replace address recalculation in
323 // MI. Such LEA must meet these requirements:
324 // 1) The address calculated by the LEA differs only by the displacement from
325 // the address used in MI.
326 // 2) The register class of the definition of the LEA is compatible with the
327 // register class of the address base register of MI.
328 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
329 // 4) The LEA should be as close to MI as possible, and prior to it if
330 // possible.
331 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
332 const MachineInstr &MI,
333 MachineInstr *&BestLEA,
334 int64_t &AddrDispShift, int &Dist) {
335 const MachineFunction *MF = MI.getParent()->getParent();
336 const MCInstrDesc &Desc = MI.getDesc();
337 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
338 X86II::getOperandBias(Desc);
340 BestLEA = nullptr;
342 // Loop over all LEA instructions.
343 for (auto DefMI : List) {
344 // Get new address displacement.
345 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
347 // Make sure address displacement fits 4 bytes.
348 if (!isInt<32>(AddrDispShiftTemp))
349 continue;
351 // Check that LEA def register can be used as MI address base. Some
352 // instructions can use a limited set of registers as address base, for
353 // example MOV8mr_NOREX. We could constrain the register class of the LEA
354 // def to suit MI, however since this case is very rare and hard to
355 // reproduce in a test it's just more reliable to skip the LEA.
356 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
357 MRI->getRegClass(DefMI->getOperand(0).getReg()))
358 continue;
360 // Choose the closest LEA instruction from the list, prior to MI if
361 // possible. Note that we took into account resulting address displacement
362 // as well. Also note that the list is sorted by the order in which the LEAs
363 // occur, so the break condition is pretty simple.
364 int DistTemp = calcInstrDist(*DefMI, MI);
365 assert(DistTemp != 0 &&
366 "The distance between two different instructions cannot be zero");
367 if (DistTemp > 0 || BestLEA == nullptr) {
368 // Do not update return LEA, if the current one provides a displacement
369 // which fits in 1 byte, while the new candidate does not.
370 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
371 isInt<8>(AddrDispShift))
372 continue;
374 BestLEA = DefMI;
375 AddrDispShift = AddrDispShiftTemp;
376 Dist = DistTemp;
379 // FIXME: Maybe we should not always stop at the first LEA after MI.
380 if (DistTemp < 0)
381 break;
384 return BestLEA != nullptr;
387 // Get the difference between the addresses' displacements of the two
388 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
389 // passed through \p N1 and \p N2.
390 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
391 const MachineInstr &MI2,
392 unsigned N2) const {
393 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
394 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
396 assert(isSimilarDispOp(Op1, Op2) &&
397 "Address displacement operands are not compatible");
399 // After the assert above we can be sure that both operands are of the same
400 // valid type and use the same symbol/index/address, thus displacement shift
401 // calculation is rather simple.
402 if (Op1.isJTI())
403 return 0;
404 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
405 : Op1.getOffset() - Op2.getOffset();
408 // Check that the Last LEA can be replaced by the First LEA. To be so,
409 // these requirements must be met:
410 // 1) Addresses calculated by LEAs differ only by displacement.
411 // 2) Def registers of LEAs belong to the same class.
412 // 3) All uses of the Last LEA def register are replaceable, thus the
413 // register is used only as address base.
414 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
415 const MachineInstr &Last,
416 int64_t &AddrDispShift) const {
417 assert(isLEA(First) && isLEA(Last) &&
418 "The function works only with LEA instructions");
420 // Make sure that LEA def registers belong to the same class. There may be
421 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
422 // be used as their operands, so we must be sure that replacing one LEA
423 // with another won't lead to putting a wrong register in the instruction.
424 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
425 MRI->getRegClass(Last.getOperand(0).getReg()))
426 return false;
428 // Get new address displacement.
429 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
431 // Loop over all uses of the Last LEA to check that its def register is
432 // used only as address base for memory accesses. If so, it can be
433 // replaced, otherwise - no.
434 for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
435 MachineInstr &MI = *MO.getParent();
437 // Get the number of the first memory operand.
438 const MCInstrDesc &Desc = MI.getDesc();
439 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
441 // If the use instruction has no memory operand - the LEA is not
442 // replaceable.
443 if (MemOpNo < 0)
444 return false;
446 MemOpNo += X86II::getOperandBias(Desc);
448 // If the address base of the use instruction is not the LEA def register -
449 // the LEA is not replaceable.
450 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
451 return false;
453 // If the LEA def register is used as any other operand of the use
454 // instruction - the LEA is not replaceable.
455 for (unsigned i = 0; i < MI.getNumOperands(); i++)
456 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
457 isIdenticalOp(MI.getOperand(i), MO))
458 return false;
460 // Check that the new address displacement will fit 4 bytes.
461 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
462 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
463 AddrDispShift))
464 return false;
467 return true;
470 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
471 unsigned Pos = 0;
472 for (auto &MI : MBB) {
473 // Assign the position number to the instruction. Note that we are going to
474 // move some instructions during the optimization however there will never
475 // be a need to move two instructions before any selected instruction. So to
476 // avoid multiple positions' updates during moves we just increase position
477 // counter by two leaving a free space for instructions which will be moved.
478 InstrPos[&MI] = Pos += 2;
480 if (isLEA(MI))
481 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
485 // Try to find load and store instructions which recalculate addresses already
486 // calculated by some LEA and replace their memory operands with its def
487 // register.
488 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
489 bool Changed = false;
491 assert(!LEAs.empty());
492 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
494 // Process all instructions in basic block.
495 for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
496 MachineInstr &MI = *I++;
498 // Instruction must be load or store.
499 if (!MI.mayLoadOrStore())
500 continue;
502 // Get the number of the first memory operand.
503 const MCInstrDesc &Desc = MI.getDesc();
504 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
506 // If instruction has no memory operand - skip it.
507 if (MemOpNo < 0)
508 continue;
510 MemOpNo += X86II::getOperandBias(Desc);
512 // Do not call chooseBestLEA if there was no matching LEA
513 auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
514 if (Insns == LEAs.end())
515 continue;
517 // Get the best LEA instruction to replace address calculation.
518 MachineInstr *DefMI;
519 int64_t AddrDispShift;
520 int Dist;
521 if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
522 continue;
524 // If LEA occurs before current instruction, we can freely replace
525 // the instruction. If LEA occurs after, we can lift LEA above the
526 // instruction and this way to be able to replace it. Since LEA and the
527 // instruction have similar memory operands (thus, the same def
528 // instructions for these operands), we can always do that, without
529 // worries of using registers before their defs.
530 if (Dist < 0) {
531 DefMI->removeFromParent();
532 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
533 InstrPos[DefMI] = InstrPos[&MI] - 1;
535 // Make sure the instructions' position numbers are sane.
536 assert(((InstrPos[DefMI] == 1 &&
537 MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
538 InstrPos[DefMI] >
539 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
540 "Instruction positioning is broken");
543 // Since we can possibly extend register lifetime, clear kill flags.
544 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
546 ++NumSubstLEAs;
547 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
549 // Change instruction operands.
550 MI.getOperand(MemOpNo + X86::AddrBaseReg)
551 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
552 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
553 MI.getOperand(MemOpNo + X86::AddrIndexReg)
554 .ChangeToRegister(X86::NoRegister, false);
555 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
556 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
557 .ChangeToRegister(X86::NoRegister, false);
559 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
561 Changed = true;
564 return Changed;
567 MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
568 unsigned VReg,
569 int64_t AddrDispShift) {
570 DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
571 if (AddrDispShift != 0)
572 Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
574 // Replace DBG_VALUE instruction with modified version.
575 MachineBasicBlock *MBB = MI.getParent();
576 DebugLoc DL = MI.getDebugLoc();
577 bool IsIndirect = MI.isIndirectDebugValue();
578 const MDNode *Var = MI.getDebugVariable();
579 if (IsIndirect)
580 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
581 return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
582 IsIndirect, VReg, Var, Expr);
585 // Try to find similar LEAs in the list and replace one with another.
586 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
587 bool Changed = false;
589 // Loop over all entries in the table.
590 for (auto &E : LEAs) {
591 auto &List = E.second;
593 // Loop over all LEA pairs.
594 auto I1 = List.begin();
595 while (I1 != List.end()) {
596 MachineInstr &First = **I1;
597 auto I2 = std::next(I1);
598 while (I2 != List.end()) {
599 MachineInstr &Last = **I2;
600 int64_t AddrDispShift;
602 // LEAs should be in occurrence order in the list, so we can freely
603 // replace later LEAs with earlier ones.
604 assert(calcInstrDist(First, Last) > 0 &&
605 "LEAs must be in occurrence order in the list");
607 // Check that the Last LEA instruction can be replaced by the First.
608 if (!isReplaceable(First, Last, AddrDispShift)) {
609 ++I2;
610 continue;
613 // Loop over all uses of the Last LEA and update their operands. Note
614 // that the correctness of this has already been checked in the
615 // isReplaceable function.
616 unsigned FirstVReg = First.getOperand(0).getReg();
617 unsigned LastVReg = Last.getOperand(0).getReg();
618 for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
619 UI != UE;) {
620 MachineOperand &MO = *UI++;
621 MachineInstr &MI = *MO.getParent();
623 if (MI.isDebugValue()) {
624 // Replace DBG_VALUE instruction with modified version using the
625 // register from the replacing LEA and the address displacement
626 // between the LEA instructions.
627 replaceDebugValue(MI, FirstVReg, AddrDispShift);
628 continue;
631 // Get the number of the first memory operand.
632 const MCInstrDesc &Desc = MI.getDesc();
633 int MemOpNo =
634 X86II::getMemoryOperandNo(Desc.TSFlags) +
635 X86II::getOperandBias(Desc);
637 // Update address base.
638 MO.setReg(FirstVReg);
640 // Update address disp.
641 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
642 if (Op.isImm())
643 Op.setImm(Op.getImm() + AddrDispShift);
644 else if (!Op.isJTI())
645 Op.setOffset(Op.getOffset() + AddrDispShift);
648 // Since we can possibly extend register lifetime, clear kill flags.
649 MRI->clearKillFlags(FirstVReg);
651 ++NumRedundantLEAs;
652 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
653 Last.dump(););
655 // By this moment, all of the Last LEA's uses must be replaced. So we
656 // can freely remove it.
657 assert(MRI->use_empty(LastVReg) &&
658 "The LEA's def register must have no uses");
659 Last.eraseFromParent();
661 // Erase removed LEA from the list.
662 I2 = List.erase(I2);
664 Changed = true;
666 ++I1;
670 return Changed;
673 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
674 bool Changed = false;
676 if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
677 return false;
679 MRI = &MF.getRegInfo();
680 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
681 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
683 // Process all basic blocks.
684 for (auto &MBB : MF) {
685 MemOpMap LEAs;
686 InstrPos.clear();
688 // Find all LEA instructions in basic block.
689 findLEAs(MBB, LEAs);
691 // If current basic block has no LEAs, move on to the next one.
692 if (LEAs.empty())
693 continue;
695 // Remove redundant LEA instructions.
696 Changed |= removeRedundantLEAs(LEAs);
698 // Remove redundant address calculations. Do it only for -Os/-Oz since only
699 // a code size gain is expected from this part of the pass.
700 if (MF.getFunction().hasOptSize())
701 Changed |= removeRedundantAddrCalc(LEAs);
704 return Changed;