1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations. Mod/Ref information is
12 // also captured by this interface.
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
25 // Some non-obvious details include:
26 // - Pointers that point to two completely different objects in memory never
27 // alias, regardless of the value of the Size component.
28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 // is two pointers to constant memory. Even if they are equal, constant
30 // memory is never stored to, so there will never be any dependencies.
31 // In this and other situations, the pointers may be both NoAlias and
32 // MustAlias at the same time. The current API can only return one result,
33 // though this is rarely a problem in practice.
35 //===----------------------------------------------------------------------===//
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
62 class OrderedBasicBlock
;
65 /// The possible results of an alias query.
67 /// These results are always computed between two MemoryLocation objects as
68 /// a query to some alias analysis.
70 /// Note that these are unscoped enumerations because we would like to support
71 /// implicitly testing a result for the existence of any possible aliasing with
72 /// a conversion to bool, but an "enum class" doesn't support this. The
73 /// canonical names from the literature are suffixed and unique anyways, and so
74 /// they serve as global constants in LLVM for these results.
76 /// See docs/AliasAnalysis.html for more information on the specific meanings
78 enum AliasResult
: uint8_t {
79 /// The two locations do not alias at all.
81 /// This value is arranged to convert to false, while all other values
82 /// convert to true. This allows a boolean context to convert the result to
83 /// a binary flag indicating whether there is the possibility of aliasing.
85 /// The two locations may or may not alias. This is the least precise result.
87 /// The two locations alias, but only due to a partial overlap.
89 /// The two locations precisely alias each other.
93 /// << operator for AliasResult.
94 raw_ostream
&operator<<(raw_ostream
&OS
, AliasResult AR
);
96 /// Flags indicating whether a memory access modifies or references memory.
98 /// This is no access at all, a modification, a reference, or both
99 /// a modification and a reference. These are specifically structured such that
100 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
101 /// work with any of the possible values.
102 enum class ModRefInfo
: uint8_t {
103 /// Must is provided for completeness, but no routines will return only
104 /// Must today. See definition of Must below.
106 /// The access may reference the value stored in memory,
107 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
109 /// The access may modify the value stored in memory,
110 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
112 /// The access may reference, modify or both the value stored in memory,
113 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114 MustModRef
= MustRef
| MustMod
,
115 /// The access neither references nor modifies the value stored in memory.
117 /// The access may reference the value stored in memory.
118 Ref
= NoModRef
| MustRef
,
119 /// The access may modify the value stored in memory.
120 Mod
= NoModRef
| MustMod
,
121 /// The access may reference and may modify the value stored in memory.
125 /// Must is set in a best effort manner.
126 /// We usually do not try our best to infer Must, instead it is merely
127 /// another piece of "free" information that is presented when available.
128 /// Must set means there was certainly a MustAlias found. For calls,
129 /// where multiple arguments are checked (argmemonly), this translates to
130 /// only MustAlias or NoAlias was found.
131 /// Must is not set for RAR accesses, even if the two locations must
132 /// alias. The reason is that two read accesses translate to an early return
133 /// of NoModRef. An additional alias check to set Must may be
134 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
135 /// We refer to Must being *set* when the most significant bit is *cleared*.
136 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
139 LLVM_NODISCARD
inline bool isNoModRef(const ModRefInfo MRI
) {
140 return (static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::MustModRef
)) ==
141 static_cast<int>(ModRefInfo::Must
);
143 LLVM_NODISCARD
inline bool isModOrRefSet(const ModRefInfo MRI
) {
144 return static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::MustModRef
);
146 LLVM_NODISCARD
inline bool isModAndRefSet(const ModRefInfo MRI
) {
147 return (static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::MustModRef
)) ==
148 static_cast<int>(ModRefInfo::MustModRef
);
150 LLVM_NODISCARD
inline bool isModSet(const ModRefInfo MRI
) {
151 return static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::MustMod
);
153 LLVM_NODISCARD
inline bool isRefSet(const ModRefInfo MRI
) {
154 return static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::MustRef
);
156 LLVM_NODISCARD
inline bool isMustSet(const ModRefInfo MRI
) {
157 return !(static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::NoModRef
));
160 LLVM_NODISCARD
inline ModRefInfo
setMod(const ModRefInfo MRI
) {
161 return ModRefInfo(static_cast<int>(MRI
) |
162 static_cast<int>(ModRefInfo::MustMod
));
164 LLVM_NODISCARD
inline ModRefInfo
setRef(const ModRefInfo MRI
) {
165 return ModRefInfo(static_cast<int>(MRI
) |
166 static_cast<int>(ModRefInfo::MustRef
));
168 LLVM_NODISCARD
inline ModRefInfo
setMust(const ModRefInfo MRI
) {
169 return ModRefInfo(static_cast<int>(MRI
) &
170 static_cast<int>(ModRefInfo::MustModRef
));
172 LLVM_NODISCARD
inline ModRefInfo
setModAndRef(const ModRefInfo MRI
) {
173 return ModRefInfo(static_cast<int>(MRI
) |
174 static_cast<int>(ModRefInfo::MustModRef
));
176 LLVM_NODISCARD
inline ModRefInfo
clearMod(const ModRefInfo MRI
) {
177 return ModRefInfo(static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::Ref
));
179 LLVM_NODISCARD
inline ModRefInfo
clearRef(const ModRefInfo MRI
) {
180 return ModRefInfo(static_cast<int>(MRI
) & static_cast<int>(ModRefInfo::Mod
));
182 LLVM_NODISCARD
inline ModRefInfo
clearMust(const ModRefInfo MRI
) {
183 return ModRefInfo(static_cast<int>(MRI
) |
184 static_cast<int>(ModRefInfo::NoModRef
));
186 LLVM_NODISCARD
inline ModRefInfo
unionModRef(const ModRefInfo MRI1
,
187 const ModRefInfo MRI2
) {
188 return ModRefInfo(static_cast<int>(MRI1
) | static_cast<int>(MRI2
));
190 LLVM_NODISCARD
inline ModRefInfo
intersectModRef(const ModRefInfo MRI1
,
191 const ModRefInfo MRI2
) {
192 return ModRefInfo(static_cast<int>(MRI1
) & static_cast<int>(MRI2
));
195 /// The locations at which a function might access memory.
197 /// These are primarily used in conjunction with the \c AccessKind bits to
198 /// describe both the nature of access and the locations of access for a
200 enum FunctionModRefLocation
{
201 /// Base case is no access to memory.
203 /// Access to memory via argument pointers.
204 FMRL_ArgumentPointees
= 8,
205 /// Memory that is inaccessible via LLVM IR.
206 FMRL_InaccessibleMem
= 16,
207 /// Access to any memory.
208 FMRL_Anywhere
= 32 | FMRL_InaccessibleMem
| FMRL_ArgumentPointees
211 /// Summary of how a function affects memory in the program.
213 /// Loads from constant globals are not considered memory accesses for this
214 /// interface. Also, functions may freely modify stack space local to their
215 /// invocation without having to report it through these interfaces.
216 enum FunctionModRefBehavior
{
217 /// This function does not perform any non-local loads or stores to memory.
219 /// This property corresponds to the GCC 'const' attribute.
220 /// This property corresponds to the LLVM IR 'readnone' attribute.
221 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222 FMRB_DoesNotAccessMemory
=
223 FMRL_Nowhere
| static_cast<int>(ModRefInfo::NoModRef
),
225 /// The only memory references in this function (if it has any) are
226 /// non-volatile loads from objects pointed to by its pointer-typed
227 /// arguments, with arbitrary offsets.
229 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
230 FMRB_OnlyReadsArgumentPointees
=
231 FMRL_ArgumentPointees
| static_cast<int>(ModRefInfo::Ref
),
233 /// The only memory references in this function (if it has any) are
234 /// non-volatile loads and stores from objects pointed to by its
235 /// pointer-typed arguments, with arbitrary offsets.
237 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
238 FMRB_OnlyAccessesArgumentPointees
=
239 FMRL_ArgumentPointees
| static_cast<int>(ModRefInfo::ModRef
),
241 /// The only memory references in this function (if it has any) are
242 /// references of memory that is otherwise inaccessible via LLVM IR.
244 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
245 FMRB_OnlyAccessesInaccessibleMem
=
246 FMRL_InaccessibleMem
| static_cast<int>(ModRefInfo::ModRef
),
248 /// The function may perform non-volatile loads and stores of objects
249 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
250 /// it may also perform loads and stores of memory that is otherwise
251 /// inaccessible via LLVM IR.
253 /// This property corresponds to the LLVM IR
254 /// inaccessiblemem_or_argmemonly attribute.
255 FMRB_OnlyAccessesInaccessibleOrArgMem
= FMRL_InaccessibleMem
|
256 FMRL_ArgumentPointees
|
257 static_cast<int>(ModRefInfo::ModRef
),
259 /// This function does not perform any non-local stores or volatile loads,
260 /// but may read from any memory location.
262 /// This property corresponds to the GCC 'pure' attribute.
263 /// This property corresponds to the LLVM IR 'readonly' attribute.
264 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
265 FMRB_OnlyReadsMemory
= FMRL_Anywhere
| static_cast<int>(ModRefInfo::Ref
),
267 // This function does not read from memory anywhere, but may write to any
270 // This property corresponds to the LLVM IR 'writeonly' attribute.
271 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
272 FMRB_DoesNotReadMemory
= FMRL_Anywhere
| static_cast<int>(ModRefInfo::Mod
),
274 /// This indicates that the function could not be classified into one of the
276 FMRB_UnknownModRefBehavior
=
277 FMRL_Anywhere
| static_cast<int>(ModRefInfo::ModRef
)
280 // Wrapper method strips bits significant only in FunctionModRefBehavior,
281 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
282 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
283 // entry with all bits set to 1.
284 LLVM_NODISCARD
inline ModRefInfo
285 createModRefInfo(const FunctionModRefBehavior FMRB
) {
286 return ModRefInfo(FMRB
& static_cast<int>(ModRefInfo::ModRef
));
289 /// This class stores info we want to provide to or retain within an alias
290 /// query. By default, the root query is stateless and starts with a freshly
291 /// constructed info object. Specific alias analyses can use this query info to
292 /// store per-query state that is important for recursive or nested queries to
293 /// avoid recomputing. To enable preserving this state across multiple queries
294 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
295 /// The information stored in an `AAQueryInfo` is currently limitted to the
296 /// caches used by BasicAA, but can further be extended to fit other AA needs.
299 using LocPair
= std::pair
<MemoryLocation
, MemoryLocation
>;
300 using AliasCacheT
= SmallDenseMap
<LocPair
, AliasResult
, 8>;
301 AliasCacheT AliasCache
;
303 using IsCapturedCacheT
= SmallDenseMap
<const Value
*, bool, 8>;
304 IsCapturedCacheT IsCapturedCache
;
306 AAQueryInfo() : AliasCache(), IsCapturedCache() {}
309 class BatchAAResults
;
313 // Make these results default constructable and movable. We have to spell
314 // these out because MSVC won't synthesize them.
315 AAResults(const TargetLibraryInfo
&TLI
) : TLI(TLI
) {}
316 AAResults(AAResults
&&Arg
);
319 /// Register a specific AA result.
320 template <typename AAResultT
> void addAAResult(AAResultT
&AAResult
) {
321 // FIXME: We should use a much lighter weight system than the usual
322 // polymorphic pattern because we don't own AAResult. It should
323 // ideally involve two pointers and no separate allocation.
324 AAs
.emplace_back(new Model
<AAResultT
>(AAResult
, *this));
327 /// Register a function analysis ID that the results aggregation depends on.
329 /// This is used in the new pass manager to implement the invalidation logic
330 /// where we must invalidate the results aggregation if any of our component
331 /// analyses become invalid.
332 void addAADependencyID(AnalysisKey
*ID
) { AADeps
.push_back(ID
); }
334 /// Handle invalidation events in the new pass manager.
336 /// The aggregation is invalidated if any of the underlying analyses is
338 bool invalidate(Function
&F
, const PreservedAnalyses
&PA
,
339 FunctionAnalysisManager::Invalidator
&Inv
);
341 //===--------------------------------------------------------------------===//
342 /// \name Alias Queries
345 /// The main low level interface to the alias analysis implementation.
346 /// Returns an AliasResult indicating whether the two pointers are aliased to
347 /// each other. This is the interface that must be implemented by specific
348 /// alias analysis implementations.
349 AliasResult
alias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
);
351 /// A convenience wrapper around the primary \c alias interface.
352 AliasResult
alias(const Value
*V1
, LocationSize V1Size
, const Value
*V2
,
353 LocationSize V2Size
) {
354 return alias(MemoryLocation(V1
, V1Size
), MemoryLocation(V2
, V2Size
));
357 /// A convenience wrapper around the primary \c alias interface.
358 AliasResult
alias(const Value
*V1
, const Value
*V2
) {
359 return alias(V1
, LocationSize::unknown(), V2
, LocationSize::unknown());
362 /// A trivial helper function to check to see if the specified pointers are
364 bool isNoAlias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
) {
365 return alias(LocA
, LocB
) == NoAlias
;
368 /// A convenience wrapper around the \c isNoAlias helper interface.
369 bool isNoAlias(const Value
*V1
, LocationSize V1Size
, const Value
*V2
,
370 LocationSize V2Size
) {
371 return isNoAlias(MemoryLocation(V1
, V1Size
), MemoryLocation(V2
, V2Size
));
374 /// A convenience wrapper around the \c isNoAlias helper interface.
375 bool isNoAlias(const Value
*V1
, const Value
*V2
) {
376 return isNoAlias(MemoryLocation(V1
), MemoryLocation(V2
));
379 /// A trivial helper function to check to see if the specified pointers are
381 bool isMustAlias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
) {
382 return alias(LocA
, LocB
) == MustAlias
;
385 /// A convenience wrapper around the \c isMustAlias helper interface.
386 bool isMustAlias(const Value
*V1
, const Value
*V2
) {
387 return alias(V1
, LocationSize::precise(1), V2
, LocationSize::precise(1)) ==
391 /// Checks whether the given location points to constant memory, or if
392 /// \p OrLocal is true whether it points to a local alloca.
393 bool pointsToConstantMemory(const MemoryLocation
&Loc
, bool OrLocal
= false);
395 /// A convenience wrapper around the primary \c pointsToConstantMemory
397 bool pointsToConstantMemory(const Value
*P
, bool OrLocal
= false) {
398 return pointsToConstantMemory(MemoryLocation(P
), OrLocal
);
402 //===--------------------------------------------------------------------===//
403 /// \name Simple mod/ref information
406 /// Get the ModRef info associated with a pointer argument of a call. The
407 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
408 /// that these bits do not necessarily account for the overall behavior of
409 /// the function, but rather only provide additional per-argument
410 /// information. This never sets ModRefInfo::Must.
411 ModRefInfo
getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
);
413 /// Return the behavior of the given call site.
414 FunctionModRefBehavior
getModRefBehavior(const CallBase
*Call
);
416 /// Return the behavior when calling the given function.
417 FunctionModRefBehavior
getModRefBehavior(const Function
*F
);
419 /// Checks if the specified call is known to never read or write memory.
421 /// Note that if the call only reads from known-constant memory, it is also
422 /// legal to return true. Also, calls that unwind the stack are legal for
425 /// Many optimizations (such as CSE and LICM) can be performed on such calls
426 /// without worrying about aliasing properties, and many calls have this
427 /// property (e.g. calls to 'sin' and 'cos').
429 /// This property corresponds to the GCC 'const' attribute.
430 bool doesNotAccessMemory(const CallBase
*Call
) {
431 return getModRefBehavior(Call
) == FMRB_DoesNotAccessMemory
;
434 /// Checks if the specified function is known to never read or write memory.
436 /// Note that if the function only reads from known-constant memory, it is
437 /// also legal to return true. Also, function that unwind the stack are legal
438 /// for this predicate.
440 /// Many optimizations (such as CSE and LICM) can be performed on such calls
441 /// to such functions without worrying about aliasing properties, and many
442 /// functions have this property (e.g. 'sin' and 'cos').
444 /// This property corresponds to the GCC 'const' attribute.
445 bool doesNotAccessMemory(const Function
*F
) {
446 return getModRefBehavior(F
) == FMRB_DoesNotAccessMemory
;
449 /// Checks if the specified call is known to only read from non-volatile
450 /// memory (or not access memory at all).
452 /// Calls that unwind the stack are legal for this predicate.
454 /// This property allows many common optimizations to be performed in the
455 /// absence of interfering store instructions, such as CSE of strlen calls.
457 /// This property corresponds to the GCC 'pure' attribute.
458 bool onlyReadsMemory(const CallBase
*Call
) {
459 return onlyReadsMemory(getModRefBehavior(Call
));
462 /// Checks if the specified function is known to only read from non-volatile
463 /// memory (or not access memory at all).
465 /// Functions that unwind the stack are legal for this predicate.
467 /// This property allows many common optimizations to be performed in the
468 /// absence of interfering store instructions, such as CSE of strlen calls.
470 /// This property corresponds to the GCC 'pure' attribute.
471 bool onlyReadsMemory(const Function
*F
) {
472 return onlyReadsMemory(getModRefBehavior(F
));
475 /// Checks if functions with the specified behavior are known to only read
476 /// from non-volatile memory (or not access memory at all).
477 static bool onlyReadsMemory(FunctionModRefBehavior MRB
) {
478 return !isModSet(createModRefInfo(MRB
));
481 /// Checks if functions with the specified behavior are known to only write
482 /// memory (or not access memory at all).
483 static bool doesNotReadMemory(FunctionModRefBehavior MRB
) {
484 return !isRefSet(createModRefInfo(MRB
));
487 /// Checks if functions with the specified behavior are known to read and
488 /// write at most from objects pointed to by their pointer-typed arguments
489 /// (with arbitrary offsets).
490 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB
) {
491 return !(MRB
& FMRL_Anywhere
& ~FMRL_ArgumentPointees
);
494 /// Checks if functions with the specified behavior are known to potentially
495 /// read or write from objects pointed to be their pointer-typed arguments
496 /// (with arbitrary offsets).
497 static bool doesAccessArgPointees(FunctionModRefBehavior MRB
) {
498 return isModOrRefSet(createModRefInfo(MRB
)) &&
499 (MRB
& FMRL_ArgumentPointees
);
502 /// Checks if functions with the specified behavior are known to read and
503 /// write at most from memory that is inaccessible from LLVM IR.
504 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB
) {
505 return !(MRB
& FMRL_Anywhere
& ~FMRL_InaccessibleMem
);
508 /// Checks if functions with the specified behavior are known to potentially
509 /// read or write from memory that is inaccessible from LLVM IR.
510 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB
) {
511 return isModOrRefSet(createModRefInfo(MRB
)) && (MRB
& FMRL_InaccessibleMem
);
514 /// Checks if functions with the specified behavior are known to read and
515 /// write at most from memory that is inaccessible from LLVM IR or objects
516 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
517 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB
) {
518 return !(MRB
& FMRL_Anywhere
&
519 ~(FMRL_InaccessibleMem
| FMRL_ArgumentPointees
));
522 /// getModRefInfo (for call sites) - Return information about whether
523 /// a particular call site modifies or reads the specified memory location.
524 ModRefInfo
getModRefInfo(const CallBase
*Call
, const MemoryLocation
&Loc
);
526 /// getModRefInfo (for call sites) - A convenience wrapper.
527 ModRefInfo
getModRefInfo(const CallBase
*Call
, const Value
*P
,
529 return getModRefInfo(Call
, MemoryLocation(P
, Size
));
532 /// getModRefInfo (for loads) - Return information about whether
533 /// a particular load modifies or reads the specified memory location.
534 ModRefInfo
getModRefInfo(const LoadInst
*L
, const MemoryLocation
&Loc
);
536 /// getModRefInfo (for loads) - A convenience wrapper.
537 ModRefInfo
getModRefInfo(const LoadInst
*L
, const Value
*P
,
539 return getModRefInfo(L
, MemoryLocation(P
, Size
));
542 /// getModRefInfo (for stores) - Return information about whether
543 /// a particular store modifies or reads the specified memory location.
544 ModRefInfo
getModRefInfo(const StoreInst
*S
, const MemoryLocation
&Loc
);
546 /// getModRefInfo (for stores) - A convenience wrapper.
547 ModRefInfo
getModRefInfo(const StoreInst
*S
, const Value
*P
,
549 return getModRefInfo(S
, MemoryLocation(P
, Size
));
552 /// getModRefInfo (for fences) - Return information about whether
553 /// a particular store modifies or reads the specified memory location.
554 ModRefInfo
getModRefInfo(const FenceInst
*S
, const MemoryLocation
&Loc
);
556 /// getModRefInfo (for fences) - A convenience wrapper.
557 ModRefInfo
getModRefInfo(const FenceInst
*S
, const Value
*P
,
559 return getModRefInfo(S
, MemoryLocation(P
, Size
));
562 /// getModRefInfo (for cmpxchges) - Return information about whether
563 /// a particular cmpxchg modifies or reads the specified memory location.
564 ModRefInfo
getModRefInfo(const AtomicCmpXchgInst
*CX
,
565 const MemoryLocation
&Loc
);
567 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
568 ModRefInfo
getModRefInfo(const AtomicCmpXchgInst
*CX
, const Value
*P
,
570 return getModRefInfo(CX
, MemoryLocation(P
, Size
));
573 /// getModRefInfo (for atomicrmws) - Return information about whether
574 /// a particular atomicrmw modifies or reads the specified memory location.
575 ModRefInfo
getModRefInfo(const AtomicRMWInst
*RMW
, const MemoryLocation
&Loc
);
577 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
578 ModRefInfo
getModRefInfo(const AtomicRMWInst
*RMW
, const Value
*P
,
580 return getModRefInfo(RMW
, MemoryLocation(P
, Size
));
583 /// getModRefInfo (for va_args) - Return information about whether
584 /// a particular va_arg modifies or reads the specified memory location.
585 ModRefInfo
getModRefInfo(const VAArgInst
*I
, const MemoryLocation
&Loc
);
587 /// getModRefInfo (for va_args) - A convenience wrapper.
588 ModRefInfo
getModRefInfo(const VAArgInst
*I
, const Value
*P
,
590 return getModRefInfo(I
, MemoryLocation(P
, Size
));
593 /// getModRefInfo (for catchpads) - Return information about whether
594 /// a particular catchpad modifies or reads the specified memory location.
595 ModRefInfo
getModRefInfo(const CatchPadInst
*I
, const MemoryLocation
&Loc
);
597 /// getModRefInfo (for catchpads) - A convenience wrapper.
598 ModRefInfo
getModRefInfo(const CatchPadInst
*I
, const Value
*P
,
600 return getModRefInfo(I
, MemoryLocation(P
, Size
));
603 /// getModRefInfo (for catchrets) - Return information about whether
604 /// a particular catchret modifies or reads the specified memory location.
605 ModRefInfo
getModRefInfo(const CatchReturnInst
*I
, const MemoryLocation
&Loc
);
607 /// getModRefInfo (for catchrets) - A convenience wrapper.
608 ModRefInfo
getModRefInfo(const CatchReturnInst
*I
, const Value
*P
,
610 return getModRefInfo(I
, MemoryLocation(P
, Size
));
613 /// Check whether or not an instruction may read or write the optionally
614 /// specified memory location.
617 /// An instruction that doesn't read or write memory may be trivially LICM'd
620 /// For function calls, this delegates to the alias-analysis specific
621 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
623 ModRefInfo
getModRefInfo(const Instruction
*I
,
624 const Optional
<MemoryLocation
> &OptLoc
) {
626 return getModRefInfo(I
, OptLoc
, AAQIP
);
629 /// A convenience wrapper for constructing the memory location.
630 ModRefInfo
getModRefInfo(const Instruction
*I
, const Value
*P
,
632 return getModRefInfo(I
, MemoryLocation(P
, Size
));
635 /// Return information about whether a call and an instruction may refer to
636 /// the same memory locations.
637 ModRefInfo
getModRefInfo(Instruction
*I
, const CallBase
*Call
);
639 /// Return information about whether two call sites may refer to the same set
640 /// of memory locations. See the AA documentation for details:
641 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
642 ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
);
644 /// Return information about whether a particular call site modifies
645 /// or reads the specified memory location \p MemLoc before instruction \p I
646 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
647 /// instruction ordering queries inside the BasicBlock containing \p I.
648 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
650 ModRefInfo
callCapturesBefore(const Instruction
*I
,
651 const MemoryLocation
&MemLoc
, DominatorTree
*DT
,
652 OrderedBasicBlock
*OBB
= nullptr);
654 /// A convenience wrapper to synthesize a memory location.
655 ModRefInfo
callCapturesBefore(const Instruction
*I
, const Value
*P
,
656 LocationSize Size
, DominatorTree
*DT
,
657 OrderedBasicBlock
*OBB
= nullptr) {
658 return callCapturesBefore(I
, MemoryLocation(P
, Size
), DT
, OBB
);
662 //===--------------------------------------------------------------------===//
663 /// \name Higher level methods for querying mod/ref information.
666 /// Check if it is possible for execution of the specified basic block to
667 /// modify the location Loc.
668 bool canBasicBlockModify(const BasicBlock
&BB
, const MemoryLocation
&Loc
);
670 /// A convenience wrapper synthesizing a memory location.
671 bool canBasicBlockModify(const BasicBlock
&BB
, const Value
*P
,
673 return canBasicBlockModify(BB
, MemoryLocation(P
, Size
));
676 /// Check if it is possible for the execution of the specified instructions
677 /// to mod\ref (according to the mode) the location Loc.
679 /// The instructions to consider are all of the instructions in the range of
680 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
681 bool canInstructionRangeModRef(const Instruction
&I1
, const Instruction
&I2
,
682 const MemoryLocation
&Loc
,
683 const ModRefInfo Mode
);
685 /// A convenience wrapper synthesizing a memory location.
686 bool canInstructionRangeModRef(const Instruction
&I1
, const Instruction
&I2
,
687 const Value
*Ptr
, LocationSize Size
,
688 const ModRefInfo Mode
) {
689 return canInstructionRangeModRef(I1
, I2
, MemoryLocation(Ptr
, Size
), Mode
);
693 AliasResult
alias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
,
695 bool pointsToConstantMemory(const MemoryLocation
&Loc
, AAQueryInfo
&AAQI
,
696 bool OrLocal
= false);
697 ModRefInfo
getModRefInfo(Instruction
*I
, const CallBase
*Call2
,
699 ModRefInfo
getModRefInfo(const CallBase
*Call
, const MemoryLocation
&Loc
,
701 ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
,
703 ModRefInfo
getModRefInfo(const VAArgInst
*V
, const MemoryLocation
&Loc
,
705 ModRefInfo
getModRefInfo(const LoadInst
*L
, const MemoryLocation
&Loc
,
707 ModRefInfo
getModRefInfo(const StoreInst
*S
, const MemoryLocation
&Loc
,
709 ModRefInfo
getModRefInfo(const FenceInst
*S
, const MemoryLocation
&Loc
,
711 ModRefInfo
getModRefInfo(const AtomicCmpXchgInst
*CX
,
712 const MemoryLocation
&Loc
, AAQueryInfo
&AAQI
);
713 ModRefInfo
getModRefInfo(const AtomicRMWInst
*RMW
, const MemoryLocation
&Loc
,
715 ModRefInfo
getModRefInfo(const CatchPadInst
*I
, const MemoryLocation
&Loc
,
717 ModRefInfo
getModRefInfo(const CatchReturnInst
*I
, const MemoryLocation
&Loc
,
719 ModRefInfo
getModRefInfo(const Instruction
*I
,
720 const Optional
<MemoryLocation
> &OptLoc
,
721 AAQueryInfo
&AAQIP
) {
722 if (OptLoc
== None
) {
723 if (const auto *Call
= dyn_cast
<CallBase
>(I
)) {
724 return createModRefInfo(getModRefBehavior(Call
));
728 const MemoryLocation
&Loc
= OptLoc
.getValueOr(MemoryLocation());
730 switch (I
->getOpcode()) {
731 case Instruction::VAArg
:
732 return getModRefInfo((const VAArgInst
*)I
, Loc
, AAQIP
);
733 case Instruction::Load
:
734 return getModRefInfo((const LoadInst
*)I
, Loc
, AAQIP
);
735 case Instruction::Store
:
736 return getModRefInfo((const StoreInst
*)I
, Loc
, AAQIP
);
737 case Instruction::Fence
:
738 return getModRefInfo((const FenceInst
*)I
, Loc
, AAQIP
);
739 case Instruction::AtomicCmpXchg
:
740 return getModRefInfo((const AtomicCmpXchgInst
*)I
, Loc
, AAQIP
);
741 case Instruction::AtomicRMW
:
742 return getModRefInfo((const AtomicRMWInst
*)I
, Loc
, AAQIP
);
743 case Instruction::Call
:
744 return getModRefInfo((const CallInst
*)I
, Loc
, AAQIP
);
745 case Instruction::Invoke
:
746 return getModRefInfo((const InvokeInst
*)I
, Loc
, AAQIP
);
747 case Instruction::CatchPad
:
748 return getModRefInfo((const CatchPadInst
*)I
, Loc
, AAQIP
);
749 case Instruction::CatchRet
:
750 return getModRefInfo((const CatchReturnInst
*)I
, Loc
, AAQIP
);
752 return ModRefInfo::NoModRef
;
758 template <typename T
> class Model
;
760 template <typename T
> friend class AAResultBase
;
762 const TargetLibraryInfo
&TLI
;
764 std::vector
<std::unique_ptr
<Concept
>> AAs
;
766 std::vector
<AnalysisKey
*> AADeps
;
768 friend class BatchAAResults
;
771 /// This class is a wrapper over an AAResults, and it is intended to be used
772 /// only when there are no IR changes inbetween queries. BatchAAResults is
773 /// reusing the same `AAQueryInfo` to preserve the state across queries,
774 /// esentially making AA work in "batch mode". The internal state cannot be
775 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
776 /// or create a new BatchAAResults.
777 class BatchAAResults
{
782 BatchAAResults(AAResults
&AAR
) : AA(AAR
), AAQI() {}
783 AliasResult
alias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
) {
784 return AA
.alias(LocA
, LocB
, AAQI
);
786 bool pointsToConstantMemory(const MemoryLocation
&Loc
, bool OrLocal
= false) {
787 return AA
.pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
789 ModRefInfo
getModRefInfo(const CallBase
*Call
, const MemoryLocation
&Loc
) {
790 return AA
.getModRefInfo(Call
, Loc
, AAQI
);
792 ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
) {
793 return AA
.getModRefInfo(Call1
, Call2
, AAQI
);
795 ModRefInfo
getModRefInfo(const Instruction
*I
,
796 const Optional
<MemoryLocation
> &OptLoc
) {
797 return AA
.getModRefInfo(I
, OptLoc
, AAQI
);
799 ModRefInfo
getModRefInfo(Instruction
*I
, const CallBase
*Call2
) {
800 return AA
.getModRefInfo(I
, Call2
, AAQI
);
802 ModRefInfo
getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) {
803 return AA
.getArgModRefInfo(Call
, ArgIdx
);
805 FunctionModRefBehavior
getModRefBehavior(const CallBase
*Call
) {
806 return AA
.getModRefBehavior(Call
);
810 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
811 /// pointer or reference.
812 using AliasAnalysis
= AAResults
;
814 /// A private abstract base class describing the concept of an individual alias
815 /// analysis implementation.
817 /// This interface is implemented by any \c Model instantiation. It is also the
818 /// interface which a type used to instantiate the model must provide.
820 /// All of these methods model methods by the same name in the \c
821 /// AAResults class. Only differences and specifics to how the
822 /// implementations are called are documented here.
823 class AAResults::Concept
{
825 virtual ~Concept() = 0;
827 /// An update API used internally by the AAResults to provide
828 /// a handle back to the top level aggregation.
829 virtual void setAAResults(AAResults
*NewAAR
) = 0;
831 //===--------------------------------------------------------------------===//
832 /// \name Alias Queries
835 /// The main low level interface to the alias analysis implementation.
836 /// Returns an AliasResult indicating whether the two pointers are aliased to
837 /// each other. This is the interface that must be implemented by specific
838 /// alias analysis implementations.
839 virtual AliasResult
alias(const MemoryLocation
&LocA
,
840 const MemoryLocation
&LocB
, AAQueryInfo
&AAQI
) = 0;
842 /// Checks whether the given location points to constant memory, or if
843 /// \p OrLocal is true whether it points to a local alloca.
844 virtual bool pointsToConstantMemory(const MemoryLocation
&Loc
,
845 AAQueryInfo
&AAQI
, bool OrLocal
) = 0;
848 //===--------------------------------------------------------------------===//
849 /// \name Simple mod/ref information
852 /// Get the ModRef info associated with a pointer argument of a callsite. The
853 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
854 /// that these bits do not necessarily account for the overall behavior of
855 /// the function, but rather only provide additional per-argument
857 virtual ModRefInfo
getArgModRefInfo(const CallBase
*Call
,
858 unsigned ArgIdx
) = 0;
860 /// Return the behavior of the given call site.
861 virtual FunctionModRefBehavior
getModRefBehavior(const CallBase
*Call
) = 0;
863 /// Return the behavior when calling the given function.
864 virtual FunctionModRefBehavior
getModRefBehavior(const Function
*F
) = 0;
866 /// getModRefInfo (for call sites) - Return information about whether
867 /// a particular call site modifies or reads the specified memory location.
868 virtual ModRefInfo
getModRefInfo(const CallBase
*Call
,
869 const MemoryLocation
&Loc
,
870 AAQueryInfo
&AAQI
) = 0;
872 /// Return information about whether two call sites may refer to the same set
873 /// of memory locations. See the AA documentation for details:
874 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
875 virtual ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
,
876 AAQueryInfo
&AAQI
) = 0;
881 /// A private class template which derives from \c Concept and wraps some other
884 /// This models the concept by directly forwarding each interface point to the
885 /// wrapped type which must implement a compatible interface. This provides
886 /// a type erased binding.
887 template <typename AAResultT
> class AAResults::Model final
: public Concept
{
891 explicit Model(AAResultT
&Result
, AAResults
&AAR
) : Result(Result
) {
892 Result
.setAAResults(&AAR
);
894 ~Model() override
= default;
896 void setAAResults(AAResults
*NewAAR
) override
{ Result
.setAAResults(NewAAR
); }
898 AliasResult
alias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
,
899 AAQueryInfo
&AAQI
) override
{
900 return Result
.alias(LocA
, LocB
, AAQI
);
903 bool pointsToConstantMemory(const MemoryLocation
&Loc
, AAQueryInfo
&AAQI
,
904 bool OrLocal
) override
{
905 return Result
.pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
908 ModRefInfo
getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) override
{
909 return Result
.getArgModRefInfo(Call
, ArgIdx
);
912 FunctionModRefBehavior
getModRefBehavior(const CallBase
*Call
) override
{
913 return Result
.getModRefBehavior(Call
);
916 FunctionModRefBehavior
getModRefBehavior(const Function
*F
) override
{
917 return Result
.getModRefBehavior(F
);
920 ModRefInfo
getModRefInfo(const CallBase
*Call
, const MemoryLocation
&Loc
,
921 AAQueryInfo
&AAQI
) override
{
922 return Result
.getModRefInfo(Call
, Loc
, AAQI
);
925 ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
,
926 AAQueryInfo
&AAQI
) override
{
927 return Result
.getModRefInfo(Call1
, Call2
, AAQI
);
931 /// A CRTP-driven "mixin" base class to help implement the function alias
932 /// analysis results concept.
934 /// Because of the nature of many alias analysis implementations, they often
935 /// only implement a subset of the interface. This base class will attempt to
936 /// implement the remaining portions of the interface in terms of simpler forms
937 /// of the interface where possible, and otherwise provide conservatively
938 /// correct fallback implementations.
940 /// Implementors of an alias analysis should derive from this CRTP, and then
941 /// override specific methods that they wish to customize. There is no need to
942 /// use virtual anywhere, the CRTP base class does static dispatch to the
943 /// derived type passed into it.
944 template <typename DerivedT
> class AAResultBase
{
945 // Expose some parts of the interface only to the AAResults::Model
946 // for wrapping. Specifically, this allows the model to call our
947 // setAAResults method without exposing it as a fully public API.
948 friend class AAResults::Model
<DerivedT
>;
950 /// A pointer to the AAResults object that this AAResult is
951 /// aggregated within. May be null if not aggregated.
952 AAResults
*AAR
= nullptr;
954 /// Helper to dispatch calls back through the derived type.
955 DerivedT
&derived() { return static_cast<DerivedT
&>(*this); }
957 /// A setter for the AAResults pointer, which is used to satisfy the
958 /// AAResults::Model contract.
959 void setAAResults(AAResults
*NewAAR
) { AAR
= NewAAR
; }
962 /// This proxy class models a common pattern where we delegate to either the
963 /// top-level \c AAResults aggregation if one is registered, or to the
964 /// current result if none are registered.
965 class AAResultsProxy
{
967 DerivedT
&CurrentResult
;
970 AAResultsProxy(AAResults
*AAR
, DerivedT
&CurrentResult
)
971 : AAR(AAR
), CurrentResult(CurrentResult
) {}
973 AliasResult
alias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
,
975 return AAR
? AAR
->alias(LocA
, LocB
, AAQI
)
976 : CurrentResult
.alias(LocA
, LocB
, AAQI
);
979 bool pointsToConstantMemory(const MemoryLocation
&Loc
, AAQueryInfo
&AAQI
,
981 return AAR
? AAR
->pointsToConstantMemory(Loc
, AAQI
, OrLocal
)
982 : CurrentResult
.pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
985 ModRefInfo
getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) {
986 return AAR
? AAR
->getArgModRefInfo(Call
, ArgIdx
)
987 : CurrentResult
.getArgModRefInfo(Call
, ArgIdx
);
990 FunctionModRefBehavior
getModRefBehavior(const CallBase
*Call
) {
991 return AAR
? AAR
->getModRefBehavior(Call
)
992 : CurrentResult
.getModRefBehavior(Call
);
995 FunctionModRefBehavior
getModRefBehavior(const Function
*F
) {
996 return AAR
? AAR
->getModRefBehavior(F
) : CurrentResult
.getModRefBehavior(F
);
999 ModRefInfo
getModRefInfo(const CallBase
*Call
, const MemoryLocation
&Loc
,
1000 AAQueryInfo
&AAQI
) {
1001 return AAR
? AAR
->getModRefInfo(Call
, Loc
, AAQI
)
1002 : CurrentResult
.getModRefInfo(Call
, Loc
, AAQI
);
1005 ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
,
1006 AAQueryInfo
&AAQI
) {
1007 return AAR
? AAR
->getModRefInfo(Call1
, Call2
, AAQI
)
1008 : CurrentResult
.getModRefInfo(Call1
, Call2
, AAQI
);
1012 explicit AAResultBase() = default;
1014 // Provide all the copy and move constructors so that derived types aren't
1016 AAResultBase(const AAResultBase
&Arg
) {}
1017 AAResultBase(AAResultBase
&&Arg
) {}
1019 /// Get a proxy for the best AA result set to query at this time.
1021 /// When this result is part of a larger aggregation, this will proxy to that
1022 /// aggregation. When this result is used in isolation, it will just delegate
1023 /// back to the derived class's implementation.
1025 /// Note that callers of this need to take considerable care to not cause
1026 /// performance problems when they use this routine, in the case of a large
1027 /// number of alias analyses being aggregated, it can be expensive to walk
1028 /// back across the chain.
1029 AAResultsProxy
getBestAAResults() { return AAResultsProxy(AAR
, derived()); }
1032 AliasResult
alias(const MemoryLocation
&LocA
, const MemoryLocation
&LocB
,
1033 AAQueryInfo
&AAQI
) {
1037 bool pointsToConstantMemory(const MemoryLocation
&Loc
, AAQueryInfo
&AAQI
,
1042 ModRefInfo
getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) {
1043 return ModRefInfo::ModRef
;
1046 FunctionModRefBehavior
getModRefBehavior(const CallBase
*Call
) {
1047 return FMRB_UnknownModRefBehavior
;
1050 FunctionModRefBehavior
getModRefBehavior(const Function
*F
) {
1051 return FMRB_UnknownModRefBehavior
;
1054 ModRefInfo
getModRefInfo(const CallBase
*Call
, const MemoryLocation
&Loc
,
1055 AAQueryInfo
&AAQI
) {
1056 return ModRefInfo::ModRef
;
1059 ModRefInfo
getModRefInfo(const CallBase
*Call1
, const CallBase
*Call2
,
1060 AAQueryInfo
&AAQI
) {
1061 return ModRefInfo::ModRef
;
1065 /// Return true if this pointer is returned by a noalias function.
1066 bool isNoAliasCall(const Value
*V
);
1068 /// Return true if this is an argument with the noalias attribute.
1069 bool isNoAliasArgument(const Value
*V
);
1071 /// Return true if this pointer refers to a distinct and identifiable object.
1072 /// This returns true for:
1073 /// Global Variables and Functions (but not Global Aliases)
1075 /// ByVal and NoAlias Arguments
1076 /// NoAlias returns (e.g. calls to malloc)
1078 bool isIdentifiedObject(const Value
*V
);
1080 /// Return true if V is umabigously identified at the function-level.
1081 /// Different IdentifiedFunctionLocals can't alias.
1082 /// Further, an IdentifiedFunctionLocal can not alias with any function
1083 /// arguments other than itself, which is not necessarily true for
1084 /// IdentifiedObjects.
1085 bool isIdentifiedFunctionLocal(const Value
*V
);
1087 /// A manager for alias analyses.
1089 /// This class can have analyses registered with it and when run, it will run
1090 /// all of them and aggregate their results into single AA results interface
1091 /// that dispatches across all of the alias analysis results available.
1093 /// Note that the order in which analyses are registered is very significant.
1094 /// That is the order in which the results will be aggregated and queried.
1096 /// This manager effectively wraps the AnalysisManager for registering alias
1097 /// analyses. When you register your alias analysis with this manager, it will
1098 /// ensure the analysis itself is registered with its AnalysisManager.
1100 /// The result of this analysis is only invalidated if one of the particular
1101 /// aggregated AA results end up being invalidated. This removes the need to
1102 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1103 /// longer be registered once the `AAManager` is run.
1104 class AAManager
: public AnalysisInfoMixin
<AAManager
> {
1106 using Result
= AAResults
;
1108 /// Register a specific AA result.
1109 template <typename AnalysisT
> void registerFunctionAnalysis() {
1110 ResultGetters
.push_back(&getFunctionAAResultImpl
<AnalysisT
>);
1113 /// Register a specific AA result.
1114 template <typename AnalysisT
> void registerModuleAnalysis() {
1115 ResultGetters
.push_back(&getModuleAAResultImpl
<AnalysisT
>);
1118 Result
run(Function
&F
, FunctionAnalysisManager
&AM
) {
1119 Result
R(AM
.getResult
<TargetLibraryAnalysis
>(F
));
1120 for (auto &Getter
: ResultGetters
)
1121 (*Getter
)(F
, AM
, R
);
1126 friend AnalysisInfoMixin
<AAManager
>;
1128 static AnalysisKey Key
;
1130 SmallVector
<void (*)(Function
&F
, FunctionAnalysisManager
&AM
,
1131 AAResults
&AAResults
),
1134 template <typename AnalysisT
>
1135 static void getFunctionAAResultImpl(Function
&F
,
1136 FunctionAnalysisManager
&AM
,
1137 AAResults
&AAResults
) {
1138 AAResults
.addAAResult(AM
.template getResult
<AnalysisT
>(F
));
1139 AAResults
.addAADependencyID(AnalysisT::ID());
1142 template <typename AnalysisT
>
1143 static void getModuleAAResultImpl(Function
&F
, FunctionAnalysisManager
&AM
,
1144 AAResults
&AAResults
) {
1145 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1146 auto &MAM
= MAMProxy
.getManager();
1147 if (auto *R
= MAM
.template getCachedResult
<AnalysisT
>(*F
.getParent())) {
1148 AAResults
.addAAResult(*R
);
1150 .template registerOuterAnalysisInvalidation
<AnalysisT
, AAManager
>();
1155 /// A wrapper pass to provide the legacy pass manager access to a suitably
1156 /// prepared AAResults object.
1157 class AAResultsWrapperPass
: public FunctionPass
{
1158 std::unique_ptr
<AAResults
> AAR
;
1163 AAResultsWrapperPass();
1165 AAResults
&getAAResults() { return *AAR
; }
1166 const AAResults
&getAAResults() const { return *AAR
; }
1168 bool runOnFunction(Function
&F
) override
;
1170 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
1173 /// A wrapper pass for external alias analyses. This just squirrels away the
1174 /// callback used to run any analyses and register their results.
1175 struct ExternalAAWrapperPass
: ImmutablePass
{
1176 using CallbackT
= std::function
<void(Pass
&, Function
&, AAResults
&)>;
1182 ExternalAAWrapperPass() : ImmutablePass(ID
) {
1183 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1186 explicit ExternalAAWrapperPass(CallbackT CB
)
1187 : ImmutablePass(ID
), CB(std::move(CB
)) {
1188 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1191 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1192 AU
.setPreservesAll();
1196 FunctionPass
*createAAResultsWrapperPass();
1198 /// A wrapper pass around a callback which can be used to populate the
1199 /// AAResults in the AAResultsWrapperPass from an external AA.
1201 /// The callback provided here will be used each time we prepare an AAResults
1202 /// object, and will receive a reference to the function wrapper pass, the
1203 /// function, and the AAResults object to populate. This should be used when
1204 /// setting up a custom pass pipeline to inject a hook into the AA results.
1205 ImmutablePass
*createExternalAAWrapperPass(
1206 std::function
<void(Pass
&, Function
&, AAResults
&)> Callback
);
1208 /// A helper for the legacy pass manager to create a \c AAResults
1209 /// object populated to the best of our ability for a particular function when
1210 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1212 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1213 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1214 /// getAnalysisUsage.
1215 AAResults
createLegacyPMAAResults(Pass
&P
, Function
&F
, BasicAAResult
&BAR
);
1217 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1218 /// sure the analyses required by \p createLegacyPMAAResults are available.
1219 void getAAResultsAnalysisUsage(AnalysisUsage
&AU
);
1221 } // end namespace llvm
1223 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H