1 //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14 #define LLVM_ANALYSIS_IVDESCRIPTORS_H
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/DemandedBits.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/Casting.h"
37 class AliasSetTracker
;
42 class OptimizationRemarkEmitter
;
43 class PredicatedScalarEvolution
;
44 class PredIteratorCache
;
45 class ScalarEvolution
;
47 class TargetLibraryInfo
;
48 class TargetTransformInfo
;
50 /// The RecurrenceDescriptor is used to identify recurrences variables in a
51 /// loop. Reduction is a special case of recurrence that has uses of the
52 /// recurrence variable outside the loop. The method isReductionPHI identifies
53 /// reductions that are basic recurrences.
55 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
56 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
57 /// array[i]; } is a summation of array elements. Basic recurrences are a
58 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
61 /// This struct holds information about recurrence variables.
62 class RecurrenceDescriptor
{
64 /// This enum represents the kinds of recurrences that we support.
66 RK_NoRecurrence
, ///< Not a recurrence.
67 RK_IntegerAdd
, ///< Sum of integers.
68 RK_IntegerMult
, ///< Product of integers.
69 RK_IntegerOr
, ///< Bitwise or logical OR of numbers.
70 RK_IntegerAnd
, ///< Bitwise or logical AND of numbers.
71 RK_IntegerXor
, ///< Bitwise or logical XOR of numbers.
72 RK_IntegerMinMax
, ///< Min/max implemented in terms of select(cmp()).
73 RK_FloatAdd
, ///< Sum of floats.
74 RK_FloatMult
, ///< Product of floats.
75 RK_FloatMinMax
///< Min/max implemented in terms of select(cmp()).
78 // This enum represents the kind of minmax recurrence.
79 enum MinMaxRecurrenceKind
{
89 RecurrenceDescriptor() = default;
91 RecurrenceDescriptor(Value
*Start
, Instruction
*Exit
, RecurrenceKind K
,
92 FastMathFlags FMF
, MinMaxRecurrenceKind MK
,
93 Instruction
*UAI
, Type
*RT
, bool Signed
,
94 SmallPtrSetImpl
<Instruction
*> &CI
)
95 : StartValue(Start
), LoopExitInstr(Exit
), Kind(K
), FMF(FMF
),
96 MinMaxKind(MK
), UnsafeAlgebraInst(UAI
), RecurrenceType(RT
),
98 CastInsts
.insert(CI
.begin(), CI
.end());
101 /// This POD struct holds information about a potential recurrence operation.
104 InstDesc(bool IsRecur
, Instruction
*I
, Instruction
*UAI
= nullptr)
105 : IsRecurrence(IsRecur
), PatternLastInst(I
), MinMaxKind(MRK_Invalid
),
106 UnsafeAlgebraInst(UAI
) {}
108 InstDesc(Instruction
*I
, MinMaxRecurrenceKind K
, Instruction
*UAI
= nullptr)
109 : IsRecurrence(true), PatternLastInst(I
), MinMaxKind(K
),
110 UnsafeAlgebraInst(UAI
) {}
112 bool isRecurrence() { return IsRecurrence
; }
114 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst
!= nullptr; }
116 Instruction
*getUnsafeAlgebraInst() { return UnsafeAlgebraInst
; }
118 MinMaxRecurrenceKind
getMinMaxKind() { return MinMaxKind
; }
120 Instruction
*getPatternInst() { return PatternLastInst
; }
123 // Is this instruction a recurrence candidate.
125 // The last instruction in a min/max pattern (select of the select(icmp())
126 // pattern), or the current recurrence instruction otherwise.
127 Instruction
*PatternLastInst
;
128 // If this is a min/max pattern the comparison predicate.
129 MinMaxRecurrenceKind MinMaxKind
;
130 // Recurrence has unsafe algebra.
131 Instruction
*UnsafeAlgebraInst
;
134 /// Returns a struct describing if the instruction 'I' can be a recurrence
135 /// variable of type 'Kind'. If the recurrence is a min/max pattern of
136 /// select(icmp()) this function advances the instruction pointer 'I' from the
137 /// compare instruction to the select instruction and stores this pointer in
138 /// 'PatternLastInst' member of the returned struct.
139 static InstDesc
isRecurrenceInstr(Instruction
*I
, RecurrenceKind Kind
,
140 InstDesc
&Prev
, bool HasFunNoNaNAttr
);
142 /// Returns true if instruction I has multiple uses in Insts
143 static bool hasMultipleUsesOf(Instruction
*I
,
144 SmallPtrSetImpl
<Instruction
*> &Insts
,
145 unsigned MaxNumUses
);
147 /// Returns true if all uses of the instruction I is within the Set.
148 static bool areAllUsesIn(Instruction
*I
, SmallPtrSetImpl
<Instruction
*> &Set
);
150 /// Returns a struct describing if the instruction if the instruction is a
151 /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
153 static InstDesc
isMinMaxSelectCmpPattern(Instruction
*I
, InstDesc
&Prev
);
155 /// Returns a struct describing if the instruction is a
156 /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
157 static InstDesc
isConditionalRdxPattern(RecurrenceKind Kind
, Instruction
*I
);
159 /// Returns identity corresponding to the RecurrenceKind.
160 static Constant
*getRecurrenceIdentity(RecurrenceKind K
, Type
*Tp
);
162 /// Returns the opcode of binary operation corresponding to the
164 static unsigned getRecurrenceBinOp(RecurrenceKind Kind
);
166 /// Returns true if Phi is a reduction of type Kind and adds it to the
167 /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
168 /// non-null, the minimal bit width needed to compute the reduction will be
170 static bool AddReductionVar(PHINode
*Phi
, RecurrenceKind Kind
, Loop
*TheLoop
,
171 bool HasFunNoNaNAttr
,
172 RecurrenceDescriptor
&RedDes
,
173 DemandedBits
*DB
= nullptr,
174 AssumptionCache
*AC
= nullptr,
175 DominatorTree
*DT
= nullptr);
177 /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
178 /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
179 /// non-null, the minimal bit width needed to compute the reduction will be
181 static bool isReductionPHI(PHINode
*Phi
, Loop
*TheLoop
,
182 RecurrenceDescriptor
&RedDes
,
183 DemandedBits
*DB
= nullptr,
184 AssumptionCache
*AC
= nullptr,
185 DominatorTree
*DT
= nullptr);
187 /// Returns true if Phi is a first-order recurrence. A first-order recurrence
188 /// is a non-reduction recurrence relation in which the value of the
189 /// recurrence in the current loop iteration equals a value defined in the
190 /// previous iteration. \p SinkAfter includes pairs of instructions where the
191 /// first will be rescheduled to appear after the second if/when the loop is
192 /// vectorized. It may be augmented with additional pairs if needed in order
193 /// to handle Phi as a first-order recurrence.
195 isFirstOrderRecurrence(PHINode
*Phi
, Loop
*TheLoop
,
196 DenseMap
<Instruction
*, Instruction
*> &SinkAfter
,
199 RecurrenceKind
getRecurrenceKind() { return Kind
; }
201 MinMaxRecurrenceKind
getMinMaxRecurrenceKind() { return MinMaxKind
; }
203 FastMathFlags
getFastMathFlags() { return FMF
; }
205 TrackingVH
<Value
> getRecurrenceStartValue() { return StartValue
; }
207 Instruction
*getLoopExitInstr() { return LoopExitInstr
; }
209 /// Returns true if the recurrence has unsafe algebra which requires a relaxed
210 /// floating-point model.
211 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst
!= nullptr; }
213 /// Returns first unsafe algebra instruction in the PHI node's use-chain.
214 Instruction
*getUnsafeAlgebraInst() { return UnsafeAlgebraInst
; }
216 /// Returns true if the recurrence kind is an integer kind.
217 static bool isIntegerRecurrenceKind(RecurrenceKind Kind
);
219 /// Returns true if the recurrence kind is a floating point kind.
220 static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind
);
222 /// Returns true if the recurrence kind is an arithmetic kind.
223 static bool isArithmeticRecurrenceKind(RecurrenceKind Kind
);
225 /// Returns the type of the recurrence. This type can be narrower than the
226 /// actual type of the Phi if the recurrence has been type-promoted.
227 Type
*getRecurrenceType() { return RecurrenceType
; }
229 /// Returns a reference to the instructions used for type-promoting the
231 SmallPtrSet
<Instruction
*, 8> &getCastInsts() { return CastInsts
; }
233 /// Returns true if all source operands of the recurrence are SExtInsts.
234 bool isSigned() { return IsSigned
; }
237 // The starting value of the recurrence.
238 // It does not have to be zero!
239 TrackingVH
<Value
> StartValue
;
240 // The instruction who's value is used outside the loop.
241 Instruction
*LoopExitInstr
= nullptr;
242 // The kind of the recurrence.
243 RecurrenceKind Kind
= RK_NoRecurrence
;
244 // The fast-math flags on the recurrent instructions. We propagate these
245 // fast-math flags into the vectorized FP instructions we generate.
247 // If this a min/max recurrence the kind of recurrence.
248 MinMaxRecurrenceKind MinMaxKind
= MRK_Invalid
;
249 // First occurrence of unasfe algebra in the PHI's use-chain.
250 Instruction
*UnsafeAlgebraInst
= nullptr;
251 // The type of the recurrence.
252 Type
*RecurrenceType
= nullptr;
253 // True if all source operands of the recurrence are SExtInsts.
254 bool IsSigned
= false;
255 // Instructions used for type-promoting the recurrence.
256 SmallPtrSet
<Instruction
*, 8> CastInsts
;
259 /// A struct for saving information about induction variables.
260 class InductionDescriptor
{
262 /// This enum represents the kinds of inductions that we support.
264 IK_NoInduction
, ///< Not an induction variable.
265 IK_IntInduction
, ///< Integer induction variable. Step = C.
266 IK_PtrInduction
, ///< Pointer induction var. Step = C / sizeof(elem).
267 IK_FpInduction
///< Floating point induction variable.
271 /// Default constructor - creates an invalid induction.
272 InductionDescriptor() = default;
274 /// Get the consecutive direction. Returns:
275 /// 0 - unknown or non-consecutive.
276 /// 1 - consecutive and increasing.
277 /// -1 - consecutive and decreasing.
278 int getConsecutiveDirection() const;
280 Value
*getStartValue() const { return StartValue
; }
281 InductionKind
getKind() const { return IK
; }
282 const SCEV
*getStep() const { return Step
; }
283 BinaryOperator
*getInductionBinOp() const { return InductionBinOp
; }
284 ConstantInt
*getConstIntStepValue() const;
286 /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
287 /// induction, the induction descriptor \p D will contain the data describing
288 /// this induction. If by some other means the caller has a better SCEV
289 /// expression for \p Phi than the one returned by the ScalarEvolution
290 /// analysis, it can be passed through \p Expr. If the def-use chain
291 /// associated with the phi includes casts (that we know we can ignore
292 /// under proper runtime checks), they are passed through \p CastsToIgnore.
294 isInductionPHI(PHINode
*Phi
, const Loop
*L
, ScalarEvolution
*SE
,
295 InductionDescriptor
&D
, const SCEV
*Expr
= nullptr,
296 SmallVectorImpl
<Instruction
*> *CastsToIgnore
= nullptr);
298 /// Returns true if \p Phi is a floating point induction in the loop \p L.
299 /// If \p Phi is an induction, the induction descriptor \p D will contain
300 /// the data describing this induction.
301 static bool isFPInductionPHI(PHINode
*Phi
, const Loop
*L
, ScalarEvolution
*SE
,
302 InductionDescriptor
&D
);
304 /// Returns true if \p Phi is a loop \p L induction, in the context associated
305 /// with the run-time predicate of PSE. If \p Assume is true, this can add
306 /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
308 /// If \p Phi is an induction, \p D will contain the data describing this
310 static bool isInductionPHI(PHINode
*Phi
, const Loop
*L
,
311 PredicatedScalarEvolution
&PSE
,
312 InductionDescriptor
&D
, bool Assume
= false);
314 /// Returns true if the induction type is FP and the binary operator does
315 /// not have the "fast-math" property. Such operation requires a relaxed FP
317 bool hasUnsafeAlgebra() {
318 return (IK
== IK_FpInduction
) && InductionBinOp
&&
319 !cast
<FPMathOperator
>(InductionBinOp
)->isFast();
322 /// Returns induction operator that does not have "fast-math" property
323 /// and requires FP unsafe mode.
324 Instruction
*getUnsafeAlgebraInst() {
325 if (IK
!= IK_FpInduction
)
328 if (!InductionBinOp
|| cast
<FPMathOperator
>(InductionBinOp
)->isFast())
330 return InductionBinOp
;
333 /// Returns binary opcode of the induction operator.
334 Instruction::BinaryOps
getInductionOpcode() const {
335 return InductionBinOp
? InductionBinOp
->getOpcode()
336 : Instruction::BinaryOpsEnd
;
339 /// Returns a reference to the type cast instructions in the induction
340 /// update chain, that are redundant when guarded with a runtime
341 /// SCEV overflow check.
342 const SmallVectorImpl
<Instruction
*> &getCastInsts() const {
343 return RedundantCasts
;
347 /// Private constructor - used by \c isInductionPHI.
348 InductionDescriptor(Value
*Start
, InductionKind K
, const SCEV
*Step
,
349 BinaryOperator
*InductionBinOp
= nullptr,
350 SmallVectorImpl
<Instruction
*> *Casts
= nullptr);
353 TrackingVH
<Value
> StartValue
;
355 InductionKind IK
= IK_NoInduction
;
357 const SCEV
*Step
= nullptr;
358 // Instruction that advances induction variable.
359 BinaryOperator
*InductionBinOp
= nullptr;
360 // Instructions used for type-casts of the induction variable,
361 // that are redundant when guarded with a runtime SCEV overflow check.
362 SmallVector
<Instruction
*, 2> RedundantCasts
;
365 } // end namespace llvm
367 #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H