[Alignment][NFC] Support compile time constants
[llvm-core.git] / include / llvm / CodeGen / SelectionDAG.h
blobbe6e2bd7d65260293d7790e8704c50d5d6f5a39b
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
59 namespace llvm {
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
84 class SDVTListNode : public FoldingSetNode {
85 friend struct FoldingSetTrait<SDVTListNode>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
91 /// a memory penalty.
92 FoldingSetNodeIDRef FastID;
93 const EVT *VTs;
94 unsigned int NumVTs;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
96 /// hash calculation.
97 unsigned HashValue;
99 public:
100 SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101 FastID(ID), VTs(VT), NumVTs(Num) {
102 HashValue = ID.ComputeHash();
105 SDVTList getSDVTList() {
106 SDVTList result = {VTs, NumVTs};
107 return result;
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114 static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115 ID = X.FastID;
118 static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119 unsigned IDHash, FoldingSetNodeID &TempID) {
120 if (X.HashValue != IDHash)
121 return false;
122 return ID == X.FastID;
125 static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126 return X.HashValue;
130 template <> struct ilist_alloc_traits<SDNode> {
131 static void deleteNode(SDNode *) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148 BumpPtrAllocator Alloc;
149 SmallVector<SDDbgValue*, 32> DbgValues;
150 SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151 SmallVector<SDDbgLabel*, 4> DbgLabels;
152 using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
153 DbgValMapType DbgValMap;
155 public:
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo &) = delete;
158 SDDbgInfo &operator=(const SDDbgInfo &) = delete;
160 void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161 if (isParameter) {
162 ByvalParmDbgValues.push_back(V);
163 } else DbgValues.push_back(V);
164 if (Node)
165 DbgValMap[Node].push_back(V);
168 void add(SDDbgLabel *L) {
169 DbgLabels.push_back(L);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode *Node);
176 void clear() {
177 DbgValMap.clear();
178 DbgValues.clear();
179 ByvalParmDbgValues.clear();
180 DbgLabels.clear();
181 Alloc.Reset();
184 BumpPtrAllocator &getAlloc() { return Alloc; }
186 bool empty() const {
187 return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
190 ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
191 auto I = DbgValMap.find(Node);
192 if (I != DbgValMap.end())
193 return I->second;
194 return ArrayRef<SDDbgValue*>();
197 using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
198 using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
200 DbgIterator DbgBegin() { return DbgValues.begin(); }
201 DbgIterator DbgEnd() { return DbgValues.end(); }
202 DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203 DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
204 DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205 DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
221 class SelectionDAG {
222 const TargetMachine &TM;
223 const SelectionDAGTargetInfo *TSI = nullptr;
224 const TargetLowering *TLI = nullptr;
225 const TargetLibraryInfo *LibInfo = nullptr;
226 MachineFunction *MF;
227 Pass *SDAGISelPass = nullptr;
228 LLVMContext *Context;
229 CodeGenOpt::Level OptLevel;
231 LegacyDivergenceAnalysis * DA = nullptr;
232 FunctionLoweringInfo * FLI = nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter *ORE;
238 /// The starting token.
239 SDNode EntryNode;
241 /// The root of the entire DAG.
242 SDValue Root;
244 /// A linked list of nodes in the current DAG.
245 ilist<SDNode> AllNodes;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
250 sizeof(LargestSDNode),
251 alignof(MostAlignedSDNode)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet<SDNode> CSEMap;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator;
262 ArrayRecycler<SDUse> OperandRecycler;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator;
267 /// Tracks dbg_value and dbg_label information through SDISel.
268 SDDbgInfo *DbgInfo;
270 using CallSiteInfo = MachineFunction::CallSiteInfo;
271 using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
273 struct CallSiteDbgInfo {
274 CallSiteInfo CSInfo;
275 MDNode *HeapAllocSite = nullptr;
278 DenseMap<const SDNode *, CallSiteDbgInfo> SDCallSiteDbgInfo;
280 uint16_t NextPersistentId = 0;
282 public:
283 /// Clients of various APIs that cause global effects on
284 /// the DAG can optionally implement this interface. This allows the clients
285 /// to handle the various sorts of updates that happen.
287 /// A DAGUpdateListener automatically registers itself with DAG when it is
288 /// constructed, and removes itself when destroyed in RAII fashion.
289 struct DAGUpdateListener {
290 DAGUpdateListener *const Next;
291 SelectionDAG &DAG;
293 explicit DAGUpdateListener(SelectionDAG &D)
294 : Next(D.UpdateListeners), DAG(D) {
295 DAG.UpdateListeners = this;
298 virtual ~DAGUpdateListener() {
299 assert(DAG.UpdateListeners == this &&
300 "DAGUpdateListeners must be destroyed in LIFO order");
301 DAG.UpdateListeners = Next;
304 /// The node N that was deleted and, if E is not null, an
305 /// equivalent node E that replaced it.
306 virtual void NodeDeleted(SDNode *N, SDNode *E);
308 /// The node N that was updated.
309 virtual void NodeUpdated(SDNode *N);
311 /// The node N that was inserted.
312 virtual void NodeInserted(SDNode *N);
315 struct DAGNodeDeletedListener : public DAGUpdateListener {
316 std::function<void(SDNode *, SDNode *)> Callback;
318 DAGNodeDeletedListener(SelectionDAG &DAG,
319 std::function<void(SDNode *, SDNode *)> Callback)
320 : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
322 void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
324 private:
325 virtual void anchor();
328 /// When true, additional steps are taken to
329 /// ensure that getConstant() and similar functions return DAG nodes that
330 /// have legal types. This is important after type legalization since
331 /// any illegally typed nodes generated after this point will not experience
332 /// type legalization.
333 bool NewNodesMustHaveLegalTypes = false;
335 private:
336 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
337 friend struct DAGUpdateListener;
339 /// Linked list of registered DAGUpdateListener instances.
340 /// This stack is maintained by DAGUpdateListener RAII.
341 DAGUpdateListener *UpdateListeners = nullptr;
343 /// Implementation of setSubgraphColor.
344 /// Return whether we had to truncate the search.
345 bool setSubgraphColorHelper(SDNode *N, const char *Color,
346 DenseSet<SDNode *> &visited,
347 int level, bool &printed);
349 template <typename SDNodeT, typename... ArgTypes>
350 SDNodeT *newSDNode(ArgTypes &&... Args) {
351 return new (NodeAllocator.template Allocate<SDNodeT>())
352 SDNodeT(std::forward<ArgTypes>(Args)...);
355 /// Build a synthetic SDNodeT with the given args and extract its subclass
356 /// data as an integer (e.g. for use in a folding set).
358 /// The args to this function are the same as the args to SDNodeT's
359 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
360 /// omitted.
361 template <typename SDNodeT, typename... ArgTypes>
362 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
363 ArgTypes &&... Args) {
364 // The compiler can reduce this expression to a constant iff we pass an
365 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
366 // on the subclass data.
367 return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
368 .getRawSubclassData();
371 template <typename SDNodeTy>
372 static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
373 SDVTList VTs, EVT MemoryVT,
374 MachineMemOperand *MMO) {
375 return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
376 .getRawSubclassData();
379 void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
381 void removeOperands(SDNode *Node) {
382 if (!Node->OperandList)
383 return;
384 OperandRecycler.deallocate(
385 ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
386 Node->OperandList);
387 Node->NumOperands = 0;
388 Node->OperandList = nullptr;
390 void CreateTopologicalOrder(std::vector<SDNode*>& Order);
392 public:
393 // Maximum depth for recursive analysis such as computeKnownBits, etc.
394 static constexpr unsigned MaxRecursionDepth = 6;
396 explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
397 SelectionDAG(const SelectionDAG &) = delete;
398 SelectionDAG &operator=(const SelectionDAG &) = delete;
399 ~SelectionDAG();
401 /// Prepare this SelectionDAG to process code in the given MachineFunction.
402 void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
403 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
404 LegacyDivergenceAnalysis * Divergence);
406 void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
407 FLI = FuncInfo;
410 /// Clear state and free memory necessary to make this
411 /// SelectionDAG ready to process a new block.
412 void clear();
414 MachineFunction &getMachineFunction() const { return *MF; }
415 const Pass *getPass() const { return SDAGISelPass; }
417 const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
418 const TargetMachine &getTarget() const { return TM; }
419 const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
420 const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
421 const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
422 const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
423 const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
424 LLVMContext *getContext() const {return Context; }
425 OptimizationRemarkEmitter &getORE() const { return *ORE; }
427 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
428 void viewGraph(const std::string &Title);
429 void viewGraph();
431 #ifndef NDEBUG
432 std::map<const SDNode *, std::string> NodeGraphAttrs;
433 #endif
435 /// Clear all previously defined node graph attributes.
436 /// Intended to be used from a debugging tool (eg. gdb).
437 void clearGraphAttrs();
439 /// Set graph attributes for a node. (eg. "color=red".)
440 void setGraphAttrs(const SDNode *N, const char *Attrs);
442 /// Get graph attributes for a node. (eg. "color=red".)
443 /// Used from getNodeAttributes.
444 const std::string getGraphAttrs(const SDNode *N) const;
446 /// Convenience for setting node color attribute.
447 void setGraphColor(const SDNode *N, const char *Color);
449 /// Convenience for setting subgraph color attribute.
450 void setSubgraphColor(SDNode *N, const char *Color);
452 using allnodes_const_iterator = ilist<SDNode>::const_iterator;
454 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
455 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
457 using allnodes_iterator = ilist<SDNode>::iterator;
459 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
460 allnodes_iterator allnodes_end() { return AllNodes.end(); }
462 ilist<SDNode>::size_type allnodes_size() const {
463 return AllNodes.size();
466 iterator_range<allnodes_iterator> allnodes() {
467 return make_range(allnodes_begin(), allnodes_end());
469 iterator_range<allnodes_const_iterator> allnodes() const {
470 return make_range(allnodes_begin(), allnodes_end());
473 /// Return the root tag of the SelectionDAG.
474 const SDValue &getRoot() const { return Root; }
476 /// Return the token chain corresponding to the entry of the function.
477 SDValue getEntryNode() const {
478 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
481 /// Set the current root tag of the SelectionDAG.
483 const SDValue &setRoot(SDValue N) {
484 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
485 "DAG root value is not a chain!");
486 if (N.getNode())
487 checkForCycles(N.getNode(), this);
488 Root = N;
489 if (N.getNode())
490 checkForCycles(this);
491 return Root;
494 #ifndef NDEBUG
495 void VerifyDAGDiverence();
496 #endif
498 /// This iterates over the nodes in the SelectionDAG, folding
499 /// certain types of nodes together, or eliminating superfluous nodes. The
500 /// Level argument controls whether Combine is allowed to produce nodes and
501 /// types that are illegal on the target.
502 void Combine(CombineLevel Level, AliasAnalysis *AA,
503 CodeGenOpt::Level OptLevel);
505 /// This transforms the SelectionDAG into a SelectionDAG that
506 /// only uses types natively supported by the target.
507 /// Returns "true" if it made any changes.
509 /// Note that this is an involved process that may invalidate pointers into
510 /// the graph.
511 bool LegalizeTypes();
513 /// This transforms the SelectionDAG into a SelectionDAG that is
514 /// compatible with the target instruction selector, as indicated by the
515 /// TargetLowering object.
517 /// Note that this is an involved process that may invalidate pointers into
518 /// the graph.
519 void Legalize();
521 /// Transforms a SelectionDAG node and any operands to it into a node
522 /// that is compatible with the target instruction selector, as indicated by
523 /// the TargetLowering object.
525 /// \returns true if \c N is a valid, legal node after calling this.
527 /// This essentially runs a single recursive walk of the \c Legalize process
528 /// over the given node (and its operands). This can be used to incrementally
529 /// legalize the DAG. All of the nodes which are directly replaced,
530 /// potentially including N, are added to the output parameter \c
531 /// UpdatedNodes so that the delta to the DAG can be understood by the
532 /// caller.
534 /// When this returns false, N has been legalized in a way that make the
535 /// pointer passed in no longer valid. It may have even been deleted from the
536 /// DAG, and so it shouldn't be used further. When this returns true, the
537 /// N passed in is a legal node, and can be immediately processed as such.
538 /// This may still have done some work on the DAG, and will still populate
539 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
540 bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
542 /// This transforms the SelectionDAG into a SelectionDAG
543 /// that only uses vector math operations supported by the target. This is
544 /// necessary as a separate step from Legalize because unrolling a vector
545 /// operation can introduce illegal types, which requires running
546 /// LegalizeTypes again.
548 /// This returns true if it made any changes; in that case, LegalizeTypes
549 /// is called again before Legalize.
551 /// Note that this is an involved process that may invalidate pointers into
552 /// the graph.
553 bool LegalizeVectors();
555 /// This method deletes all unreachable nodes in the SelectionDAG.
556 void RemoveDeadNodes();
558 /// Remove the specified node from the system. This node must
559 /// have no referrers.
560 void DeleteNode(SDNode *N);
562 /// Return an SDVTList that represents the list of values specified.
563 SDVTList getVTList(EVT VT);
564 SDVTList getVTList(EVT VT1, EVT VT2);
565 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
566 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
567 SDVTList getVTList(ArrayRef<EVT> VTs);
569 //===--------------------------------------------------------------------===//
570 // Node creation methods.
572 /// Create a ConstantSDNode wrapping a constant value.
573 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
575 /// If only legal types can be produced, this does the necessary
576 /// transformations (e.g., if the vector element type is illegal).
577 /// @{
578 SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
579 bool isTarget = false, bool isOpaque = false);
580 SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
581 bool isTarget = false, bool isOpaque = false);
583 SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
584 bool IsOpaque = false) {
585 return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
586 VT, IsTarget, IsOpaque);
589 SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
590 bool isTarget = false, bool isOpaque = false);
591 SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
592 bool isTarget = false);
593 SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
594 bool LegalTypes = true);
596 SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
597 bool isOpaque = false) {
598 return getConstant(Val, DL, VT, true, isOpaque);
600 SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
601 bool isOpaque = false) {
602 return getConstant(Val, DL, VT, true, isOpaque);
604 SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
605 bool isOpaque = false) {
606 return getConstant(Val, DL, VT, true, isOpaque);
609 /// Create a true or false constant of type \p VT using the target's
610 /// BooleanContent for type \p OpVT.
611 SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
612 /// @}
614 /// Create a ConstantFPSDNode wrapping a constant value.
615 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
617 /// If only legal types can be produced, this does the necessary
618 /// transformations (e.g., if the vector element type is illegal).
619 /// The forms that take a double should only be used for simple constants
620 /// that can be exactly represented in VT. No checks are made.
621 /// @{
622 SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
623 bool isTarget = false);
624 SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
625 bool isTarget = false);
626 SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
627 bool isTarget = false);
628 SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
629 return getConstantFP(Val, DL, VT, true);
631 SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
632 return getConstantFP(Val, DL, VT, true);
634 SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
635 return getConstantFP(Val, DL, VT, true);
637 /// @}
639 SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
640 int64_t offset = 0, bool isTargetGA = false,
641 unsigned TargetFlags = 0);
642 SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
643 int64_t offset = 0, unsigned TargetFlags = 0) {
644 return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
646 SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
647 SDValue getTargetFrameIndex(int FI, EVT VT) {
648 return getFrameIndex(FI, VT, true);
650 SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
651 unsigned TargetFlags = 0);
652 SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
653 return getJumpTable(JTI, VT, true, TargetFlags);
655 SDValue getConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
656 int Offs = 0, bool isT = false,
657 unsigned TargetFlags = 0);
658 SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
659 int Offset = 0, unsigned TargetFlags = 0) {
660 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
662 SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
663 unsigned Align = 0, int Offs = 0, bool isT=false,
664 unsigned TargetFlags = 0);
665 SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT,
666 unsigned Align = 0, int Offset = 0,
667 unsigned TargetFlags = 0) {
668 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
670 SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
671 unsigned TargetFlags = 0);
672 // When generating a branch to a BB, we don't in general know enough
673 // to provide debug info for the BB at that time, so keep this one around.
674 SDValue getBasicBlock(MachineBasicBlock *MBB);
675 SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
676 SDValue getExternalSymbol(const char *Sym, EVT VT);
677 SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
678 SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
679 unsigned TargetFlags = 0);
680 SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
682 SDValue getValueType(EVT);
683 SDValue getRegister(unsigned Reg, EVT VT);
684 SDValue getRegisterMask(const uint32_t *RegMask);
685 SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
686 SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
687 MCSymbol *Label);
688 SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
689 bool isTarget = false, unsigned TargetFlags = 0);
690 SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
691 int64_t Offset = 0, unsigned TargetFlags = 0) {
692 return getBlockAddress(BA, VT, Offset, true, TargetFlags);
695 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
696 SDValue N) {
697 return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
698 getRegister(Reg, N.getValueType()), N);
701 // This version of the getCopyToReg method takes an extra operand, which
702 // indicates that there is potentially an incoming glue value (if Glue is not
703 // null) and that there should be a glue result.
704 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
705 SDValue Glue) {
706 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
707 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
708 return getNode(ISD::CopyToReg, dl, VTs,
709 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
712 // Similar to last getCopyToReg() except parameter Reg is a SDValue
713 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
714 SDValue Glue) {
715 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
716 SDValue Ops[] = { Chain, Reg, N, Glue };
717 return getNode(ISD::CopyToReg, dl, VTs,
718 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
721 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
722 SDVTList VTs = getVTList(VT, MVT::Other);
723 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
724 return getNode(ISD::CopyFromReg, dl, VTs, Ops);
727 // This version of the getCopyFromReg method takes an extra operand, which
728 // indicates that there is potentially an incoming glue value (if Glue is not
729 // null) and that there should be a glue result.
730 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
731 SDValue Glue) {
732 SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
733 SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
734 return getNode(ISD::CopyFromReg, dl, VTs,
735 makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
738 SDValue getCondCode(ISD::CondCode Cond);
740 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
741 /// which must be a vector type, must match the number of mask elements
742 /// NumElts. An integer mask element equal to -1 is treated as undefined.
743 SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
744 ArrayRef<int> Mask);
746 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
747 /// which must be a vector type, must match the number of operands in Ops.
748 /// The operands must have the same type as (or, for integers, a type wider
749 /// than) VT's element type.
750 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
751 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
752 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
755 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
756 /// which must be a vector type, must match the number of operands in Ops.
757 /// The operands must have the same type as (or, for integers, a type wider
758 /// than) VT's element type.
759 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
760 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
761 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
764 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
765 /// elements. VT must be a vector type. Op's type must be the same as (or,
766 /// for integers, a type wider than) VT's element type.
767 SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
768 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
769 if (Op.getOpcode() == ISD::UNDEF) {
770 assert((VT.getVectorElementType() == Op.getValueType() ||
771 (VT.isInteger() &&
772 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
773 "A splatted value must have a width equal or (for integers) "
774 "greater than the vector element type!");
775 return getNode(ISD::UNDEF, SDLoc(), VT);
778 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
779 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
782 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
783 /// the shuffle node in input but with swapped operands.
785 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
786 SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
788 /// Convert Op, which must be of float type, to the
789 /// float type VT, by either extending or rounding (by truncation).
790 SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
792 /// Convert Op, which must be of integer type, to the
793 /// integer type VT, by either any-extending or truncating it.
794 SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
796 /// Convert Op, which must be of integer type, to the
797 /// integer type VT, by either sign-extending or truncating it.
798 SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
800 /// Convert Op, which must be of integer type, to the
801 /// integer type VT, by either zero-extending or truncating it.
802 SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
804 /// Return the expression required to zero extend the Op
805 /// value assuming it was the smaller SrcTy value.
806 SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
808 /// Convert Op, which must be of integer type, to the integer type VT, by
809 /// either truncating it or performing either zero or sign extension as
810 /// appropriate extension for the pointer's semantics.
811 SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
813 /// Return the expression required to extend the Op as a pointer value
814 /// assuming it was the smaller SrcTy value. This may be either a zero extend
815 /// or a sign extend.
816 SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
818 /// Convert Op, which must be of integer type, to the integer type VT,
819 /// by using an extension appropriate for the target's
820 /// BooleanContent for type OpVT or truncating it.
821 SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
823 /// Create a bitwise NOT operation as (XOR Val, -1).
824 SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
826 /// Create a logical NOT operation as (XOR Val, BooleanOne).
827 SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
829 /// Create an add instruction with appropriate flags when used for
830 /// addressing some offset of an object. i.e. if a load is split into multiple
831 /// components, create an add nuw from the base pointer to the offset.
832 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
833 EVT VT = Op.getValueType();
834 return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
837 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
838 EVT VT = Op.getValueType();
840 // The object itself can't wrap around the address space, so it shouldn't be
841 // possible for the adds of the offsets to the split parts to overflow.
842 SDNodeFlags Flags;
843 Flags.setNoUnsignedWrap(true);
844 return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
847 /// Return a new CALLSEQ_START node, that starts new call frame, in which
848 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
849 /// OutSize specifies part of the frame set up prior to the sequence.
850 SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
851 const SDLoc &DL) {
852 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
853 SDValue Ops[] = { Chain,
854 getIntPtrConstant(InSize, DL, true),
855 getIntPtrConstant(OutSize, DL, true) };
856 return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
859 /// Return a new CALLSEQ_END node, which always must have a
860 /// glue result (to ensure it's not CSE'd).
861 /// CALLSEQ_END does not have a useful SDLoc.
862 SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
863 SDValue InGlue, const SDLoc &DL) {
864 SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
865 SmallVector<SDValue, 4> Ops;
866 Ops.push_back(Chain);
867 Ops.push_back(Op1);
868 Ops.push_back(Op2);
869 if (InGlue.getNode())
870 Ops.push_back(InGlue);
871 return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
874 /// Return true if the result of this operation is always undefined.
875 bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
877 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
878 SDValue getUNDEF(EVT VT) {
879 return getNode(ISD::UNDEF, SDLoc(), VT);
882 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
883 SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
884 return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
887 /// Gets or creates the specified node.
889 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
890 ArrayRef<SDUse> Ops);
891 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
892 ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
893 SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
894 ArrayRef<SDValue> Ops);
895 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
896 ArrayRef<SDValue> Ops);
898 // Specialize based on number of operands.
899 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
900 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
901 const SDNodeFlags Flags = SDNodeFlags());
902 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
903 SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
904 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
905 SDValue N2, SDValue N3,
906 const SDNodeFlags Flags = SDNodeFlags());
907 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
908 SDValue N2, SDValue N3, SDValue N4);
909 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
910 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
912 // Specialize again based on number of operands for nodes with a VTList
913 // rather than a single VT.
914 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
915 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
916 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
917 SDValue N2);
918 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
919 SDValue N2, SDValue N3);
920 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
921 SDValue N2, SDValue N3, SDValue N4);
922 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
923 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
925 /// Compute a TokenFactor to force all the incoming stack arguments to be
926 /// loaded from the stack. This is used in tail call lowering to protect
927 /// stack arguments from being clobbered.
928 SDValue getStackArgumentTokenFactor(SDValue Chain);
930 SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
931 SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
932 bool isTailCall, MachinePointerInfo DstPtrInfo,
933 MachinePointerInfo SrcPtrInfo);
935 SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
936 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
937 MachinePointerInfo DstPtrInfo,
938 MachinePointerInfo SrcPtrInfo);
940 SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
941 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
942 MachinePointerInfo DstPtrInfo);
944 SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
945 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
946 SDValue Size, Type *SizeTy, unsigned ElemSz,
947 bool isTailCall, MachinePointerInfo DstPtrInfo,
948 MachinePointerInfo SrcPtrInfo);
950 SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
951 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
952 SDValue Size, Type *SizeTy, unsigned ElemSz,
953 bool isTailCall, MachinePointerInfo DstPtrInfo,
954 MachinePointerInfo SrcPtrInfo);
956 SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
957 unsigned DstAlign, SDValue Value, SDValue Size,
958 Type *SizeTy, unsigned ElemSz, bool isTailCall,
959 MachinePointerInfo DstPtrInfo);
961 /// Helper function to make it easier to build SetCC's if you just have an
962 /// ISD::CondCode instead of an SDValue.
963 SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
964 ISD::CondCode Cond) {
965 assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
966 "Cannot compare scalars to vectors");
967 assert(LHS.getValueType().isVector() == VT.isVector() &&
968 "Cannot compare scalars to vectors");
969 assert(Cond != ISD::SETCC_INVALID &&
970 "Cannot create a setCC of an invalid node.");
971 return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
974 /// Helper function to make it easier to build Select's if you just have
975 /// operands and don't want to check for vector.
976 SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
977 SDValue RHS) {
978 assert(LHS.getValueType() == RHS.getValueType() &&
979 "Cannot use select on differing types");
980 assert(VT.isVector() == LHS.getValueType().isVector() &&
981 "Cannot mix vectors and scalars");
982 auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
983 return getNode(Opcode, DL, VT, Cond, LHS, RHS);
986 /// Helper function to make it easier to build SelectCC's if you just have an
987 /// ISD::CondCode instead of an SDValue.
988 SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
989 SDValue False, ISD::CondCode Cond) {
990 return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
991 False, getCondCode(Cond));
994 /// Try to simplify a select/vselect into 1 of its operands or a constant.
995 SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
997 /// Try to simplify a shift into 1 of its operands or a constant.
998 SDValue simplifyShift(SDValue X, SDValue Y);
1000 /// Try to simplify a floating-point binary operation into 1 of its operands
1001 /// or a constant.
1002 SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y);
1004 /// VAArg produces a result and token chain, and takes a pointer
1005 /// and a source value as input.
1006 SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1007 SDValue SV, unsigned Align);
1009 /// Gets a node for an atomic cmpxchg op. There are two
1010 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1011 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1012 /// a success flag (initially i1), and a chain.
1013 SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1014 SDVTList VTs, SDValue Chain, SDValue Ptr,
1015 SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1017 /// Gets a node for an atomic op, produces result (if relevant)
1018 /// and chain and takes 2 operands.
1019 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1020 SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1022 /// Gets a node for an atomic op, produces result and chain and
1023 /// takes 1 operand.
1024 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1025 SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1027 /// Gets a node for an atomic op, produces result and chain and takes N
1028 /// operands.
1029 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1030 SDVTList VTList, ArrayRef<SDValue> Ops,
1031 MachineMemOperand *MMO);
1033 /// Creates a MemIntrinsicNode that may produce a
1034 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1035 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1036 /// less than FIRST_TARGET_MEMORY_OPCODE.
1037 SDValue getMemIntrinsicNode(
1038 unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1039 ArrayRef<SDValue> Ops, EVT MemVT,
1040 MachinePointerInfo PtrInfo,
1041 unsigned Align = 0,
1042 MachineMemOperand::Flags Flags
1043 = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1044 uint64_t Size = 0,
1045 const AAMDNodes &AAInfo = AAMDNodes());
1047 SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1048 ArrayRef<SDValue> Ops, EVT MemVT,
1049 MachineMemOperand *MMO);
1051 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1052 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1053 /// offsets `Offset` and `Offset + Size`.
1054 SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1055 int FrameIndex, int64_t Size, int64_t Offset = -1);
1057 /// Create a MERGE_VALUES node from the given operands.
1058 SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1060 /// Loads are not normal binary operators: their result type is not
1061 /// determined by their operands, and they produce a value AND a token chain.
1063 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1064 /// you want. The MOStore flag must not be set.
1065 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1066 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1067 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1068 const AAMDNodes &AAInfo = AAMDNodes(),
1069 const MDNode *Ranges = nullptr);
1070 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1071 MachineMemOperand *MMO);
1072 SDValue
1073 getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1074 SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1075 unsigned Alignment = 0,
1076 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1077 const AAMDNodes &AAInfo = AAMDNodes());
1078 SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1079 SDValue Chain, SDValue Ptr, EVT MemVT,
1080 MachineMemOperand *MMO);
1081 SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1082 SDValue Offset, ISD::MemIndexedMode AM);
1083 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1084 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1085 MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1086 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1087 const AAMDNodes &AAInfo = AAMDNodes(),
1088 const MDNode *Ranges = nullptr);
1089 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1090 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1091 EVT MemVT, MachineMemOperand *MMO);
1093 /// Helper function to build ISD::STORE nodes.
1095 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1096 /// you want. The MOLoad and MOInvariant flags must not be set.
1097 SDValue
1098 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1099 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1100 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1101 const AAMDNodes &AAInfo = AAMDNodes());
1102 SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1103 MachineMemOperand *MMO);
1104 SDValue
1105 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1106 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1107 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1108 const AAMDNodes &AAInfo = AAMDNodes());
1109 SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1110 SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1111 SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1112 SDValue Offset, ISD::MemIndexedMode AM);
1114 /// Returns sum of the base pointer and offset.
1115 SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1117 SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1118 SDValue Mask, SDValue Src0, EVT MemVT,
1119 MachineMemOperand *MMO, ISD::LoadExtType,
1120 bool IsExpanding = false);
1121 SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1122 SDValue Ptr, SDValue Mask, EVT MemVT,
1123 MachineMemOperand *MMO, bool IsTruncating = false,
1124 bool IsCompressing = false);
1125 SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1126 ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1127 ISD::MemIndexType IndexType);
1128 SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1129 ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1130 ISD::MemIndexType IndexType);
1132 /// Return (create a new or find existing) a target-specific node.
1133 /// TargetMemSDNode should be derived class from MemSDNode.
1134 template <class TargetMemSDNode>
1135 SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1136 const SDLoc &dl, EVT MemVT,
1137 MachineMemOperand *MMO);
1139 /// Construct a node to track a Value* through the backend.
1140 SDValue getSrcValue(const Value *v);
1142 /// Return an MDNodeSDNode which holds an MDNode.
1143 SDValue getMDNode(const MDNode *MD);
1145 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1146 /// provided type. Use getNode to set a custom SDLoc.
1147 SDValue getBitcast(EVT VT, SDValue V);
1149 /// Return an AddrSpaceCastSDNode.
1150 SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1151 unsigned DestAS);
1153 /// Return the specified value casted to
1154 /// the target's desired shift amount type.
1155 SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1157 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1158 SDValue expandVAArg(SDNode *Node);
1160 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1161 SDValue expandVACopy(SDNode *Node);
1163 /// Returs an GlobalAddress of the function from the current module with
1164 /// name matching the given ExternalSymbol. Additionally can provide the
1165 /// matched function.
1166 /// Panics the function doesn't exists.
1167 SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1168 Function **TargetFunction = nullptr);
1170 /// *Mutate* the specified node in-place to have the
1171 /// specified operands. If the resultant node already exists in the DAG,
1172 /// this does not modify the specified node, instead it returns the node that
1173 /// already exists. If the resultant node does not exist in the DAG, the
1174 /// input node is returned. As a degenerate case, if you specify the same
1175 /// input operands as the node already has, the input node is returned.
1176 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1177 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1178 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1179 SDValue Op3);
1180 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1181 SDValue Op3, SDValue Op4);
1182 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1183 SDValue Op3, SDValue Op4, SDValue Op5);
1184 SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1186 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1187 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1188 /// the final TokenFactor has less than 64k operands.
1189 SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1191 /// *Mutate* the specified machine node's memory references to the provided
1192 /// list.
1193 void setNodeMemRefs(MachineSDNode *N,
1194 ArrayRef<MachineMemOperand *> NewMemRefs);
1196 // Propagates the change in divergence to users
1197 void updateDivergence(SDNode * N);
1199 /// These are used for target selectors to *mutate* the
1200 /// specified node to have the specified return type, Target opcode, and
1201 /// operands. Note that target opcodes are stored as
1202 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1203 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1204 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1205 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1206 SDValue Op1, SDValue Op2);
1207 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1208 SDValue Op1, SDValue Op2, SDValue Op3);
1209 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1210 ArrayRef<SDValue> Ops);
1211 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1212 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1213 EVT VT2, ArrayRef<SDValue> Ops);
1214 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1215 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1216 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1217 EVT VT2, SDValue Op1);
1218 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1219 EVT VT2, SDValue Op1, SDValue Op2);
1220 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1221 ArrayRef<SDValue> Ops);
1223 /// This *mutates* the specified node to have the specified
1224 /// return type, opcode, and operands.
1225 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1226 ArrayRef<SDValue> Ops);
1228 /// Mutate the specified strict FP node to its non-strict equivalent,
1229 /// unlinking the node from its chain and dropping the metadata arguments.
1230 /// The node must be a strict FP node.
1231 SDNode *mutateStrictFPToFP(SDNode *Node);
1233 /// These are used for target selectors to create a new node
1234 /// with specified return type(s), MachineInstr opcode, and operands.
1236 /// Note that getMachineNode returns the resultant node. If there is already
1237 /// a node of the specified opcode and operands, it returns that node instead
1238 /// of the current one.
1239 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1240 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1241 SDValue Op1);
1242 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1243 SDValue Op1, SDValue Op2);
1244 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1245 SDValue Op1, SDValue Op2, SDValue Op3);
1246 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1247 ArrayRef<SDValue> Ops);
1248 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1249 EVT VT2, SDValue Op1, SDValue Op2);
1250 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1251 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1252 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1253 EVT VT2, ArrayRef<SDValue> Ops);
1254 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1255 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1256 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1257 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1258 SDValue Op3);
1259 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1260 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1261 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1262 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1263 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1264 ArrayRef<SDValue> Ops);
1266 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1267 SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1268 SDValue Operand);
1270 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1271 SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1272 SDValue Operand, SDValue Subreg);
1274 /// Get the specified node if it's already available, or else return NULL.
1275 SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1276 const SDNodeFlags Flags = SDNodeFlags());
1278 /// Creates a SDDbgValue node.
1279 SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1280 unsigned R, bool IsIndirect, const DebugLoc &DL,
1281 unsigned O);
1283 /// Creates a constant SDDbgValue node.
1284 SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1285 const Value *C, const DebugLoc &DL,
1286 unsigned O);
1288 /// Creates a FrameIndex SDDbgValue node.
1289 SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1290 unsigned FI, bool IsIndirect,
1291 const DebugLoc &DL, unsigned O);
1293 /// Creates a VReg SDDbgValue node.
1294 SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1295 unsigned VReg, bool IsIndirect,
1296 const DebugLoc &DL, unsigned O);
1298 /// Creates a SDDbgLabel node.
1299 SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1301 /// Transfer debug values from one node to another, while optionally
1302 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1303 /// is set, debug values are invalidated after they are transferred.
1304 void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1305 unsigned SizeInBits = 0, bool InvalidateDbg = true);
1307 /// Remove the specified node from the system. If any of its
1308 /// operands then becomes dead, remove them as well. Inform UpdateListener
1309 /// for each node deleted.
1310 void RemoveDeadNode(SDNode *N);
1312 /// This method deletes the unreachable nodes in the
1313 /// given list, and any nodes that become unreachable as a result.
1314 void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1316 /// Modify anything using 'From' to use 'To' instead.
1317 /// This can cause recursive merging of nodes in the DAG. Use the first
1318 /// version if 'From' is known to have a single result, use the second
1319 /// if you have two nodes with identical results (or if 'To' has a superset
1320 /// of the results of 'From'), use the third otherwise.
1322 /// These methods all take an optional UpdateListener, which (if not null) is
1323 /// informed about nodes that are deleted and modified due to recursive
1324 /// changes in the dag.
1326 /// These functions only replace all existing uses. It's possible that as
1327 /// these replacements are being performed, CSE may cause the From node
1328 /// to be given new uses. These new uses of From are left in place, and
1329 /// not automatically transferred to To.
1331 void ReplaceAllUsesWith(SDValue From, SDValue To);
1332 void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1333 void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1335 /// Replace any uses of From with To, leaving
1336 /// uses of other values produced by From.getNode() alone.
1337 void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1339 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1340 /// This correctly handles the case where
1341 /// there is an overlap between the From values and the To values.
1342 void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1343 unsigned Num);
1345 /// If an existing load has uses of its chain, create a token factor node with
1346 /// that chain and the new memory node's chain and update users of the old
1347 /// chain to the token factor. This ensures that the new memory node will have
1348 /// the same relative memory dependency position as the old load. Returns the
1349 /// new merged load chain.
1350 SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1352 /// Topological-sort the AllNodes list and a
1353 /// assign a unique node id for each node in the DAG based on their
1354 /// topological order. Returns the number of nodes.
1355 unsigned AssignTopologicalOrder();
1357 /// Move node N in the AllNodes list to be immediately
1358 /// before the given iterator Position. This may be used to update the
1359 /// topological ordering when the list of nodes is modified.
1360 void RepositionNode(allnodes_iterator Position, SDNode *N) {
1361 AllNodes.insert(Position, AllNodes.remove(N));
1364 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1365 /// a vector type, the element semantics are returned.
1366 static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1367 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1368 default: llvm_unreachable("Unknown FP format");
1369 case MVT::f16: return APFloat::IEEEhalf();
1370 case MVT::f32: return APFloat::IEEEsingle();
1371 case MVT::f64: return APFloat::IEEEdouble();
1372 case MVT::f80: return APFloat::x87DoubleExtended();
1373 case MVT::f128: return APFloat::IEEEquad();
1374 case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1378 /// Add a dbg_value SDNode. If SD is non-null that means the
1379 /// value is produced by SD.
1380 void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1382 /// Add a dbg_label SDNode.
1383 void AddDbgLabel(SDDbgLabel *DB);
1385 /// Get the debug values which reference the given SDNode.
1386 ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1387 return DbgInfo->getSDDbgValues(SD);
1390 public:
1391 /// Return true if there are any SDDbgValue nodes associated
1392 /// with this SelectionDAG.
1393 bool hasDebugValues() const { return !DbgInfo->empty(); }
1395 SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1396 SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
1398 SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1399 return DbgInfo->ByvalParmDbgBegin();
1401 SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1402 return DbgInfo->ByvalParmDbgEnd();
1405 SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1406 return DbgInfo->DbgLabelBegin();
1408 SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1409 return DbgInfo->DbgLabelEnd();
1412 /// To be invoked on an SDNode that is slated to be erased. This
1413 /// function mirrors \c llvm::salvageDebugInfo.
1414 void salvageDebugInfo(SDNode &N);
1416 void dump() const;
1418 /// Create a stack temporary, suitable for holding the specified value type.
1419 /// If minAlign is specified, the slot size will have at least that alignment.
1420 SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1422 /// Create a stack temporary suitable for holding either of the specified
1423 /// value types.
1424 SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1426 SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1427 const GlobalAddressSDNode *GA,
1428 const SDNode *N2);
1430 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1431 SDNode *N1, SDNode *N2);
1433 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1434 const ConstantSDNode *C1,
1435 const ConstantSDNode *C2);
1437 SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1438 ArrayRef<SDValue> Ops,
1439 const SDNodeFlags Flags = SDNodeFlags());
1441 /// Fold floating-point operations with 2 operands when both operands are
1442 /// constants and/or undefined.
1443 SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1444 SDValue N1, SDValue N2);
1446 /// Constant fold a setcc to true or false.
1447 SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1448 const SDLoc &dl);
1450 /// See if the specified operand can be simplified with the knowledge that
1451 /// only the bits specified by DemandedBits are used. If so, return the
1452 /// simpler operand, otherwise return a null SDValue.
1454 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1455 /// simplify nodes with multiple uses more aggressively.)
1456 SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
1458 /// See if the specified operand can be simplified with the knowledge that
1459 /// only the bits specified by DemandedBits are used in the elements specified
1460 /// by DemandedElts. If so, return the simpler operand, otherwise return a
1461 /// null SDValue.
1463 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1464 /// simplify nodes with multiple uses more aggressively.)
1465 SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
1466 const APInt &DemandedElts);
1468 /// Return true if the sign bit of Op is known to be zero.
1469 /// We use this predicate to simplify operations downstream.
1470 bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1472 /// Return true if 'Op & Mask' is known to be zero. We
1473 /// use this predicate to simplify operations downstream. Op and Mask are
1474 /// known to be the same type.
1475 bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1476 unsigned Depth = 0) const;
1478 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1479 /// use this predicate to simplify operations downstream. Op and Mask are
1480 /// known to be the same type.
1481 bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1482 const APInt &DemandedElts, unsigned Depth = 0) const;
1484 /// Return true if '(Op & Mask) == Mask'.
1485 /// Op and Mask are known to be the same type.
1486 bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1487 unsigned Depth = 0) const;
1489 /// Determine which bits of Op are known to be either zero or one and return
1490 /// them in Known. For vectors, the known bits are those that are shared by
1491 /// every vector element.
1492 /// Targets can implement the computeKnownBitsForTargetNode method in the
1493 /// TargetLowering class to allow target nodes to be understood.
1494 KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1496 /// Determine which bits of Op are known to be either zero or one and return
1497 /// them in Known. The DemandedElts argument allows us to only collect the
1498 /// known bits that are shared by the requested vector elements.
1499 /// Targets can implement the computeKnownBitsForTargetNode method in the
1500 /// TargetLowering class to allow target nodes to be understood.
1501 KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1502 unsigned Depth = 0) const;
1504 /// Used to represent the possible overflow behavior of an operation.
1505 /// Never: the operation cannot overflow.
1506 /// Always: the operation will always overflow.
1507 /// Sometime: the operation may or may not overflow.
1508 enum OverflowKind {
1509 OFK_Never,
1510 OFK_Sometime,
1511 OFK_Always,
1514 /// Determine if the result of the addition of 2 node can overflow.
1515 OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1517 /// Test if the given value is known to have exactly one bit set. This differs
1518 /// from computeKnownBits in that it doesn't necessarily determine which bit
1519 /// is set.
1520 bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1522 /// Return the number of times the sign bit of the register is replicated into
1523 /// the other bits. We know that at least 1 bit is always equal to the sign
1524 /// bit (itself), but other cases can give us information. For example,
1525 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1526 /// to each other, so we return 3. Targets can implement the
1527 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1528 /// target nodes to be understood.
1529 unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1531 /// Return the number of times the sign bit of the register is replicated into
1532 /// the other bits. We know that at least 1 bit is always equal to the sign
1533 /// bit (itself), but other cases can give us information. For example,
1534 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1535 /// to each other, so we return 3. The DemandedElts argument allows
1536 /// us to only collect the minimum sign bits of the requested vector elements.
1537 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1538 /// TargetLowering class to allow target nodes to be understood.
1539 unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1540 unsigned Depth = 0) const;
1542 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1543 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1544 /// is guaranteed to have the same semantics as an ADD. This handles the
1545 /// equivalence:
1546 /// X|Cst == X+Cst iff X&Cst = 0.
1547 bool isBaseWithConstantOffset(SDValue Op) const;
1549 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1550 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1551 /// be a qNaN).
1552 bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1554 /// \returns true if \p Op is known to never be a signaling NaN.
1555 bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1556 return isKnownNeverNaN(Op, true, Depth);
1559 /// Test whether the given floating point SDValue is known to never be
1560 /// positive or negative zero.
1561 bool isKnownNeverZeroFloat(SDValue Op) const;
1563 /// Test whether the given SDValue is known to contain non-zero value(s).
1564 bool isKnownNeverZero(SDValue Op) const;
1566 /// Test whether two SDValues are known to compare equal. This
1567 /// is true if they are the same value, or if one is negative zero and the
1568 /// other positive zero.
1569 bool isEqualTo(SDValue A, SDValue B) const;
1571 /// Return true if A and B have no common bits set. As an example, this can
1572 /// allow an 'add' to be transformed into an 'or'.
1573 bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1575 /// Test whether \p V has a splatted value for all the demanded elements.
1577 /// On success \p UndefElts will indicate the elements that have UNDEF
1578 /// values instead of the splat value, this is only guaranteed to be correct
1579 /// for \p DemandedElts.
1581 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1582 bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1584 /// Test whether \p V has a splatted value.
1585 bool isSplatValue(SDValue V, bool AllowUndefs = false);
1587 /// If V is a splatted value, return the source vector and its splat index.
1588 SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
1590 /// If V is a splat vector, return its scalar source operand by extracting
1591 /// that element from the source vector.
1592 SDValue getSplatValue(SDValue V);
1594 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1595 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1596 /// Extract. The reduction must use one of the opcodes listed in /p
1597 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1598 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1599 /// was not matched. If \p AllowPartials is set then in the case of a
1600 /// reduction pattern that only matches the first few stages, the extracted
1601 /// subvector of the start of the reduction is returned.
1602 SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1603 ArrayRef<ISD::NodeType> CandidateBinOps,
1604 bool AllowPartials = false);
1606 /// Utility function used by legalize and lowering to
1607 /// "unroll" a vector operation by splitting out the scalars and operating
1608 /// on each element individually. If the ResNE is 0, fully unroll the vector
1609 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1610 /// If the ResNE is greater than the width of the vector op, unroll the
1611 /// vector op and fill the end of the resulting vector with UNDEFS.
1612 SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1614 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1615 /// This is a separate function because those opcodes have two results.
1616 std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
1617 unsigned ResNE = 0);
1619 /// Return true if loads are next to each other and can be
1620 /// merged. Check that both are nonvolatile and if LD is loading
1621 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1622 /// location that the 'Base' load is loading from.
1623 bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1624 unsigned Bytes, int Dist) const;
1626 /// Infer alignment of a load / store address. Return 0 if
1627 /// it cannot be inferred.
1628 unsigned InferPtrAlignment(SDValue Ptr) const;
1630 /// Compute the VTs needed for the low/hi parts of a type
1631 /// which is split (or expanded) into two not necessarily identical pieces.
1632 std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1634 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1635 /// VTs and return the low/high part.
1636 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1637 const EVT &LoVT, const EVT &HiVT);
1639 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1640 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1641 EVT LoVT, HiVT;
1642 std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1643 return SplitVector(N, DL, LoVT, HiVT);
1646 /// Split the node's operand with EXTRACT_SUBVECTOR and
1647 /// return the low/high part.
1648 std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1650 return SplitVector(N->getOperand(OpNo), SDLoc(N));
1653 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1654 SDValue WidenVector(const SDValue &N, const SDLoc &DL);
1656 /// Append the extracted elements from Start to Count out of the vector Op
1657 /// in Args. If Count is 0, all of the elements will be extracted.
1658 void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1659 unsigned Start = 0, unsigned Count = 0);
1661 /// Compute the default alignment value for the given type.
1662 unsigned getEVTAlignment(EVT MemoryVT) const;
1664 /// Test whether the given value is a constant int or similar node.
1665 SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1667 /// Test whether the given value is a constant FP or similar node.
1668 SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1670 /// \returns true if \p N is any kind of constant or build_vector of
1671 /// constants, int or float. If a vector, it may not necessarily be a splat.
1672 inline bool isConstantValueOfAnyType(SDValue N) {
1673 return isConstantIntBuildVectorOrConstantInt(N) ||
1674 isConstantFPBuildVectorOrConstantFP(N);
1677 void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
1678 SDCallSiteDbgInfo[CallNode].CSInfo = std::move(CallInfo);
1681 CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
1682 auto I = SDCallSiteDbgInfo.find(CallNode);
1683 if (I != SDCallSiteDbgInfo.end())
1684 return std::move(I->second).CSInfo;
1685 return CallSiteInfo();
1688 void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
1689 SDCallSiteDbgInfo[Node].HeapAllocSite = MD;
1692 /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1693 MDNode *getHeapAllocSite(const SDNode *Node) {
1694 auto It = SDCallSiteDbgInfo.find(Node);
1695 if (It == SDCallSiteDbgInfo.end())
1696 return nullptr;
1697 return It->second.HeapAllocSite;
1700 private:
1701 void InsertNode(SDNode *N);
1702 bool RemoveNodeFromCSEMaps(SDNode *N);
1703 void AddModifiedNodeToCSEMaps(SDNode *N);
1704 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1705 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1706 void *&InsertPos);
1707 SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1708 void *&InsertPos);
1709 SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1711 void DeleteNodeNotInCSEMaps(SDNode *N);
1712 void DeallocateNode(SDNode *N);
1714 void allnodes_clear();
1716 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1717 /// not, return the insertion token that will make insertion faster. This
1718 /// overload is for nodes other than Constant or ConstantFP, use the other one
1719 /// for those.
1720 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1722 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1723 /// not, return the insertion token that will make insertion faster. Performs
1724 /// additional processing for constant nodes.
1725 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1726 void *&InsertPos);
1728 /// List of non-single value types.
1729 FoldingSet<SDVTListNode> VTListMap;
1731 /// Maps to auto-CSE operations.
1732 std::vector<CondCodeSDNode*> CondCodeNodes;
1734 std::vector<SDNode*> ValueTypeNodes;
1735 std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1736 StringMap<SDNode*> ExternalSymbols;
1738 std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
1739 DenseMap<MCSymbol *, SDNode *> MCSymbols;
1742 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1743 using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1745 static nodes_iterator nodes_begin(SelectionDAG *G) {
1746 return nodes_iterator(G->allnodes_begin());
1749 static nodes_iterator nodes_end(SelectionDAG *G) {
1750 return nodes_iterator(G->allnodes_end());
1754 template <class TargetMemSDNode>
1755 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1756 ArrayRef<SDValue> Ops,
1757 const SDLoc &dl, EVT MemVT,
1758 MachineMemOperand *MMO) {
1759 /// Compose node ID and try to find an existing node.
1760 FoldingSetNodeID ID;
1761 unsigned Opcode =
1762 TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1763 ID.AddInteger(Opcode);
1764 ID.AddPointer(VTs.VTs);
1765 for (auto& Op : Ops) {
1766 ID.AddPointer(Op.getNode());
1767 ID.AddInteger(Op.getResNo());
1769 ID.AddInteger(MemVT.getRawBits());
1770 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1771 ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1772 dl.getIROrder(), VTs, MemVT, MMO));
1774 void *IP = nullptr;
1775 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1776 cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1777 return SDValue(E, 0);
1780 /// Existing node was not found. Create a new one.
1781 auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1782 MemVT, MMO);
1783 createOperands(N, Ops);
1784 CSEMap.InsertNode(N, IP);
1785 InsertNode(N);
1786 return SDValue(N, 0);
1789 } // end namespace llvm
1791 #endif // LLVM_CODEGEN_SELECTIONDAG_H