1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the declaration of the Instruction class, which is the
10 // base class for all of the LLVM instructions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_IR_INSTRUCTION_H
15 #define LLVM_IR_INSTRUCTION_H
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/ilist_node.h"
21 #include "llvm/IR/DebugLoc.h"
22 #include "llvm/IR/SymbolTableListTraits.h"
23 #include "llvm/IR/User.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/Support/Casting.h"
39 template <> struct ilist_alloc_traits
<Instruction
> {
40 static inline void deleteNode(Instruction
*V
);
43 class Instruction
: public User
,
44 public ilist_node_with_parent
<Instruction
, BasicBlock
> {
46 DebugLoc DbgLoc
; // 'dbg' Metadata cache.
49 /// This is a bit stored in the SubClassData field which indicates whether
50 /// this instruction has metadata attached to it or not.
51 HasMetadataBit
= 1 << 15
55 ~Instruction(); // Use deleteValue() to delete a generic Instruction.
58 Instruction(const Instruction
&) = delete;
59 Instruction
&operator=(const Instruction
&) = delete;
61 /// Specialize the methods defined in Value, as we know that an instruction
62 /// can only be used by other instructions.
63 Instruction
*user_back() { return cast
<Instruction
>(*user_begin());}
64 const Instruction
*user_back() const { return cast
<Instruction
>(*user_begin());}
66 inline const BasicBlock
*getParent() const { return Parent
; }
67 inline BasicBlock
*getParent() { return Parent
; }
69 /// Return the module owning the function this instruction belongs to
70 /// or nullptr it the function does not have a module.
72 /// Note: this is undefined behavior if the instruction does not have a
73 /// parent, or the parent basic block does not have a parent function.
74 const Module
*getModule() const;
76 return const_cast<Module
*>(
77 static_cast<const Instruction
*>(this)->getModule());
80 /// Return the function this instruction belongs to.
82 /// Note: it is undefined behavior to call this on an instruction not
83 /// currently inserted into a function.
84 const Function
*getFunction() const;
85 Function
*getFunction() {
86 return const_cast<Function
*>(
87 static_cast<const Instruction
*>(this)->getFunction());
90 /// This method unlinks 'this' from the containing basic block, but does not
92 void removeFromParent();
94 /// This method unlinks 'this' from the containing basic block and deletes it.
96 /// \returns an iterator pointing to the element after the erased one
97 SymbolTableList
<Instruction
>::iterator
eraseFromParent();
99 /// Insert an unlinked instruction into a basic block immediately before
100 /// the specified instruction.
101 void insertBefore(Instruction
*InsertPos
);
103 /// Insert an unlinked instruction into a basic block immediately after the
104 /// specified instruction.
105 void insertAfter(Instruction
*InsertPos
);
107 /// Unlink this instruction from its current basic block and insert it into
108 /// the basic block that MovePos lives in, right before MovePos.
109 void moveBefore(Instruction
*MovePos
);
111 /// Unlink this instruction and insert into BB before I.
113 /// \pre I is a valid iterator into BB.
114 void moveBefore(BasicBlock
&BB
, SymbolTableList
<Instruction
>::iterator I
);
116 /// Unlink this instruction from its current basic block and insert it into
117 /// the basic block that MovePos lives in, right after MovePos.
118 void moveAfter(Instruction
*MovePos
);
120 //===--------------------------------------------------------------------===//
121 // Subclass classification.
122 //===--------------------------------------------------------------------===//
124 /// Returns a member of one of the enums like Instruction::Add.
125 unsigned getOpcode() const { return getValueID() - InstructionVal
; }
127 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
128 bool isTerminator() const { return isTerminator(getOpcode()); }
129 bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
130 bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
131 bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
132 bool isShift() { return isShift(getOpcode()); }
133 bool isCast() const { return isCast(getOpcode()); }
134 bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
135 bool isExceptionalTerminator() const {
136 return isExceptionalTerminator(getOpcode());
138 bool isIndirectTerminator() const {
139 return isIndirectTerminator(getOpcode());
142 static const char* getOpcodeName(unsigned OpCode
);
144 static inline bool isTerminator(unsigned OpCode
) {
145 return OpCode
>= TermOpsBegin
&& OpCode
< TermOpsEnd
;
148 static inline bool isUnaryOp(unsigned Opcode
) {
149 return Opcode
>= UnaryOpsBegin
&& Opcode
< UnaryOpsEnd
;
151 static inline bool isBinaryOp(unsigned Opcode
) {
152 return Opcode
>= BinaryOpsBegin
&& Opcode
< BinaryOpsEnd
;
155 static inline bool isIntDivRem(unsigned Opcode
) {
156 return Opcode
== UDiv
|| Opcode
== SDiv
|| Opcode
== URem
|| Opcode
== SRem
;
159 /// Determine if the Opcode is one of the shift instructions.
160 static inline bool isShift(unsigned Opcode
) {
161 return Opcode
>= Shl
&& Opcode
<= AShr
;
164 /// Return true if this is a logical shift left or a logical shift right.
165 inline bool isLogicalShift() const {
166 return getOpcode() == Shl
|| getOpcode() == LShr
;
169 /// Return true if this is an arithmetic shift right.
170 inline bool isArithmeticShift() const {
171 return getOpcode() == AShr
;
174 /// Determine if the Opcode is and/or/xor.
175 static inline bool isBitwiseLogicOp(unsigned Opcode
) {
176 return Opcode
== And
|| Opcode
== Or
|| Opcode
== Xor
;
179 /// Return true if this is and/or/xor.
180 inline bool isBitwiseLogicOp() const {
181 return isBitwiseLogicOp(getOpcode());
184 /// Determine if the OpCode is one of the CastInst instructions.
185 static inline bool isCast(unsigned OpCode
) {
186 return OpCode
>= CastOpsBegin
&& OpCode
< CastOpsEnd
;
189 /// Determine if the OpCode is one of the FuncletPadInst instructions.
190 static inline bool isFuncletPad(unsigned OpCode
) {
191 return OpCode
>= FuncletPadOpsBegin
&& OpCode
< FuncletPadOpsEnd
;
194 /// Returns true if the OpCode is a terminator related to exception handling.
195 static inline bool isExceptionalTerminator(unsigned OpCode
) {
197 case Instruction::CatchSwitch
:
198 case Instruction::CatchRet
:
199 case Instruction::CleanupRet
:
200 case Instruction::Invoke
:
201 case Instruction::Resume
:
208 /// Returns true if the OpCode is a terminator with indirect targets.
209 static inline bool isIndirectTerminator(unsigned OpCode
) {
211 case Instruction::IndirectBr
:
212 case Instruction::CallBr
:
219 //===--------------------------------------------------------------------===//
220 // Metadata manipulation.
221 //===--------------------------------------------------------------------===//
223 /// Return true if this instruction has any metadata attached to it.
224 bool hasMetadata() const { return DbgLoc
|| hasMetadataHashEntry(); }
226 /// Return true if this instruction has metadata attached to it other than a
228 bool hasMetadataOtherThanDebugLoc() const {
229 return hasMetadataHashEntry();
232 /// Return true if this instruction has the given type of metadata attached.
233 bool hasMetadata(unsigned KindID
) const {
234 return getMetadata(KindID
) != nullptr;
237 /// Return true if this instruction has the given type of metadata attached.
238 bool hasMetadata(StringRef Kind
) const {
239 return getMetadata(Kind
) != nullptr;
242 /// Get the metadata of given kind attached to this Instruction.
243 /// If the metadata is not found then return null.
244 MDNode
*getMetadata(unsigned KindID
) const {
245 if (!hasMetadata()) return nullptr;
246 return getMetadataImpl(KindID
);
249 /// Get the metadata of given kind attached to this Instruction.
250 /// If the metadata is not found then return null.
251 MDNode
*getMetadata(StringRef Kind
) const {
252 if (!hasMetadata()) return nullptr;
253 return getMetadataImpl(Kind
);
256 /// Get all metadata attached to this Instruction. The first element of each
257 /// pair returned is the KindID, the second element is the metadata value.
258 /// This list is returned sorted by the KindID.
260 getAllMetadata(SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
) const {
262 getAllMetadataImpl(MDs
);
265 /// This does the same thing as getAllMetadata, except that it filters out the
267 void getAllMetadataOtherThanDebugLoc(
268 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
) const {
269 if (hasMetadataOtherThanDebugLoc())
270 getAllMetadataOtherThanDebugLocImpl(MDs
);
273 /// Fills the AAMDNodes structure with AA metadata from this instruction.
274 /// When Merge is true, the existing AA metadata is merged with that from this
275 /// instruction providing the most-general result.
276 void getAAMetadata(AAMDNodes
&N
, bool Merge
= false) const;
278 /// Set the metadata of the specified kind to the specified node. This updates
279 /// or replaces metadata if already present, or removes it if Node is null.
280 void setMetadata(unsigned KindID
, MDNode
*Node
);
281 void setMetadata(StringRef Kind
, MDNode
*Node
);
283 /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
284 /// specifies the list of meta data that needs to be copied. If \p WL is
285 /// empty, all meta data will be copied.
286 void copyMetadata(const Instruction
&SrcInst
,
287 ArrayRef
<unsigned> WL
= ArrayRef
<unsigned>());
289 /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
290 /// has three operands (including name string), swap the order of the
292 void swapProfMetadata();
294 /// Drop all unknown metadata except for debug locations.
296 /// Passes are required to drop metadata they don't understand. This is a
297 /// convenience method for passes to do so.
298 void dropUnknownNonDebugMetadata(ArrayRef
<unsigned> KnownIDs
);
299 void dropUnknownNonDebugMetadata() {
300 return dropUnknownNonDebugMetadata(None
);
302 void dropUnknownNonDebugMetadata(unsigned ID1
) {
303 return dropUnknownNonDebugMetadata(makeArrayRef(ID1
));
305 void dropUnknownNonDebugMetadata(unsigned ID1
, unsigned ID2
) {
306 unsigned IDs
[] = {ID1
, ID2
};
307 return dropUnknownNonDebugMetadata(IDs
);
311 /// Sets the metadata on this instruction from the AAMDNodes structure.
312 void setAAMetadata(const AAMDNodes
&N
);
314 /// Retrieve the raw weight values of a conditional branch or select.
315 /// Returns true on success with profile weights filled in.
316 /// Returns false if no metadata or invalid metadata was found.
317 bool extractProfMetadata(uint64_t &TrueVal
, uint64_t &FalseVal
) const;
319 /// Retrieve total raw weight values of a branch.
320 /// Returns true on success with profile total weights filled in.
321 /// Returns false if no metadata was found.
322 bool extractProfTotalWeight(uint64_t &TotalVal
) const;
324 /// Sets the branch_weights metadata to \p W for CallInst.
325 void setProfWeight(uint64_t W
);
327 /// Set the debug location information for this instruction.
328 void setDebugLoc(DebugLoc Loc
) { DbgLoc
= std::move(Loc
); }
330 /// Return the debug location for this node as a DebugLoc.
331 const DebugLoc
&getDebugLoc() const { return DbgLoc
; }
333 /// Set or clear the nuw flag on this instruction, which must be an operator
334 /// which supports this flag. See LangRef.html for the meaning of this flag.
335 void setHasNoUnsignedWrap(bool b
= true);
337 /// Set or clear the nsw flag on this instruction, which must be an operator
338 /// which supports this flag. See LangRef.html for the meaning of this flag.
339 void setHasNoSignedWrap(bool b
= true);
341 /// Set or clear the exact flag on this instruction, which must be an operator
342 /// which supports this flag. See LangRef.html for the meaning of this flag.
343 void setIsExact(bool b
= true);
345 /// Determine whether the no unsigned wrap flag is set.
346 bool hasNoUnsignedWrap() const;
348 /// Determine whether the no signed wrap flag is set.
349 bool hasNoSignedWrap() const;
351 /// Drops flags that may cause this instruction to evaluate to poison despite
352 /// having non-poison inputs.
353 void dropPoisonGeneratingFlags();
355 /// Determine whether the exact flag is set.
356 bool isExact() const;
358 /// Set or clear all fast-math-flags on this instruction, which must be an
359 /// operator which supports this flag. See LangRef.html for the meaning of
361 void setFast(bool B
);
363 /// Set or clear the reassociation flag on this instruction, which must be
364 /// an operator which supports this flag. See LangRef.html for the meaning of
366 void setHasAllowReassoc(bool B
);
368 /// Set or clear the no-nans flag on this instruction, which must be an
369 /// operator which supports this flag. See LangRef.html for the meaning of
371 void setHasNoNaNs(bool B
);
373 /// Set or clear the no-infs flag on this instruction, which must be an
374 /// operator which supports this flag. See LangRef.html for the meaning of
376 void setHasNoInfs(bool B
);
378 /// Set or clear the no-signed-zeros flag on this instruction, which must be
379 /// an operator which supports this flag. See LangRef.html for the meaning of
381 void setHasNoSignedZeros(bool B
);
383 /// Set or clear the allow-reciprocal flag on this instruction, which must be
384 /// an operator which supports this flag. See LangRef.html for the meaning of
386 void setHasAllowReciprocal(bool B
);
388 /// Set or clear the approximate-math-functions flag on this instruction,
389 /// which must be an operator which supports this flag. See LangRef.html for
390 /// the meaning of this flag.
391 void setHasApproxFunc(bool B
);
393 /// Convenience function for setting multiple fast-math flags on this
394 /// instruction, which must be an operator which supports these flags. See
395 /// LangRef.html for the meaning of these flags.
396 void setFastMathFlags(FastMathFlags FMF
);
398 /// Convenience function for transferring all fast-math flag values to this
399 /// instruction, which must be an operator which supports these flags. See
400 /// LangRef.html for the meaning of these flags.
401 void copyFastMathFlags(FastMathFlags FMF
);
403 /// Determine whether all fast-math-flags are set.
406 /// Determine whether the allow-reassociation flag is set.
407 bool hasAllowReassoc() const;
409 /// Determine whether the no-NaNs flag is set.
410 bool hasNoNaNs() const;
412 /// Determine whether the no-infs flag is set.
413 bool hasNoInfs() const;
415 /// Determine whether the no-signed-zeros flag is set.
416 bool hasNoSignedZeros() const;
418 /// Determine whether the allow-reciprocal flag is set.
419 bool hasAllowReciprocal() const;
421 /// Determine whether the allow-contract flag is set.
422 bool hasAllowContract() const;
424 /// Determine whether the approximate-math-functions flag is set.
425 bool hasApproxFunc() const;
427 /// Convenience function for getting all the fast-math flags, which must be an
428 /// operator which supports these flags. See LangRef.html for the meaning of
430 FastMathFlags
getFastMathFlags() const;
432 /// Copy I's fast-math flags
433 void copyFastMathFlags(const Instruction
*I
);
435 /// Convenience method to copy supported exact, fast-math, and (optionally)
436 /// wrapping flags from V to this instruction.
437 void copyIRFlags(const Value
*V
, bool IncludeWrapFlags
= true);
439 /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
440 /// V and this instruction.
441 void andIRFlags(const Value
*V
);
443 /// Merge 2 debug locations and apply it to the Instruction. If the
444 /// instruction is a CallIns, we need to traverse the inline chain to find
445 /// the common scope. This is not efficient for N-way merging as each time
446 /// you merge 2 iterations, you need to rebuild the hashmap to find the
447 /// common scope. However, we still choose this API because:
448 /// 1) Simplicity: it takes 2 locations instead of a list of locations.
449 /// 2) In worst case, it increases the complexity from O(N*I) to
450 /// O(2*N*I), where N is # of Instructions to merge, and I is the
451 /// maximum level of inline stack. So it is still linear.
452 /// 3) Merging of call instructions should be extremely rare in real
453 /// applications, thus the N-way merging should be in code path.
454 /// The DebugLoc attached to this instruction will be overwritten by the
456 void applyMergedLocation(const DILocation
*LocA
, const DILocation
*LocB
);
459 /// Return true if we have an entry in the on-the-side metadata hash.
460 bool hasMetadataHashEntry() const {
461 return (getSubclassDataFromValue() & HasMetadataBit
) != 0;
464 // These are all implemented in Metadata.cpp.
465 MDNode
*getMetadataImpl(unsigned KindID
) const;
466 MDNode
*getMetadataImpl(StringRef Kind
) const;
468 getAllMetadataImpl(SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &) const;
469 void getAllMetadataOtherThanDebugLocImpl(
470 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &) const;
471 /// Clear all hashtable-based metadata from this instruction.
472 void clearMetadataHashEntries();
475 //===--------------------------------------------------------------------===//
476 // Predicates and helper methods.
477 //===--------------------------------------------------------------------===//
479 /// Return true if the instruction is associative:
481 /// Associative operators satisfy: x op (y op z) === (x op y) op z
483 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
485 bool isAssociative() const LLVM_READONLY
;
486 static bool isAssociative(unsigned Opcode
) {
487 return Opcode
== And
|| Opcode
== Or
|| Opcode
== Xor
||
488 Opcode
== Add
|| Opcode
== Mul
;
491 /// Return true if the instruction is commutative:
493 /// Commutative operators satisfy: (x op y) === (y op x)
495 /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
496 /// applied to any type.
498 bool isCommutative() const { return isCommutative(getOpcode()); }
499 static bool isCommutative(unsigned Opcode
) {
503 case And
: case Or
: case Xor
:
510 /// Return true if the instruction is idempotent:
512 /// Idempotent operators satisfy: x op x === x
514 /// In LLVM, the And and Or operators are idempotent.
516 bool isIdempotent() const { return isIdempotent(getOpcode()); }
517 static bool isIdempotent(unsigned Opcode
) {
518 return Opcode
== And
|| Opcode
== Or
;
521 /// Return true if the instruction is nilpotent:
523 /// Nilpotent operators satisfy: x op x === Id,
525 /// where Id is the identity for the operator, i.e. a constant such that
526 /// x op Id === x and Id op x === x for all x.
528 /// In LLVM, the Xor operator is nilpotent.
530 bool isNilpotent() const { return isNilpotent(getOpcode()); }
531 static bool isNilpotent(unsigned Opcode
) {
532 return Opcode
== Xor
;
535 /// Return true if this instruction may modify memory.
536 bool mayWriteToMemory() const;
538 /// Return true if this instruction may read memory.
539 bool mayReadFromMemory() const;
541 /// Return true if this instruction may read or write memory.
542 bool mayReadOrWriteMemory() const {
543 return mayReadFromMemory() || mayWriteToMemory();
546 /// Return true if this instruction has an AtomicOrdering of unordered or
548 bool isAtomic() const;
550 /// Return true if this atomic instruction loads from memory.
551 bool hasAtomicLoad() const;
553 /// Return true if this atomic instruction stores to memory.
554 bool hasAtomicStore() const;
556 /// Return true if this instruction may throw an exception.
557 bool mayThrow() const;
559 /// Return true if this instruction behaves like a memory fence: it can load
560 /// or store to memory location without being given a memory location.
561 bool isFenceLike() const {
562 switch (getOpcode()) {
565 // This list should be kept in sync with the list in mayWriteToMemory for
566 // all opcodes which don't have a memory location.
567 case Instruction::Fence
:
568 case Instruction::CatchPad
:
569 case Instruction::CatchRet
:
570 case Instruction::Call
:
571 case Instruction::Invoke
:
576 /// Return true if the instruction may have side effects.
578 /// Note that this does not consider malloc and alloca to have side
579 /// effects because the newly allocated memory is completely invisible to
580 /// instructions which don't use the returned value. For cases where this
581 /// matters, isSafeToSpeculativelyExecute may be more appropriate.
582 bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
584 /// Return true if the instruction can be removed if the result is unused.
586 /// When constant folding some instructions cannot be removed even if their
587 /// results are unused. Specifically terminator instructions and calls that
588 /// may have side effects cannot be removed without semantically changing the
589 /// generated program.
590 bool isSafeToRemove() const;
592 /// Return true if the instruction is a variety of EH-block.
593 bool isEHPad() const {
594 switch (getOpcode()) {
595 case Instruction::CatchSwitch
:
596 case Instruction::CatchPad
:
597 case Instruction::CleanupPad
:
598 case Instruction::LandingPad
:
605 /// Return true if the instruction is a llvm.lifetime.start or
606 /// llvm.lifetime.end marker.
607 bool isLifetimeStartOrEnd() const;
609 /// Return a pointer to the next non-debug instruction in the same basic
610 /// block as 'this', or nullptr if no such instruction exists.
611 const Instruction
*getNextNonDebugInstruction() const;
612 Instruction
*getNextNonDebugInstruction() {
613 return const_cast<Instruction
*>(
614 static_cast<const Instruction
*>(this)->getNextNonDebugInstruction());
617 /// Return a pointer to the previous non-debug instruction in the same basic
618 /// block as 'this', or nullptr if no such instruction exists.
619 const Instruction
*getPrevNonDebugInstruction() const;
620 Instruction
*getPrevNonDebugInstruction() {
621 return const_cast<Instruction
*>(
622 static_cast<const Instruction
*>(this)->getPrevNonDebugInstruction());
625 /// Create a copy of 'this' instruction that is identical in all ways except
627 /// * The instruction has no parent
628 /// * The instruction has no name
630 Instruction
*clone() const;
632 /// Return true if the specified instruction is exactly identical to the
633 /// current one. This means that all operands match and any extra information
634 /// (e.g. load is volatile) agree.
635 bool isIdenticalTo(const Instruction
*I
) const;
637 /// This is like isIdenticalTo, except that it ignores the
638 /// SubclassOptionalData flags, which may specify conditions under which the
639 /// instruction's result is undefined.
640 bool isIdenticalToWhenDefined(const Instruction
*I
) const;
642 /// When checking for operation equivalence (using isSameOperationAs) it is
643 /// sometimes useful to ignore certain attributes.
644 enum OperationEquivalenceFlags
{
645 /// Check for equivalence ignoring load/store alignment.
646 CompareIgnoringAlignment
= 1<<0,
647 /// Check for equivalence treating a type and a vector of that type
649 CompareUsingScalarTypes
= 1<<1
652 /// This function determines if the specified instruction executes the same
653 /// operation as the current one. This means that the opcodes, type, operand
654 /// types and any other factors affecting the operation must be the same. This
655 /// is similar to isIdenticalTo except the operands themselves don't have to
657 /// @returns true if the specified instruction is the same operation as
659 /// Determine if one instruction is the same operation as another.
660 bool isSameOperationAs(const Instruction
*I
, unsigned flags
= 0) const;
662 /// Return true if there are any uses of this instruction in blocks other than
663 /// the specified block. Note that PHI nodes are considered to evaluate their
664 /// operands in the corresponding predecessor block.
665 bool isUsedOutsideOfBlock(const BasicBlock
*BB
) const;
667 /// Return the number of successors that this instruction has. The instruction
668 /// must be a terminator.
669 unsigned getNumSuccessors() const;
671 /// Return the specified successor. This instruction must be a terminator.
672 BasicBlock
*getSuccessor(unsigned Idx
) const;
674 /// Update the specified successor to point at the provided block. This
675 /// instruction must be a terminator.
676 void setSuccessor(unsigned Idx
, BasicBlock
*BB
);
678 /// Replace specified successor OldBB to point at the provided block.
679 /// This instruction must be a terminator.
680 void replaceSuccessorWith(BasicBlock
*OldBB
, BasicBlock
*NewBB
);
682 /// Methods for support type inquiry through isa, cast, and dyn_cast:
683 static bool classof(const Value
*V
) {
684 return V
->getValueID() >= Value::InstructionVal
;
687 //----------------------------------------------------------------------
688 // Exported enumerations.
690 enum TermOps
{ // These terminate basic blocks
691 #define FIRST_TERM_INST(N) TermOpsBegin = N,
692 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
693 #define LAST_TERM_INST(N) TermOpsEnd = N+1
694 #include "llvm/IR/Instruction.def"
698 #define FIRST_UNARY_INST(N) UnaryOpsBegin = N,
699 #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
700 #define LAST_UNARY_INST(N) UnaryOpsEnd = N+1
701 #include "llvm/IR/Instruction.def"
705 #define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
706 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
707 #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
708 #include "llvm/IR/Instruction.def"
712 #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
713 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
714 #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
715 #include "llvm/IR/Instruction.def"
719 #define FIRST_CAST_INST(N) CastOpsBegin = N,
720 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
721 #define LAST_CAST_INST(N) CastOpsEnd = N+1
722 #include "llvm/IR/Instruction.def"
726 #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
727 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
728 #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
729 #include "llvm/IR/Instruction.def"
733 #define FIRST_OTHER_INST(N) OtherOpsBegin = N,
734 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
735 #define LAST_OTHER_INST(N) OtherOpsEnd = N+1
736 #include "llvm/IR/Instruction.def"
740 friend class SymbolTableListTraits
<Instruction
>;
742 // Shadow Value::setValueSubclassData with a private forwarding method so that
743 // subclasses cannot accidentally use it.
744 void setValueSubclassData(unsigned short D
) {
745 Value::setValueSubclassData(D
);
748 unsigned short getSubclassDataFromValue() const {
749 return Value::getSubclassDataFromValue();
752 void setHasMetadataHashEntry(bool V
) {
753 setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit
) |
754 (V
? HasMetadataBit
: 0));
757 void setParent(BasicBlock
*P
);
760 // Instruction subclasses can stick up to 15 bits of stuff into the
761 // SubclassData field of instruction with these members.
763 // Verify that only the low 15 bits are used.
764 void setInstructionSubclassData(unsigned short D
) {
765 assert((D
& HasMetadataBit
) == 0 && "Out of range value put into field");
766 setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit
) | D
);
769 unsigned getSubclassDataFromInstruction() const {
770 return getSubclassDataFromValue() & ~HasMetadataBit
;
773 Instruction(Type
*Ty
, unsigned iType
, Use
*Ops
, unsigned NumOps
,
774 Instruction
*InsertBefore
= nullptr);
775 Instruction(Type
*Ty
, unsigned iType
, Use
*Ops
, unsigned NumOps
,
776 BasicBlock
*InsertAtEnd
);
779 /// Create a copy of this instruction.
780 Instruction
*cloneImpl() const;
783 inline void ilist_alloc_traits
<Instruction
>::deleteNode(Instruction
*V
) {
787 } // end namespace llvm
789 #endif // LLVM_IR_INSTRUCTION_H