[X86][BMI] Pull out schedule classes from bmi_andn<> and bmi_bls<>
[llvm-core.git] / lib / Target / AArch64 / AArch64ISelLowering.cpp
blob2746117e8ee5408add6c0a6fd2128c31cb6dfd94
1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64ExpandImm.h"
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RuntimeLibcalls.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetCallingConv.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/OperandTraits.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include <algorithm>
81 #include <bitset>
82 #include <cassert>
83 #include <cctype>
84 #include <cstdint>
85 #include <cstdlib>
86 #include <iterator>
87 #include <limits>
88 #include <tuple>
89 #include <utility>
90 #include <vector>
92 using namespace llvm;
93 using namespace llvm::PatternMatch;
95 #define DEBUG_TYPE "aarch64-lower"
97 STATISTIC(NumTailCalls, "Number of tail calls");
98 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
99 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
101 static cl::opt<bool>
102 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
103 cl::desc("Allow AArch64 SLI/SRI formation"),
104 cl::init(false));
106 // FIXME: The necessary dtprel relocations don't seem to be supported
107 // well in the GNU bfd and gold linkers at the moment. Therefore, by
108 // default, for now, fall back to GeneralDynamic code generation.
109 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
110 "aarch64-elf-ldtls-generation", cl::Hidden,
111 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
112 cl::init(false));
114 static cl::opt<bool>
115 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
116 cl::desc("Enable AArch64 logical imm instruction "
117 "optimization"),
118 cl::init(true));
120 /// Value type used for condition codes.
121 static const MVT MVT_CC = MVT::i32;
123 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
124 const AArch64Subtarget &STI)
125 : TargetLowering(TM), Subtarget(&STI) {
126 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
127 // we have to make something up. Arbitrarily, choose ZeroOrOne.
128 setBooleanContents(ZeroOrOneBooleanContent);
129 // When comparing vectors the result sets the different elements in the
130 // vector to all-one or all-zero.
131 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
133 // Set up the register classes.
134 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
135 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
137 if (Subtarget->hasFPARMv8()) {
138 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
139 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
140 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
141 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
144 if (Subtarget->hasNEON()) {
145 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
146 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
147 // Someone set us up the NEON.
148 addDRTypeForNEON(MVT::v2f32);
149 addDRTypeForNEON(MVT::v8i8);
150 addDRTypeForNEON(MVT::v4i16);
151 addDRTypeForNEON(MVT::v2i32);
152 addDRTypeForNEON(MVT::v1i64);
153 addDRTypeForNEON(MVT::v1f64);
154 addDRTypeForNEON(MVT::v4f16);
156 addQRTypeForNEON(MVT::v4f32);
157 addQRTypeForNEON(MVT::v2f64);
158 addQRTypeForNEON(MVT::v16i8);
159 addQRTypeForNEON(MVT::v8i16);
160 addQRTypeForNEON(MVT::v4i32);
161 addQRTypeForNEON(MVT::v2i64);
162 addQRTypeForNEON(MVT::v8f16);
165 if (Subtarget->hasSVE()) {
166 // Add legal sve predicate types
167 addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
168 addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
169 addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
170 addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
172 // Add legal sve data types
173 addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
174 addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
175 addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
176 addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
178 addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
179 addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
180 addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
181 addRegisterClass(MVT::nxv1f32, &AArch64::ZPRRegClass);
182 addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
183 addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
184 addRegisterClass(MVT::nxv1f64, &AArch64::ZPRRegClass);
185 addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
188 // Compute derived properties from the register classes
189 computeRegisterProperties(Subtarget->getRegisterInfo());
191 // Provide all sorts of operation actions
192 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
193 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
194 setOperationAction(ISD::SETCC, MVT::i32, Custom);
195 setOperationAction(ISD::SETCC, MVT::i64, Custom);
196 setOperationAction(ISD::SETCC, MVT::f16, Custom);
197 setOperationAction(ISD::SETCC, MVT::f32, Custom);
198 setOperationAction(ISD::SETCC, MVT::f64, Custom);
199 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
200 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
201 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
202 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
203 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
204 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
205 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
206 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
207 setOperationAction(ISD::SELECT, MVT::i32, Custom);
208 setOperationAction(ISD::SELECT, MVT::i64, Custom);
209 setOperationAction(ISD::SELECT, MVT::f16, Custom);
210 setOperationAction(ISD::SELECT, MVT::f32, Custom);
211 setOperationAction(ISD::SELECT, MVT::f64, Custom);
212 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
213 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
214 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
215 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
216 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
217 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
218 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
220 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
221 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
222 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
224 setOperationAction(ISD::FREM, MVT::f32, Expand);
225 setOperationAction(ISD::FREM, MVT::f64, Expand);
226 setOperationAction(ISD::FREM, MVT::f80, Expand);
228 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
230 // Custom lowering hooks are needed for XOR
231 // to fold it into CSINC/CSINV.
232 setOperationAction(ISD::XOR, MVT::i32, Custom);
233 setOperationAction(ISD::XOR, MVT::i64, Custom);
235 // Virtually no operation on f128 is legal, but LLVM can't expand them when
236 // there's a valid register class, so we need custom operations in most cases.
237 setOperationAction(ISD::FABS, MVT::f128, Expand);
238 setOperationAction(ISD::FADD, MVT::f128, Custom);
239 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
240 setOperationAction(ISD::FCOS, MVT::f128, Expand);
241 setOperationAction(ISD::FDIV, MVT::f128, Custom);
242 setOperationAction(ISD::FMA, MVT::f128, Expand);
243 setOperationAction(ISD::FMUL, MVT::f128, Custom);
244 setOperationAction(ISD::FNEG, MVT::f128, Expand);
245 setOperationAction(ISD::FPOW, MVT::f128, Expand);
246 setOperationAction(ISD::FREM, MVT::f128, Expand);
247 setOperationAction(ISD::FRINT, MVT::f128, Expand);
248 setOperationAction(ISD::FSIN, MVT::f128, Expand);
249 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
250 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
251 setOperationAction(ISD::FSUB, MVT::f128, Custom);
252 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
253 setOperationAction(ISD::SETCC, MVT::f128, Custom);
254 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
255 setOperationAction(ISD::SELECT, MVT::f128, Custom);
256 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
257 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
259 // Lowering for many of the conversions is actually specified by the non-f128
260 // type. The LowerXXX function will be trivial when f128 isn't involved.
261 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
262 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
263 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
264 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
265 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
266 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
267 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
268 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
269 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
271 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
272 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
273 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
274 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
276 // Variable arguments.
277 setOperationAction(ISD::VASTART, MVT::Other, Custom);
278 setOperationAction(ISD::VAARG, MVT::Other, Custom);
279 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
280 setOperationAction(ISD::VAEND, MVT::Other, Expand);
282 // Variable-sized objects.
283 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
284 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
286 if (Subtarget->isTargetWindows())
287 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
288 else
289 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
291 // Constant pool entries
292 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
294 // BlockAddress
295 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
297 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
298 setOperationAction(ISD::ADDC, MVT::i32, Custom);
299 setOperationAction(ISD::ADDE, MVT::i32, Custom);
300 setOperationAction(ISD::SUBC, MVT::i32, Custom);
301 setOperationAction(ISD::SUBE, MVT::i32, Custom);
302 setOperationAction(ISD::ADDC, MVT::i64, Custom);
303 setOperationAction(ISD::ADDE, MVT::i64, Custom);
304 setOperationAction(ISD::SUBC, MVT::i64, Custom);
305 setOperationAction(ISD::SUBE, MVT::i64, Custom);
307 // AArch64 lacks both left-rotate and popcount instructions.
308 setOperationAction(ISD::ROTL, MVT::i32, Expand);
309 setOperationAction(ISD::ROTL, MVT::i64, Expand);
310 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
311 setOperationAction(ISD::ROTL, VT, Expand);
312 setOperationAction(ISD::ROTR, VT, Expand);
315 // AArch64 doesn't have {U|S}MUL_LOHI.
316 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
317 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
319 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
320 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
322 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
323 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
324 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
325 setOperationAction(ISD::SDIVREM, VT, Expand);
326 setOperationAction(ISD::UDIVREM, VT, Expand);
328 setOperationAction(ISD::SREM, MVT::i32, Expand);
329 setOperationAction(ISD::SREM, MVT::i64, Expand);
330 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
331 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
332 setOperationAction(ISD::UREM, MVT::i32, Expand);
333 setOperationAction(ISD::UREM, MVT::i64, Expand);
335 // Custom lower Add/Sub/Mul with overflow.
336 setOperationAction(ISD::SADDO, MVT::i32, Custom);
337 setOperationAction(ISD::SADDO, MVT::i64, Custom);
338 setOperationAction(ISD::UADDO, MVT::i32, Custom);
339 setOperationAction(ISD::UADDO, MVT::i64, Custom);
340 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
341 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
342 setOperationAction(ISD::USUBO, MVT::i32, Custom);
343 setOperationAction(ISD::USUBO, MVT::i64, Custom);
344 setOperationAction(ISD::SMULO, MVT::i32, Custom);
345 setOperationAction(ISD::SMULO, MVT::i64, Custom);
346 setOperationAction(ISD::UMULO, MVT::i32, Custom);
347 setOperationAction(ISD::UMULO, MVT::i64, Custom);
349 setOperationAction(ISD::FSIN, MVT::f32, Expand);
350 setOperationAction(ISD::FSIN, MVT::f64, Expand);
351 setOperationAction(ISD::FCOS, MVT::f32, Expand);
352 setOperationAction(ISD::FCOS, MVT::f64, Expand);
353 setOperationAction(ISD::FPOW, MVT::f32, Expand);
354 setOperationAction(ISD::FPOW, MVT::f64, Expand);
355 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
356 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
357 if (Subtarget->hasFullFP16())
358 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
359 else
360 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
362 setOperationAction(ISD::FREM, MVT::f16, Promote);
363 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
364 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
365 setOperationAction(ISD::FPOW, MVT::f16, Promote);
366 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
367 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
368 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
369 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
370 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
371 setOperationAction(ISD::FCOS, MVT::f16, Promote);
372 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
373 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
374 setOperationAction(ISD::FSIN, MVT::f16, Promote);
375 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
376 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
377 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
378 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
379 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
380 setOperationAction(ISD::FEXP, MVT::f16, Promote);
381 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
382 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
383 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
384 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
385 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
386 setOperationAction(ISD::FLOG, MVT::f16, Promote);
387 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
388 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
389 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
390 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
391 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
392 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
393 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
394 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
396 if (!Subtarget->hasFullFP16()) {
397 setOperationAction(ISD::SELECT, MVT::f16, Promote);
398 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
399 setOperationAction(ISD::SETCC, MVT::f16, Promote);
400 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
401 setOperationAction(ISD::FADD, MVT::f16, Promote);
402 setOperationAction(ISD::FSUB, MVT::f16, Promote);
403 setOperationAction(ISD::FMUL, MVT::f16, Promote);
404 setOperationAction(ISD::FDIV, MVT::f16, Promote);
405 setOperationAction(ISD::FMA, MVT::f16, Promote);
406 setOperationAction(ISD::FNEG, MVT::f16, Promote);
407 setOperationAction(ISD::FABS, MVT::f16, Promote);
408 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
409 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
410 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
411 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
412 setOperationAction(ISD::FRINT, MVT::f16, Promote);
413 setOperationAction(ISD::FROUND, MVT::f16, Promote);
414 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
415 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
416 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
417 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
418 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
420 // promote v4f16 to v4f32 when that is known to be safe.
421 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
422 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
423 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
424 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
425 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
426 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
427 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
428 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
429 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
430 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
431 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
432 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
434 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
435 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
436 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
437 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
438 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
439 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
440 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
441 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
442 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
443 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
444 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
445 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
446 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
447 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
448 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
450 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
451 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
452 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
453 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
454 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
455 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
456 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
457 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
458 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
459 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
460 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
461 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
462 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
463 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
464 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
465 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
466 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
467 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
468 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
469 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
472 // AArch64 has implementations of a lot of rounding-like FP operations.
473 for (MVT Ty : {MVT::f32, MVT::f64}) {
474 setOperationAction(ISD::FFLOOR, Ty, Legal);
475 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
476 setOperationAction(ISD::FCEIL, Ty, Legal);
477 setOperationAction(ISD::FRINT, Ty, Legal);
478 setOperationAction(ISD::FTRUNC, Ty, Legal);
479 setOperationAction(ISD::FROUND, Ty, Legal);
480 setOperationAction(ISD::FMINNUM, Ty, Legal);
481 setOperationAction(ISD::FMAXNUM, Ty, Legal);
482 setOperationAction(ISD::FMINIMUM, Ty, Legal);
483 setOperationAction(ISD::FMAXIMUM, Ty, Legal);
484 setOperationAction(ISD::LROUND, Ty, Legal);
485 setOperationAction(ISD::LLROUND, Ty, Legal);
486 setOperationAction(ISD::LRINT, Ty, Legal);
487 setOperationAction(ISD::LLRINT, Ty, Legal);
490 if (Subtarget->hasFullFP16()) {
491 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
492 setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
493 setOperationAction(ISD::FCEIL, MVT::f16, Legal);
494 setOperationAction(ISD::FRINT, MVT::f16, Legal);
495 setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
496 setOperationAction(ISD::FROUND, MVT::f16, Legal);
497 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
498 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
499 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
500 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
503 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
505 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
507 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
508 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
509 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
510 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
511 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
514 // This requires the Performance Monitors extension.
515 if (Subtarget->hasPerfMon())
516 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
518 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
519 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
520 // Issue __sincos_stret if available.
521 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
522 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
523 } else {
524 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
525 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
528 // Make floating-point constants legal for the large code model, so they don't
529 // become loads from the constant pool.
530 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
531 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
532 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
535 // AArch64 does not have floating-point extending loads, i1 sign-extending
536 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
537 for (MVT VT : MVT::fp_valuetypes()) {
538 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
539 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
540 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
541 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
543 for (MVT VT : MVT::integer_valuetypes())
544 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
546 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
547 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
548 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
549 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
550 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
551 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
552 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
554 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
555 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
557 // Indexed loads and stores are supported.
558 for (unsigned im = (unsigned)ISD::PRE_INC;
559 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
560 setIndexedLoadAction(im, MVT::i8, Legal);
561 setIndexedLoadAction(im, MVT::i16, Legal);
562 setIndexedLoadAction(im, MVT::i32, Legal);
563 setIndexedLoadAction(im, MVT::i64, Legal);
564 setIndexedLoadAction(im, MVT::f64, Legal);
565 setIndexedLoadAction(im, MVT::f32, Legal);
566 setIndexedLoadAction(im, MVT::f16, Legal);
567 setIndexedStoreAction(im, MVT::i8, Legal);
568 setIndexedStoreAction(im, MVT::i16, Legal);
569 setIndexedStoreAction(im, MVT::i32, Legal);
570 setIndexedStoreAction(im, MVT::i64, Legal);
571 setIndexedStoreAction(im, MVT::f64, Legal);
572 setIndexedStoreAction(im, MVT::f32, Legal);
573 setIndexedStoreAction(im, MVT::f16, Legal);
576 // Trap.
577 setOperationAction(ISD::TRAP, MVT::Other, Legal);
578 if (Subtarget->isTargetWindows())
579 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
581 // We combine OR nodes for bitfield operations.
582 setTargetDAGCombine(ISD::OR);
583 // Try to create BICs for vector ANDs.
584 setTargetDAGCombine(ISD::AND);
586 // Vector add and sub nodes may conceal a high-half opportunity.
587 // Also, try to fold ADD into CSINC/CSINV..
588 setTargetDAGCombine(ISD::ADD);
589 setTargetDAGCombine(ISD::SUB);
590 setTargetDAGCombine(ISD::SRL);
591 setTargetDAGCombine(ISD::XOR);
592 setTargetDAGCombine(ISD::SINT_TO_FP);
593 setTargetDAGCombine(ISD::UINT_TO_FP);
595 setTargetDAGCombine(ISD::FP_TO_SINT);
596 setTargetDAGCombine(ISD::FP_TO_UINT);
597 setTargetDAGCombine(ISD::FDIV);
599 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
601 setTargetDAGCombine(ISD::ANY_EXTEND);
602 setTargetDAGCombine(ISD::ZERO_EXTEND);
603 setTargetDAGCombine(ISD::SIGN_EXTEND);
604 setTargetDAGCombine(ISD::BITCAST);
605 setTargetDAGCombine(ISD::CONCAT_VECTORS);
606 setTargetDAGCombine(ISD::STORE);
607 if (Subtarget->supportsAddressTopByteIgnored())
608 setTargetDAGCombine(ISD::LOAD);
610 setTargetDAGCombine(ISD::MUL);
612 setTargetDAGCombine(ISD::SELECT);
613 setTargetDAGCombine(ISD::VSELECT);
615 setTargetDAGCombine(ISD::INTRINSIC_VOID);
616 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
617 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
619 setTargetDAGCombine(ISD::GlobalAddress);
621 // In case of strict alignment, avoid an excessive number of byte wide stores.
622 MaxStoresPerMemsetOptSize = 8;
623 MaxStoresPerMemset = Subtarget->requiresStrictAlign()
624 ? MaxStoresPerMemsetOptSize : 32;
626 MaxGluedStoresPerMemcpy = 4;
627 MaxStoresPerMemcpyOptSize = 4;
628 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
629 ? MaxStoresPerMemcpyOptSize : 16;
631 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
633 MaxLoadsPerMemcmpOptSize = 4;
634 MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
635 ? MaxLoadsPerMemcmpOptSize : 8;
637 setStackPointerRegisterToSaveRestore(AArch64::SP);
639 setSchedulingPreference(Sched::Hybrid);
641 EnableExtLdPromotion = true;
643 // Set required alignment.
644 setMinFunctionAlignment(Align(4));
645 // Set preferred alignments.
646 setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
647 setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));
649 // Only change the limit for entries in a jump table if specified by
650 // the sub target, but not at the command line.
651 unsigned MaxJT = STI.getMaximumJumpTableSize();
652 if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
653 setMaximumJumpTableSize(MaxJT);
655 setHasExtractBitsInsn(true);
657 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
659 if (Subtarget->hasNEON()) {
660 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
661 // silliness like this:
662 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
663 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
664 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
665 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
666 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
667 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
668 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
669 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
670 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
671 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
672 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
673 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
674 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
675 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
676 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
677 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
678 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
679 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
680 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
681 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
682 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
683 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
684 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
685 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
686 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
688 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
689 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
690 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
691 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
692 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
694 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
696 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
697 // elements smaller than i32, so promote the input to i32 first.
698 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
699 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
700 // i8 vector elements also need promotion to i32 for v8i8
701 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
702 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
703 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
704 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
705 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
706 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
707 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
708 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
709 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
710 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
711 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
713 if (Subtarget->hasFullFP16()) {
714 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
715 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
716 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
717 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
718 } else {
719 // when AArch64 doesn't have fullfp16 support, promote the input
720 // to i32 first.
721 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
722 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
723 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
724 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
727 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
728 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
730 // AArch64 doesn't have MUL.2d:
731 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
732 // Custom handling for some quad-vector types to detect MULL.
733 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
734 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
735 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
737 // Vector reductions
738 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
739 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
740 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
741 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
742 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
743 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
744 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
746 for (MVT VT : { MVT::v4f16, MVT::v2f32,
747 MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
748 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
749 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
752 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
753 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
754 // Likewise, narrowing and extending vector loads/stores aren't handled
755 // directly.
756 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
757 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
759 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
760 setOperationAction(ISD::MULHS, VT, Legal);
761 setOperationAction(ISD::MULHU, VT, Legal);
762 } else {
763 setOperationAction(ISD::MULHS, VT, Expand);
764 setOperationAction(ISD::MULHU, VT, Expand);
766 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
767 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
769 setOperationAction(ISD::BSWAP, VT, Expand);
770 setOperationAction(ISD::CTTZ, VT, Expand);
772 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
773 setTruncStoreAction(VT, InnerVT, Expand);
774 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
775 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
776 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
780 // AArch64 has implementations of a lot of rounding-like FP operations.
781 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
782 setOperationAction(ISD::FFLOOR, Ty, Legal);
783 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
784 setOperationAction(ISD::FCEIL, Ty, Legal);
785 setOperationAction(ISD::FRINT, Ty, Legal);
786 setOperationAction(ISD::FTRUNC, Ty, Legal);
787 setOperationAction(ISD::FROUND, Ty, Legal);
790 if (Subtarget->hasFullFP16()) {
791 for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
792 setOperationAction(ISD::FFLOOR, Ty, Legal);
793 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
794 setOperationAction(ISD::FCEIL, Ty, Legal);
795 setOperationAction(ISD::FRINT, Ty, Legal);
796 setOperationAction(ISD::FTRUNC, Ty, Legal);
797 setOperationAction(ISD::FROUND, Ty, Legal);
801 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
804 if (Subtarget->hasSVE()) {
805 for (MVT VT : MVT::integer_scalable_vector_valuetypes()) {
806 if (isTypeLegal(VT) && VT.getVectorElementType() != MVT::i1)
807 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
811 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
814 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
815 assert(VT.isVector() && "VT should be a vector type");
817 if (VT.isFloatingPoint()) {
818 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
819 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
820 setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
823 // Mark vector float intrinsics as expand.
824 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
825 setOperationAction(ISD::FSIN, VT, Expand);
826 setOperationAction(ISD::FCOS, VT, Expand);
827 setOperationAction(ISD::FPOW, VT, Expand);
828 setOperationAction(ISD::FLOG, VT, Expand);
829 setOperationAction(ISD::FLOG2, VT, Expand);
830 setOperationAction(ISD::FLOG10, VT, Expand);
831 setOperationAction(ISD::FEXP, VT, Expand);
832 setOperationAction(ISD::FEXP2, VT, Expand);
834 // But we do support custom-lowering for FCOPYSIGN.
835 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
838 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
839 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
840 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
841 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
842 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
843 setOperationAction(ISD::SRA, VT, Custom);
844 setOperationAction(ISD::SRL, VT, Custom);
845 setOperationAction(ISD::SHL, VT, Custom);
846 setOperationAction(ISD::OR, VT, Custom);
847 setOperationAction(ISD::SETCC, VT, Custom);
848 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
850 setOperationAction(ISD::SELECT, VT, Expand);
851 setOperationAction(ISD::SELECT_CC, VT, Expand);
852 setOperationAction(ISD::VSELECT, VT, Expand);
853 for (MVT InnerVT : MVT::all_valuetypes())
854 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
856 // CNT supports only B element sizes, then use UADDLP to widen.
857 if (VT != MVT::v8i8 && VT != MVT::v16i8)
858 setOperationAction(ISD::CTPOP, VT, Custom);
860 setOperationAction(ISD::UDIV, VT, Expand);
861 setOperationAction(ISD::SDIV, VT, Expand);
862 setOperationAction(ISD::UREM, VT, Expand);
863 setOperationAction(ISD::SREM, VT, Expand);
864 setOperationAction(ISD::FREM, VT, Expand);
866 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
867 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
869 if (!VT.isFloatingPoint())
870 setOperationAction(ISD::ABS, VT, Legal);
872 // [SU][MIN|MAX] are available for all NEON types apart from i64.
873 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
874 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
875 setOperationAction(Opcode, VT, Legal);
877 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
878 if (VT.isFloatingPoint() &&
879 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
880 for (unsigned Opcode :
881 {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
882 setOperationAction(Opcode, VT, Legal);
884 if (Subtarget->isLittleEndian()) {
885 for (unsigned im = (unsigned)ISD::PRE_INC;
886 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
887 setIndexedLoadAction(im, VT, Legal);
888 setIndexedStoreAction(im, VT, Legal);
893 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
894 addRegisterClass(VT, &AArch64::FPR64RegClass);
895 addTypeForNEON(VT, MVT::v2i32);
898 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
899 addRegisterClass(VT, &AArch64::FPR128RegClass);
900 addTypeForNEON(VT, MVT::v4i32);
903 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
904 EVT VT) const {
905 if (!VT.isVector())
906 return MVT::i32;
907 return VT.changeVectorElementTypeToInteger();
910 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
911 const APInt &Demanded,
912 TargetLowering::TargetLoweringOpt &TLO,
913 unsigned NewOpc) {
914 uint64_t OldImm = Imm, NewImm, Enc;
915 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
917 // Return if the immediate is already all zeros, all ones, a bimm32 or a
918 // bimm64.
919 if (Imm == 0 || Imm == Mask ||
920 AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
921 return false;
923 unsigned EltSize = Size;
924 uint64_t DemandedBits = Demanded.getZExtValue();
926 // Clear bits that are not demanded.
927 Imm &= DemandedBits;
929 while (true) {
930 // The goal here is to set the non-demanded bits in a way that minimizes
931 // the number of switching between 0 and 1. In order to achieve this goal,
932 // we set the non-demanded bits to the value of the preceding demanded bits.
933 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
934 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
935 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
936 // The final result is 0b11000011.
937 uint64_t NonDemandedBits = ~DemandedBits;
938 uint64_t InvertedImm = ~Imm & DemandedBits;
939 uint64_t RotatedImm =
940 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
941 NonDemandedBits;
942 uint64_t Sum = RotatedImm + NonDemandedBits;
943 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
944 uint64_t Ones = (Sum + Carry) & NonDemandedBits;
945 NewImm = (Imm | Ones) & Mask;
947 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
948 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
949 // we halve the element size and continue the search.
950 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
951 break;
953 // We cannot shrink the element size any further if it is 2-bits.
954 if (EltSize == 2)
955 return false;
957 EltSize /= 2;
958 Mask >>= EltSize;
959 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
961 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
962 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
963 return false;
965 // Merge the upper and lower halves of Imm and DemandedBits.
966 Imm |= Hi;
967 DemandedBits |= DemandedBitsHi;
970 ++NumOptimizedImms;
972 // Replicate the element across the register width.
973 while (EltSize < Size) {
974 NewImm |= NewImm << EltSize;
975 EltSize *= 2;
978 (void)OldImm;
979 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
980 "demanded bits should never be altered");
981 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
983 // Create the new constant immediate node.
984 EVT VT = Op.getValueType();
985 SDLoc DL(Op);
986 SDValue New;
988 // If the new constant immediate is all-zeros or all-ones, let the target
989 // independent DAG combine optimize this node.
990 if (NewImm == 0 || NewImm == OrigMask) {
991 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
992 TLO.DAG.getConstant(NewImm, DL, VT));
993 // Otherwise, create a machine node so that target independent DAG combine
994 // doesn't undo this optimization.
995 } else {
996 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
997 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
998 New = SDValue(
999 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
1002 return TLO.CombineTo(Op, New);
1005 bool AArch64TargetLowering::targetShrinkDemandedConstant(
1006 SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
1007 // Delay this optimization to as late as possible.
1008 if (!TLO.LegalOps)
1009 return false;
1011 if (!EnableOptimizeLogicalImm)
1012 return false;
1014 EVT VT = Op.getValueType();
1015 if (VT.isVector())
1016 return false;
1018 unsigned Size = VT.getSizeInBits();
1019 assert((Size == 32 || Size == 64) &&
1020 "i32 or i64 is expected after legalization.");
1022 // Exit early if we demand all bits.
1023 if (Demanded.countPopulation() == Size)
1024 return false;
1026 unsigned NewOpc;
1027 switch (Op.getOpcode()) {
1028 default:
1029 return false;
1030 case ISD::AND:
1031 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
1032 break;
1033 case ISD::OR:
1034 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
1035 break;
1036 case ISD::XOR:
1037 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
1038 break;
1040 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1041 if (!C)
1042 return false;
1043 uint64_t Imm = C->getZExtValue();
1044 return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
1047 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1048 /// Mask are known to be either zero or one and return them Known.
1049 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1050 const SDValue Op, KnownBits &Known,
1051 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
1052 switch (Op.getOpcode()) {
1053 default:
1054 break;
1055 case AArch64ISD::CSEL: {
1056 KnownBits Known2;
1057 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1058 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1059 Known.Zero &= Known2.Zero;
1060 Known.One &= Known2.One;
1061 break;
1063 case AArch64ISD::LOADgot:
1064 case AArch64ISD::ADDlow: {
1065 if (!Subtarget->isTargetILP32())
1066 break;
1067 // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
1068 Known.Zero = APInt::getHighBitsSet(64, 32);
1069 break;
1071 case ISD::INTRINSIC_W_CHAIN: {
1072 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1073 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1074 switch (IntID) {
1075 default: return;
1076 case Intrinsic::aarch64_ldaxr:
1077 case Intrinsic::aarch64_ldxr: {
1078 unsigned BitWidth = Known.getBitWidth();
1079 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1080 unsigned MemBits = VT.getScalarSizeInBits();
1081 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1082 return;
1085 break;
1087 case ISD::INTRINSIC_WO_CHAIN:
1088 case ISD::INTRINSIC_VOID: {
1089 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1090 switch (IntNo) {
1091 default:
1092 break;
1093 case Intrinsic::aarch64_neon_umaxv:
1094 case Intrinsic::aarch64_neon_uminv: {
1095 // Figure out the datatype of the vector operand. The UMINV instruction
1096 // will zero extend the result, so we can mark as known zero all the
1097 // bits larger than the element datatype. 32-bit or larget doesn't need
1098 // this as those are legal types and will be handled by isel directly.
1099 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1100 unsigned BitWidth = Known.getBitWidth();
1101 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1102 assert(BitWidth >= 8 && "Unexpected width!");
1103 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1104 Known.Zero |= Mask;
1105 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1106 assert(BitWidth >= 16 && "Unexpected width!");
1107 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1108 Known.Zero |= Mask;
1110 break;
1111 } break;
1117 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1118 EVT) const {
1119 return MVT::i64;
1122 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1123 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1124 bool *Fast) const {
1125 if (Subtarget->requiresStrictAlign())
1126 return false;
1128 if (Fast) {
1129 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1130 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1131 // See comments in performSTORECombine() for more details about
1132 // these conditions.
1134 // Code that uses clang vector extensions can mark that it
1135 // wants unaligned accesses to be treated as fast by
1136 // underspecifying alignment to be 1 or 2.
1137 Align <= 2 ||
1139 // Disregard v2i64. Memcpy lowering produces those and splitting
1140 // them regresses performance on micro-benchmarks and olden/bh.
1141 VT == MVT::v2i64;
1143 return true;
1146 // Same as above but handling LLTs instead.
1147 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1148 LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1149 bool *Fast) const {
1150 if (Subtarget->requiresStrictAlign())
1151 return false;
1153 if (Fast) {
1154 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1155 *Fast = !Subtarget->isMisaligned128StoreSlow() ||
1156 Ty.getSizeInBytes() != 16 ||
1157 // See comments in performSTORECombine() for more details about
1158 // these conditions.
1160 // Code that uses clang vector extensions can mark that it
1161 // wants unaligned accesses to be treated as fast by
1162 // underspecifying alignment to be 1 or 2.
1163 Align <= 2 ||
1165 // Disregard v2i64. Memcpy lowering produces those and splitting
1166 // them regresses performance on micro-benchmarks and olden/bh.
1167 Ty == LLT::vector(2, 64);
1169 return true;
1172 FastISel *
1173 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1174 const TargetLibraryInfo *libInfo) const {
1175 return AArch64::createFastISel(funcInfo, libInfo);
1178 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1179 switch ((AArch64ISD::NodeType)Opcode) {
1180 case AArch64ISD::FIRST_NUMBER: break;
1181 case AArch64ISD::CALL: return "AArch64ISD::CALL";
1182 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
1183 case AArch64ISD::ADR: return "AArch64ISD::ADR";
1184 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
1185 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
1186 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
1187 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
1188 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
1189 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
1190 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
1191 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
1192 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
1193 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
1194 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
1195 case AArch64ISD::ADC: return "AArch64ISD::ADC";
1196 case AArch64ISD::SBC: return "AArch64ISD::SBC";
1197 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
1198 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
1199 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
1200 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
1201 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
1202 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
1203 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
1204 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
1205 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
1206 case AArch64ISD::DUP: return "AArch64ISD::DUP";
1207 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
1208 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
1209 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
1210 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
1211 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
1212 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
1213 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
1214 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
1215 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
1216 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
1217 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
1218 case AArch64ISD::BICi: return "AArch64ISD::BICi";
1219 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
1220 case AArch64ISD::BSL: return "AArch64ISD::BSL";
1221 case AArch64ISD::NEG: return "AArch64ISD::NEG";
1222 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
1223 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
1224 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
1225 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
1226 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
1227 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
1228 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
1229 case AArch64ISD::REV16: return "AArch64ISD::REV16";
1230 case AArch64ISD::REV32: return "AArch64ISD::REV32";
1231 case AArch64ISD::REV64: return "AArch64ISD::REV64";
1232 case AArch64ISD::EXT: return "AArch64ISD::EXT";
1233 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
1234 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
1235 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
1236 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
1237 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
1238 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
1239 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
1240 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
1241 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
1242 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
1243 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
1244 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
1245 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
1246 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
1247 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
1248 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
1249 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
1250 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
1251 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
1252 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
1253 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
1254 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
1255 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
1256 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
1257 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
1258 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
1259 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
1260 case AArch64ISD::NOT: return "AArch64ISD::NOT";
1261 case AArch64ISD::BIT: return "AArch64ISD::BIT";
1262 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
1263 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
1264 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
1265 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
1266 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
1267 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
1268 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
1269 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
1270 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
1271 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
1272 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
1273 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
1274 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
1275 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
1276 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
1277 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
1278 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
1279 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
1280 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
1281 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
1282 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
1283 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
1284 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
1285 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
1286 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
1287 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
1288 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
1289 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
1290 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
1291 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
1292 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
1293 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
1294 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
1295 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
1296 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
1297 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
1298 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
1299 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
1300 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
1301 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
1302 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
1303 case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS";
1304 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
1305 case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS";
1306 case AArch64ISD::STG: return "AArch64ISD::STG";
1307 case AArch64ISD::STZG: return "AArch64ISD::STZG";
1308 case AArch64ISD::ST2G: return "AArch64ISD::ST2G";
1309 case AArch64ISD::STZ2G: return "AArch64ISD::STZ2G";
1310 case AArch64ISD::SUNPKHI: return "AArch64ISD::SUNPKHI";
1311 case AArch64ISD::SUNPKLO: return "AArch64ISD::SUNPKLO";
1312 case AArch64ISD::UUNPKHI: return "AArch64ISD::UUNPKHI";
1313 case AArch64ISD::UUNPKLO: return "AArch64ISD::UUNPKLO";
1315 return nullptr;
1318 MachineBasicBlock *
1319 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1320 MachineBasicBlock *MBB) const {
1321 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1322 // phi node:
1324 // OrigBB:
1325 // [... previous instrs leading to comparison ...]
1326 // b.ne TrueBB
1327 // b EndBB
1328 // TrueBB:
1329 // ; Fallthrough
1330 // EndBB:
1331 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1333 MachineFunction *MF = MBB->getParent();
1334 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1335 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1336 DebugLoc DL = MI.getDebugLoc();
1337 MachineFunction::iterator It = ++MBB->getIterator();
1339 Register DestReg = MI.getOperand(0).getReg();
1340 Register IfTrueReg = MI.getOperand(1).getReg();
1341 Register IfFalseReg = MI.getOperand(2).getReg();
1342 unsigned CondCode = MI.getOperand(3).getImm();
1343 bool NZCVKilled = MI.getOperand(4).isKill();
1345 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1346 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1347 MF->insert(It, TrueBB);
1348 MF->insert(It, EndBB);
1350 // Transfer rest of current basic-block to EndBB
1351 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1352 MBB->end());
1353 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1355 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1356 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1357 MBB->addSuccessor(TrueBB);
1358 MBB->addSuccessor(EndBB);
1360 // TrueBB falls through to the end.
1361 TrueBB->addSuccessor(EndBB);
1363 if (!NZCVKilled) {
1364 TrueBB->addLiveIn(AArch64::NZCV);
1365 EndBB->addLiveIn(AArch64::NZCV);
1368 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1369 .addReg(IfTrueReg)
1370 .addMBB(TrueBB)
1371 .addReg(IfFalseReg)
1372 .addMBB(MBB);
1374 MI.eraseFromParent();
1375 return EndBB;
1378 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
1379 MachineInstr &MI, MachineBasicBlock *BB) const {
1380 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1381 BB->getParent()->getFunction().getPersonalityFn())) &&
1382 "SEH does not use catchret!");
1383 return BB;
1386 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
1387 MachineInstr &MI, MachineBasicBlock *BB) const {
1388 MI.eraseFromParent();
1389 return BB;
1392 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1393 MachineInstr &MI, MachineBasicBlock *BB) const {
1394 switch (MI.getOpcode()) {
1395 default:
1396 #ifndef NDEBUG
1397 MI.dump();
1398 #endif
1399 llvm_unreachable("Unexpected instruction for custom inserter!");
1401 case AArch64::F128CSEL:
1402 return EmitF128CSEL(MI, BB);
1404 case TargetOpcode::STACKMAP:
1405 case TargetOpcode::PATCHPOINT:
1406 return emitPatchPoint(MI, BB);
1408 case AArch64::CATCHRET:
1409 return EmitLoweredCatchRet(MI, BB);
1410 case AArch64::CATCHPAD:
1411 return EmitLoweredCatchPad(MI, BB);
1415 //===----------------------------------------------------------------------===//
1416 // AArch64 Lowering private implementation.
1417 //===----------------------------------------------------------------------===//
1419 //===----------------------------------------------------------------------===//
1420 // Lowering Code
1421 //===----------------------------------------------------------------------===//
1423 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1424 /// CC
1425 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1426 switch (CC) {
1427 default:
1428 llvm_unreachable("Unknown condition code!");
1429 case ISD::SETNE:
1430 return AArch64CC::NE;
1431 case ISD::SETEQ:
1432 return AArch64CC::EQ;
1433 case ISD::SETGT:
1434 return AArch64CC::GT;
1435 case ISD::SETGE:
1436 return AArch64CC::GE;
1437 case ISD::SETLT:
1438 return AArch64CC::LT;
1439 case ISD::SETLE:
1440 return AArch64CC::LE;
1441 case ISD::SETUGT:
1442 return AArch64CC::HI;
1443 case ISD::SETUGE:
1444 return AArch64CC::HS;
1445 case ISD::SETULT:
1446 return AArch64CC::LO;
1447 case ISD::SETULE:
1448 return AArch64CC::LS;
1452 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1453 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1454 AArch64CC::CondCode &CondCode,
1455 AArch64CC::CondCode &CondCode2) {
1456 CondCode2 = AArch64CC::AL;
1457 switch (CC) {
1458 default:
1459 llvm_unreachable("Unknown FP condition!");
1460 case ISD::SETEQ:
1461 case ISD::SETOEQ:
1462 CondCode = AArch64CC::EQ;
1463 break;
1464 case ISD::SETGT:
1465 case ISD::SETOGT:
1466 CondCode = AArch64CC::GT;
1467 break;
1468 case ISD::SETGE:
1469 case ISD::SETOGE:
1470 CondCode = AArch64CC::GE;
1471 break;
1472 case ISD::SETOLT:
1473 CondCode = AArch64CC::MI;
1474 break;
1475 case ISD::SETOLE:
1476 CondCode = AArch64CC::LS;
1477 break;
1478 case ISD::SETONE:
1479 CondCode = AArch64CC::MI;
1480 CondCode2 = AArch64CC::GT;
1481 break;
1482 case ISD::SETO:
1483 CondCode = AArch64CC::VC;
1484 break;
1485 case ISD::SETUO:
1486 CondCode = AArch64CC::VS;
1487 break;
1488 case ISD::SETUEQ:
1489 CondCode = AArch64CC::EQ;
1490 CondCode2 = AArch64CC::VS;
1491 break;
1492 case ISD::SETUGT:
1493 CondCode = AArch64CC::HI;
1494 break;
1495 case ISD::SETUGE:
1496 CondCode = AArch64CC::PL;
1497 break;
1498 case ISD::SETLT:
1499 case ISD::SETULT:
1500 CondCode = AArch64CC::LT;
1501 break;
1502 case ISD::SETLE:
1503 case ISD::SETULE:
1504 CondCode = AArch64CC::LE;
1505 break;
1506 case ISD::SETNE:
1507 case ISD::SETUNE:
1508 CondCode = AArch64CC::NE;
1509 break;
1513 /// Convert a DAG fp condition code to an AArch64 CC.
1514 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1515 /// should be AND'ed instead of OR'ed.
1516 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1517 AArch64CC::CondCode &CondCode,
1518 AArch64CC::CondCode &CondCode2) {
1519 CondCode2 = AArch64CC::AL;
1520 switch (CC) {
1521 default:
1522 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1523 assert(CondCode2 == AArch64CC::AL);
1524 break;
1525 case ISD::SETONE:
1526 // (a one b)
1527 // == ((a olt b) || (a ogt b))
1528 // == ((a ord b) && (a une b))
1529 CondCode = AArch64CC::VC;
1530 CondCode2 = AArch64CC::NE;
1531 break;
1532 case ISD::SETUEQ:
1533 // (a ueq b)
1534 // == ((a uno b) || (a oeq b))
1535 // == ((a ule b) && (a uge b))
1536 CondCode = AArch64CC::PL;
1537 CondCode2 = AArch64CC::LE;
1538 break;
1542 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1543 /// CC usable with the vector instructions. Fewer operations are available
1544 /// without a real NZCV register, so we have to use less efficient combinations
1545 /// to get the same effect.
1546 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1547 AArch64CC::CondCode &CondCode,
1548 AArch64CC::CondCode &CondCode2,
1549 bool &Invert) {
1550 Invert = false;
1551 switch (CC) {
1552 default:
1553 // Mostly the scalar mappings work fine.
1554 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1555 break;
1556 case ISD::SETUO:
1557 Invert = true;
1558 LLVM_FALLTHROUGH;
1559 case ISD::SETO:
1560 CondCode = AArch64CC::MI;
1561 CondCode2 = AArch64CC::GE;
1562 break;
1563 case ISD::SETUEQ:
1564 case ISD::SETULT:
1565 case ISD::SETULE:
1566 case ISD::SETUGT:
1567 case ISD::SETUGE:
1568 // All of the compare-mask comparisons are ordered, but we can switch
1569 // between the two by a double inversion. E.g. ULE == !OGT.
1570 Invert = true;
1571 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1572 break;
1576 static bool isLegalArithImmed(uint64_t C) {
1577 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1578 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1579 LLVM_DEBUG(dbgs() << "Is imm " << C
1580 << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1581 return IsLegal;
1584 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1585 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1586 // can be set differently by this operation. It comes down to whether
1587 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1588 // everything is fine. If not then the optimization is wrong. Thus general
1589 // comparisons are only valid if op2 != 0.
1591 // So, finally, the only LLVM-native comparisons that don't mention C and V
1592 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1593 // the absence of information about op2.
1594 static bool isCMN(SDValue Op, ISD::CondCode CC) {
1595 return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
1596 (CC == ISD::SETEQ || CC == ISD::SETNE);
1599 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1600 const SDLoc &dl, SelectionDAG &DAG) {
1601 EVT VT = LHS.getValueType();
1602 const bool FullFP16 =
1603 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1605 if (VT.isFloatingPoint()) {
1606 assert(VT != MVT::f128);
1607 if (VT == MVT::f16 && !FullFP16) {
1608 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1609 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1610 VT = MVT::f32;
1612 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1615 // The CMP instruction is just an alias for SUBS, and representing it as
1616 // SUBS means that it's possible to get CSE with subtract operations.
1617 // A later phase can perform the optimization of setting the destination
1618 // register to WZR/XZR if it ends up being unused.
1619 unsigned Opcode = AArch64ISD::SUBS;
1621 if (isCMN(RHS, CC)) {
1622 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1623 Opcode = AArch64ISD::ADDS;
1624 RHS = RHS.getOperand(1);
1625 } else if (isCMN(LHS, CC)) {
1626 // As we are looking for EQ/NE compares, the operands can be commuted ; can
1627 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1628 Opcode = AArch64ISD::ADDS;
1629 LHS = LHS.getOperand(1);
1630 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1631 !isUnsignedIntSetCC(CC)) {
1632 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1633 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1634 // of the signed comparisons.
1635 Opcode = AArch64ISD::ANDS;
1636 RHS = LHS.getOperand(1);
1637 LHS = LHS.getOperand(0);
1640 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1641 .getValue(1);
1644 /// \defgroup AArch64CCMP CMP;CCMP matching
1646 /// These functions deal with the formation of CMP;CCMP;... sequences.
1647 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1648 /// a comparison. They set the NZCV flags to a predefined value if their
1649 /// predicate is false. This allows to express arbitrary conjunctions, for
1650 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1651 /// expressed as:
1652 /// cmp A
1653 /// ccmp B, inv(CB), CA
1654 /// check for CB flags
1656 /// This naturally lets us implement chains of AND operations with SETCC
1657 /// operands. And we can even implement some other situations by transforming
1658 /// them:
1659 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
1660 /// negating the flags used in a CCMP/FCCMP operations.
1661 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1662 /// by negating the flags we test for afterwards. i.e.
1663 /// NEG (CMP CCMP CCCMP ...) can be implemented.
1664 /// - Note that we can only ever negate all previously processed results.
1665 /// What we can not implement by flipping the flags to test is a negation
1666 /// of two sub-trees (because the negation affects all sub-trees emitted so
1667 /// far, so the 2nd sub-tree we emit would also affect the first).
1668 /// With those tools we can implement some OR operations:
1669 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
1670 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1671 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
1672 /// elimination rules from earlier to implement the whole thing as a
1673 /// CCMP/FCCMP chain.
1675 /// As complete example:
1676 /// or (or (setCA (cmp A)) (setCB (cmp B)))
1677 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1678 /// can be reassociated to:
1679 /// or (and (setCC (cmp C)) setCD (cmp D))
1680 // (or (setCA (cmp A)) (setCB (cmp B)))
1681 /// can be transformed to:
1682 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1683 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1684 /// which can be implemented as:
1685 /// cmp C
1686 /// ccmp D, inv(CD), CC
1687 /// ccmp A, CA, inv(CD)
1688 /// ccmp B, CB, inv(CA)
1689 /// check for CB flags
1691 /// A counterexample is "or (and A B) (and C D)" which translates to
1692 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1693 /// can only implement 1 of the inner (not) operations, but not both!
1694 /// @{
1696 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1697 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1698 ISD::CondCode CC, SDValue CCOp,
1699 AArch64CC::CondCode Predicate,
1700 AArch64CC::CondCode OutCC,
1701 const SDLoc &DL, SelectionDAG &DAG) {
1702 unsigned Opcode = 0;
1703 const bool FullFP16 =
1704 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1706 if (LHS.getValueType().isFloatingPoint()) {
1707 assert(LHS.getValueType() != MVT::f128);
1708 if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1709 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1710 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1712 Opcode = AArch64ISD::FCCMP;
1713 } else if (RHS.getOpcode() == ISD::SUB) {
1714 SDValue SubOp0 = RHS.getOperand(0);
1715 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1716 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1717 Opcode = AArch64ISD::CCMN;
1718 RHS = RHS.getOperand(1);
1721 if (Opcode == 0)
1722 Opcode = AArch64ISD::CCMP;
1724 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1725 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1726 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1727 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1728 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1731 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1732 /// expressed as a conjunction. See \ref AArch64CCMP.
1733 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
1734 /// changing the conditions on the SETCC tests.
1735 /// (this means we can call emitConjunctionRec() with
1736 /// Negate==true on this sub-tree)
1737 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
1738 /// cannot do the negation naturally. We are required to
1739 /// emit the subtree first in this case.
1740 /// \param WillNegate Is true if are called when the result of this
1741 /// subexpression must be negated. This happens when the
1742 /// outer expression is an OR. We can use this fact to know
1743 /// that we have a double negation (or (or ...) ...) that
1744 /// can be implemented for free.
1745 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1746 bool &MustBeFirst, bool WillNegate,
1747 unsigned Depth = 0) {
1748 if (!Val.hasOneUse())
1749 return false;
1750 unsigned Opcode = Val->getOpcode();
1751 if (Opcode == ISD::SETCC) {
1752 if (Val->getOperand(0).getValueType() == MVT::f128)
1753 return false;
1754 CanNegate = true;
1755 MustBeFirst = false;
1756 return true;
1758 // Protect against exponential runtime and stack overflow.
1759 if (Depth > 6)
1760 return false;
1761 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1762 bool IsOR = Opcode == ISD::OR;
1763 SDValue O0 = Val->getOperand(0);
1764 SDValue O1 = Val->getOperand(1);
1765 bool CanNegateL;
1766 bool MustBeFirstL;
1767 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1768 return false;
1769 bool CanNegateR;
1770 bool MustBeFirstR;
1771 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1772 return false;
1774 if (MustBeFirstL && MustBeFirstR)
1775 return false;
1777 if (IsOR) {
1778 // For an OR expression we need to be able to naturally negate at least
1779 // one side or we cannot do the transformation at all.
1780 if (!CanNegateL && !CanNegateR)
1781 return false;
1782 // If we the result of the OR will be negated and we can naturally negate
1783 // the leafs, then this sub-tree as a whole negates naturally.
1784 CanNegate = WillNegate && CanNegateL && CanNegateR;
1785 // If we cannot naturally negate the whole sub-tree, then this must be
1786 // emitted first.
1787 MustBeFirst = !CanNegate;
1788 } else {
1789 assert(Opcode == ISD::AND && "Must be OR or AND");
1790 // We cannot naturally negate an AND operation.
1791 CanNegate = false;
1792 MustBeFirst = MustBeFirstL || MustBeFirstR;
1794 return true;
1796 return false;
1799 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1800 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1801 /// Tries to transform the given i1 producing node @p Val to a series compare
1802 /// and conditional compare operations. @returns an NZCV flags producing node
1803 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1804 /// transformation was not possible.
1805 /// \p Negate is true if we want this sub-tree being negated just by changing
1806 /// SETCC conditions.
1807 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1808 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1809 AArch64CC::CondCode Predicate) {
1810 // We're at a tree leaf, produce a conditional comparison operation.
1811 unsigned Opcode = Val->getOpcode();
1812 if (Opcode == ISD::SETCC) {
1813 SDValue LHS = Val->getOperand(0);
1814 SDValue RHS = Val->getOperand(1);
1815 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1816 bool isInteger = LHS.getValueType().isInteger();
1817 if (Negate)
1818 CC = getSetCCInverse(CC, isInteger);
1819 SDLoc DL(Val);
1820 // Determine OutCC and handle FP special case.
1821 if (isInteger) {
1822 OutCC = changeIntCCToAArch64CC(CC);
1823 } else {
1824 assert(LHS.getValueType().isFloatingPoint());
1825 AArch64CC::CondCode ExtraCC;
1826 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1827 // Some floating point conditions can't be tested with a single condition
1828 // code. Construct an additional comparison in this case.
1829 if (ExtraCC != AArch64CC::AL) {
1830 SDValue ExtraCmp;
1831 if (!CCOp.getNode())
1832 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1833 else
1834 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1835 ExtraCC, DL, DAG);
1836 CCOp = ExtraCmp;
1837 Predicate = ExtraCC;
1841 // Produce a normal comparison if we are first in the chain
1842 if (!CCOp)
1843 return emitComparison(LHS, RHS, CC, DL, DAG);
1844 // Otherwise produce a ccmp.
1845 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1846 DAG);
1848 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1850 bool IsOR = Opcode == ISD::OR;
1852 SDValue LHS = Val->getOperand(0);
1853 bool CanNegateL;
1854 bool MustBeFirstL;
1855 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1856 assert(ValidL && "Valid conjunction/disjunction tree");
1857 (void)ValidL;
1859 SDValue RHS = Val->getOperand(1);
1860 bool CanNegateR;
1861 bool MustBeFirstR;
1862 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1863 assert(ValidR && "Valid conjunction/disjunction tree");
1864 (void)ValidR;
1866 // Swap sub-tree that must come first to the right side.
1867 if (MustBeFirstL) {
1868 assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1869 std::swap(LHS, RHS);
1870 std::swap(CanNegateL, CanNegateR);
1871 std::swap(MustBeFirstL, MustBeFirstR);
1874 bool NegateR;
1875 bool NegateAfterR;
1876 bool NegateL;
1877 bool NegateAfterAll;
1878 if (Opcode == ISD::OR) {
1879 // Swap the sub-tree that we can negate naturally to the left.
1880 if (!CanNegateL) {
1881 assert(CanNegateR && "at least one side must be negatable");
1882 assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1883 assert(!Negate);
1884 std::swap(LHS, RHS);
1885 NegateR = false;
1886 NegateAfterR = true;
1887 } else {
1888 // Negate the left sub-tree if possible, otherwise negate the result.
1889 NegateR = CanNegateR;
1890 NegateAfterR = !CanNegateR;
1892 NegateL = true;
1893 NegateAfterAll = !Negate;
1894 } else {
1895 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
1896 assert(!Negate && "Valid conjunction/disjunction tree");
1898 NegateL = false;
1899 NegateR = false;
1900 NegateAfterR = false;
1901 NegateAfterAll = false;
1904 // Emit sub-trees.
1905 AArch64CC::CondCode RHSCC;
1906 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
1907 if (NegateAfterR)
1908 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1909 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
1910 if (NegateAfterAll)
1911 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1912 return CmpL;
1915 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1916 /// In some cases this is even possible with OR operations in the expression.
1917 /// See \ref AArch64CCMP.
1918 /// \see emitConjunctionRec().
1919 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
1920 AArch64CC::CondCode &OutCC) {
1921 bool DummyCanNegate;
1922 bool DummyMustBeFirst;
1923 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
1924 return SDValue();
1926 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
1929 /// @}
1931 /// Returns how profitable it is to fold a comparison's operand's shift and/or
1932 /// extension operations.
1933 static unsigned getCmpOperandFoldingProfit(SDValue Op) {
1934 auto isSupportedExtend = [&](SDValue V) {
1935 if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
1936 return true;
1938 if (V.getOpcode() == ISD::AND)
1939 if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
1940 uint64_t Mask = MaskCst->getZExtValue();
1941 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
1944 return false;
1947 if (!Op.hasOneUse())
1948 return 0;
1950 if (isSupportedExtend(Op))
1951 return 1;
1953 unsigned Opc = Op.getOpcode();
1954 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
1955 if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1956 uint64_t Shift = ShiftCst->getZExtValue();
1957 if (isSupportedExtend(Op.getOperand(0)))
1958 return (Shift <= 4) ? 2 : 1;
1959 EVT VT = Op.getValueType();
1960 if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
1961 return 1;
1964 return 0;
1967 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1968 SDValue &AArch64cc, SelectionDAG &DAG,
1969 const SDLoc &dl) {
1970 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1971 EVT VT = RHS.getValueType();
1972 uint64_t C = RHSC->getZExtValue();
1973 if (!isLegalArithImmed(C)) {
1974 // Constant does not fit, try adjusting it by one?
1975 switch (CC) {
1976 default:
1977 break;
1978 case ISD::SETLT:
1979 case ISD::SETGE:
1980 if ((VT == MVT::i32 && C != 0x80000000 &&
1981 isLegalArithImmed((uint32_t)(C - 1))) ||
1982 (VT == MVT::i64 && C != 0x80000000ULL &&
1983 isLegalArithImmed(C - 1ULL))) {
1984 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1985 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1986 RHS = DAG.getConstant(C, dl, VT);
1988 break;
1989 case ISD::SETULT:
1990 case ISD::SETUGE:
1991 if ((VT == MVT::i32 && C != 0 &&
1992 isLegalArithImmed((uint32_t)(C - 1))) ||
1993 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1994 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1995 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1996 RHS = DAG.getConstant(C, dl, VT);
1998 break;
1999 case ISD::SETLE:
2000 case ISD::SETGT:
2001 if ((VT == MVT::i32 && C != INT32_MAX &&
2002 isLegalArithImmed((uint32_t)(C + 1))) ||
2003 (VT == MVT::i64 && C != INT64_MAX &&
2004 isLegalArithImmed(C + 1ULL))) {
2005 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2006 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
2007 RHS = DAG.getConstant(C, dl, VT);
2009 break;
2010 case ISD::SETULE:
2011 case ISD::SETUGT:
2012 if ((VT == MVT::i32 && C != UINT32_MAX &&
2013 isLegalArithImmed((uint32_t)(C + 1))) ||
2014 (VT == MVT::i64 && C != UINT64_MAX &&
2015 isLegalArithImmed(C + 1ULL))) {
2016 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2017 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
2018 RHS = DAG.getConstant(C, dl, VT);
2020 break;
2025 // Comparisons are canonicalized so that the RHS operand is simpler than the
2026 // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2027 // can fold some shift+extend operations on the RHS operand, so swap the
2028 // operands if that can be done.
2030 // For example:
2031 // lsl w13, w11, #1
2032 // cmp w13, w12
2033 // can be turned into:
2034 // cmp w12, w11, lsl #1
2035 if (!isa<ConstantSDNode>(RHS) ||
2036 !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
2037 SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
2039 if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
2040 std::swap(LHS, RHS);
2041 CC = ISD::getSetCCSwappedOperands(CC);
2045 SDValue Cmp;
2046 AArch64CC::CondCode AArch64CC;
2047 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
2048 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
2050 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2051 // For the i8 operand, the largest immediate is 255, so this can be easily
2052 // encoded in the compare instruction. For the i16 operand, however, the
2053 // largest immediate cannot be encoded in the compare.
2054 // Therefore, use a sign extending load and cmn to avoid materializing the
2055 // -1 constant. For example,
2056 // movz w1, #65535
2057 // ldrh w0, [x0, #0]
2058 // cmp w0, w1
2059 // >
2060 // ldrsh w0, [x0, #0]
2061 // cmn w0, #1
2062 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2063 // if and only if (sext LHS) == (sext RHS). The checks are in place to
2064 // ensure both the LHS and RHS are truly zero extended and to make sure the
2065 // transformation is profitable.
2066 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
2067 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
2068 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
2069 LHS.getNode()->hasNUsesOfValue(1, 0)) {
2070 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
2071 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
2072 SDValue SExt =
2073 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
2074 DAG.getValueType(MVT::i16));
2075 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
2076 RHS.getValueType()),
2077 CC, dl, DAG);
2078 AArch64CC = changeIntCCToAArch64CC(CC);
2082 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
2083 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
2084 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
2085 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
2090 if (!Cmp) {
2091 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2092 AArch64CC = changeIntCCToAArch64CC(CC);
2094 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
2095 return Cmp;
2098 static std::pair<SDValue, SDValue>
2099 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
2100 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
2101 "Unsupported value type");
2102 SDValue Value, Overflow;
2103 SDLoc DL(Op);
2104 SDValue LHS = Op.getOperand(0);
2105 SDValue RHS = Op.getOperand(1);
2106 unsigned Opc = 0;
2107 switch (Op.getOpcode()) {
2108 default:
2109 llvm_unreachable("Unknown overflow instruction!");
2110 case ISD::SADDO:
2111 Opc = AArch64ISD::ADDS;
2112 CC = AArch64CC::VS;
2113 break;
2114 case ISD::UADDO:
2115 Opc = AArch64ISD::ADDS;
2116 CC = AArch64CC::HS;
2117 break;
2118 case ISD::SSUBO:
2119 Opc = AArch64ISD::SUBS;
2120 CC = AArch64CC::VS;
2121 break;
2122 case ISD::USUBO:
2123 Opc = AArch64ISD::SUBS;
2124 CC = AArch64CC::LO;
2125 break;
2126 // Multiply needs a little bit extra work.
2127 case ISD::SMULO:
2128 case ISD::UMULO: {
2129 CC = AArch64CC::NE;
2130 bool IsSigned = Op.getOpcode() == ISD::SMULO;
2131 if (Op.getValueType() == MVT::i32) {
2132 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2133 // For a 32 bit multiply with overflow check we want the instruction
2134 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2135 // need to generate the following pattern:
2136 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2137 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
2138 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
2139 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2140 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
2141 DAG.getConstant(0, DL, MVT::i64));
2142 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2143 // operation. We need to clear out the upper 32 bits, because we used a
2144 // widening multiply that wrote all 64 bits. In the end this should be a
2145 // noop.
2146 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
2147 if (IsSigned) {
2148 // The signed overflow check requires more than just a simple check for
2149 // any bit set in the upper 32 bits of the result. These bits could be
2150 // just the sign bits of a negative number. To perform the overflow
2151 // check we have to arithmetic shift right the 32nd bit of the result by
2152 // 31 bits. Then we compare the result to the upper 32 bits.
2153 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
2154 DAG.getConstant(32, DL, MVT::i64));
2155 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
2156 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
2157 DAG.getConstant(31, DL, MVT::i64));
2158 // It is important that LowerBits is last, otherwise the arithmetic
2159 // shift will not be folded into the compare (SUBS).
2160 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
2161 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2162 .getValue(1);
2163 } else {
2164 // The overflow check for unsigned multiply is easy. We only need to
2165 // check if any of the upper 32 bits are set. This can be done with a
2166 // CMP (shifted register). For that we need to generate the following
2167 // pattern:
2168 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2169 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2170 DAG.getConstant(32, DL, MVT::i64));
2171 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2172 Overflow =
2173 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2174 DAG.getConstant(0, DL, MVT::i64),
2175 UpperBits).getValue(1);
2177 break;
2179 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
2180 // For the 64 bit multiply
2181 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2182 if (IsSigned) {
2183 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
2184 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
2185 DAG.getConstant(63, DL, MVT::i64));
2186 // It is important that LowerBits is last, otherwise the arithmetic
2187 // shift will not be folded into the compare (SUBS).
2188 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2189 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2190 .getValue(1);
2191 } else {
2192 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2193 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2194 Overflow =
2195 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2196 DAG.getConstant(0, DL, MVT::i64),
2197 UpperBits).getValue(1);
2199 break;
2201 } // switch (...)
2203 if (Opc) {
2204 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2206 // Emit the AArch64 operation with overflow check.
2207 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2208 Overflow = Value.getValue(1);
2210 return std::make_pair(Value, Overflow);
2213 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2214 RTLIB::Libcall Call) const {
2215 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2216 MakeLibCallOptions CallOptions;
2217 return makeLibCall(DAG, Call, MVT::f128, Ops, CallOptions, SDLoc(Op)).first;
2220 // Returns true if the given Op is the overflow flag result of an overflow
2221 // intrinsic operation.
2222 static bool isOverflowIntrOpRes(SDValue Op) {
2223 unsigned Opc = Op.getOpcode();
2224 return (Op.getResNo() == 1 &&
2225 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2226 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2229 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2230 SDValue Sel = Op.getOperand(0);
2231 SDValue Other = Op.getOperand(1);
2232 SDLoc dl(Sel);
2234 // If the operand is an overflow checking operation, invert the condition
2235 // code and kill the Not operation. I.e., transform:
2236 // (xor (overflow_op_bool, 1))
2237 // -->
2238 // (csel 1, 0, invert(cc), overflow_op_bool)
2239 // ... which later gets transformed to just a cset instruction with an
2240 // inverted condition code, rather than a cset + eor sequence.
2241 if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2242 // Only lower legal XALUO ops.
2243 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2244 return SDValue();
2246 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2247 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2248 AArch64CC::CondCode CC;
2249 SDValue Value, Overflow;
2250 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2251 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2252 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2253 CCVal, Overflow);
2255 // If neither operand is a SELECT_CC, give up.
2256 if (Sel.getOpcode() != ISD::SELECT_CC)
2257 std::swap(Sel, Other);
2258 if (Sel.getOpcode() != ISD::SELECT_CC)
2259 return Op;
2261 // The folding we want to perform is:
2262 // (xor x, (select_cc a, b, cc, 0, -1) )
2263 // -->
2264 // (csel x, (xor x, -1), cc ...)
2266 // The latter will get matched to a CSINV instruction.
2268 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2269 SDValue LHS = Sel.getOperand(0);
2270 SDValue RHS = Sel.getOperand(1);
2271 SDValue TVal = Sel.getOperand(2);
2272 SDValue FVal = Sel.getOperand(3);
2274 // FIXME: This could be generalized to non-integer comparisons.
2275 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2276 return Op;
2278 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2279 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2281 // The values aren't constants, this isn't the pattern we're looking for.
2282 if (!CFVal || !CTVal)
2283 return Op;
2285 // We can commute the SELECT_CC by inverting the condition. This
2286 // might be needed to make this fit into a CSINV pattern.
2287 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2288 std::swap(TVal, FVal);
2289 std::swap(CTVal, CFVal);
2290 CC = ISD::getSetCCInverse(CC, true);
2293 // If the constants line up, perform the transform!
2294 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2295 SDValue CCVal;
2296 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2298 FVal = Other;
2299 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2300 DAG.getConstant(-1ULL, dl, Other.getValueType()));
2302 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2303 CCVal, Cmp);
2306 return Op;
2309 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2310 EVT VT = Op.getValueType();
2312 // Let legalize expand this if it isn't a legal type yet.
2313 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2314 return SDValue();
2316 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2318 unsigned Opc;
2319 bool ExtraOp = false;
2320 switch (Op.getOpcode()) {
2321 default:
2322 llvm_unreachable("Invalid code");
2323 case ISD::ADDC:
2324 Opc = AArch64ISD::ADDS;
2325 break;
2326 case ISD::SUBC:
2327 Opc = AArch64ISD::SUBS;
2328 break;
2329 case ISD::ADDE:
2330 Opc = AArch64ISD::ADCS;
2331 ExtraOp = true;
2332 break;
2333 case ISD::SUBE:
2334 Opc = AArch64ISD::SBCS;
2335 ExtraOp = true;
2336 break;
2339 if (!ExtraOp)
2340 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2341 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2342 Op.getOperand(2));
2345 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2346 // Let legalize expand this if it isn't a legal type yet.
2347 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2348 return SDValue();
2350 SDLoc dl(Op);
2351 AArch64CC::CondCode CC;
2352 // The actual operation that sets the overflow or carry flag.
2353 SDValue Value, Overflow;
2354 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2356 // We use 0 and 1 as false and true values.
2357 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2358 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2360 // We use an inverted condition, because the conditional select is inverted
2361 // too. This will allow it to be selected to a single instruction:
2362 // CSINC Wd, WZR, WZR, invert(cond).
2363 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2364 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2365 CCVal, Overflow);
2367 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2368 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2371 // Prefetch operands are:
2372 // 1: Address to prefetch
2373 // 2: bool isWrite
2374 // 3: int locality (0 = no locality ... 3 = extreme locality)
2375 // 4: bool isDataCache
2376 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2377 SDLoc DL(Op);
2378 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2379 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2380 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2382 bool IsStream = !Locality;
2383 // When the locality number is set
2384 if (Locality) {
2385 // The front-end should have filtered out the out-of-range values
2386 assert(Locality <= 3 && "Prefetch locality out-of-range");
2387 // The locality degree is the opposite of the cache speed.
2388 // Put the number the other way around.
2389 // The encoding starts at 0 for level 1
2390 Locality = 3 - Locality;
2393 // built the mask value encoding the expected behavior.
2394 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
2395 (!IsData << 3) | // IsDataCache bit
2396 (Locality << 1) | // Cache level bits
2397 (unsigned)IsStream; // Stream bit
2398 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2399 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2402 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2403 SelectionDAG &DAG) const {
2404 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2406 RTLIB::Libcall LC;
2407 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2409 return LowerF128Call(Op, DAG, LC);
2412 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2413 SelectionDAG &DAG) const {
2414 if (Op.getOperand(0).getValueType() != MVT::f128) {
2415 // It's legal except when f128 is involved
2416 return Op;
2419 RTLIB::Libcall LC;
2420 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2422 // FP_ROUND node has a second operand indicating whether it is known to be
2423 // precise. That doesn't take part in the LibCall so we can't directly use
2424 // LowerF128Call.
2425 SDValue SrcVal = Op.getOperand(0);
2426 MakeLibCallOptions CallOptions;
2427 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, CallOptions,
2428 SDLoc(Op)).first;
2431 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
2432 SelectionDAG &DAG) const {
2433 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2434 // Any additional optimization in this function should be recorded
2435 // in the cost tables.
2436 EVT InVT = Op.getOperand(0).getValueType();
2437 EVT VT = Op.getValueType();
2438 unsigned NumElts = InVT.getVectorNumElements();
2440 // f16 conversions are promoted to f32 when full fp16 is not supported.
2441 if (InVT.getVectorElementType() == MVT::f16 &&
2442 !Subtarget->hasFullFP16()) {
2443 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2444 SDLoc dl(Op);
2445 return DAG.getNode(
2446 Op.getOpcode(), dl, Op.getValueType(),
2447 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2450 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2451 SDLoc dl(Op);
2452 SDValue Cv =
2453 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2454 Op.getOperand(0));
2455 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2458 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2459 SDLoc dl(Op);
2460 MVT ExtVT =
2461 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2462 VT.getVectorNumElements());
2463 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2464 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2467 // Type changing conversions are illegal.
2468 return Op;
2471 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2472 SelectionDAG &DAG) const {
2473 if (Op.getOperand(0).getValueType().isVector())
2474 return LowerVectorFP_TO_INT(Op, DAG);
2476 // f16 conversions are promoted to f32 when full fp16 is not supported.
2477 if (Op.getOperand(0).getValueType() == MVT::f16 &&
2478 !Subtarget->hasFullFP16()) {
2479 SDLoc dl(Op);
2480 return DAG.getNode(
2481 Op.getOpcode(), dl, Op.getValueType(),
2482 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2485 if (Op.getOperand(0).getValueType() != MVT::f128) {
2486 // It's legal except when f128 is involved
2487 return Op;
2490 RTLIB::Libcall LC;
2491 if (Op.getOpcode() == ISD::FP_TO_SINT)
2492 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2493 else
2494 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2496 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2497 MakeLibCallOptions CallOptions;
2498 return makeLibCall(DAG, LC, Op.getValueType(), Ops, CallOptions, SDLoc(Op)).first;
2501 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2502 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2503 // Any additional optimization in this function should be recorded
2504 // in the cost tables.
2505 EVT VT = Op.getValueType();
2506 SDLoc dl(Op);
2507 SDValue In = Op.getOperand(0);
2508 EVT InVT = In.getValueType();
2510 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2511 MVT CastVT =
2512 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2513 InVT.getVectorNumElements());
2514 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2515 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2518 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2519 unsigned CastOpc =
2520 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2521 EVT CastVT = VT.changeVectorElementTypeToInteger();
2522 In = DAG.getNode(CastOpc, dl, CastVT, In);
2523 return DAG.getNode(Op.getOpcode(), dl, VT, In);
2526 return Op;
2529 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2530 SelectionDAG &DAG) const {
2531 if (Op.getValueType().isVector())
2532 return LowerVectorINT_TO_FP(Op, DAG);
2534 // f16 conversions are promoted to f32 when full fp16 is not supported.
2535 if (Op.getValueType() == MVT::f16 &&
2536 !Subtarget->hasFullFP16()) {
2537 SDLoc dl(Op);
2538 return DAG.getNode(
2539 ISD::FP_ROUND, dl, MVT::f16,
2540 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2541 DAG.getIntPtrConstant(0, dl));
2544 // i128 conversions are libcalls.
2545 if (Op.getOperand(0).getValueType() == MVT::i128)
2546 return SDValue();
2548 // Other conversions are legal, unless it's to the completely software-based
2549 // fp128.
2550 if (Op.getValueType() != MVT::f128)
2551 return Op;
2553 RTLIB::Libcall LC;
2554 if (Op.getOpcode() == ISD::SINT_TO_FP)
2555 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2556 else
2557 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2559 return LowerF128Call(Op, DAG, LC);
2562 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2563 SelectionDAG &DAG) const {
2564 // For iOS, we want to call an alternative entry point: __sincos_stret,
2565 // which returns the values in two S / D registers.
2566 SDLoc dl(Op);
2567 SDValue Arg = Op.getOperand(0);
2568 EVT ArgVT = Arg.getValueType();
2569 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2571 ArgListTy Args;
2572 ArgListEntry Entry;
2574 Entry.Node = Arg;
2575 Entry.Ty = ArgTy;
2576 Entry.IsSExt = false;
2577 Entry.IsZExt = false;
2578 Args.push_back(Entry);
2580 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2581 : RTLIB::SINCOS_STRET_F32;
2582 const char *LibcallName = getLibcallName(LC);
2583 SDValue Callee =
2584 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2586 StructType *RetTy = StructType::get(ArgTy, ArgTy);
2587 TargetLowering::CallLoweringInfo CLI(DAG);
2588 CLI.setDebugLoc(dl)
2589 .setChain(DAG.getEntryNode())
2590 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2592 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2593 return CallResult.first;
2596 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2597 if (Op.getValueType() != MVT::f16)
2598 return SDValue();
2600 assert(Op.getOperand(0).getValueType() == MVT::i16);
2601 SDLoc DL(Op);
2603 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2604 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2605 return SDValue(
2606 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2607 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2611 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2612 if (OrigVT.getSizeInBits() >= 64)
2613 return OrigVT;
2615 assert(OrigVT.isSimple() && "Expecting a simple value type");
2617 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2618 switch (OrigSimpleTy) {
2619 default: llvm_unreachable("Unexpected Vector Type");
2620 case MVT::v2i8:
2621 case MVT::v2i16:
2622 return MVT::v2i32;
2623 case MVT::v4i8:
2624 return MVT::v4i16;
2628 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2629 const EVT &OrigTy,
2630 const EVT &ExtTy,
2631 unsigned ExtOpcode) {
2632 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2633 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2634 // 64-bits we need to insert a new extension so that it will be 64-bits.
2635 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2636 if (OrigTy.getSizeInBits() >= 64)
2637 return N;
2639 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2640 EVT NewVT = getExtensionTo64Bits(OrigTy);
2642 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2645 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2646 bool isSigned) {
2647 EVT VT = N->getValueType(0);
2649 if (N->getOpcode() != ISD::BUILD_VECTOR)
2650 return false;
2652 for (const SDValue &Elt : N->op_values()) {
2653 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2654 unsigned EltSize = VT.getScalarSizeInBits();
2655 unsigned HalfSize = EltSize / 2;
2656 if (isSigned) {
2657 if (!isIntN(HalfSize, C->getSExtValue()))
2658 return false;
2659 } else {
2660 if (!isUIntN(HalfSize, C->getZExtValue()))
2661 return false;
2663 continue;
2665 return false;
2668 return true;
2671 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2672 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2673 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2674 N->getOperand(0)->getValueType(0),
2675 N->getValueType(0),
2676 N->getOpcode());
2678 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2679 EVT VT = N->getValueType(0);
2680 SDLoc dl(N);
2681 unsigned EltSize = VT.getScalarSizeInBits() / 2;
2682 unsigned NumElts = VT.getVectorNumElements();
2683 MVT TruncVT = MVT::getIntegerVT(EltSize);
2684 SmallVector<SDValue, 8> Ops;
2685 for (unsigned i = 0; i != NumElts; ++i) {
2686 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2687 const APInt &CInt = C->getAPIntValue();
2688 // Element types smaller than 32 bits are not legal, so use i32 elements.
2689 // The values are implicitly truncated so sext vs. zext doesn't matter.
2690 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2692 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2695 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2696 return N->getOpcode() == ISD::SIGN_EXTEND ||
2697 isExtendedBUILD_VECTOR(N, DAG, true);
2700 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2701 return N->getOpcode() == ISD::ZERO_EXTEND ||
2702 isExtendedBUILD_VECTOR(N, DAG, false);
2705 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2706 unsigned Opcode = N->getOpcode();
2707 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2708 SDNode *N0 = N->getOperand(0).getNode();
2709 SDNode *N1 = N->getOperand(1).getNode();
2710 return N0->hasOneUse() && N1->hasOneUse() &&
2711 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2713 return false;
2716 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2717 unsigned Opcode = N->getOpcode();
2718 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2719 SDNode *N0 = N->getOperand(0).getNode();
2720 SDNode *N1 = N->getOperand(1).getNode();
2721 return N0->hasOneUse() && N1->hasOneUse() &&
2722 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2724 return false;
2727 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2728 SelectionDAG &DAG) const {
2729 // The rounding mode is in bits 23:22 of the FPSCR.
2730 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2731 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2732 // so that the shift + and get folded into a bitfield extract.
2733 SDLoc dl(Op);
2735 SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2736 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2737 MVT::i64));
2738 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2739 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2740 DAG.getConstant(1U << 22, dl, MVT::i32));
2741 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2742 DAG.getConstant(22, dl, MVT::i32));
2743 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2744 DAG.getConstant(3, dl, MVT::i32));
2747 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2748 // Multiplications are only custom-lowered for 128-bit vectors so that
2749 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2750 EVT VT = Op.getValueType();
2751 assert(VT.is128BitVector() && VT.isInteger() &&
2752 "unexpected type for custom-lowering ISD::MUL");
2753 SDNode *N0 = Op.getOperand(0).getNode();
2754 SDNode *N1 = Op.getOperand(1).getNode();
2755 unsigned NewOpc = 0;
2756 bool isMLA = false;
2757 bool isN0SExt = isSignExtended(N0, DAG);
2758 bool isN1SExt = isSignExtended(N1, DAG);
2759 if (isN0SExt && isN1SExt)
2760 NewOpc = AArch64ISD::SMULL;
2761 else {
2762 bool isN0ZExt = isZeroExtended(N0, DAG);
2763 bool isN1ZExt = isZeroExtended(N1, DAG);
2764 if (isN0ZExt && isN1ZExt)
2765 NewOpc = AArch64ISD::UMULL;
2766 else if (isN1SExt || isN1ZExt) {
2767 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2768 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2769 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2770 NewOpc = AArch64ISD::SMULL;
2771 isMLA = true;
2772 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2773 NewOpc = AArch64ISD::UMULL;
2774 isMLA = true;
2775 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2776 std::swap(N0, N1);
2777 NewOpc = AArch64ISD::UMULL;
2778 isMLA = true;
2782 if (!NewOpc) {
2783 if (VT == MVT::v2i64)
2784 // Fall through to expand this. It is not legal.
2785 return SDValue();
2786 else
2787 // Other vector multiplications are legal.
2788 return Op;
2792 // Legalize to a S/UMULL instruction
2793 SDLoc DL(Op);
2794 SDValue Op0;
2795 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2796 if (!isMLA) {
2797 Op0 = skipExtensionForVectorMULL(N0, DAG);
2798 assert(Op0.getValueType().is64BitVector() &&
2799 Op1.getValueType().is64BitVector() &&
2800 "unexpected types for extended operands to VMULL");
2801 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2803 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2804 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2805 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2806 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2807 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2808 EVT Op1VT = Op1.getValueType();
2809 return DAG.getNode(N0->getOpcode(), DL, VT,
2810 DAG.getNode(NewOpc, DL, VT,
2811 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2812 DAG.getNode(NewOpc, DL, VT,
2813 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2816 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2817 SelectionDAG &DAG) const {
2818 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2819 SDLoc dl(Op);
2820 switch (IntNo) {
2821 default: return SDValue(); // Don't custom lower most intrinsics.
2822 case Intrinsic::thread_pointer: {
2823 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2824 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2826 case Intrinsic::aarch64_neon_abs: {
2827 EVT Ty = Op.getValueType();
2828 if (Ty == MVT::i64) {
2829 SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
2830 Op.getOperand(1));
2831 Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
2832 return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
2833 } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
2834 return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
2835 } else {
2836 report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2839 case Intrinsic::aarch64_neon_smax:
2840 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2841 Op.getOperand(1), Op.getOperand(2));
2842 case Intrinsic::aarch64_neon_umax:
2843 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2844 Op.getOperand(1), Op.getOperand(2));
2845 case Intrinsic::aarch64_neon_smin:
2846 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2847 Op.getOperand(1), Op.getOperand(2));
2848 case Intrinsic::aarch64_neon_umin:
2849 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2850 Op.getOperand(1), Op.getOperand(2));
2852 case Intrinsic::aarch64_sve_sunpkhi:
2853 return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
2854 Op.getOperand(1));
2855 case Intrinsic::aarch64_sve_sunpklo:
2856 return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
2857 Op.getOperand(1));
2858 case Intrinsic::aarch64_sve_uunpkhi:
2859 return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
2860 Op.getOperand(1));
2861 case Intrinsic::aarch64_sve_uunpklo:
2862 return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
2863 Op.getOperand(1));
2865 case Intrinsic::localaddress: {
2866 const auto &MF = DAG.getMachineFunction();
2867 const auto *RegInfo = Subtarget->getRegisterInfo();
2868 unsigned Reg = RegInfo->getLocalAddressRegister(MF);
2869 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
2870 Op.getSimpleValueType());
2873 case Intrinsic::eh_recoverfp: {
2874 // FIXME: This needs to be implemented to correctly handle highly aligned
2875 // stack objects. For now we simply return the incoming FP. Refer D53541
2876 // for more details.
2877 SDValue FnOp = Op.getOperand(1);
2878 SDValue IncomingFPOp = Op.getOperand(2);
2879 GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
2880 auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
2881 if (!Fn)
2882 report_fatal_error(
2883 "llvm.eh.recoverfp must take a function as the first argument");
2884 return IncomingFPOp;
2889 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
2890 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
2891 EVT VT, EVT MemVT,
2892 SelectionDAG &DAG) {
2893 assert(VT.isVector() && "VT should be a vector type");
2894 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
2896 SDValue Value = ST->getValue();
2898 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2899 // the word lane which represent the v4i8 subvector. It optimizes the store
2900 // to:
2902 // xtn v0.8b, v0.8h
2903 // str s0, [x0]
2905 SDValue Undef = DAG.getUNDEF(MVT::i16);
2906 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
2907 {Undef, Undef, Undef, Undef});
2909 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
2910 Value, UndefVec);
2911 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
2913 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
2914 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
2915 Trunc, DAG.getConstant(0, DL, MVT::i64));
2917 return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
2918 ST->getBasePtr(), ST->getMemOperand());
2921 // Custom lowering for any store, vector or scalar and/or default or with
2922 // a truncate operations. Currently only custom lower truncate operation
2923 // from vector v4i16 to v4i8.
2924 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
2925 SelectionDAG &DAG) const {
2926 SDLoc Dl(Op);
2927 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
2928 assert (StoreNode && "Can only custom lower store nodes");
2930 SDValue Value = StoreNode->getValue();
2932 EVT VT = Value.getValueType();
2933 EVT MemVT = StoreNode->getMemoryVT();
2935 assert (VT.isVector() && "Can only custom lower vector store types");
2937 unsigned AS = StoreNode->getAddressSpace();
2938 unsigned Align = StoreNode->getAlignment();
2939 if (Align < MemVT.getStoreSize() &&
2940 !allowsMisalignedMemoryAccesses(
2941 MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
2942 return scalarizeVectorStore(StoreNode, DAG);
2945 if (StoreNode->isTruncatingStore()) {
2946 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
2949 return SDValue();
2952 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2953 SelectionDAG &DAG) const {
2954 LLVM_DEBUG(dbgs() << "Custom lowering: ");
2955 LLVM_DEBUG(Op.dump());
2957 switch (Op.getOpcode()) {
2958 default:
2959 llvm_unreachable("unimplemented operand");
2960 return SDValue();
2961 case ISD::BITCAST:
2962 return LowerBITCAST(Op, DAG);
2963 case ISD::GlobalAddress:
2964 return LowerGlobalAddress(Op, DAG);
2965 case ISD::GlobalTLSAddress:
2966 return LowerGlobalTLSAddress(Op, DAG);
2967 case ISD::SETCC:
2968 return LowerSETCC(Op, DAG);
2969 case ISD::BR_CC:
2970 return LowerBR_CC(Op, DAG);
2971 case ISD::SELECT:
2972 return LowerSELECT(Op, DAG);
2973 case ISD::SELECT_CC:
2974 return LowerSELECT_CC(Op, DAG);
2975 case ISD::JumpTable:
2976 return LowerJumpTable(Op, DAG);
2977 case ISD::BR_JT:
2978 return LowerBR_JT(Op, DAG);
2979 case ISD::ConstantPool:
2980 return LowerConstantPool(Op, DAG);
2981 case ISD::BlockAddress:
2982 return LowerBlockAddress(Op, DAG);
2983 case ISD::VASTART:
2984 return LowerVASTART(Op, DAG);
2985 case ISD::VACOPY:
2986 return LowerVACOPY(Op, DAG);
2987 case ISD::VAARG:
2988 return LowerVAARG(Op, DAG);
2989 case ISD::ADDC:
2990 case ISD::ADDE:
2991 case ISD::SUBC:
2992 case ISD::SUBE:
2993 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2994 case ISD::SADDO:
2995 case ISD::UADDO:
2996 case ISD::SSUBO:
2997 case ISD::USUBO:
2998 case ISD::SMULO:
2999 case ISD::UMULO:
3000 return LowerXALUO(Op, DAG);
3001 case ISD::FADD:
3002 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
3003 case ISD::FSUB:
3004 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
3005 case ISD::FMUL:
3006 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
3007 case ISD::FDIV:
3008 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
3009 case ISD::FP_ROUND:
3010 return LowerFP_ROUND(Op, DAG);
3011 case ISD::FP_EXTEND:
3012 return LowerFP_EXTEND(Op, DAG);
3013 case ISD::FRAMEADDR:
3014 return LowerFRAMEADDR(Op, DAG);
3015 case ISD::SPONENTRY:
3016 return LowerSPONENTRY(Op, DAG);
3017 case ISD::RETURNADDR:
3018 return LowerRETURNADDR(Op, DAG);
3019 case ISD::ADDROFRETURNADDR:
3020 return LowerADDROFRETURNADDR(Op, DAG);
3021 case ISD::INSERT_VECTOR_ELT:
3022 return LowerINSERT_VECTOR_ELT(Op, DAG);
3023 case ISD::EXTRACT_VECTOR_ELT:
3024 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3025 case ISD::BUILD_VECTOR:
3026 return LowerBUILD_VECTOR(Op, DAG);
3027 case ISD::VECTOR_SHUFFLE:
3028 return LowerVECTOR_SHUFFLE(Op, DAG);
3029 case ISD::SPLAT_VECTOR:
3030 return LowerSPLAT_VECTOR(Op, DAG);
3031 case ISD::EXTRACT_SUBVECTOR:
3032 return LowerEXTRACT_SUBVECTOR(Op, DAG);
3033 case ISD::SRA:
3034 case ISD::SRL:
3035 case ISD::SHL:
3036 return LowerVectorSRA_SRL_SHL(Op, DAG);
3037 case ISD::SHL_PARTS:
3038 return LowerShiftLeftParts(Op, DAG);
3039 case ISD::SRL_PARTS:
3040 case ISD::SRA_PARTS:
3041 return LowerShiftRightParts(Op, DAG);
3042 case ISD::CTPOP:
3043 return LowerCTPOP(Op, DAG);
3044 case ISD::FCOPYSIGN:
3045 return LowerFCOPYSIGN(Op, DAG);
3046 case ISD::OR:
3047 return LowerVectorOR(Op, DAG);
3048 case ISD::XOR:
3049 return LowerXOR(Op, DAG);
3050 case ISD::PREFETCH:
3051 return LowerPREFETCH(Op, DAG);
3052 case ISD::SINT_TO_FP:
3053 case ISD::UINT_TO_FP:
3054 return LowerINT_TO_FP(Op, DAG);
3055 case ISD::FP_TO_SINT:
3056 case ISD::FP_TO_UINT:
3057 return LowerFP_TO_INT(Op, DAG);
3058 case ISD::FSINCOS:
3059 return LowerFSINCOS(Op, DAG);
3060 case ISD::FLT_ROUNDS_:
3061 return LowerFLT_ROUNDS_(Op, DAG);
3062 case ISD::MUL:
3063 return LowerMUL(Op, DAG);
3064 case ISD::INTRINSIC_WO_CHAIN:
3065 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3066 case ISD::STORE:
3067 return LowerSTORE(Op, DAG);
3068 case ISD::VECREDUCE_ADD:
3069 case ISD::VECREDUCE_SMAX:
3070 case ISD::VECREDUCE_SMIN:
3071 case ISD::VECREDUCE_UMAX:
3072 case ISD::VECREDUCE_UMIN:
3073 case ISD::VECREDUCE_FMAX:
3074 case ISD::VECREDUCE_FMIN:
3075 return LowerVECREDUCE(Op, DAG);
3076 case ISD::ATOMIC_LOAD_SUB:
3077 return LowerATOMIC_LOAD_SUB(Op, DAG);
3078 case ISD::ATOMIC_LOAD_AND:
3079 return LowerATOMIC_LOAD_AND(Op, DAG);
3080 case ISD::DYNAMIC_STACKALLOC:
3081 return LowerDYNAMIC_STACKALLOC(Op, DAG);
3085 //===----------------------------------------------------------------------===//
3086 // Calling Convention Implementation
3087 //===----------------------------------------------------------------------===//
3089 /// Selects the correct CCAssignFn for a given CallingConvention value.
3090 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
3091 bool IsVarArg) const {
3092 switch (CC) {
3093 default:
3094 report_fatal_error("Unsupported calling convention.");
3095 case CallingConv::WebKit_JS:
3096 return CC_AArch64_WebKit_JS;
3097 case CallingConv::GHC:
3098 return CC_AArch64_GHC;
3099 case CallingConv::C:
3100 case CallingConv::Fast:
3101 case CallingConv::PreserveMost:
3102 case CallingConv::CXX_FAST_TLS:
3103 case CallingConv::Swift:
3104 if (Subtarget->isTargetWindows() && IsVarArg)
3105 return CC_AArch64_Win64_VarArg;
3106 if (!Subtarget->isTargetDarwin())
3107 return CC_AArch64_AAPCS;
3108 if (!IsVarArg)
3109 return CC_AArch64_DarwinPCS;
3110 return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
3111 : CC_AArch64_DarwinPCS_VarArg;
3112 case CallingConv::Win64:
3113 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
3114 case CallingConv::AArch64_VectorCall:
3115 return CC_AArch64_AAPCS;
3119 CCAssignFn *
3120 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
3121 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3122 : RetCC_AArch64_AAPCS;
3125 SDValue AArch64TargetLowering::LowerFormalArguments(
3126 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3127 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3128 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3129 MachineFunction &MF = DAG.getMachineFunction();
3130 MachineFrameInfo &MFI = MF.getFrameInfo();
3131 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3133 // Assign locations to all of the incoming arguments.
3134 SmallVector<CCValAssign, 16> ArgLocs;
3135 DenseMap<unsigned, SDValue> CopiedRegs;
3136 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3137 *DAG.getContext());
3139 // At this point, Ins[].VT may already be promoted to i32. To correctly
3140 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3141 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3142 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3143 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3144 // LocVT.
3145 unsigned NumArgs = Ins.size();
3146 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3147 unsigned CurArgIdx = 0;
3148 for (unsigned i = 0; i != NumArgs; ++i) {
3149 MVT ValVT = Ins[i].VT;
3150 if (Ins[i].isOrigArg()) {
3151 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3152 CurArgIdx = Ins[i].getOrigArgIndex();
3154 // Get type of the original argument.
3155 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
3156 /*AllowUnknown*/ true);
3157 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
3158 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3159 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3160 ValVT = MVT::i8;
3161 else if (ActualMVT == MVT::i16)
3162 ValVT = MVT::i16;
3164 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3165 bool Res =
3166 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
3167 assert(!Res && "Call operand has unhandled type");
3168 (void)Res;
3170 assert(ArgLocs.size() == Ins.size());
3171 SmallVector<SDValue, 16> ArgValues;
3172 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3173 CCValAssign &VA = ArgLocs[i];
3175 if (Ins[i].Flags.isByVal()) {
3176 // Byval is used for HFAs in the PCS, but the system should work in a
3177 // non-compliant manner for larger structs.
3178 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3179 int Size = Ins[i].Flags.getByValSize();
3180 unsigned NumRegs = (Size + 7) / 8;
3182 // FIXME: This works on big-endian for composite byvals, which are the common
3183 // case. It should also work for fundamental types too.
3184 unsigned FrameIdx =
3185 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
3186 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3187 InVals.push_back(FrameIdxN);
3189 continue;
3192 SDValue ArgValue;
3193 if (VA.isRegLoc()) {
3194 // Arguments stored in registers.
3195 EVT RegVT = VA.getLocVT();
3196 const TargetRegisterClass *RC;
3198 if (RegVT == MVT::i32)
3199 RC = &AArch64::GPR32RegClass;
3200 else if (RegVT == MVT::i64)
3201 RC = &AArch64::GPR64RegClass;
3202 else if (RegVT == MVT::f16)
3203 RC = &AArch64::FPR16RegClass;
3204 else if (RegVT == MVT::f32)
3205 RC = &AArch64::FPR32RegClass;
3206 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3207 RC = &AArch64::FPR64RegClass;
3208 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3209 RC = &AArch64::FPR128RegClass;
3210 else if (RegVT.isScalableVector() &&
3211 RegVT.getVectorElementType() == MVT::i1)
3212 RC = &AArch64::PPRRegClass;
3213 else if (RegVT.isScalableVector())
3214 RC = &AArch64::ZPRRegClass;
3215 else
3216 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3218 // Transform the arguments in physical registers into virtual ones.
3219 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3220 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3222 // If this is an 8, 16 or 32-bit value, it is really passed promoted
3223 // to 64 bits. Insert an assert[sz]ext to capture this, then
3224 // truncate to the right size.
3225 switch (VA.getLocInfo()) {
3226 default:
3227 llvm_unreachable("Unknown loc info!");
3228 case CCValAssign::Full:
3229 break;
3230 case CCValAssign::Indirect:
3231 assert(VA.getValVT().isScalableVector() &&
3232 "Only scalable vectors can be passed indirectly");
3233 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3234 case CCValAssign::BCvt:
3235 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3236 break;
3237 case CCValAssign::AExt:
3238 case CCValAssign::SExt:
3239 case CCValAssign::ZExt:
3240 break;
3241 case CCValAssign::AExtUpper:
3242 ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
3243 DAG.getConstant(32, DL, RegVT));
3244 ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
3245 break;
3247 } else { // VA.isRegLoc()
3248 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3249 unsigned ArgOffset = VA.getLocMemOffset();
3250 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3252 uint32_t BEAlign = 0;
3253 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3254 !Ins[i].Flags.isInConsecutiveRegs())
3255 BEAlign = 8 - ArgSize;
3257 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3259 // Create load nodes to retrieve arguments from the stack.
3260 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3262 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3263 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3264 MVT MemVT = VA.getValVT();
3266 switch (VA.getLocInfo()) {
3267 default:
3268 break;
3269 case CCValAssign::Trunc:
3270 case CCValAssign::BCvt:
3271 MemVT = VA.getLocVT();
3272 break;
3273 case CCValAssign::Indirect:
3274 assert(VA.getValVT().isScalableVector() &&
3275 "Only scalable vectors can be passed indirectly");
3276 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3277 case CCValAssign::SExt:
3278 ExtType = ISD::SEXTLOAD;
3279 break;
3280 case CCValAssign::ZExt:
3281 ExtType = ISD::ZEXTLOAD;
3282 break;
3283 case CCValAssign::AExt:
3284 ExtType = ISD::EXTLOAD;
3285 break;
3288 ArgValue = DAG.getExtLoad(
3289 ExtType, DL, VA.getLocVT(), Chain, FIN,
3290 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3291 MemVT);
3294 if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
3295 ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
3296 ArgValue, DAG.getValueType(MVT::i32));
3297 InVals.push_back(ArgValue);
3300 // varargs
3301 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3302 if (isVarArg) {
3303 if (!Subtarget->isTargetDarwin() || IsWin64) {
3304 // The AAPCS variadic function ABI is identical to the non-variadic
3305 // one. As a result there may be more arguments in registers and we should
3306 // save them for future reference.
3307 // Win64 variadic functions also pass arguments in registers, but all float
3308 // arguments are passed in integer registers.
3309 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3312 // This will point to the next argument passed via stack.
3313 unsigned StackOffset = CCInfo.getNextStackOffset();
3314 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
3315 StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8);
3316 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3318 if (MFI.hasMustTailInVarArgFunc()) {
3319 SmallVector<MVT, 2> RegParmTypes;
3320 RegParmTypes.push_back(MVT::i64);
3321 RegParmTypes.push_back(MVT::f128);
3322 // Compute the set of forwarded registers. The rest are scratch.
3323 SmallVectorImpl<ForwardedRegister> &Forwards =
3324 FuncInfo->getForwardedMustTailRegParms();
3325 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
3326 CC_AArch64_AAPCS);
3328 // Conservatively forward X8, since it might be used for aggregate return.
3329 if (!CCInfo.isAllocated(AArch64::X8)) {
3330 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
3331 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
3336 // On Windows, InReg pointers must be returned, so record the pointer in a
3337 // virtual register at the start of the function so it can be returned in the
3338 // epilogue.
3339 if (IsWin64) {
3340 for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
3341 if (Ins[I].Flags.isInReg()) {
3342 assert(!FuncInfo->getSRetReturnReg());
3344 MVT PtrTy = getPointerTy(DAG.getDataLayout());
3345 Register Reg =
3346 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
3347 FuncInfo->setSRetReturnReg(Reg);
3349 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
3350 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3351 break;
3356 unsigned StackArgSize = CCInfo.getNextStackOffset();
3357 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3358 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3359 // This is a non-standard ABI so by fiat I say we're allowed to make full
3360 // use of the stack area to be popped, which must be aligned to 16 bytes in
3361 // any case:
3362 StackArgSize = alignTo(StackArgSize, 16);
3364 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3365 // a multiple of 16.
3366 FuncInfo->setArgumentStackToRestore(StackArgSize);
3368 // This realignment carries over to the available bytes below. Our own
3369 // callers will guarantee the space is free by giving an aligned value to
3370 // CALLSEQ_START.
3372 // Even if we're not expected to free up the space, it's useful to know how
3373 // much is there while considering tail calls (because we can reuse it).
3374 FuncInfo->setBytesInStackArgArea(StackArgSize);
3376 if (Subtarget->hasCustomCallingConv())
3377 Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
3379 return Chain;
3382 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3383 SelectionDAG &DAG,
3384 const SDLoc &DL,
3385 SDValue &Chain) const {
3386 MachineFunction &MF = DAG.getMachineFunction();
3387 MachineFrameInfo &MFI = MF.getFrameInfo();
3388 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3389 auto PtrVT = getPointerTy(DAG.getDataLayout());
3390 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3392 SmallVector<SDValue, 8> MemOps;
3394 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3395 AArch64::X3, AArch64::X4, AArch64::X5,
3396 AArch64::X6, AArch64::X7 };
3397 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3398 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3400 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3401 int GPRIdx = 0;
3402 if (GPRSaveSize != 0) {
3403 if (IsWin64) {
3404 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3405 if (GPRSaveSize & 15)
3406 // The extra size here, if triggered, will always be 8.
3407 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3408 } else
3409 GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3411 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3413 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3414 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3415 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3416 SDValue Store = DAG.getStore(
3417 Val.getValue(1), DL, Val, FIN,
3418 IsWin64
3419 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3420 GPRIdx,
3421 (i - FirstVariadicGPR) * 8)
3422 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3423 MemOps.push_back(Store);
3424 FIN =
3425 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3428 FuncInfo->setVarArgsGPRIndex(GPRIdx);
3429 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3431 if (Subtarget->hasFPARMv8() && !IsWin64) {
3432 static const MCPhysReg FPRArgRegs[] = {
3433 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3434 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3435 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3436 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3438 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3439 int FPRIdx = 0;
3440 if (FPRSaveSize != 0) {
3441 FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3443 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3445 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3446 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3447 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3449 SDValue Store = DAG.getStore(
3450 Val.getValue(1), DL, Val, FIN,
3451 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3452 MemOps.push_back(Store);
3453 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3454 DAG.getConstant(16, DL, PtrVT));
3457 FuncInfo->setVarArgsFPRIndex(FPRIdx);
3458 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3461 if (!MemOps.empty()) {
3462 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3466 /// LowerCallResult - Lower the result values of a call into the
3467 /// appropriate copies out of appropriate physical registers.
3468 SDValue AArch64TargetLowering::LowerCallResult(
3469 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3470 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3471 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3472 SDValue ThisVal) const {
3473 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3474 ? RetCC_AArch64_WebKit_JS
3475 : RetCC_AArch64_AAPCS;
3476 // Assign locations to each value returned by this call.
3477 SmallVector<CCValAssign, 16> RVLocs;
3478 DenseMap<unsigned, SDValue> CopiedRegs;
3479 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3480 *DAG.getContext());
3481 CCInfo.AnalyzeCallResult(Ins, RetCC);
3483 // Copy all of the result registers out of their specified physreg.
3484 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3485 CCValAssign VA = RVLocs[i];
3487 // Pass 'this' value directly from the argument to return value, to avoid
3488 // reg unit interference
3489 if (i == 0 && isThisReturn) {
3490 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3491 "unexpected return calling convention register assignment");
3492 InVals.push_back(ThisVal);
3493 continue;
3496 // Avoid copying a physreg twice since RegAllocFast is incompetent and only
3497 // allows one use of a physreg per block.
3498 SDValue Val = CopiedRegs.lookup(VA.getLocReg());
3499 if (!Val) {
3500 Val =
3501 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3502 Chain = Val.getValue(1);
3503 InFlag = Val.getValue(2);
3504 CopiedRegs[VA.getLocReg()] = Val;
3507 switch (VA.getLocInfo()) {
3508 default:
3509 llvm_unreachable("Unknown loc info!");
3510 case CCValAssign::Full:
3511 break;
3512 case CCValAssign::BCvt:
3513 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3514 break;
3515 case CCValAssign::AExtUpper:
3516 Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
3517 DAG.getConstant(32, DL, VA.getLocVT()));
3518 LLVM_FALLTHROUGH;
3519 case CCValAssign::AExt:
3520 LLVM_FALLTHROUGH;
3521 case CCValAssign::ZExt:
3522 Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
3523 break;
3526 InVals.push_back(Val);
3529 return Chain;
3532 /// Return true if the calling convention is one that we can guarantee TCO for.
3533 static bool canGuaranteeTCO(CallingConv::ID CC) {
3534 return CC == CallingConv::Fast;
3537 /// Return true if we might ever do TCO for calls with this calling convention.
3538 static bool mayTailCallThisCC(CallingConv::ID CC) {
3539 switch (CC) {
3540 case CallingConv::C:
3541 case CallingConv::PreserveMost:
3542 case CallingConv::Swift:
3543 return true;
3544 default:
3545 return canGuaranteeTCO(CC);
3549 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3550 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3551 const SmallVectorImpl<ISD::OutputArg> &Outs,
3552 const SmallVectorImpl<SDValue> &OutVals,
3553 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3554 if (!mayTailCallThisCC(CalleeCC))
3555 return false;
3557 MachineFunction &MF = DAG.getMachineFunction();
3558 const Function &CallerF = MF.getFunction();
3559 CallingConv::ID CallerCC = CallerF.getCallingConv();
3560 bool CCMatch = CallerCC == CalleeCC;
3562 // Byval parameters hand the function a pointer directly into the stack area
3563 // we want to reuse during a tail call. Working around this *is* possible (see
3564 // X86) but less efficient and uglier in LowerCall.
3565 for (Function::const_arg_iterator i = CallerF.arg_begin(),
3566 e = CallerF.arg_end();
3567 i != e; ++i) {
3568 if (i->hasByValAttr())
3569 return false;
3571 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3572 // In this case, it is necessary to save/restore X0 in the callee. Tail
3573 // call opt interferes with this. So we disable tail call opt when the
3574 // caller has an argument with "inreg" attribute.
3576 // FIXME: Check whether the callee also has an "inreg" argument.
3577 if (i->hasInRegAttr())
3578 return false;
3581 if (getTargetMachine().Options.GuaranteedTailCallOpt)
3582 return canGuaranteeTCO(CalleeCC) && CCMatch;
3584 // Externally-defined functions with weak linkage should not be
3585 // tail-called on AArch64 when the OS does not support dynamic
3586 // pre-emption of symbols, as the AAELF spec requires normal calls
3587 // to undefined weak functions to be replaced with a NOP or jump to the
3588 // next instruction. The behaviour of branch instructions in this
3589 // situation (as used for tail calls) is implementation-defined, so we
3590 // cannot rely on the linker replacing the tail call with a return.
3591 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3592 const GlobalValue *GV = G->getGlobal();
3593 const Triple &TT = getTargetMachine().getTargetTriple();
3594 if (GV->hasExternalWeakLinkage() &&
3595 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3596 return false;
3599 // Now we search for cases where we can use a tail call without changing the
3600 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3601 // concept.
3603 // I want anyone implementing a new calling convention to think long and hard
3604 // about this assert.
3605 assert((!isVarArg || CalleeCC == CallingConv::C) &&
3606 "Unexpected variadic calling convention");
3608 LLVMContext &C = *DAG.getContext();
3609 if (isVarArg && !Outs.empty()) {
3610 // At least two cases here: if caller is fastcc then we can't have any
3611 // memory arguments (we'd be expected to clean up the stack afterwards). If
3612 // caller is C then we could potentially use its argument area.
3614 // FIXME: for now we take the most conservative of these in both cases:
3615 // disallow all variadic memory operands.
3616 SmallVector<CCValAssign, 16> ArgLocs;
3617 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3619 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3620 for (const CCValAssign &ArgLoc : ArgLocs)
3621 if (!ArgLoc.isRegLoc())
3622 return false;
3625 // Check that the call results are passed in the same way.
3626 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3627 CCAssignFnForCall(CalleeCC, isVarArg),
3628 CCAssignFnForCall(CallerCC, isVarArg)))
3629 return false;
3630 // The callee has to preserve all registers the caller needs to preserve.
3631 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3632 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3633 if (!CCMatch) {
3634 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3635 if (Subtarget->hasCustomCallingConv()) {
3636 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
3637 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
3639 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3640 return false;
3643 // Nothing more to check if the callee is taking no arguments
3644 if (Outs.empty())
3645 return true;
3647 SmallVector<CCValAssign, 16> ArgLocs;
3648 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3650 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3652 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3654 // If the stack arguments for this call do not fit into our own save area then
3655 // the call cannot be made tail.
3656 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3657 return false;
3659 const MachineRegisterInfo &MRI = MF.getRegInfo();
3660 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3661 return false;
3663 return true;
3666 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3667 SelectionDAG &DAG,
3668 MachineFrameInfo &MFI,
3669 int ClobberedFI) const {
3670 SmallVector<SDValue, 8> ArgChains;
3671 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3672 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3674 // Include the original chain at the beginning of the list. When this is
3675 // used by target LowerCall hooks, this helps legalize find the
3676 // CALLSEQ_BEGIN node.
3677 ArgChains.push_back(Chain);
3679 // Add a chain value for each stack argument corresponding
3680 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3681 UE = DAG.getEntryNode().getNode()->use_end();
3682 U != UE; ++U)
3683 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3684 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3685 if (FI->getIndex() < 0) {
3686 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3687 int64_t InLastByte = InFirstByte;
3688 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3690 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3691 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3692 ArgChains.push_back(SDValue(L, 1));
3695 // Build a tokenfactor for all the chains.
3696 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3699 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3700 bool TailCallOpt) const {
3701 return CallCC == CallingConv::Fast && TailCallOpt;
3704 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3705 /// and add input and output parameter nodes.
3706 SDValue
3707 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3708 SmallVectorImpl<SDValue> &InVals) const {
3709 SelectionDAG &DAG = CLI.DAG;
3710 SDLoc &DL = CLI.DL;
3711 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3712 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3713 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3714 SDValue Chain = CLI.Chain;
3715 SDValue Callee = CLI.Callee;
3716 bool &IsTailCall = CLI.IsTailCall;
3717 CallingConv::ID CallConv = CLI.CallConv;
3718 bool IsVarArg = CLI.IsVarArg;
3720 MachineFunction &MF = DAG.getMachineFunction();
3721 MachineFunction::CallSiteInfo CSInfo;
3722 bool IsThisReturn = false;
3724 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3725 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3726 bool IsSibCall = false;
3728 if (IsTailCall) {
3729 // Check if it's really possible to do a tail call.
3730 IsTailCall = isEligibleForTailCallOptimization(
3731 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3732 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3733 report_fatal_error("failed to perform tail call elimination on a call "
3734 "site marked musttail");
3736 // A sibling call is one where we're under the usual C ABI and not planning
3737 // to change that but can still do a tail call:
3738 if (!TailCallOpt && IsTailCall)
3739 IsSibCall = true;
3741 if (IsTailCall)
3742 ++NumTailCalls;
3745 // Analyze operands of the call, assigning locations to each operand.
3746 SmallVector<CCValAssign, 16> ArgLocs;
3747 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3748 *DAG.getContext());
3750 if (IsVarArg) {
3751 // Handle fixed and variable vector arguments differently.
3752 // Variable vector arguments always go into memory.
3753 unsigned NumArgs = Outs.size();
3755 for (unsigned i = 0; i != NumArgs; ++i) {
3756 MVT ArgVT = Outs[i].VT;
3757 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3758 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3759 /*IsVarArg=*/ !Outs[i].IsFixed);
3760 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3761 assert(!Res && "Call operand has unhandled type");
3762 (void)Res;
3764 } else {
3765 // At this point, Outs[].VT may already be promoted to i32. To correctly
3766 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3767 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3768 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3769 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3770 // LocVT.
3771 unsigned NumArgs = Outs.size();
3772 for (unsigned i = 0; i != NumArgs; ++i) {
3773 MVT ValVT = Outs[i].VT;
3774 // Get type of the original argument.
3775 EVT ActualVT = getValueType(DAG.getDataLayout(),
3776 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3777 /*AllowUnknown*/ true);
3778 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3779 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3780 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3781 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3782 ValVT = MVT::i8;
3783 else if (ActualMVT == MVT::i16)
3784 ValVT = MVT::i16;
3786 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3787 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3788 assert(!Res && "Call operand has unhandled type");
3789 (void)Res;
3793 // Get a count of how many bytes are to be pushed on the stack.
3794 unsigned NumBytes = CCInfo.getNextStackOffset();
3796 if (IsSibCall) {
3797 // Since we're not changing the ABI to make this a tail call, the memory
3798 // operands are already available in the caller's incoming argument space.
3799 NumBytes = 0;
3802 // FPDiff is the byte offset of the call's argument area from the callee's.
3803 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3804 // by this amount for a tail call. In a sibling call it must be 0 because the
3805 // caller will deallocate the entire stack and the callee still expects its
3806 // arguments to begin at SP+0. Completely unused for non-tail calls.
3807 int FPDiff = 0;
3809 if (IsTailCall && !IsSibCall) {
3810 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3812 // Since callee will pop argument stack as a tail call, we must keep the
3813 // popped size 16-byte aligned.
3814 NumBytes = alignTo(NumBytes, 16);
3816 // FPDiff will be negative if this tail call requires more space than we
3817 // would automatically have in our incoming argument space. Positive if we
3818 // can actually shrink the stack.
3819 FPDiff = NumReusableBytes - NumBytes;
3821 // The stack pointer must be 16-byte aligned at all times it's used for a
3822 // memory operation, which in practice means at *all* times and in
3823 // particular across call boundaries. Therefore our own arguments started at
3824 // a 16-byte aligned SP and the delta applied for the tail call should
3825 // satisfy the same constraint.
3826 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3829 // Adjust the stack pointer for the new arguments...
3830 // These operations are automatically eliminated by the prolog/epilog pass
3831 if (!IsSibCall)
3832 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
3834 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3835 getPointerTy(DAG.getDataLayout()));
3837 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3838 SmallSet<unsigned, 8> RegsUsed;
3839 SmallVector<SDValue, 8> MemOpChains;
3840 auto PtrVT = getPointerTy(DAG.getDataLayout());
3842 if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
3843 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
3844 for (const auto &F : Forwards) {
3845 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
3846 RegsToPass.emplace_back(F.PReg, Val);
3850 // Walk the register/memloc assignments, inserting copies/loads.
3851 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3852 ++i, ++realArgIdx) {
3853 CCValAssign &VA = ArgLocs[i];
3854 SDValue Arg = OutVals[realArgIdx];
3855 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3857 // Promote the value if needed.
3858 switch (VA.getLocInfo()) {
3859 default:
3860 llvm_unreachable("Unknown loc info!");
3861 case CCValAssign::Full:
3862 break;
3863 case CCValAssign::SExt:
3864 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3865 break;
3866 case CCValAssign::ZExt:
3867 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3868 break;
3869 case CCValAssign::AExt:
3870 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3871 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3872 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3873 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3875 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3876 break;
3877 case CCValAssign::AExtUpper:
3878 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
3879 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3880 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
3881 DAG.getConstant(32, DL, VA.getLocVT()));
3882 break;
3883 case CCValAssign::BCvt:
3884 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
3885 break;
3886 case CCValAssign::Trunc:
3887 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
3888 break;
3889 case CCValAssign::FPExt:
3890 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3891 break;
3892 case CCValAssign::Indirect:
3893 assert(VA.getValVT().isScalableVector() &&
3894 "Only scalable vectors can be passed indirectly");
3895 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3898 if (VA.isRegLoc()) {
3899 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3900 Outs[0].VT == MVT::i64) {
3901 assert(VA.getLocVT() == MVT::i64 &&
3902 "unexpected calling convention register assignment");
3903 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3904 "unexpected use of 'returned'");
3905 IsThisReturn = true;
3907 if (RegsUsed.count(VA.getLocReg())) {
3908 // If this register has already been used then we're trying to pack
3909 // parts of an [N x i32] into an X-register. The extension type will
3910 // take care of putting the two halves in the right place but we have to
3911 // combine them.
3912 SDValue &Bits =
3913 std::find_if(RegsToPass.begin(), RegsToPass.end(),
3914 [=](const std::pair<unsigned, SDValue> &Elt) {
3915 return Elt.first == VA.getLocReg();
3917 ->second;
3918 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
3919 // Call site info is used for function's parameter entry value
3920 // tracking. For now we track only simple cases when parameter
3921 // is transferred through whole register.
3922 CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(),
3923 [&VA](MachineFunction::ArgRegPair ArgReg) {
3924 return ArgReg.Reg == VA.getLocReg();
3926 CSInfo.end());
3927 } else {
3928 RegsToPass.emplace_back(VA.getLocReg(), Arg);
3929 RegsUsed.insert(VA.getLocReg());
3930 const TargetOptions &Options = DAG.getTarget().Options;
3931 if (Options.EnableDebugEntryValues)
3932 CSInfo.emplace_back(VA.getLocReg(), i);
3934 } else {
3935 assert(VA.isMemLoc());
3937 SDValue DstAddr;
3938 MachinePointerInfo DstInfo;
3940 // FIXME: This works on big-endian for composite byvals, which are the
3941 // common case. It should also work for fundamental types too.
3942 uint32_t BEAlign = 0;
3943 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3944 : VA.getValVT().getSizeInBits();
3945 OpSize = (OpSize + 7) / 8;
3946 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3947 !Flags.isInConsecutiveRegs()) {
3948 if (OpSize < 8)
3949 BEAlign = 8 - OpSize;
3951 unsigned LocMemOffset = VA.getLocMemOffset();
3952 int32_t Offset = LocMemOffset + BEAlign;
3953 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3954 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3956 if (IsTailCall) {
3957 Offset = Offset + FPDiff;
3958 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
3960 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3961 DstInfo =
3962 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3964 // Make sure any stack arguments overlapping with where we're storing
3965 // are loaded before this eventual operation. Otherwise they'll be
3966 // clobbered.
3967 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3968 } else {
3969 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3971 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3972 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3973 LocMemOffset);
3976 if (Outs[i].Flags.isByVal()) {
3977 SDValue SizeNode =
3978 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3979 SDValue Cpy = DAG.getMemcpy(
3980 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3981 /*isVol = */ false, /*AlwaysInline = */ false,
3982 /*isTailCall = */ false,
3983 DstInfo, MachinePointerInfo());
3985 MemOpChains.push_back(Cpy);
3986 } else {
3987 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3988 // promoted to a legal register type i32, we should truncate Arg back to
3989 // i1/i8/i16.
3990 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3991 VA.getValVT() == MVT::i16)
3992 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3994 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
3995 MemOpChains.push_back(Store);
4000 if (!MemOpChains.empty())
4001 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
4003 // Build a sequence of copy-to-reg nodes chained together with token chain
4004 // and flag operands which copy the outgoing args into the appropriate regs.
4005 SDValue InFlag;
4006 for (auto &RegToPass : RegsToPass) {
4007 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
4008 RegToPass.second, InFlag);
4009 InFlag = Chain.getValue(1);
4012 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
4013 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
4014 // node so that legalize doesn't hack it.
4015 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4016 auto GV = G->getGlobal();
4017 if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
4018 AArch64II::MO_GOT) {
4019 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
4020 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
4021 } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
4022 assert(Subtarget->isTargetWindows() &&
4023 "Windows is the only supported COFF target");
4024 Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
4025 } else {
4026 const GlobalValue *GV = G->getGlobal();
4027 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
4029 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4030 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4031 Subtarget->isTargetMachO()) {
4032 const char *Sym = S->getSymbol();
4033 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
4034 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
4035 } else {
4036 const char *Sym = S->getSymbol();
4037 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
4041 // We don't usually want to end the call-sequence here because we would tidy
4042 // the frame up *after* the call, however in the ABI-changing tail-call case
4043 // we've carefully laid out the parameters so that when sp is reset they'll be
4044 // in the correct location.
4045 if (IsTailCall && !IsSibCall) {
4046 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
4047 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
4048 InFlag = Chain.getValue(1);
4051 std::vector<SDValue> Ops;
4052 Ops.push_back(Chain);
4053 Ops.push_back(Callee);
4055 if (IsTailCall) {
4056 // Each tail call may have to adjust the stack by a different amount, so
4057 // this information must travel along with the operation for eventual
4058 // consumption by emitEpilogue.
4059 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
4062 // Add argument registers to the end of the list so that they are known live
4063 // into the call.
4064 for (auto &RegToPass : RegsToPass)
4065 Ops.push_back(DAG.getRegister(RegToPass.first,
4066 RegToPass.second.getValueType()));
4068 // Check callee args/returns for SVE registers and set calling convention
4069 // accordingly.
4070 if (CallConv == CallingConv::C) {
4071 bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){
4072 return Out.VT.isScalableVector();
4074 bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){
4075 return In.VT.isScalableVector();
4078 if (CalleeInSVE || CalleeOutSVE)
4079 CallConv = CallingConv::AArch64_SVE_VectorCall;
4082 // Add a register mask operand representing the call-preserved registers.
4083 const uint32_t *Mask;
4084 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4085 if (IsThisReturn) {
4086 // For 'this' returns, use the X0-preserving mask if applicable
4087 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
4088 if (!Mask) {
4089 IsThisReturn = false;
4090 Mask = TRI->getCallPreservedMask(MF, CallConv);
4092 } else
4093 Mask = TRI->getCallPreservedMask(MF, CallConv);
4095 if (Subtarget->hasCustomCallingConv())
4096 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
4098 if (TRI->isAnyArgRegReserved(MF))
4099 TRI->emitReservedArgRegCallError(MF);
4101 assert(Mask && "Missing call preserved mask for calling convention");
4102 Ops.push_back(DAG.getRegisterMask(Mask));
4104 if (InFlag.getNode())
4105 Ops.push_back(InFlag);
4107 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4109 // If we're doing a tall call, use a TC_RETURN here rather than an
4110 // actual call instruction.
4111 if (IsTailCall) {
4112 MF.getFrameInfo().setHasTailCall();
4113 SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
4114 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
4115 return Ret;
4118 // Returns a chain and a flag for retval copy to use.
4119 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
4120 InFlag = Chain.getValue(1);
4121 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
4123 uint64_t CalleePopBytes =
4124 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
4126 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
4127 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
4128 InFlag, DL);
4129 if (!Ins.empty())
4130 InFlag = Chain.getValue(1);
4132 // Handle result values, copying them out of physregs into vregs that we
4133 // return.
4134 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
4135 InVals, IsThisReturn,
4136 IsThisReturn ? OutVals[0] : SDValue());
4139 bool AArch64TargetLowering::CanLowerReturn(
4140 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
4141 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
4142 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
4143 ? RetCC_AArch64_WebKit_JS
4144 : RetCC_AArch64_AAPCS;
4145 SmallVector<CCValAssign, 16> RVLocs;
4146 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
4147 return CCInfo.CheckReturn(Outs, RetCC);
4150 SDValue
4151 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
4152 bool isVarArg,
4153 const SmallVectorImpl<ISD::OutputArg> &Outs,
4154 const SmallVectorImpl<SDValue> &OutVals,
4155 const SDLoc &DL, SelectionDAG &DAG) const {
4156 auto &MF = DAG.getMachineFunction();
4157 auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4159 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
4160 ? RetCC_AArch64_WebKit_JS
4161 : RetCC_AArch64_AAPCS;
4162 SmallVector<CCValAssign, 16> RVLocs;
4163 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4164 *DAG.getContext());
4165 CCInfo.AnalyzeReturn(Outs, RetCC);
4167 // Copy the result values into the output registers.
4168 SDValue Flag;
4169 SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
4170 SmallSet<unsigned, 4> RegsUsed;
4171 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
4172 ++i, ++realRVLocIdx) {
4173 CCValAssign &VA = RVLocs[i];
4174 assert(VA.isRegLoc() && "Can only return in registers!");
4175 SDValue Arg = OutVals[realRVLocIdx];
4177 switch (VA.getLocInfo()) {
4178 default:
4179 llvm_unreachable("Unknown loc info!");
4180 case CCValAssign::Full:
4181 if (Outs[i].ArgVT == MVT::i1) {
4182 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4183 // value. This is strictly redundant on Darwin (which uses "zeroext
4184 // i1"), but will be optimised out before ISel.
4185 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
4186 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
4188 break;
4189 case CCValAssign::BCvt:
4190 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
4191 break;
4192 case CCValAssign::AExt:
4193 case CCValAssign::ZExt:
4194 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
4195 break;
4196 case CCValAssign::AExtUpper:
4197 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
4198 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
4199 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
4200 DAG.getConstant(32, DL, VA.getLocVT()));
4201 break;
4204 if (RegsUsed.count(VA.getLocReg())) {
4205 SDValue &Bits =
4206 std::find_if(RetVals.begin(), RetVals.end(),
4207 [=](const std::pair<unsigned, SDValue> &Elt) {
4208 return Elt.first == VA.getLocReg();
4210 ->second;
4211 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
4212 } else {
4213 RetVals.emplace_back(VA.getLocReg(), Arg);
4214 RegsUsed.insert(VA.getLocReg());
4218 SmallVector<SDValue, 4> RetOps(1, Chain);
4219 for (auto &RetVal : RetVals) {
4220 Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag);
4221 Flag = Chain.getValue(1);
4222 RetOps.push_back(
4223 DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
4226 // Windows AArch64 ABIs require that for returning structs by value we copy
4227 // the sret argument into X0 for the return.
4228 // We saved the argument into a virtual register in the entry block,
4229 // so now we copy the value out and into X0.
4230 if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
4231 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
4232 getPointerTy(MF.getDataLayout()));
4234 unsigned RetValReg = AArch64::X0;
4235 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
4236 Flag = Chain.getValue(1);
4238 RetOps.push_back(
4239 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
4242 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4243 const MCPhysReg *I =
4244 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
4245 if (I) {
4246 for (; *I; ++I) {
4247 if (AArch64::GPR64RegClass.contains(*I))
4248 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
4249 else if (AArch64::FPR64RegClass.contains(*I))
4250 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
4251 else
4252 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4256 RetOps[0] = Chain; // Update chain.
4258 // Add the flag if we have it.
4259 if (Flag.getNode())
4260 RetOps.push_back(Flag);
4262 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
4265 //===----------------------------------------------------------------------===//
4266 // Other Lowering Code
4267 //===----------------------------------------------------------------------===//
4269 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
4270 SelectionDAG &DAG,
4271 unsigned Flag) const {
4272 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
4273 N->getOffset(), Flag);
4276 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
4277 SelectionDAG &DAG,
4278 unsigned Flag) const {
4279 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
4282 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
4283 SelectionDAG &DAG,
4284 unsigned Flag) const {
4285 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
4286 N->getOffset(), Flag);
4289 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
4290 SelectionDAG &DAG,
4291 unsigned Flag) const {
4292 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
4295 // (loadGOT sym)
4296 template <class NodeTy>
4297 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
4298 unsigned Flags) const {
4299 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4300 SDLoc DL(N);
4301 EVT Ty = getPointerTy(DAG.getDataLayout());
4302 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
4303 // FIXME: Once remat is capable of dealing with instructions with register
4304 // operands, expand this into two nodes instead of using a wrapper node.
4305 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
4308 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4309 template <class NodeTy>
4310 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
4311 unsigned Flags) const {
4312 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4313 SDLoc DL(N);
4314 EVT Ty = getPointerTy(DAG.getDataLayout());
4315 const unsigned char MO_NC = AArch64II::MO_NC;
4316 return DAG.getNode(
4317 AArch64ISD::WrapperLarge, DL, Ty,
4318 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
4319 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
4320 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
4321 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
4324 // (addlow (adrp %hi(sym)) %lo(sym))
4325 template <class NodeTy>
4326 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
4327 unsigned Flags) const {
4328 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4329 SDLoc DL(N);
4330 EVT Ty = getPointerTy(DAG.getDataLayout());
4331 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
4332 SDValue Lo = getTargetNode(N, Ty, DAG,
4333 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
4334 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
4335 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
4338 // (adr sym)
4339 template <class NodeTy>
4340 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
4341 unsigned Flags) const {
4342 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4343 SDLoc DL(N);
4344 EVT Ty = getPointerTy(DAG.getDataLayout());
4345 SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
4346 return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
4349 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
4350 SelectionDAG &DAG) const {
4351 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
4352 const GlobalValue *GV = GN->getGlobal();
4353 unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4355 if (OpFlags != AArch64II::MO_NO_FLAG)
4356 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
4357 "unexpected offset in global node");
4359 // This also catches the large code model case for Darwin, and tiny code
4360 // model with got relocations.
4361 if ((OpFlags & AArch64II::MO_GOT) != 0) {
4362 return getGOT(GN, DAG, OpFlags);
4365 SDValue Result;
4366 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4367 Result = getAddrLarge(GN, DAG, OpFlags);
4368 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4369 Result = getAddrTiny(GN, DAG, OpFlags);
4370 } else {
4371 Result = getAddr(GN, DAG, OpFlags);
4373 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4374 SDLoc DL(GN);
4375 if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
4376 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4377 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4378 return Result;
4381 /// Convert a TLS address reference into the correct sequence of loads
4382 /// and calls to compute the variable's address (for Darwin, currently) and
4383 /// return an SDValue containing the final node.
4385 /// Darwin only has one TLS scheme which must be capable of dealing with the
4386 /// fully general situation, in the worst case. This means:
4387 /// + "extern __thread" declaration.
4388 /// + Defined in a possibly unknown dynamic library.
4390 /// The general system is that each __thread variable has a [3 x i64] descriptor
4391 /// which contains information used by the runtime to calculate the address. The
4392 /// only part of this the compiler needs to know about is the first xword, which
4393 /// contains a function pointer that must be called with the address of the
4394 /// entire descriptor in "x0".
4396 /// Since this descriptor may be in a different unit, in general even the
4397 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4398 /// is:
4399 /// adrp x0, _var@TLVPPAGE
4400 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
4401 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
4402 /// ; the function pointer
4403 /// blr x1 ; Uses descriptor address in x0
4404 /// ; Address of _var is now in x0.
4406 /// If the address of _var's descriptor *is* known to the linker, then it can
4407 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4408 /// a slight efficiency gain.
4409 SDValue
4410 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4411 SelectionDAG &DAG) const {
4412 assert(Subtarget->isTargetDarwin() &&
4413 "This function expects a Darwin target");
4415 SDLoc DL(Op);
4416 MVT PtrVT = getPointerTy(DAG.getDataLayout());
4417 MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
4418 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4420 SDValue TLVPAddr =
4421 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4422 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4424 // The first entry in the descriptor is a function pointer that we must call
4425 // to obtain the address of the variable.
4426 SDValue Chain = DAG.getEntryNode();
4427 SDValue FuncTLVGet = DAG.getLoad(
4428 PtrMemVT, DL, Chain, DescAddr,
4429 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4430 /* Alignment = */ PtrMemVT.getSizeInBits() / 8,
4431 MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
4432 Chain = FuncTLVGet.getValue(1);
4434 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
4435 FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);
4437 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4438 MFI.setAdjustsStack(true);
4440 // TLS calls preserve all registers except those that absolutely must be
4441 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4442 // silly).
4443 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4444 const uint32_t *Mask = TRI->getTLSCallPreservedMask();
4445 if (Subtarget->hasCustomCallingConv())
4446 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
4448 // Finally, we can make the call. This is just a degenerate version of a
4449 // normal AArch64 call node: x0 takes the address of the descriptor, and
4450 // returns the address of the variable in this thread.
4451 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4452 Chain =
4453 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4454 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4455 DAG.getRegisterMask(Mask), Chain.getValue(1));
4456 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4459 /// When accessing thread-local variables under either the general-dynamic or
4460 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4461 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4462 /// is a function pointer to carry out the resolution.
4464 /// The sequence is:
4465 /// adrp x0, :tlsdesc:var
4466 /// ldr x1, [x0, #:tlsdesc_lo12:var]
4467 /// add x0, x0, #:tlsdesc_lo12:var
4468 /// .tlsdesccall var
4469 /// blr x1
4470 /// (TPIDR_EL0 offset now in x0)
4472 /// The above sequence must be produced unscheduled, to enable the linker to
4473 /// optimize/relax this sequence.
4474 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4475 /// above sequence, and expanded really late in the compilation flow, to ensure
4476 /// the sequence is produced as per above.
4477 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4478 const SDLoc &DL,
4479 SelectionDAG &DAG) const {
4480 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4482 SDValue Chain = DAG.getEntryNode();
4483 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4485 Chain =
4486 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4487 SDValue Glue = Chain.getValue(1);
4489 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4492 SDValue
4493 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4494 SelectionDAG &DAG) const {
4495 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4496 if (getTargetMachine().getCodeModel() == CodeModel::Large)
4497 report_fatal_error("ELF TLS only supported in small memory model");
4498 // Different choices can be made for the maximum size of the TLS area for a
4499 // module. For the small address model, the default TLS size is 16MiB and the
4500 // maximum TLS size is 4GiB.
4501 // FIXME: add -mtls-size command line option and make it control the 16MiB
4502 // vs. 4GiB code sequence generation.
4503 // FIXME: add tiny codemodel support. We currently generate the same code as
4504 // small, which may be larger than needed.
4505 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4507 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4509 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4510 if (Model == TLSModel::LocalDynamic)
4511 Model = TLSModel::GeneralDynamic;
4514 SDValue TPOff;
4515 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4516 SDLoc DL(Op);
4517 const GlobalValue *GV = GA->getGlobal();
4519 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4521 if (Model == TLSModel::LocalExec) {
4522 SDValue HiVar = DAG.getTargetGlobalAddress(
4523 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4524 SDValue LoVar = DAG.getTargetGlobalAddress(
4525 GV, DL, PtrVT, 0,
4526 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4528 SDValue TPWithOff_lo =
4529 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4530 HiVar,
4531 DAG.getTargetConstant(0, DL, MVT::i32)),
4533 SDValue TPWithOff =
4534 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
4535 LoVar,
4536 DAG.getTargetConstant(0, DL, MVT::i32)),
4538 return TPWithOff;
4539 } else if (Model == TLSModel::InitialExec) {
4540 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4541 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4542 } else if (Model == TLSModel::LocalDynamic) {
4543 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4544 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4545 // the beginning of the module's TLS region, followed by a DTPREL offset
4546 // calculation.
4548 // These accesses will need deduplicating if there's more than one.
4549 AArch64FunctionInfo *MFI =
4550 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4551 MFI->incNumLocalDynamicTLSAccesses();
4553 // The call needs a relocation too for linker relaxation. It doesn't make
4554 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4555 // the address.
4556 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4557 AArch64II::MO_TLS);
4559 // Now we can calculate the offset from TPIDR_EL0 to this module's
4560 // thread-local area.
4561 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4563 // Now use :dtprel_whatever: operations to calculate this variable's offset
4564 // in its thread-storage area.
4565 SDValue HiVar = DAG.getTargetGlobalAddress(
4566 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4567 SDValue LoVar = DAG.getTargetGlobalAddress(
4568 GV, DL, MVT::i64, 0,
4569 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4571 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4572 DAG.getTargetConstant(0, DL, MVT::i32)),
4574 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4575 DAG.getTargetConstant(0, DL, MVT::i32)),
4577 } else if (Model == TLSModel::GeneralDynamic) {
4578 // The call needs a relocation too for linker relaxation. It doesn't make
4579 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4580 // the address.
4581 SDValue SymAddr =
4582 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4584 // Finally we can make a call to calculate the offset from tpidr_el0.
4585 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4586 } else
4587 llvm_unreachable("Unsupported ELF TLS access model");
4589 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4592 SDValue
4593 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4594 SelectionDAG &DAG) const {
4595 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4597 SDValue Chain = DAG.getEntryNode();
4598 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4599 SDLoc DL(Op);
4601 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4603 // Load the ThreadLocalStoragePointer from the TEB
4604 // A pointer to the TLS array is located at offset 0x58 from the TEB.
4605 SDValue TLSArray =
4606 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4607 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4608 Chain = TLSArray.getValue(1);
4610 // Load the TLS index from the C runtime;
4611 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4612 // This also does the same as LOADgot, but using a generic i32 load,
4613 // while LOADgot only loads i64.
4614 SDValue TLSIndexHi =
4615 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4616 SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4617 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4618 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4619 SDValue TLSIndex =
4620 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4621 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4622 Chain = TLSIndex.getValue(1);
4624 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4625 // offset into the TLSArray.
4626 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4627 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4628 DAG.getConstant(3, DL, PtrVT));
4629 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4630 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4631 MachinePointerInfo());
4632 Chain = TLS.getValue(1);
4634 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4635 const GlobalValue *GV = GA->getGlobal();
4636 SDValue TGAHi = DAG.getTargetGlobalAddress(
4637 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4638 SDValue TGALo = DAG.getTargetGlobalAddress(
4639 GV, DL, PtrVT, 0,
4640 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4642 // Add the offset from the start of the .tls section (section base).
4643 SDValue Addr =
4644 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4645 DAG.getTargetConstant(0, DL, MVT::i32)),
4647 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4648 return Addr;
4651 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4652 SelectionDAG &DAG) const {
4653 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4654 if (DAG.getTarget().useEmulatedTLS())
4655 return LowerToTLSEmulatedModel(GA, DAG);
4657 if (Subtarget->isTargetDarwin())
4658 return LowerDarwinGlobalTLSAddress(Op, DAG);
4659 if (Subtarget->isTargetELF())
4660 return LowerELFGlobalTLSAddress(Op, DAG);
4661 if (Subtarget->isTargetWindows())
4662 return LowerWindowsGlobalTLSAddress(Op, DAG);
4664 llvm_unreachable("Unexpected platform trying to use TLS");
4667 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4668 SDValue Chain = Op.getOperand(0);
4669 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4670 SDValue LHS = Op.getOperand(2);
4671 SDValue RHS = Op.getOperand(3);
4672 SDValue Dest = Op.getOperand(4);
4673 SDLoc dl(Op);
4675 MachineFunction &MF = DAG.getMachineFunction();
4676 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4677 // will not be produced, as they are conditional branch instructions that do
4678 // not set flags.
4679 bool ProduceNonFlagSettingCondBr =
4680 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
4682 // Handle f128 first, since lowering it will result in comparing the return
4683 // value of a libcall against zero, which is just what the rest of LowerBR_CC
4684 // is expecting to deal with.
4685 if (LHS.getValueType() == MVT::f128) {
4686 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
4688 // If softenSetCCOperands returned a scalar, we need to compare the result
4689 // against zero to select between true and false values.
4690 if (!RHS.getNode()) {
4691 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4692 CC = ISD::SETNE;
4696 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4697 // instruction.
4698 if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4699 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4700 // Only lower legal XALUO ops.
4701 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4702 return SDValue();
4704 // The actual operation with overflow check.
4705 AArch64CC::CondCode OFCC;
4706 SDValue Value, Overflow;
4707 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4709 if (CC == ISD::SETNE)
4710 OFCC = getInvertedCondCode(OFCC);
4711 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4713 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4714 Overflow);
4717 if (LHS.getValueType().isInteger()) {
4718 assert((LHS.getValueType() == RHS.getValueType()) &&
4719 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4721 // If the RHS of the comparison is zero, we can potentially fold this
4722 // to a specialized branch.
4723 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
4724 if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
4725 if (CC == ISD::SETEQ) {
4726 // See if we can use a TBZ to fold in an AND as well.
4727 // TBZ has a smaller branch displacement than CBZ. If the offset is
4728 // out of bounds, a late MI-layer pass rewrites branches.
4729 // 403.gcc is an example that hits this case.
4730 if (LHS.getOpcode() == ISD::AND &&
4731 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4732 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4733 SDValue Test = LHS.getOperand(0);
4734 uint64_t Mask = LHS.getConstantOperandVal(1);
4735 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
4736 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4737 Dest);
4740 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
4741 } else if (CC == ISD::SETNE) {
4742 // See if we can use a TBZ to fold in an AND as well.
4743 // TBZ has a smaller branch displacement than CBZ. If the offset is
4744 // out of bounds, a late MI-layer pass rewrites branches.
4745 // 403.gcc is an example that hits this case.
4746 if (LHS.getOpcode() == ISD::AND &&
4747 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4748 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4749 SDValue Test = LHS.getOperand(0);
4750 uint64_t Mask = LHS.getConstantOperandVal(1);
4751 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
4752 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4753 Dest);
4756 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
4757 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
4758 // Don't combine AND since emitComparison converts the AND to an ANDS
4759 // (a.k.a. TST) and the test in the test bit and branch instruction
4760 // becomes redundant. This would also increase register pressure.
4761 uint64_t Mask = LHS.getValueSizeInBits() - 1;
4762 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
4763 DAG.getConstant(Mask, dl, MVT::i64), Dest);
4766 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
4767 LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
4768 // Don't combine AND since emitComparison converts the AND to an ANDS
4769 // (a.k.a. TST) and the test in the test bit and branch instruction
4770 // becomes redundant. This would also increase register pressure.
4771 uint64_t Mask = LHS.getValueSizeInBits() - 1;
4772 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
4773 DAG.getConstant(Mask, dl, MVT::i64), Dest);
4776 SDValue CCVal;
4777 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4778 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4779 Cmp);
4782 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4783 LHS.getValueType() == MVT::f64);
4785 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4786 // clean. Some of them require two branches to implement.
4787 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4788 AArch64CC::CondCode CC1, CC2;
4789 changeFPCCToAArch64CC(CC, CC1, CC2);
4790 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4791 SDValue BR1 =
4792 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
4793 if (CC2 != AArch64CC::AL) {
4794 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4795 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
4796 Cmp);
4799 return BR1;
4802 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
4803 SelectionDAG &DAG) const {
4804 EVT VT = Op.getValueType();
4805 SDLoc DL(Op);
4807 SDValue In1 = Op.getOperand(0);
4808 SDValue In2 = Op.getOperand(1);
4809 EVT SrcVT = In2.getValueType();
4811 if (SrcVT.bitsLT(VT))
4812 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
4813 else if (SrcVT.bitsGT(VT))
4814 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
4816 EVT VecVT;
4817 uint64_t EltMask;
4818 SDValue VecVal1, VecVal2;
4820 auto setVecVal = [&] (int Idx) {
4821 if (!VT.isVector()) {
4822 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4823 DAG.getUNDEF(VecVT), In1);
4824 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4825 DAG.getUNDEF(VecVT), In2);
4826 } else {
4827 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
4828 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
4832 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
4833 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
4834 EltMask = 0x80000000ULL;
4835 setVecVal(AArch64::ssub);
4836 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
4837 VecVT = MVT::v2i64;
4839 // We want to materialize a mask with the high bit set, but the AdvSIMD
4840 // immediate moves cannot materialize that in a single instruction for
4841 // 64-bit elements. Instead, materialize zero and then negate it.
4842 EltMask = 0;
4844 setVecVal(AArch64::dsub);
4845 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
4846 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
4847 EltMask = 0x8000ULL;
4848 setVecVal(AArch64::hsub);
4849 } else {
4850 llvm_unreachable("Invalid type for copysign!");
4853 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
4855 // If we couldn't materialize the mask above, then the mask vector will be
4856 // the zero vector, and we need to negate it here.
4857 if (VT == MVT::f64 || VT == MVT::v2f64) {
4858 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
4859 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
4860 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
4863 SDValue Sel =
4864 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
4866 if (VT == MVT::f16)
4867 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
4868 if (VT == MVT::f32)
4869 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
4870 else if (VT == MVT::f64)
4871 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
4872 else
4873 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
4876 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
4877 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
4878 Attribute::NoImplicitFloat))
4879 return SDValue();
4881 if (!Subtarget->hasNEON())
4882 return SDValue();
4884 // While there is no integer popcount instruction, it can
4885 // be more efficiently lowered to the following sequence that uses
4886 // AdvSIMD registers/instructions as long as the copies to/from
4887 // the AdvSIMD registers are cheap.
4888 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
4889 // CNT V0.8B, V0.8B // 8xbyte pop-counts
4890 // ADDV B0, V0.8B // sum 8xbyte pop-counts
4891 // UMOV X0, V0.B[0] // copy byte result back to integer reg
4892 SDValue Val = Op.getOperand(0);
4893 SDLoc DL(Op);
4894 EVT VT = Op.getValueType();
4896 if (VT == MVT::i32 || VT == MVT::i64) {
4897 if (VT == MVT::i32)
4898 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
4899 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
4901 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
4902 SDValue UaddLV = DAG.getNode(
4903 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
4904 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
4906 if (VT == MVT::i64)
4907 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
4908 return UaddLV;
4911 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
4912 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
4913 "Unexpected type for custom ctpop lowering");
4915 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4916 Val = DAG.getBitcast(VT8Bit, Val);
4917 Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
4919 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
4920 unsigned EltSize = 8;
4921 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
4922 while (EltSize != VT.getScalarSizeInBits()) {
4923 EltSize *= 2;
4924 NumElts /= 2;
4925 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
4926 Val = DAG.getNode(
4927 ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
4928 DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
4931 return Val;
4934 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
4936 if (Op.getValueType().isVector())
4937 return LowerVSETCC(Op, DAG);
4939 SDValue LHS = Op.getOperand(0);
4940 SDValue RHS = Op.getOperand(1);
4941 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4942 SDLoc dl(Op);
4944 // We chose ZeroOrOneBooleanContents, so use zero and one.
4945 EVT VT = Op.getValueType();
4946 SDValue TVal = DAG.getConstant(1, dl, VT);
4947 SDValue FVal = DAG.getConstant(0, dl, VT);
4949 // Handle f128 first, since one possible outcome is a normal integer
4950 // comparison which gets picked up by the next if statement.
4951 if (LHS.getValueType() == MVT::f128) {
4952 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
4954 // If softenSetCCOperands returned a scalar, use it.
4955 if (!RHS.getNode()) {
4956 assert(LHS.getValueType() == Op.getValueType() &&
4957 "Unexpected setcc expansion!");
4958 return LHS;
4962 if (LHS.getValueType().isInteger()) {
4963 SDValue CCVal;
4964 SDValue Cmp =
4965 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
4967 // Note that we inverted the condition above, so we reverse the order of
4968 // the true and false operands here. This will allow the setcc to be
4969 // matched to a single CSINC instruction.
4970 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
4973 // Now we know we're dealing with FP values.
4974 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4975 LHS.getValueType() == MVT::f64);
4977 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
4978 // and do the comparison.
4979 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4981 AArch64CC::CondCode CC1, CC2;
4982 changeFPCCToAArch64CC(CC, CC1, CC2);
4983 if (CC2 == AArch64CC::AL) {
4984 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
4985 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4987 // Note that we inverted the condition above, so we reverse the order of
4988 // the true and false operands here. This will allow the setcc to be
4989 // matched to a single CSINC instruction.
4990 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
4991 } else {
4992 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4993 // totally clean. Some of them require two CSELs to implement. As is in
4994 // this case, we emit the first CSEL and then emit a second using the output
4995 // of the first as the RHS. We're effectively OR'ing the two CC's together.
4997 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4998 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4999 SDValue CS1 =
5000 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
5002 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
5003 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
5007 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
5008 SDValue RHS, SDValue TVal,
5009 SDValue FVal, const SDLoc &dl,
5010 SelectionDAG &DAG) const {
5011 // Handle f128 first, because it will result in a comparison of some RTLIB
5012 // call result against zero.
5013 if (LHS.getValueType() == MVT::f128) {
5014 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
5016 // If softenSetCCOperands returned a scalar, we need to compare the result
5017 // against zero to select between true and false values.
5018 if (!RHS.getNode()) {
5019 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5020 CC = ISD::SETNE;
5024 // Also handle f16, for which we need to do a f32 comparison.
5025 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
5026 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
5027 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
5030 // Next, handle integers.
5031 if (LHS.getValueType().isInteger()) {
5032 assert((LHS.getValueType() == RHS.getValueType()) &&
5033 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
5035 unsigned Opcode = AArch64ISD::CSEL;
5037 // If both the TVal and the FVal are constants, see if we can swap them in
5038 // order to for a CSINV or CSINC out of them.
5039 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
5040 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
5042 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
5043 std::swap(TVal, FVal);
5044 std::swap(CTVal, CFVal);
5045 CC = ISD::getSetCCInverse(CC, true);
5046 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
5047 std::swap(TVal, FVal);
5048 std::swap(CTVal, CFVal);
5049 CC = ISD::getSetCCInverse(CC, true);
5050 } else if (TVal.getOpcode() == ISD::XOR) {
5051 // If TVal is a NOT we want to swap TVal and FVal so that we can match
5052 // with a CSINV rather than a CSEL.
5053 if (isAllOnesConstant(TVal.getOperand(1))) {
5054 std::swap(TVal, FVal);
5055 std::swap(CTVal, CFVal);
5056 CC = ISD::getSetCCInverse(CC, true);
5058 } else if (TVal.getOpcode() == ISD::SUB) {
5059 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
5060 // that we can match with a CSNEG rather than a CSEL.
5061 if (isNullConstant(TVal.getOperand(0))) {
5062 std::swap(TVal, FVal);
5063 std::swap(CTVal, CFVal);
5064 CC = ISD::getSetCCInverse(CC, true);
5066 } else if (CTVal && CFVal) {
5067 const int64_t TrueVal = CTVal->getSExtValue();
5068 const int64_t FalseVal = CFVal->getSExtValue();
5069 bool Swap = false;
5071 // If both TVal and FVal are constants, see if FVal is the
5072 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
5073 // instead of a CSEL in that case.
5074 if (TrueVal == ~FalseVal) {
5075 Opcode = AArch64ISD::CSINV;
5076 } else if (TrueVal == -FalseVal) {
5077 Opcode = AArch64ISD::CSNEG;
5078 } else if (TVal.getValueType() == MVT::i32) {
5079 // If our operands are only 32-bit wide, make sure we use 32-bit
5080 // arithmetic for the check whether we can use CSINC. This ensures that
5081 // the addition in the check will wrap around properly in case there is
5082 // an overflow (which would not be the case if we do the check with
5083 // 64-bit arithmetic).
5084 const uint32_t TrueVal32 = CTVal->getZExtValue();
5085 const uint32_t FalseVal32 = CFVal->getZExtValue();
5087 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
5088 Opcode = AArch64ISD::CSINC;
5090 if (TrueVal32 > FalseVal32) {
5091 Swap = true;
5094 // 64-bit check whether we can use CSINC.
5095 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
5096 Opcode = AArch64ISD::CSINC;
5098 if (TrueVal > FalseVal) {
5099 Swap = true;
5103 // Swap TVal and FVal if necessary.
5104 if (Swap) {
5105 std::swap(TVal, FVal);
5106 std::swap(CTVal, CFVal);
5107 CC = ISD::getSetCCInverse(CC, true);
5110 if (Opcode != AArch64ISD::CSEL) {
5111 // Drop FVal since we can get its value by simply inverting/negating
5112 // TVal.
5113 FVal = TVal;
5117 // Avoid materializing a constant when possible by reusing a known value in
5118 // a register. However, don't perform this optimization if the known value
5119 // is one, zero or negative one in the case of a CSEL. We can always
5120 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
5121 // FVal, respectively.
5122 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
5123 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
5124 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
5125 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5126 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
5127 // "a != C ? x : a" to avoid materializing C.
5128 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
5129 TVal = LHS;
5130 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
5131 FVal = LHS;
5132 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
5133 assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
5134 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
5135 // avoid materializing C.
5136 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5137 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
5138 Opcode = AArch64ISD::CSINV;
5139 TVal = LHS;
5140 FVal = DAG.getConstant(0, dl, FVal.getValueType());
5144 SDValue CCVal;
5145 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
5146 EVT VT = TVal.getValueType();
5147 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
5150 // Now we know we're dealing with FP values.
5151 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
5152 LHS.getValueType() == MVT::f64);
5153 assert(LHS.getValueType() == RHS.getValueType());
5154 EVT VT = TVal.getValueType();
5155 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
5157 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5158 // clean. Some of them require two CSELs to implement.
5159 AArch64CC::CondCode CC1, CC2;
5160 changeFPCCToAArch64CC(CC, CC1, CC2);
5162 if (DAG.getTarget().Options.UnsafeFPMath) {
5163 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
5164 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
5165 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
5166 if (RHSVal && RHSVal->isZero()) {
5167 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
5168 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
5170 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
5171 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
5172 TVal = LHS;
5173 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
5174 CFVal && CFVal->isZero() &&
5175 FVal.getValueType() == LHS.getValueType())
5176 FVal = LHS;
5180 // Emit first, and possibly only, CSEL.
5181 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
5182 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
5184 // If we need a second CSEL, emit it, using the output of the first as the
5185 // RHS. We're effectively OR'ing the two CC's together.
5186 if (CC2 != AArch64CC::AL) {
5187 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
5188 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
5191 // Otherwise, return the output of the first CSEL.
5192 return CS1;
5195 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
5196 SelectionDAG &DAG) const {
5197 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5198 SDValue LHS = Op.getOperand(0);
5199 SDValue RHS = Op.getOperand(1);
5200 SDValue TVal = Op.getOperand(2);
5201 SDValue FVal = Op.getOperand(3);
5202 SDLoc DL(Op);
5203 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5206 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
5207 SelectionDAG &DAG) const {
5208 SDValue CCVal = Op->getOperand(0);
5209 SDValue TVal = Op->getOperand(1);
5210 SDValue FVal = Op->getOperand(2);
5211 SDLoc DL(Op);
5213 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5214 // instruction.
5215 if (isOverflowIntrOpRes(CCVal)) {
5216 // Only lower legal XALUO ops.
5217 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
5218 return SDValue();
5220 AArch64CC::CondCode OFCC;
5221 SDValue Value, Overflow;
5222 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
5223 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
5225 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
5226 CCVal, Overflow);
5229 // Lower it the same way as we would lower a SELECT_CC node.
5230 ISD::CondCode CC;
5231 SDValue LHS, RHS;
5232 if (CCVal.getOpcode() == ISD::SETCC) {
5233 LHS = CCVal.getOperand(0);
5234 RHS = CCVal.getOperand(1);
5235 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
5236 } else {
5237 LHS = CCVal;
5238 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
5239 CC = ISD::SETNE;
5241 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5244 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
5245 SelectionDAG &DAG) const {
5246 // Jump table entries as PC relative offsets. No additional tweaking
5247 // is necessary here. Just get the address of the jump table.
5248 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5250 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5251 !Subtarget->isTargetMachO()) {
5252 return getAddrLarge(JT, DAG);
5253 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5254 return getAddrTiny(JT, DAG);
5256 return getAddr(JT, DAG);
5259 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
5260 SelectionDAG &DAG) const {
5261 // Jump table entries as PC relative offsets. No additional tweaking
5262 // is necessary here. Just get the address of the jump table.
5263 SDLoc DL(Op);
5264 SDValue JT = Op.getOperand(1);
5265 SDValue Entry = Op.getOperand(2);
5266 int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
5268 SDNode *Dest =
5269 DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
5270 Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
5271 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
5272 SDValue(Dest, 0));
5275 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
5276 SelectionDAG &DAG) const {
5277 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5279 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
5280 // Use the GOT for the large code model on iOS.
5281 if (Subtarget->isTargetMachO()) {
5282 return getGOT(CP, DAG);
5284 return getAddrLarge(CP, DAG);
5285 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5286 return getAddrTiny(CP, DAG);
5287 } else {
5288 return getAddr(CP, DAG);
5292 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
5293 SelectionDAG &DAG) const {
5294 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
5295 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5296 !Subtarget->isTargetMachO()) {
5297 return getAddrLarge(BA, DAG);
5298 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5299 return getAddrTiny(BA, DAG);
5301 return getAddr(BA, DAG);
5304 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
5305 SelectionDAG &DAG) const {
5306 AArch64FunctionInfo *FuncInfo =
5307 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5309 SDLoc DL(Op);
5310 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
5311 getPointerTy(DAG.getDataLayout()));
5312 FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
5313 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5314 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5315 MachinePointerInfo(SV));
5318 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
5319 SelectionDAG &DAG) const {
5320 AArch64FunctionInfo *FuncInfo =
5321 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5323 SDLoc DL(Op);
5324 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
5325 ? FuncInfo->getVarArgsGPRIndex()
5326 : FuncInfo->getVarArgsStackIndex(),
5327 getPointerTy(DAG.getDataLayout()));
5328 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5329 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5330 MachinePointerInfo(SV));
5333 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
5334 SelectionDAG &DAG) const {
5335 // The layout of the va_list struct is specified in the AArch64 Procedure Call
5336 // Standard, section B.3.
5337 MachineFunction &MF = DAG.getMachineFunction();
5338 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5339 auto PtrVT = getPointerTy(DAG.getDataLayout());
5340 SDLoc DL(Op);
5342 SDValue Chain = Op.getOperand(0);
5343 SDValue VAList = Op.getOperand(1);
5344 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5345 SmallVector<SDValue, 4> MemOps;
5347 // void *__stack at offset 0
5348 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
5349 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
5350 MachinePointerInfo(SV), /* Alignment = */ 8));
5352 // void *__gr_top at offset 8
5353 int GPRSize = FuncInfo->getVarArgsGPRSize();
5354 if (GPRSize > 0) {
5355 SDValue GRTop, GRTopAddr;
5357 GRTopAddr =
5358 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
5360 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
5361 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
5362 DAG.getConstant(GPRSize, DL, PtrVT));
5364 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
5365 MachinePointerInfo(SV, 8),
5366 /* Alignment = */ 8));
5369 // void *__vr_top at offset 16
5370 int FPRSize = FuncInfo->getVarArgsFPRSize();
5371 if (FPRSize > 0) {
5372 SDValue VRTop, VRTopAddr;
5373 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5374 DAG.getConstant(16, DL, PtrVT));
5376 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
5377 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
5378 DAG.getConstant(FPRSize, DL, PtrVT));
5380 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
5381 MachinePointerInfo(SV, 16),
5382 /* Alignment = */ 8));
5385 // int __gr_offs at offset 24
5386 SDValue GROffsAddr =
5387 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
5388 MemOps.push_back(DAG.getStore(
5389 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
5390 MachinePointerInfo(SV, 24), /* Alignment = */ 4));
5392 // int __vr_offs at offset 28
5393 SDValue VROffsAddr =
5394 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
5395 MemOps.push_back(DAG.getStore(
5396 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
5397 MachinePointerInfo(SV, 28), /* Alignment = */ 4));
5399 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
5402 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
5403 SelectionDAG &DAG) const {
5404 MachineFunction &MF = DAG.getMachineFunction();
5406 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
5407 return LowerWin64_VASTART(Op, DAG);
5408 else if (Subtarget->isTargetDarwin())
5409 return LowerDarwin_VASTART(Op, DAG);
5410 else
5411 return LowerAAPCS_VASTART(Op, DAG);
5414 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
5415 SelectionDAG &DAG) const {
5416 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5417 // pointer.
5418 SDLoc DL(Op);
5419 unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
5420 unsigned VaListSize = (Subtarget->isTargetDarwin() ||
5421 Subtarget->isTargetWindows()) ? PtrSize : 32;
5422 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5423 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5425 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
5426 DAG.getConstant(VaListSize, DL, MVT::i32), PtrSize,
5427 false, false, false, MachinePointerInfo(DestSV),
5428 MachinePointerInfo(SrcSV));
5431 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
5432 assert(Subtarget->isTargetDarwin() &&
5433 "automatic va_arg instruction only works on Darwin");
5435 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5436 EVT VT = Op.getValueType();
5437 SDLoc DL(Op);
5438 SDValue Chain = Op.getOperand(0);
5439 SDValue Addr = Op.getOperand(1);
5440 unsigned Align = Op.getConstantOperandVal(3);
5441 unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
5442 auto PtrVT = getPointerTy(DAG.getDataLayout());
5443 auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
5444 SDValue VAList =
5445 DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
5446 Chain = VAList.getValue(1);
5447 VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);
5449 if (Align > MinSlotSize) {
5450 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
5451 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5452 DAG.getConstant(Align - 1, DL, PtrVT));
5453 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
5454 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
5457 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5458 unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
5460 // Scalar integer and FP values smaller than 64 bits are implicitly extended
5461 // up to 64 bits. At the very least, we have to increase the striding of the
5462 // vaargs list to match this, and for FP values we need to introduce
5463 // FP_ROUND nodes as well.
5464 if (VT.isInteger() && !VT.isVector())
5465 ArgSize = std::max(ArgSize, MinSlotSize);
5466 bool NeedFPTrunc = false;
5467 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5468 ArgSize = 8;
5469 NeedFPTrunc = true;
5472 // Increment the pointer, VAList, to the next vaarg
5473 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5474 DAG.getConstant(ArgSize, DL, PtrVT));
5475 VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);
5477 // Store the incremented VAList to the legalized pointer
5478 SDValue APStore =
5479 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5481 // Load the actual argument out of the pointer VAList
5482 if (NeedFPTrunc) {
5483 // Load the value as an f64.
5484 SDValue WideFP =
5485 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5486 // Round the value down to an f32.
5487 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5488 DAG.getIntPtrConstant(1, DL));
5489 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5490 // Merge the rounded value with the chain output of the load.
5491 return DAG.getMergeValues(Ops, DL);
5494 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5497 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5498 SelectionDAG &DAG) const {
5499 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5500 MFI.setFrameAddressIsTaken(true);
5502 EVT VT = Op.getValueType();
5503 SDLoc DL(Op);
5504 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5505 SDValue FrameAddr =
5506 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
5507 while (Depth--)
5508 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5509 MachinePointerInfo());
5511 if (Subtarget->isTargetILP32())
5512 FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
5513 DAG.getValueType(VT));
5515 return FrameAddr;
5518 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
5519 SelectionDAG &DAG) const {
5520 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5522 EVT VT = getPointerTy(DAG.getDataLayout());
5523 SDLoc DL(Op);
5524 int FI = MFI.CreateFixedObject(4, 0, false);
5525 return DAG.getFrameIndex(FI, VT);
5528 #define GET_REGISTER_MATCHER
5529 #include "AArch64GenAsmMatcher.inc"
5531 // FIXME? Maybe this could be a TableGen attribute on some registers and
5532 // this table could be generated automatically from RegInfo.
5533 Register AArch64TargetLowering::
5534 getRegisterByName(const char* RegName, EVT VT, const MachineFunction &MF) const {
5535 Register Reg = MatchRegisterName(RegName);
5536 if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
5537 const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
5538 unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
5539 if (!Subtarget->isXRegisterReserved(DwarfRegNum))
5540 Reg = 0;
5542 if (Reg)
5543 return Reg;
5544 report_fatal_error(Twine("Invalid register name \""
5545 + StringRef(RegName) + "\"."));
5548 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
5549 SelectionDAG &DAG) const {
5550 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5552 EVT VT = Op.getValueType();
5553 SDLoc DL(Op);
5555 SDValue FrameAddr =
5556 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5557 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5559 return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
5562 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5563 SelectionDAG &DAG) const {
5564 MachineFunction &MF = DAG.getMachineFunction();
5565 MachineFrameInfo &MFI = MF.getFrameInfo();
5566 MFI.setReturnAddressIsTaken(true);
5568 EVT VT = Op.getValueType();
5569 SDLoc DL(Op);
5570 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5571 if (Depth) {
5572 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5573 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5574 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5575 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5576 MachinePointerInfo());
5579 // Return LR, which contains the return address. Mark it an implicit live-in.
5580 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5581 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5584 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5585 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5586 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5587 SelectionDAG &DAG) const {
5588 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5589 EVT VT = Op.getValueType();
5590 unsigned VTBits = VT.getSizeInBits();
5591 SDLoc dl(Op);
5592 SDValue ShOpLo = Op.getOperand(0);
5593 SDValue ShOpHi = Op.getOperand(1);
5594 SDValue ShAmt = Op.getOperand(2);
5595 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5597 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5599 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5600 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5601 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5603 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5604 // is "undef". We wanted 0, so CSEL it directly.
5605 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5606 ISD::SETEQ, dl, DAG);
5607 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5608 HiBitsForLo =
5609 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5610 HiBitsForLo, CCVal, Cmp);
5612 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5613 DAG.getConstant(VTBits, dl, MVT::i64));
5615 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5616 SDValue LoForNormalShift =
5617 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5619 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5620 dl, DAG);
5621 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5622 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5623 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5624 LoForNormalShift, CCVal, Cmp);
5626 // AArch64 shifts larger than the register width are wrapped rather than
5627 // clamped, so we can't just emit "hi >> x".
5628 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5629 SDValue HiForBigShift =
5630 Opc == ISD::SRA
5631 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5632 DAG.getConstant(VTBits - 1, dl, MVT::i64))
5633 : DAG.getConstant(0, dl, VT);
5634 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5635 HiForNormalShift, CCVal, Cmp);
5637 SDValue Ops[2] = { Lo, Hi };
5638 return DAG.getMergeValues(Ops, dl);
5641 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5642 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5643 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5644 SelectionDAG &DAG) const {
5645 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5646 EVT VT = Op.getValueType();
5647 unsigned VTBits = VT.getSizeInBits();
5648 SDLoc dl(Op);
5649 SDValue ShOpLo = Op.getOperand(0);
5650 SDValue ShOpHi = Op.getOperand(1);
5651 SDValue ShAmt = Op.getOperand(2);
5653 assert(Op.getOpcode() == ISD::SHL_PARTS);
5654 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5655 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5656 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5658 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5659 // is "undef". We wanted 0, so CSEL it directly.
5660 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5661 ISD::SETEQ, dl, DAG);
5662 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5663 LoBitsForHi =
5664 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5665 LoBitsForHi, CCVal, Cmp);
5667 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5668 DAG.getConstant(VTBits, dl, MVT::i64));
5669 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5670 SDValue HiForNormalShift =
5671 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5673 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5675 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5676 dl, DAG);
5677 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5678 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5679 HiForNormalShift, CCVal, Cmp);
5681 // AArch64 shifts of larger than register sizes are wrapped rather than
5682 // clamped, so we can't just emit "lo << a" if a is too big.
5683 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5684 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5685 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5686 LoForNormalShift, CCVal, Cmp);
5688 SDValue Ops[2] = { Lo, Hi };
5689 return DAG.getMergeValues(Ops, dl);
5692 bool AArch64TargetLowering::isOffsetFoldingLegal(
5693 const GlobalAddressSDNode *GA) const {
5694 // Offsets are folded in the DAG combine rather than here so that we can
5695 // intelligently choose an offset based on the uses.
5696 return false;
5699 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
5700 bool OptForSize) const {
5701 bool IsLegal = false;
5702 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5703 // 16-bit case when target has full fp16 support.
5704 // FIXME: We should be able to handle f128 as well with a clever lowering.
5705 const APInt ImmInt = Imm.bitcastToAPInt();
5706 if (VT == MVT::f64)
5707 IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
5708 else if (VT == MVT::f32)
5709 IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
5710 else if (VT == MVT::f16 && Subtarget->hasFullFP16())
5711 IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
5712 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
5713 // generate that fmov.
5715 // If we can not materialize in immediate field for fmov, check if the
5716 // value can be encoded as the immediate operand of a logical instruction.
5717 // The immediate value will be created with either MOVZ, MOVN, or ORR.
5718 if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
5719 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
5720 // however the mov+fmov sequence is always better because of the reduced
5721 // cache pressure. The timings are still the same if you consider
5722 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
5723 // movw+movk is fused). So we limit up to 2 instrdduction at most.
5724 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
5725 AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
5726 Insn);
5727 unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
5728 IsLegal = Insn.size() <= Limit;
5731 LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
5732 << " imm value: "; Imm.dump(););
5733 return IsLegal;
5736 //===----------------------------------------------------------------------===//
5737 // AArch64 Optimization Hooks
5738 //===----------------------------------------------------------------------===//
5740 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
5741 SDValue Operand, SelectionDAG &DAG,
5742 int &ExtraSteps) {
5743 EVT VT = Operand.getValueType();
5744 if (ST->hasNEON() &&
5745 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
5746 VT == MVT::f32 || VT == MVT::v1f32 ||
5747 VT == MVT::v2f32 || VT == MVT::v4f32)) {
5748 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
5749 // For the reciprocal estimates, convergence is quadratic, so the number
5750 // of digits is doubled after each iteration. In ARMv8, the accuracy of
5751 // the initial estimate is 2^-8. Thus the number of extra steps to refine
5752 // the result for float (23 mantissa bits) is 2 and for double (52
5753 // mantissa bits) is 3.
5754 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
5756 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
5759 return SDValue();
5762 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
5763 SelectionDAG &DAG, int Enabled,
5764 int &ExtraSteps,
5765 bool &UseOneConst,
5766 bool Reciprocal) const {
5767 if (Enabled == ReciprocalEstimate::Enabled ||
5768 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
5769 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
5770 DAG, ExtraSteps)) {
5771 SDLoc DL(Operand);
5772 EVT VT = Operand.getValueType();
5774 SDNodeFlags Flags;
5775 Flags.setAllowReassociation(true);
5777 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5778 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5779 for (int i = ExtraSteps; i > 0; --i) {
5780 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
5781 Flags);
5782 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
5783 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5785 if (!Reciprocal) {
5786 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
5787 VT);
5788 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5789 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
5791 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
5792 // Correct the result if the operand is 0.0.
5793 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
5794 VT, Eq, Operand, Estimate);
5797 ExtraSteps = 0;
5798 return Estimate;
5801 return SDValue();
5804 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
5805 SelectionDAG &DAG, int Enabled,
5806 int &ExtraSteps) const {
5807 if (Enabled == ReciprocalEstimate::Enabled)
5808 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
5809 DAG, ExtraSteps)) {
5810 SDLoc DL(Operand);
5811 EVT VT = Operand.getValueType();
5813 SDNodeFlags Flags;
5814 Flags.setAllowReassociation(true);
5816 // Newton reciprocal iteration: E * (2 - X * E)
5817 // AArch64 reciprocal iteration instruction: (2 - M * N)
5818 for (int i = ExtraSteps; i > 0; --i) {
5819 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
5820 Estimate, Flags);
5821 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5824 ExtraSteps = 0;
5825 return Estimate;
5828 return SDValue();
5831 //===----------------------------------------------------------------------===//
5832 // AArch64 Inline Assembly Support
5833 //===----------------------------------------------------------------------===//
5835 // Table of Constraints
5836 // TODO: This is the current set of constraints supported by ARM for the
5837 // compiler, not all of them may make sense.
5839 // r - A general register
5840 // w - An FP/SIMD register of some size in the range v0-v31
5841 // x - An FP/SIMD register of some size in the range v0-v15
5842 // I - Constant that can be used with an ADD instruction
5843 // J - Constant that can be used with a SUB instruction
5844 // K - Constant that can be used with a 32-bit logical instruction
5845 // L - Constant that can be used with a 64-bit logical instruction
5846 // M - Constant that can be used as a 32-bit MOV immediate
5847 // N - Constant that can be used as a 64-bit MOV immediate
5848 // Q - A memory reference with base register and no offset
5849 // S - A symbolic address
5850 // Y - Floating point constant zero
5851 // Z - Integer constant zero
5853 // Note that general register operands will be output using their 64-bit x
5854 // register name, whatever the size of the variable, unless the asm operand
5855 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5856 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5857 // %q modifier.
5858 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5859 // At this point, we have to lower this constraint to something else, so we
5860 // lower it to an "r" or "w". However, by doing this we will force the result
5861 // to be in register, while the X constraint is much more permissive.
5863 // Although we are correct (we are free to emit anything, without
5864 // constraints), we might break use cases that would expect us to be more
5865 // efficient and emit something else.
5866 if (!Subtarget->hasFPARMv8())
5867 return "r";
5869 if (ConstraintVT.isFloatingPoint())
5870 return "w";
5872 if (ConstraintVT.isVector() &&
5873 (ConstraintVT.getSizeInBits() == 64 ||
5874 ConstraintVT.getSizeInBits() == 128))
5875 return "w";
5877 return "r";
5880 enum PredicateConstraint {
5881 Upl,
5882 Upa,
5883 Invalid
5886 static PredicateConstraint parsePredicateConstraint(StringRef Constraint) {
5887 PredicateConstraint P = PredicateConstraint::Invalid;
5888 if (Constraint == "Upa")
5889 P = PredicateConstraint::Upa;
5890 if (Constraint == "Upl")
5891 P = PredicateConstraint::Upl;
5892 return P;
5895 /// getConstraintType - Given a constraint letter, return the type of
5896 /// constraint it is for this target.
5897 AArch64TargetLowering::ConstraintType
5898 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
5899 if (Constraint.size() == 1) {
5900 switch (Constraint[0]) {
5901 default:
5902 break;
5903 case 'x':
5904 case 'w':
5905 case 'y':
5906 return C_RegisterClass;
5907 // An address with a single base register. Due to the way we
5908 // currently handle addresses it is the same as 'r'.
5909 case 'Q':
5910 return C_Memory;
5911 case 'I':
5912 case 'J':
5913 case 'K':
5914 case 'L':
5915 case 'M':
5916 case 'N':
5917 case 'Y':
5918 case 'Z':
5919 return C_Immediate;
5920 case 'z':
5921 case 'S': // A symbolic address
5922 return C_Other;
5924 } else if (parsePredicateConstraint(Constraint) !=
5925 PredicateConstraint::Invalid)
5926 return C_RegisterClass;
5927 return TargetLowering::getConstraintType(Constraint);
5930 /// Examine constraint type and operand type and determine a weight value.
5931 /// This object must already have been set up with the operand type
5932 /// and the current alternative constraint selected.
5933 TargetLowering::ConstraintWeight
5934 AArch64TargetLowering::getSingleConstraintMatchWeight(
5935 AsmOperandInfo &info, const char *constraint) const {
5936 ConstraintWeight weight = CW_Invalid;
5937 Value *CallOperandVal = info.CallOperandVal;
5938 // If we don't have a value, we can't do a match,
5939 // but allow it at the lowest weight.
5940 if (!CallOperandVal)
5941 return CW_Default;
5942 Type *type = CallOperandVal->getType();
5943 // Look at the constraint type.
5944 switch (*constraint) {
5945 default:
5946 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5947 break;
5948 case 'x':
5949 case 'w':
5950 case 'y':
5951 if (type->isFloatingPointTy() || type->isVectorTy())
5952 weight = CW_Register;
5953 break;
5954 case 'z':
5955 weight = CW_Constant;
5956 break;
5957 case 'U':
5958 if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid)
5959 weight = CW_Register;
5960 break;
5962 return weight;
5965 std::pair<unsigned, const TargetRegisterClass *>
5966 AArch64TargetLowering::getRegForInlineAsmConstraint(
5967 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5968 if (Constraint.size() == 1) {
5969 switch (Constraint[0]) {
5970 case 'r':
5971 if (VT.getSizeInBits() == 64)
5972 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
5973 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
5974 case 'w':
5975 if (!Subtarget->hasFPARMv8())
5976 break;
5977 if (VT.isScalableVector())
5978 return std::make_pair(0U, &AArch64::ZPRRegClass);
5979 if (VT.getSizeInBits() == 16)
5980 return std::make_pair(0U, &AArch64::FPR16RegClass);
5981 if (VT.getSizeInBits() == 32)
5982 return std::make_pair(0U, &AArch64::FPR32RegClass);
5983 if (VT.getSizeInBits() == 64)
5984 return std::make_pair(0U, &AArch64::FPR64RegClass);
5985 if (VT.getSizeInBits() == 128)
5986 return std::make_pair(0U, &AArch64::FPR128RegClass);
5987 break;
5988 // The instructions that this constraint is designed for can
5989 // only take 128-bit registers so just use that regclass.
5990 case 'x':
5991 if (!Subtarget->hasFPARMv8())
5992 break;
5993 if (VT.isScalableVector())
5994 return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
5995 if (VT.getSizeInBits() == 128)
5996 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
5997 break;
5998 case 'y':
5999 if (!Subtarget->hasFPARMv8())
6000 break;
6001 if (VT.isScalableVector())
6002 return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
6003 break;
6005 } else {
6006 PredicateConstraint PC = parsePredicateConstraint(Constraint);
6007 if (PC != PredicateConstraint::Invalid) {
6008 assert(VT.isScalableVector());
6009 bool restricted = (PC == PredicateConstraint::Upl);
6010 return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass)
6011 : std::make_pair(0U, &AArch64::PPRRegClass);
6014 if (StringRef("{cc}").equals_lower(Constraint))
6015 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
6017 // Use the default implementation in TargetLowering to convert the register
6018 // constraint into a member of a register class.
6019 std::pair<unsigned, const TargetRegisterClass *> Res;
6020 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
6022 // Not found as a standard register?
6023 if (!Res.second) {
6024 unsigned Size = Constraint.size();
6025 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
6026 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
6027 int RegNo;
6028 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
6029 if (!Failed && RegNo >= 0 && RegNo <= 31) {
6030 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
6031 // By default we'll emit v0-v31 for this unless there's a modifier where
6032 // we'll emit the correct register as well.
6033 if (VT != MVT::Other && VT.getSizeInBits() == 64) {
6034 Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
6035 Res.second = &AArch64::FPR64RegClass;
6036 } else {
6037 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
6038 Res.second = &AArch64::FPR128RegClass;
6044 if (Res.second && !Subtarget->hasFPARMv8() &&
6045 !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
6046 !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
6047 return std::make_pair(0U, nullptr);
6049 return Res;
6052 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6053 /// vector. If it is invalid, don't add anything to Ops.
6054 void AArch64TargetLowering::LowerAsmOperandForConstraint(
6055 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
6056 SelectionDAG &DAG) const {
6057 SDValue Result;
6059 // Currently only support length 1 constraints.
6060 if (Constraint.length() != 1)
6061 return;
6063 char ConstraintLetter = Constraint[0];
6064 switch (ConstraintLetter) {
6065 default:
6066 break;
6068 // This set of constraints deal with valid constants for various instructions.
6069 // Validate and return a target constant for them if we can.
6070 case 'z': {
6071 // 'z' maps to xzr or wzr so it needs an input of 0.
6072 if (!isNullConstant(Op))
6073 return;
6075 if (Op.getValueType() == MVT::i64)
6076 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
6077 else
6078 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
6079 break;
6081 case 'S': {
6082 // An absolute symbolic address or label reference.
6083 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
6084 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
6085 GA->getValueType(0));
6086 } else if (const BlockAddressSDNode *BA =
6087 dyn_cast<BlockAddressSDNode>(Op)) {
6088 Result =
6089 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
6090 } else if (const ExternalSymbolSDNode *ES =
6091 dyn_cast<ExternalSymbolSDNode>(Op)) {
6092 Result =
6093 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
6094 } else
6095 return;
6096 break;
6099 case 'I':
6100 case 'J':
6101 case 'K':
6102 case 'L':
6103 case 'M':
6104 case 'N':
6105 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
6106 if (!C)
6107 return;
6109 // Grab the value and do some validation.
6110 uint64_t CVal = C->getZExtValue();
6111 switch (ConstraintLetter) {
6112 // The I constraint applies only to simple ADD or SUB immediate operands:
6113 // i.e. 0 to 4095 with optional shift by 12
6114 // The J constraint applies only to ADD or SUB immediates that would be
6115 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
6116 // instruction [or vice versa], in other words -1 to -4095 with optional
6117 // left shift by 12.
6118 case 'I':
6119 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
6120 break;
6121 return;
6122 case 'J': {
6123 uint64_t NVal = -C->getSExtValue();
6124 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
6125 CVal = C->getSExtValue();
6126 break;
6128 return;
6130 // The K and L constraints apply *only* to logical immediates, including
6131 // what used to be the MOVI alias for ORR (though the MOVI alias has now
6132 // been removed and MOV should be used). So these constraints have to
6133 // distinguish between bit patterns that are valid 32-bit or 64-bit
6134 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
6135 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
6136 // versa.
6137 case 'K':
6138 if (AArch64_AM::isLogicalImmediate(CVal, 32))
6139 break;
6140 return;
6141 case 'L':
6142 if (AArch64_AM::isLogicalImmediate(CVal, 64))
6143 break;
6144 return;
6145 // The M and N constraints are a superset of K and L respectively, for use
6146 // with the MOV (immediate) alias. As well as the logical immediates they
6147 // also match 32 or 64-bit immediates that can be loaded either using a
6148 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
6149 // (M) or 64-bit 0x1234000000000000 (N) etc.
6150 // As a note some of this code is liberally stolen from the asm parser.
6151 case 'M': {
6152 if (!isUInt<32>(CVal))
6153 return;
6154 if (AArch64_AM::isLogicalImmediate(CVal, 32))
6155 break;
6156 if ((CVal & 0xFFFF) == CVal)
6157 break;
6158 if ((CVal & 0xFFFF0000ULL) == CVal)
6159 break;
6160 uint64_t NCVal = ~(uint32_t)CVal;
6161 if ((NCVal & 0xFFFFULL) == NCVal)
6162 break;
6163 if ((NCVal & 0xFFFF0000ULL) == NCVal)
6164 break;
6165 return;
6167 case 'N': {
6168 if (AArch64_AM::isLogicalImmediate(CVal, 64))
6169 break;
6170 if ((CVal & 0xFFFFULL) == CVal)
6171 break;
6172 if ((CVal & 0xFFFF0000ULL) == CVal)
6173 break;
6174 if ((CVal & 0xFFFF00000000ULL) == CVal)
6175 break;
6176 if ((CVal & 0xFFFF000000000000ULL) == CVal)
6177 break;
6178 uint64_t NCVal = ~CVal;
6179 if ((NCVal & 0xFFFFULL) == NCVal)
6180 break;
6181 if ((NCVal & 0xFFFF0000ULL) == NCVal)
6182 break;
6183 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
6184 break;
6185 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
6186 break;
6187 return;
6189 default:
6190 return;
6193 // All assembler immediates are 64-bit integers.
6194 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
6195 break;
6198 if (Result.getNode()) {
6199 Ops.push_back(Result);
6200 return;
6203 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6206 //===----------------------------------------------------------------------===//
6207 // AArch64 Advanced SIMD Support
6208 //===----------------------------------------------------------------------===//
6210 /// WidenVector - Given a value in the V64 register class, produce the
6211 /// equivalent value in the V128 register class.
6212 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
6213 EVT VT = V64Reg.getValueType();
6214 unsigned NarrowSize = VT.getVectorNumElements();
6215 MVT EltTy = VT.getVectorElementType().getSimpleVT();
6216 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
6217 SDLoc DL(V64Reg);
6219 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
6220 V64Reg, DAG.getConstant(0, DL, MVT::i32));
6223 /// getExtFactor - Determine the adjustment factor for the position when
6224 /// generating an "extract from vector registers" instruction.
6225 static unsigned getExtFactor(SDValue &V) {
6226 EVT EltType = V.getValueType().getVectorElementType();
6227 return EltType.getSizeInBits() / 8;
6230 /// NarrowVector - Given a value in the V128 register class, produce the
6231 /// equivalent value in the V64 register class.
6232 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
6233 EVT VT = V128Reg.getValueType();
6234 unsigned WideSize = VT.getVectorNumElements();
6235 MVT EltTy = VT.getVectorElementType().getSimpleVT();
6236 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
6237 SDLoc DL(V128Reg);
6239 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
6242 // Gather data to see if the operation can be modelled as a
6243 // shuffle in combination with VEXTs.
6244 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
6245 SelectionDAG &DAG) const {
6246 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6247 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
6248 SDLoc dl(Op);
6249 EVT VT = Op.getValueType();
6250 unsigned NumElts = VT.getVectorNumElements();
6252 struct ShuffleSourceInfo {
6253 SDValue Vec;
6254 unsigned MinElt;
6255 unsigned MaxElt;
6257 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6258 // be compatible with the shuffle we intend to construct. As a result
6259 // ShuffleVec will be some sliding window into the original Vec.
6260 SDValue ShuffleVec;
6262 // Code should guarantee that element i in Vec starts at element "WindowBase
6263 // + i * WindowScale in ShuffleVec".
6264 int WindowBase;
6265 int WindowScale;
6267 ShuffleSourceInfo(SDValue Vec)
6268 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
6269 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
6271 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6274 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6275 // node.
6276 SmallVector<ShuffleSourceInfo, 2> Sources;
6277 for (unsigned i = 0; i < NumElts; ++i) {
6278 SDValue V = Op.getOperand(i);
6279 if (V.isUndef())
6280 continue;
6281 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6282 !isa<ConstantSDNode>(V.getOperand(1))) {
6283 LLVM_DEBUG(
6284 dbgs() << "Reshuffle failed: "
6285 "a shuffle can only come from building a vector from "
6286 "various elements of other vectors, provided their "
6287 "indices are constant\n");
6288 return SDValue();
6291 // Add this element source to the list if it's not already there.
6292 SDValue SourceVec = V.getOperand(0);
6293 auto Source = find(Sources, SourceVec);
6294 if (Source == Sources.end())
6295 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6297 // Update the minimum and maximum lane number seen.
6298 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6299 Source->MinElt = std::min(Source->MinElt, EltNo);
6300 Source->MaxElt = std::max(Source->MaxElt, EltNo);
6303 if (Sources.size() > 2) {
6304 LLVM_DEBUG(
6305 dbgs() << "Reshuffle failed: currently only do something sane when at "
6306 "most two source vectors are involved\n");
6307 return SDValue();
6310 // Find out the smallest element size among result and two sources, and use
6311 // it as element size to build the shuffle_vector.
6312 EVT SmallestEltTy = VT.getVectorElementType();
6313 for (auto &Source : Sources) {
6314 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6315 if (SrcEltTy.bitsLT(SmallestEltTy)) {
6316 SmallestEltTy = SrcEltTy;
6319 unsigned ResMultiplier =
6320 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6321 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6322 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6324 // If the source vector is too wide or too narrow, we may nevertheless be able
6325 // to construct a compatible shuffle either by concatenating it with UNDEF or
6326 // extracting a suitable range of elements.
6327 for (auto &Src : Sources) {
6328 EVT SrcVT = Src.ShuffleVec.getValueType();
6330 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6331 continue;
6333 // This stage of the search produces a source with the same element type as
6334 // the original, but with a total width matching the BUILD_VECTOR output.
6335 EVT EltVT = SrcVT.getVectorElementType();
6336 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6337 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6339 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6340 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
6341 // We can pad out the smaller vector for free, so if it's part of a
6342 // shuffle...
6343 Src.ShuffleVec =
6344 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6345 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6346 continue;
6349 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
6351 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6352 LLVM_DEBUG(
6353 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6354 return SDValue();
6357 if (Src.MinElt >= NumSrcElts) {
6358 // The extraction can just take the second half
6359 Src.ShuffleVec =
6360 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6361 DAG.getConstant(NumSrcElts, dl, MVT::i64));
6362 Src.WindowBase = -NumSrcElts;
6363 } else if (Src.MaxElt < NumSrcElts) {
6364 // The extraction can just take the first half
6365 Src.ShuffleVec =
6366 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6367 DAG.getConstant(0, dl, MVT::i64));
6368 } else {
6369 // An actual VEXT is needed
6370 SDValue VEXTSrc1 =
6371 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6372 DAG.getConstant(0, dl, MVT::i64));
6373 SDValue VEXTSrc2 =
6374 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6375 DAG.getConstant(NumSrcElts, dl, MVT::i64));
6376 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
6378 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
6379 VEXTSrc2,
6380 DAG.getConstant(Imm, dl, MVT::i32));
6381 Src.WindowBase = -Src.MinElt;
6385 // Another possible incompatibility occurs from the vector element types. We
6386 // can fix this by bitcasting the source vectors to the same type we intend
6387 // for the shuffle.
6388 for (auto &Src : Sources) {
6389 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6390 if (SrcEltTy == SmallestEltTy)
6391 continue;
6392 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6393 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6394 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6395 Src.WindowBase *= Src.WindowScale;
6398 // Final sanity check before we try to actually produce a shuffle.
6399 LLVM_DEBUG(for (auto Src
6400 : Sources)
6401 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6403 // The stars all align, our next step is to produce the mask for the shuffle.
6404 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6405 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6406 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6407 SDValue Entry = Op.getOperand(i);
6408 if (Entry.isUndef())
6409 continue;
6411 auto Src = find(Sources, Entry.getOperand(0));
6412 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6414 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6415 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6416 // segment.
6417 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6418 int BitsDefined =
6419 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
6420 int LanesDefined = BitsDefined / BitsPerShuffleLane;
6422 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6423 // starting at the appropriate offset.
6424 int *LaneMask = &Mask[i * ResMultiplier];
6426 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6427 ExtractBase += NumElts * (Src - Sources.begin());
6428 for (int j = 0; j < LanesDefined; ++j)
6429 LaneMask[j] = ExtractBase + j;
6432 // Final check before we try to produce nonsense...
6433 if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
6434 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6435 return SDValue();
6438 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6439 for (unsigned i = 0; i < Sources.size(); ++i)
6440 ShuffleOps[i] = Sources[i].ShuffleVec;
6442 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6443 ShuffleOps[1], Mask);
6444 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6446 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
6447 dbgs() << "Reshuffle, creating node: "; V.dump(););
6449 return V;
6452 // check if an EXT instruction can handle the shuffle mask when the
6453 // vector sources of the shuffle are the same.
6454 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6455 unsigned NumElts = VT.getVectorNumElements();
6457 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6458 if (M[0] < 0)
6459 return false;
6461 Imm = M[0];
6463 // If this is a VEXT shuffle, the immediate value is the index of the first
6464 // element. The other shuffle indices must be the successive elements after
6465 // the first one.
6466 unsigned ExpectedElt = Imm;
6467 for (unsigned i = 1; i < NumElts; ++i) {
6468 // Increment the expected index. If it wraps around, just follow it
6469 // back to index zero and keep going.
6470 ++ExpectedElt;
6471 if (ExpectedElt == NumElts)
6472 ExpectedElt = 0;
6474 if (M[i] < 0)
6475 continue; // ignore UNDEF indices
6476 if (ExpectedElt != static_cast<unsigned>(M[i]))
6477 return false;
6480 return true;
6483 // check if an EXT instruction can handle the shuffle mask when the
6484 // vector sources of the shuffle are different.
6485 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
6486 unsigned &Imm) {
6487 // Look for the first non-undef element.
6488 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
6490 // Benefit form APInt to handle overflow when calculating expected element.
6491 unsigned NumElts = VT.getVectorNumElements();
6492 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
6493 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
6494 // The following shuffle indices must be the successive elements after the
6495 // first real element.
6496 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
6497 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
6498 if (FirstWrongElt != M.end())
6499 return false;
6501 // The index of an EXT is the first element if it is not UNDEF.
6502 // Watch out for the beginning UNDEFs. The EXT index should be the expected
6503 // value of the first element. E.g.
6504 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6505 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6506 // ExpectedElt is the last mask index plus 1.
6507 Imm = ExpectedElt.getZExtValue();
6509 // There are two difference cases requiring to reverse input vectors.
6510 // For example, for vector <4 x i32> we have the following cases,
6511 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6512 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6513 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6514 // to reverse two input vectors.
6515 if (Imm < NumElts)
6516 ReverseEXT = true;
6517 else
6518 Imm -= NumElts;
6520 return true;
6523 /// isREVMask - Check if a vector shuffle corresponds to a REV
6524 /// instruction with the specified blocksize. (The order of the elements
6525 /// within each block of the vector is reversed.)
6526 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6527 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
6528 "Only possible block sizes for REV are: 16, 32, 64");
6530 unsigned EltSz = VT.getScalarSizeInBits();
6531 if (EltSz == 64)
6532 return false;
6534 unsigned NumElts = VT.getVectorNumElements();
6535 unsigned BlockElts = M[0] + 1;
6536 // If the first shuffle index is UNDEF, be optimistic.
6537 if (M[0] < 0)
6538 BlockElts = BlockSize / EltSz;
6540 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6541 return false;
6543 for (unsigned i = 0; i < NumElts; ++i) {
6544 if (M[i] < 0)
6545 continue; // ignore UNDEF indices
6546 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6547 return false;
6550 return true;
6553 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6554 unsigned NumElts = VT.getVectorNumElements();
6555 if (NumElts % 2 != 0)
6556 return false;
6557 WhichResult = (M[0] == 0 ? 0 : 1);
6558 unsigned Idx = WhichResult * NumElts / 2;
6559 for (unsigned i = 0; i != NumElts; i += 2) {
6560 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6561 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6562 return false;
6563 Idx += 1;
6566 return true;
6569 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6570 unsigned NumElts = VT.getVectorNumElements();
6571 WhichResult = (M[0] == 0 ? 0 : 1);
6572 for (unsigned i = 0; i != NumElts; ++i) {
6573 if (M[i] < 0)
6574 continue; // ignore UNDEF indices
6575 if ((unsigned)M[i] != 2 * i + WhichResult)
6576 return false;
6579 return true;
6582 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6583 unsigned NumElts = VT.getVectorNumElements();
6584 if (NumElts % 2 != 0)
6585 return false;
6586 WhichResult = (M[0] == 0 ? 0 : 1);
6587 for (unsigned i = 0; i < NumElts; i += 2) {
6588 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6589 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6590 return false;
6592 return true;
6595 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6596 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6597 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6598 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6599 unsigned NumElts = VT.getVectorNumElements();
6600 if (NumElts % 2 != 0)
6601 return false;
6602 WhichResult = (M[0] == 0 ? 0 : 1);
6603 unsigned Idx = WhichResult * NumElts / 2;
6604 for (unsigned i = 0; i != NumElts; i += 2) {
6605 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6606 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6607 return false;
6608 Idx += 1;
6611 return true;
6614 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6615 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6616 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6617 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6618 unsigned Half = VT.getVectorNumElements() / 2;
6619 WhichResult = (M[0] == 0 ? 0 : 1);
6620 for (unsigned j = 0; j != 2; ++j) {
6621 unsigned Idx = WhichResult;
6622 for (unsigned i = 0; i != Half; ++i) {
6623 int MIdx = M[i + j * Half];
6624 if (MIdx >= 0 && (unsigned)MIdx != Idx)
6625 return false;
6626 Idx += 2;
6630 return true;
6633 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6634 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6635 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6636 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6637 unsigned NumElts = VT.getVectorNumElements();
6638 if (NumElts % 2 != 0)
6639 return false;
6640 WhichResult = (M[0] == 0 ? 0 : 1);
6641 for (unsigned i = 0; i < NumElts; i += 2) {
6642 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6643 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6644 return false;
6646 return true;
6649 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6650 bool &DstIsLeft, int &Anomaly) {
6651 if (M.size() != static_cast<size_t>(NumInputElements))
6652 return false;
6654 int NumLHSMatch = 0, NumRHSMatch = 0;
6655 int LastLHSMismatch = -1, LastRHSMismatch = -1;
6657 for (int i = 0; i < NumInputElements; ++i) {
6658 if (M[i] == -1) {
6659 ++NumLHSMatch;
6660 ++NumRHSMatch;
6661 continue;
6664 if (M[i] == i)
6665 ++NumLHSMatch;
6666 else
6667 LastLHSMismatch = i;
6669 if (M[i] == i + NumInputElements)
6670 ++NumRHSMatch;
6671 else
6672 LastRHSMismatch = i;
6675 if (NumLHSMatch == NumInputElements - 1) {
6676 DstIsLeft = true;
6677 Anomaly = LastLHSMismatch;
6678 return true;
6679 } else if (NumRHSMatch == NumInputElements - 1) {
6680 DstIsLeft = false;
6681 Anomaly = LastRHSMismatch;
6682 return true;
6685 return false;
6688 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6689 if (VT.getSizeInBits() != 128)
6690 return false;
6692 unsigned NumElts = VT.getVectorNumElements();
6694 for (int I = 0, E = NumElts / 2; I != E; I++) {
6695 if (Mask[I] != I)
6696 return false;
6699 int Offset = NumElts / 2;
6700 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6701 if (Mask[I] != I + SplitLHS * Offset)
6702 return false;
6705 return true;
6708 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
6709 SDLoc DL(Op);
6710 EVT VT = Op.getValueType();
6711 SDValue V0 = Op.getOperand(0);
6712 SDValue V1 = Op.getOperand(1);
6713 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
6715 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
6716 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
6717 return SDValue();
6719 bool SplitV0 = V0.getValueSizeInBits() == 128;
6721 if (!isConcatMask(Mask, VT, SplitV0))
6722 return SDValue();
6724 EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6725 if (SplitV0) {
6726 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
6727 DAG.getConstant(0, DL, MVT::i64));
6729 if (V1.getValueSizeInBits() == 128) {
6730 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
6731 DAG.getConstant(0, DL, MVT::i64));
6733 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
6736 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6737 /// the specified operations to build the shuffle.
6738 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6739 SDValue RHS, SelectionDAG &DAG,
6740 const SDLoc &dl) {
6741 unsigned OpNum = (PFEntry >> 26) & 0x0F;
6742 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
6743 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
6745 enum {
6746 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6747 OP_VREV,
6748 OP_VDUP0,
6749 OP_VDUP1,
6750 OP_VDUP2,
6751 OP_VDUP3,
6752 OP_VEXT1,
6753 OP_VEXT2,
6754 OP_VEXT3,
6755 OP_VUZPL, // VUZP, left result
6756 OP_VUZPR, // VUZP, right result
6757 OP_VZIPL, // VZIP, left result
6758 OP_VZIPR, // VZIP, right result
6759 OP_VTRNL, // VTRN, left result
6760 OP_VTRNR // VTRN, right result
6763 if (OpNum == OP_COPY) {
6764 if (LHSID == (1 * 9 + 2) * 9 + 3)
6765 return LHS;
6766 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6767 return RHS;
6770 SDValue OpLHS, OpRHS;
6771 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6772 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6773 EVT VT = OpLHS.getValueType();
6775 switch (OpNum) {
6776 default:
6777 llvm_unreachable("Unknown shuffle opcode!");
6778 case OP_VREV:
6779 // VREV divides the vector in half and swaps within the half.
6780 if (VT.getVectorElementType() == MVT::i32 ||
6781 VT.getVectorElementType() == MVT::f32)
6782 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
6783 // vrev <4 x i16> -> REV32
6784 if (VT.getVectorElementType() == MVT::i16 ||
6785 VT.getVectorElementType() == MVT::f16)
6786 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
6787 // vrev <4 x i8> -> REV16
6788 assert(VT.getVectorElementType() == MVT::i8);
6789 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
6790 case OP_VDUP0:
6791 case OP_VDUP1:
6792 case OP_VDUP2:
6793 case OP_VDUP3: {
6794 EVT EltTy = VT.getVectorElementType();
6795 unsigned Opcode;
6796 if (EltTy == MVT::i8)
6797 Opcode = AArch64ISD::DUPLANE8;
6798 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
6799 Opcode = AArch64ISD::DUPLANE16;
6800 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
6801 Opcode = AArch64ISD::DUPLANE32;
6802 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
6803 Opcode = AArch64ISD::DUPLANE64;
6804 else
6805 llvm_unreachable("Invalid vector element type?");
6807 if (VT.getSizeInBits() == 64)
6808 OpLHS = WidenVector(OpLHS, DAG);
6809 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
6810 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
6812 case OP_VEXT1:
6813 case OP_VEXT2:
6814 case OP_VEXT3: {
6815 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
6816 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
6817 DAG.getConstant(Imm, dl, MVT::i32));
6819 case OP_VUZPL:
6820 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
6821 OpRHS);
6822 case OP_VUZPR:
6823 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
6824 OpRHS);
6825 case OP_VZIPL:
6826 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
6827 OpRHS);
6828 case OP_VZIPR:
6829 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
6830 OpRHS);
6831 case OP_VTRNL:
6832 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
6833 OpRHS);
6834 case OP_VTRNR:
6835 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
6836 OpRHS);
6840 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
6841 SelectionDAG &DAG) {
6842 // Check to see if we can use the TBL instruction.
6843 SDValue V1 = Op.getOperand(0);
6844 SDValue V2 = Op.getOperand(1);
6845 SDLoc DL(Op);
6847 EVT EltVT = Op.getValueType().getVectorElementType();
6848 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
6850 SmallVector<SDValue, 8> TBLMask;
6851 for (int Val : ShuffleMask) {
6852 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
6853 unsigned Offset = Byte + Val * BytesPerElt;
6854 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
6858 MVT IndexVT = MVT::v8i8;
6859 unsigned IndexLen = 8;
6860 if (Op.getValueSizeInBits() == 128) {
6861 IndexVT = MVT::v16i8;
6862 IndexLen = 16;
6865 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
6866 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
6868 SDValue Shuffle;
6869 if (V2.getNode()->isUndef()) {
6870 if (IndexLen == 8)
6871 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
6872 Shuffle = DAG.getNode(
6873 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6874 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6875 DAG.getBuildVector(IndexVT, DL,
6876 makeArrayRef(TBLMask.data(), IndexLen)));
6877 } else {
6878 if (IndexLen == 8) {
6879 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
6880 Shuffle = DAG.getNode(
6881 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6882 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6883 DAG.getBuildVector(IndexVT, DL,
6884 makeArrayRef(TBLMask.data(), IndexLen)));
6885 } else {
6886 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6887 // cannot currently represent the register constraints on the input
6888 // table registers.
6889 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6890 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6891 // IndexLen));
6892 Shuffle = DAG.getNode(
6893 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6894 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
6895 V2Cst, DAG.getBuildVector(IndexVT, DL,
6896 makeArrayRef(TBLMask.data(), IndexLen)));
6899 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
6902 static unsigned getDUPLANEOp(EVT EltType) {
6903 if (EltType == MVT::i8)
6904 return AArch64ISD::DUPLANE8;
6905 if (EltType == MVT::i16 || EltType == MVT::f16)
6906 return AArch64ISD::DUPLANE16;
6907 if (EltType == MVT::i32 || EltType == MVT::f32)
6908 return AArch64ISD::DUPLANE32;
6909 if (EltType == MVT::i64 || EltType == MVT::f64)
6910 return AArch64ISD::DUPLANE64;
6912 llvm_unreachable("Invalid vector element type?");
6915 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6916 SelectionDAG &DAG) const {
6917 SDLoc dl(Op);
6918 EVT VT = Op.getValueType();
6920 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6922 // Convert shuffles that are directly supported on NEON to target-specific
6923 // DAG nodes, instead of keeping them as shuffles and matching them again
6924 // during code selection. This is more efficient and avoids the possibility
6925 // of inconsistencies between legalization and selection.
6926 ArrayRef<int> ShuffleMask = SVN->getMask();
6928 SDValue V1 = Op.getOperand(0);
6929 SDValue V2 = Op.getOperand(1);
6931 if (SVN->isSplat()) {
6932 int Lane = SVN->getSplatIndex();
6933 // If this is undef splat, generate it via "just" vdup, if possible.
6934 if (Lane == -1)
6935 Lane = 0;
6937 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
6938 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
6939 V1.getOperand(0));
6940 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6941 // constant. If so, we can just reference the lane's definition directly.
6942 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
6943 !isa<ConstantSDNode>(V1.getOperand(Lane)))
6944 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
6946 // Otherwise, duplicate from the lane of the input vector.
6947 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
6949 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6950 // to make a vector of the same size as this SHUFFLE. We can ignore the
6951 // extract entirely, and canonicalise the concat using WidenVector.
6952 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6953 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
6954 V1 = V1.getOperand(0);
6955 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
6956 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
6957 Lane -= Idx * VT.getVectorNumElements() / 2;
6958 V1 = WidenVector(V1.getOperand(Idx), DAG);
6959 } else if (VT.getSizeInBits() == 64)
6960 V1 = WidenVector(V1, DAG);
6962 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
6965 if (isREVMask(ShuffleMask, VT, 64))
6966 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
6967 if (isREVMask(ShuffleMask, VT, 32))
6968 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
6969 if (isREVMask(ShuffleMask, VT, 16))
6970 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
6972 bool ReverseEXT = false;
6973 unsigned Imm;
6974 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
6975 if (ReverseEXT)
6976 std::swap(V1, V2);
6977 Imm *= getExtFactor(V1);
6978 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
6979 DAG.getConstant(Imm, dl, MVT::i32));
6980 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
6981 Imm *= getExtFactor(V1);
6982 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
6983 DAG.getConstant(Imm, dl, MVT::i32));
6986 unsigned WhichResult;
6987 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
6988 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6989 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6991 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
6992 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6993 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6995 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
6996 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6997 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
7000 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
7001 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
7002 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
7004 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
7005 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
7006 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
7008 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
7009 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
7010 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
7013 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
7014 return Concat;
7016 bool DstIsLeft;
7017 int Anomaly;
7018 int NumInputElements = V1.getValueType().getVectorNumElements();
7019 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
7020 SDValue DstVec = DstIsLeft ? V1 : V2;
7021 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
7023 SDValue SrcVec = V1;
7024 int SrcLane = ShuffleMask[Anomaly];
7025 if (SrcLane >= NumInputElements) {
7026 SrcVec = V2;
7027 SrcLane -= VT.getVectorNumElements();
7029 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
7031 EVT ScalarVT = VT.getVectorElementType();
7033 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
7034 ScalarVT = MVT::i32;
7036 return DAG.getNode(
7037 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
7038 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
7039 DstLaneV);
7042 // If the shuffle is not directly supported and it has 4 elements, use
7043 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7044 unsigned NumElts = VT.getVectorNumElements();
7045 if (NumElts == 4) {
7046 unsigned PFIndexes[4];
7047 for (unsigned i = 0; i != 4; ++i) {
7048 if (ShuffleMask[i] < 0)
7049 PFIndexes[i] = 8;
7050 else
7051 PFIndexes[i] = ShuffleMask[i];
7054 // Compute the index in the perfect shuffle table.
7055 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7056 PFIndexes[2] * 9 + PFIndexes[3];
7057 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7058 unsigned Cost = (PFEntry >> 30);
7060 if (Cost <= 4)
7061 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7064 return GenerateTBL(Op, ShuffleMask, DAG);
7067 SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
7068 SelectionDAG &DAG) const {
7069 SDLoc dl(Op);
7070 EVT VT = Op.getValueType();
7071 EVT ElemVT = VT.getScalarType();
7073 SDValue SplatVal = Op.getOperand(0);
7075 // Extend input splat value where needed to fit into a GPR (32b or 64b only)
7076 // FPRs don't have this restriction.
7077 switch (ElemVT.getSimpleVT().SimpleTy) {
7078 case MVT::i8:
7079 case MVT::i16:
7080 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32);
7081 break;
7082 case MVT::i64:
7083 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
7084 break;
7085 case MVT::i32:
7086 // Fine as is
7087 break;
7088 // TODO: we can support splats of i1s and float types, but haven't added
7089 // patterns yet.
7090 case MVT::i1:
7091 case MVT::f16:
7092 case MVT::f32:
7093 case MVT::f64:
7094 default:
7095 llvm_unreachable("Unsupported SPLAT_VECTOR input operand type");
7096 break;
7099 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
7102 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
7103 APInt &UndefBits) {
7104 EVT VT = BVN->getValueType(0);
7105 APInt SplatBits, SplatUndef;
7106 unsigned SplatBitSize;
7107 bool HasAnyUndefs;
7108 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7109 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
7111 for (unsigned i = 0; i < NumSplats; ++i) {
7112 CnstBits <<= SplatBitSize;
7113 UndefBits <<= SplatBitSize;
7114 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
7115 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
7118 return true;
7121 return false;
7124 // Try 64-bit splatted SIMD immediate.
7125 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7126 const APInt &Bits) {
7127 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7128 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7129 EVT VT = Op.getValueType();
7130 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
7132 if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
7133 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
7135 SDLoc dl(Op);
7136 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7137 DAG.getConstant(Value, dl, MVT::i32));
7138 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7142 return SDValue();
7145 // Try 32-bit splatted SIMD immediate.
7146 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7147 const APInt &Bits,
7148 const SDValue *LHS = nullptr) {
7149 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7150 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7151 EVT VT = Op.getValueType();
7152 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
7153 bool isAdvSIMDModImm = false;
7154 uint64_t Shift;
7156 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
7157 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
7158 Shift = 0;
7160 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
7161 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
7162 Shift = 8;
7164 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
7165 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
7166 Shift = 16;
7168 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
7169 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
7170 Shift = 24;
7173 if (isAdvSIMDModImm) {
7174 SDLoc dl(Op);
7175 SDValue Mov;
7177 if (LHS)
7178 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
7179 DAG.getConstant(Value, dl, MVT::i32),
7180 DAG.getConstant(Shift, dl, MVT::i32));
7181 else
7182 Mov = DAG.getNode(NewOp, dl, MovTy,
7183 DAG.getConstant(Value, dl, MVT::i32),
7184 DAG.getConstant(Shift, dl, MVT::i32));
7186 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7190 return SDValue();
7193 // Try 16-bit splatted SIMD immediate.
7194 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7195 const APInt &Bits,
7196 const SDValue *LHS = nullptr) {
7197 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7198 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7199 EVT VT = Op.getValueType();
7200 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
7201 bool isAdvSIMDModImm = false;
7202 uint64_t Shift;
7204 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
7205 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
7206 Shift = 0;
7208 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
7209 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
7210 Shift = 8;
7213 if (isAdvSIMDModImm) {
7214 SDLoc dl(Op);
7215 SDValue Mov;
7217 if (LHS)
7218 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
7219 DAG.getConstant(Value, dl, MVT::i32),
7220 DAG.getConstant(Shift, dl, MVT::i32));
7221 else
7222 Mov = DAG.getNode(NewOp, dl, MovTy,
7223 DAG.getConstant(Value, dl, MVT::i32),
7224 DAG.getConstant(Shift, dl, MVT::i32));
7226 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7230 return SDValue();
7233 // Try 32-bit splatted SIMD immediate with shifted ones.
7234 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
7235 SelectionDAG &DAG, const APInt &Bits) {
7236 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7237 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7238 EVT VT = Op.getValueType();
7239 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
7240 bool isAdvSIMDModImm = false;
7241 uint64_t Shift;
7243 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
7244 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
7245 Shift = 264;
7247 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
7248 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
7249 Shift = 272;
7252 if (isAdvSIMDModImm) {
7253 SDLoc dl(Op);
7254 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7255 DAG.getConstant(Value, dl, MVT::i32),
7256 DAG.getConstant(Shift, dl, MVT::i32));
7257 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7261 return SDValue();
7264 // Try 8-bit splatted SIMD immediate.
7265 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7266 const APInt &Bits) {
7267 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7268 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7269 EVT VT = Op.getValueType();
7270 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
7272 if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
7273 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
7275 SDLoc dl(Op);
7276 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7277 DAG.getConstant(Value, dl, MVT::i32));
7278 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7282 return SDValue();
7285 // Try FP splatted SIMD immediate.
7286 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7287 const APInt &Bits) {
7288 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7289 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7290 EVT VT = Op.getValueType();
7291 bool isWide = (VT.getSizeInBits() == 128);
7292 MVT MovTy;
7293 bool isAdvSIMDModImm = false;
7295 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
7296 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
7297 MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
7299 else if (isWide &&
7300 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
7301 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
7302 MovTy = MVT::v2f64;
7305 if (isAdvSIMDModImm) {
7306 SDLoc dl(Op);
7307 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7308 DAG.getConstant(Value, dl, MVT::i32));
7309 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7313 return SDValue();
7316 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7317 // consists of only the same constant int value, returned in reference arg
7318 // ConstVal
7319 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
7320 uint64_t &ConstVal) {
7321 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
7322 if (!Bvec)
7323 return false;
7324 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
7325 if (!FirstElt)
7326 return false;
7327 EVT VT = Bvec->getValueType(0);
7328 unsigned NumElts = VT.getVectorNumElements();
7329 for (unsigned i = 1; i < NumElts; ++i)
7330 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
7331 return false;
7332 ConstVal = FirstElt->getZExtValue();
7333 return true;
7336 static unsigned getIntrinsicID(const SDNode *N) {
7337 unsigned Opcode = N->getOpcode();
7338 switch (Opcode) {
7339 default:
7340 return Intrinsic::not_intrinsic;
7341 case ISD::INTRINSIC_WO_CHAIN: {
7342 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7343 if (IID < Intrinsic::num_intrinsics)
7344 return IID;
7345 return Intrinsic::not_intrinsic;
7350 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7351 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7352 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7353 // Also, logical shift right -> sri, with the same structure.
7354 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
7355 EVT VT = N->getValueType(0);
7357 if (!VT.isVector())
7358 return SDValue();
7360 SDLoc DL(N);
7362 // Is the first op an AND?
7363 const SDValue And = N->getOperand(0);
7364 if (And.getOpcode() != ISD::AND)
7365 return SDValue();
7367 // Is the second op an shl or lshr?
7368 SDValue Shift = N->getOperand(1);
7369 // This will have been turned into: AArch64ISD::VSHL vector, #shift
7370 // or AArch64ISD::VLSHR vector, #shift
7371 unsigned ShiftOpc = Shift.getOpcode();
7372 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
7373 return SDValue();
7374 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
7376 // Is the shift amount constant?
7377 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7378 if (!C2node)
7379 return SDValue();
7381 // Is the and mask vector all constant?
7382 uint64_t C1;
7383 if (!isAllConstantBuildVector(And.getOperand(1), C1))
7384 return SDValue();
7386 // Is C1 == ~C2, taking into account how much one can shift elements of a
7387 // particular size?
7388 uint64_t C2 = C2node->getZExtValue();
7389 unsigned ElemSizeInBits = VT.getScalarSizeInBits();
7390 if (C2 > ElemSizeInBits)
7391 return SDValue();
7392 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
7393 if ((C1 & ElemMask) != (~C2 & ElemMask))
7394 return SDValue();
7396 SDValue X = And.getOperand(0);
7397 SDValue Y = Shift.getOperand(0);
7399 unsigned Intrin =
7400 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
7401 SDValue ResultSLI =
7402 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7403 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
7404 Shift.getOperand(1));
7406 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7407 LLVM_DEBUG(N->dump(&DAG));
7408 LLVM_DEBUG(dbgs() << "into: \n");
7409 LLVM_DEBUG(ResultSLI->dump(&DAG));
7411 ++NumShiftInserts;
7412 return ResultSLI;
7415 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
7416 SelectionDAG &DAG) const {
7417 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7418 if (EnableAArch64SlrGeneration) {
7419 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
7420 return Res;
7423 EVT VT = Op.getValueType();
7425 SDValue LHS = Op.getOperand(0);
7426 BuildVectorSDNode *BVN =
7427 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
7428 if (!BVN) {
7429 // OR commutes, so try swapping the operands.
7430 LHS = Op.getOperand(1);
7431 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
7433 if (!BVN)
7434 return Op;
7436 APInt DefBits(VT.getSizeInBits(), 0);
7437 APInt UndefBits(VT.getSizeInBits(), 0);
7438 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7439 SDValue NewOp;
7441 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7442 DefBits, &LHS)) ||
7443 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7444 DefBits, &LHS)))
7445 return NewOp;
7447 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7448 UndefBits, &LHS)) ||
7449 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7450 UndefBits, &LHS)))
7451 return NewOp;
7454 // We can always fall back to a non-immediate OR.
7455 return Op;
7458 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7459 // be truncated to fit element width.
7460 static SDValue NormalizeBuildVector(SDValue Op,
7461 SelectionDAG &DAG) {
7462 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7463 SDLoc dl(Op);
7464 EVT VT = Op.getValueType();
7465 EVT EltTy= VT.getVectorElementType();
7467 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
7468 return Op;
7470 SmallVector<SDValue, 16> Ops;
7471 for (SDValue Lane : Op->ops()) {
7472 // For integer vectors, type legalization would have promoted the
7473 // operands already. Otherwise, if Op is a floating-point splat
7474 // (with operands cast to integers), then the only possibilities
7475 // are constants and UNDEFs.
7476 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
7477 APInt LowBits(EltTy.getSizeInBits(),
7478 CstLane->getZExtValue());
7479 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
7480 } else if (Lane.getNode()->isUndef()) {
7481 Lane = DAG.getUNDEF(MVT::i32);
7482 } else {
7483 assert(Lane.getValueType() == MVT::i32 &&
7484 "Unexpected BUILD_VECTOR operand type");
7486 Ops.push_back(Lane);
7488 return DAG.getBuildVector(VT, dl, Ops);
7491 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
7492 EVT VT = Op.getValueType();
7494 APInt DefBits(VT.getSizeInBits(), 0);
7495 APInt UndefBits(VT.getSizeInBits(), 0);
7496 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7497 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7498 SDValue NewOp;
7499 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7500 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7501 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7502 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7503 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7504 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7505 return NewOp;
7507 DefBits = ~DefBits;
7508 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7509 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7510 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7511 return NewOp;
7513 DefBits = UndefBits;
7514 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7515 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7516 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7517 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7518 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7519 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7520 return NewOp;
7522 DefBits = ~UndefBits;
7523 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7524 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7525 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7526 return NewOp;
7529 return SDValue();
7532 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
7533 SelectionDAG &DAG) const {
7534 EVT VT = Op.getValueType();
7536 // Try to build a simple constant vector.
7537 Op = NormalizeBuildVector(Op, DAG);
7538 if (VT.isInteger()) {
7539 // Certain vector constants, used to express things like logical NOT and
7540 // arithmetic NEG, are passed through unmodified. This allows special
7541 // patterns for these operations to match, which will lower these constants
7542 // to whatever is proven necessary.
7543 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7544 if (BVN->isConstant())
7545 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
7546 unsigned BitSize = VT.getVectorElementType().getSizeInBits();
7547 APInt Val(BitSize,
7548 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
7549 if (Val.isNullValue() || Val.isAllOnesValue())
7550 return Op;
7554 if (SDValue V = ConstantBuildVector(Op, DAG))
7555 return V;
7557 // Scan through the operands to find some interesting properties we can
7558 // exploit:
7559 // 1) If only one value is used, we can use a DUP, or
7560 // 2) if only the low element is not undef, we can just insert that, or
7561 // 3) if only one constant value is used (w/ some non-constant lanes),
7562 // we can splat the constant value into the whole vector then fill
7563 // in the non-constant lanes.
7564 // 4) FIXME: If different constant values are used, but we can intelligently
7565 // select the values we'll be overwriting for the non-constant
7566 // lanes such that we can directly materialize the vector
7567 // some other way (MOVI, e.g.), we can be sneaky.
7568 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7569 SDLoc dl(Op);
7570 unsigned NumElts = VT.getVectorNumElements();
7571 bool isOnlyLowElement = true;
7572 bool usesOnlyOneValue = true;
7573 bool usesOnlyOneConstantValue = true;
7574 bool isConstant = true;
7575 bool AllLanesExtractElt = true;
7576 unsigned NumConstantLanes = 0;
7577 SDValue Value;
7578 SDValue ConstantValue;
7579 for (unsigned i = 0; i < NumElts; ++i) {
7580 SDValue V = Op.getOperand(i);
7581 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7582 AllLanesExtractElt = false;
7583 if (V.isUndef())
7584 continue;
7585 if (i > 0)
7586 isOnlyLowElement = false;
7587 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7588 isConstant = false;
7590 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7591 ++NumConstantLanes;
7592 if (!ConstantValue.getNode())
7593 ConstantValue = V;
7594 else if (ConstantValue != V)
7595 usesOnlyOneConstantValue = false;
7598 if (!Value.getNode())
7599 Value = V;
7600 else if (V != Value)
7601 usesOnlyOneValue = false;
7604 if (!Value.getNode()) {
7605 LLVM_DEBUG(
7606 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7607 return DAG.getUNDEF(VT);
7610 // Convert BUILD_VECTOR where all elements but the lowest are undef into
7611 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7612 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7613 if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
7614 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7615 "SCALAR_TO_VECTOR node\n");
7616 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7619 if (AllLanesExtractElt) {
7620 SDNode *Vector = nullptr;
7621 bool Even = false;
7622 bool Odd = false;
7623 // Check whether the extract elements match the Even pattern <0,2,4,...> or
7624 // the Odd pattern <1,3,5,...>.
7625 for (unsigned i = 0; i < NumElts; ++i) {
7626 SDValue V = Op.getOperand(i);
7627 const SDNode *N = V.getNode();
7628 if (!isa<ConstantSDNode>(N->getOperand(1)))
7629 break;
7630 SDValue N0 = N->getOperand(0);
7632 // All elements are extracted from the same vector.
7633 if (!Vector) {
7634 Vector = N0.getNode();
7635 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7636 // BUILD_VECTOR.
7637 if (VT.getVectorElementType() !=
7638 N0.getValueType().getVectorElementType())
7639 break;
7640 } else if (Vector != N0.getNode()) {
7641 Odd = false;
7642 Even = false;
7643 break;
7646 // Extracted values are either at Even indices <0,2,4,...> or at Odd
7647 // indices <1,3,5,...>.
7648 uint64_t Val = N->getConstantOperandVal(1);
7649 if (Val == 2 * i) {
7650 Even = true;
7651 continue;
7653 if (Val - 1 == 2 * i) {
7654 Odd = true;
7655 continue;
7658 // Something does not match: abort.
7659 Odd = false;
7660 Even = false;
7661 break;
7663 if (Even || Odd) {
7664 SDValue LHS =
7665 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7666 DAG.getConstant(0, dl, MVT::i64));
7667 SDValue RHS =
7668 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7669 DAG.getConstant(NumElts, dl, MVT::i64));
7671 if (Even && !Odd)
7672 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
7673 RHS);
7674 if (Odd && !Even)
7675 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
7676 RHS);
7680 // Use DUP for non-constant splats. For f32 constant splats, reduce to
7681 // i32 and try again.
7682 if (usesOnlyOneValue) {
7683 if (!isConstant) {
7684 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7685 Value.getValueType() != VT) {
7686 LLVM_DEBUG(
7687 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7688 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
7691 // This is actually a DUPLANExx operation, which keeps everything vectory.
7693 SDValue Lane = Value.getOperand(1);
7694 Value = Value.getOperand(0);
7695 if (Value.getValueSizeInBits() == 64) {
7696 LLVM_DEBUG(
7697 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7698 "widening it\n");
7699 Value = WidenVector(Value, DAG);
7702 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
7703 return DAG.getNode(Opcode, dl, VT, Value, Lane);
7706 if (VT.getVectorElementType().isFloatingPoint()) {
7707 SmallVector<SDValue, 8> Ops;
7708 EVT EltTy = VT.getVectorElementType();
7709 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
7710 "Unsupported floating-point vector type");
7711 LLVM_DEBUG(
7712 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7713 "BITCASTS, and try again\n");
7714 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
7715 for (unsigned i = 0; i < NumElts; ++i)
7716 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
7717 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
7718 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7719 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7720 Val.dump(););
7721 Val = LowerBUILD_VECTOR(Val, DAG);
7722 if (Val.getNode())
7723 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7727 // If there was only one constant value used and for more than one lane,
7728 // start by splatting that value, then replace the non-constant lanes. This
7729 // is better than the default, which will perform a separate initialization
7730 // for each lane.
7731 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
7732 // Firstly, try to materialize the splat constant.
7733 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
7734 Val = ConstantBuildVector(Vec, DAG);
7735 if (!Val) {
7736 // Otherwise, materialize the constant and splat it.
7737 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
7738 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
7741 // Now insert the non-constant lanes.
7742 for (unsigned i = 0; i < NumElts; ++i) {
7743 SDValue V = Op.getOperand(i);
7744 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7745 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
7746 // Note that type legalization likely mucked about with the VT of the
7747 // source operand, so we may have to convert it here before inserting.
7748 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
7750 return Val;
7753 // This will generate a load from the constant pool.
7754 if (isConstant) {
7755 LLVM_DEBUG(
7756 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7757 "expansion\n");
7758 return SDValue();
7761 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7762 if (NumElts >= 4) {
7763 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7764 return shuffle;
7767 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7768 // know the default expansion would otherwise fall back on something even
7769 // worse. For a vector with one or two non-undef values, that's
7770 // scalar_to_vector for the elements followed by a shuffle (provided the
7771 // shuffle is valid for the target) and materialization element by element
7772 // on the stack followed by a load for everything else.
7773 if (!isConstant && !usesOnlyOneValue) {
7774 LLVM_DEBUG(
7775 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7776 "of INSERT_VECTOR_ELT\n");
7778 SDValue Vec = DAG.getUNDEF(VT);
7779 SDValue Op0 = Op.getOperand(0);
7780 unsigned i = 0;
7782 // Use SCALAR_TO_VECTOR for lane zero to
7783 // a) Avoid a RMW dependency on the full vector register, and
7784 // b) Allow the register coalescer to fold away the copy if the
7785 // value is already in an S or D register, and we're forced to emit an
7786 // INSERT_SUBREG that we can't fold anywhere.
7788 // We also allow types like i8 and i16 which are illegal scalar but legal
7789 // vector element types. After type-legalization the inserted value is
7790 // extended (i32) and it is safe to cast them to the vector type by ignoring
7791 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7792 if (!Op0.isUndef()) {
7793 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7794 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
7795 ++i;
7797 LLVM_DEBUG(if (i < NumElts) dbgs()
7798 << "Creating nodes for the other vector elements:\n";);
7799 for (; i < NumElts; ++i) {
7800 SDValue V = Op.getOperand(i);
7801 if (V.isUndef())
7802 continue;
7803 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7804 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7806 return Vec;
7809 LLVM_DEBUG(
7810 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7811 "better alternative\n");
7812 return SDValue();
7815 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7816 SelectionDAG &DAG) const {
7817 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
7819 // Check for non-constant or out of range lane.
7820 EVT VT = Op.getOperand(0).getValueType();
7821 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7822 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7823 return SDValue();
7826 // Insertion/extraction are legal for V128 types.
7827 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7828 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7829 VT == MVT::v8f16)
7830 return Op;
7832 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7833 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7834 return SDValue();
7836 // For V64 types, we perform insertion by expanding the value
7837 // to a V128 type and perform the insertion on that.
7838 SDLoc DL(Op);
7839 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7840 EVT WideTy = WideVec.getValueType();
7842 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
7843 Op.getOperand(1), Op.getOperand(2));
7844 // Re-narrow the resultant vector.
7845 return NarrowVector(Node, DAG);
7848 SDValue
7849 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7850 SelectionDAG &DAG) const {
7851 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
7853 // Check for non-constant or out of range lane.
7854 EVT VT = Op.getOperand(0).getValueType();
7855 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7856 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7857 return SDValue();
7860 // Insertion/extraction are legal for V128 types.
7861 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7862 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7863 VT == MVT::v8f16)
7864 return Op;
7866 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7867 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7868 return SDValue();
7870 // For V64 types, we perform extraction by expanding the value
7871 // to a V128 type and perform the extraction on that.
7872 SDLoc DL(Op);
7873 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7874 EVT WideTy = WideVec.getValueType();
7876 EVT ExtrTy = WideTy.getVectorElementType();
7877 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
7878 ExtrTy = MVT::i32;
7880 // For extractions, we just return the result directly.
7881 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
7882 Op.getOperand(1));
7885 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
7886 SelectionDAG &DAG) const {
7887 EVT VT = Op.getOperand(0).getValueType();
7888 SDLoc dl(Op);
7889 // Just in case...
7890 if (!VT.isVector())
7891 return SDValue();
7893 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7894 if (!Cst)
7895 return SDValue();
7896 unsigned Val = Cst->getZExtValue();
7898 unsigned Size = Op.getValueSizeInBits();
7900 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7901 if (Val == 0)
7902 return Op;
7904 // If this is extracting the upper 64-bits of a 128-bit vector, we match
7905 // that directly.
7906 if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
7907 return Op;
7909 return SDValue();
7912 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7913 if (VT.getVectorNumElements() == 4 &&
7914 (VT.is128BitVector() || VT.is64BitVector())) {
7915 unsigned PFIndexes[4];
7916 for (unsigned i = 0; i != 4; ++i) {
7917 if (M[i] < 0)
7918 PFIndexes[i] = 8;
7919 else
7920 PFIndexes[i] = M[i];
7923 // Compute the index in the perfect shuffle table.
7924 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7925 PFIndexes[2] * 9 + PFIndexes[3];
7926 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7927 unsigned Cost = (PFEntry >> 30);
7929 if (Cost <= 4)
7930 return true;
7933 bool DummyBool;
7934 int DummyInt;
7935 unsigned DummyUnsigned;
7937 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
7938 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
7939 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
7940 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7941 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
7942 isZIPMask(M, VT, DummyUnsigned) ||
7943 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
7944 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
7945 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
7946 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
7947 isConcatMask(M, VT, VT.getSizeInBits() == 128));
7950 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7951 /// operand of a vector shift operation, where all the elements of the
7952 /// build_vector must have the same constant integer value.
7953 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7954 // Ignore bit_converts.
7955 while (Op.getOpcode() == ISD::BITCAST)
7956 Op = Op.getOperand(0);
7957 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7958 APInt SplatBits, SplatUndef;
7959 unsigned SplatBitSize;
7960 bool HasAnyUndefs;
7961 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7962 HasAnyUndefs, ElementBits) ||
7963 SplatBitSize > ElementBits)
7964 return false;
7965 Cnt = SplatBits.getSExtValue();
7966 return true;
7969 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7970 /// operand of a vector shift left operation. That value must be in the range:
7971 /// 0 <= Value < ElementBits for a left shift; or
7972 /// 0 <= Value <= ElementBits for a long left shift.
7973 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7974 assert(VT.isVector() && "vector shift count is not a vector type");
7975 int64_t ElementBits = VT.getScalarSizeInBits();
7976 if (!getVShiftImm(Op, ElementBits, Cnt))
7977 return false;
7978 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
7981 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7982 /// operand of a vector shift right operation. The value must be in the range:
7983 /// 1 <= Value <= ElementBits for a right shift; or
7984 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
7985 assert(VT.isVector() && "vector shift count is not a vector type");
7986 int64_t ElementBits = VT.getScalarSizeInBits();
7987 if (!getVShiftImm(Op, ElementBits, Cnt))
7988 return false;
7989 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
7992 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
7993 SelectionDAG &DAG) const {
7994 EVT VT = Op.getValueType();
7995 SDLoc DL(Op);
7996 int64_t Cnt;
7998 if (!Op.getOperand(1).getValueType().isVector())
7999 return Op;
8000 unsigned EltSize = VT.getScalarSizeInBits();
8002 switch (Op.getOpcode()) {
8003 default:
8004 llvm_unreachable("unexpected shift opcode");
8006 case ISD::SHL:
8007 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
8008 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
8009 DAG.getConstant(Cnt, DL, MVT::i32));
8010 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8011 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
8012 MVT::i32),
8013 Op.getOperand(0), Op.getOperand(1));
8014 case ISD::SRA:
8015 case ISD::SRL:
8016 // Right shift immediate
8017 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
8018 unsigned Opc =
8019 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
8020 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
8021 DAG.getConstant(Cnt, DL, MVT::i32));
8024 // Right shift register. Note, there is not a shift right register
8025 // instruction, but the shift left register instruction takes a signed
8026 // value, where negative numbers specify a right shift.
8027 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
8028 : Intrinsic::aarch64_neon_ushl;
8029 // negate the shift amount
8030 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
8031 SDValue NegShiftLeft =
8032 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8033 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
8034 NegShift);
8035 return NegShiftLeft;
8038 return SDValue();
8041 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
8042 AArch64CC::CondCode CC, bool NoNans, EVT VT,
8043 const SDLoc &dl, SelectionDAG &DAG) {
8044 EVT SrcVT = LHS.getValueType();
8045 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
8046 "function only supposed to emit natural comparisons");
8048 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
8049 APInt CnstBits(VT.getSizeInBits(), 0);
8050 APInt UndefBits(VT.getSizeInBits(), 0);
8051 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
8052 bool IsZero = IsCnst && (CnstBits == 0);
8054 if (SrcVT.getVectorElementType().isFloatingPoint()) {
8055 switch (CC) {
8056 default:
8057 return SDValue();
8058 case AArch64CC::NE: {
8059 SDValue Fcmeq;
8060 if (IsZero)
8061 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
8062 else
8063 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
8064 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
8066 case AArch64CC::EQ:
8067 if (IsZero)
8068 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
8069 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
8070 case AArch64CC::GE:
8071 if (IsZero)
8072 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
8073 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
8074 case AArch64CC::GT:
8075 if (IsZero)
8076 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
8077 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
8078 case AArch64CC::LS:
8079 if (IsZero)
8080 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
8081 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
8082 case AArch64CC::LT:
8083 if (!NoNans)
8084 return SDValue();
8085 // If we ignore NaNs then we can use to the MI implementation.
8086 LLVM_FALLTHROUGH;
8087 case AArch64CC::MI:
8088 if (IsZero)
8089 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
8090 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
8094 switch (CC) {
8095 default:
8096 return SDValue();
8097 case AArch64CC::NE: {
8098 SDValue Cmeq;
8099 if (IsZero)
8100 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
8101 else
8102 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
8103 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
8105 case AArch64CC::EQ:
8106 if (IsZero)
8107 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
8108 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
8109 case AArch64CC::GE:
8110 if (IsZero)
8111 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
8112 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
8113 case AArch64CC::GT:
8114 if (IsZero)
8115 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
8116 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
8117 case AArch64CC::LE:
8118 if (IsZero)
8119 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
8120 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
8121 case AArch64CC::LS:
8122 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
8123 case AArch64CC::LO:
8124 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
8125 case AArch64CC::LT:
8126 if (IsZero)
8127 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
8128 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
8129 case AArch64CC::HI:
8130 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
8131 case AArch64CC::HS:
8132 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
8136 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
8137 SelectionDAG &DAG) const {
8138 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8139 SDValue LHS = Op.getOperand(0);
8140 SDValue RHS = Op.getOperand(1);
8141 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
8142 SDLoc dl(Op);
8144 if (LHS.getValueType().getVectorElementType().isInteger()) {
8145 assert(LHS.getValueType() == RHS.getValueType());
8146 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
8147 SDValue Cmp =
8148 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
8149 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
8152 const bool FullFP16 =
8153 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
8155 // Make v4f16 (only) fcmp operations utilise vector instructions
8156 // v8f16 support will be a litle more complicated
8157 if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
8158 if (LHS.getValueType().getVectorNumElements() == 4) {
8159 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
8160 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
8161 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
8162 DAG.ReplaceAllUsesWith(Op, NewSetcc);
8163 CmpVT = MVT::v4i32;
8164 } else
8165 return SDValue();
8168 assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
8169 LHS.getValueType().getVectorElementType() != MVT::f128);
8171 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
8172 // clean. Some of them require two branches to implement.
8173 AArch64CC::CondCode CC1, CC2;
8174 bool ShouldInvert;
8175 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
8177 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
8178 SDValue Cmp =
8179 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
8180 if (!Cmp.getNode())
8181 return SDValue();
8183 if (CC2 != AArch64CC::AL) {
8184 SDValue Cmp2 =
8185 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
8186 if (!Cmp2.getNode())
8187 return SDValue();
8189 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
8192 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
8194 if (ShouldInvert)
8195 Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
8197 return Cmp;
8200 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
8201 SelectionDAG &DAG) {
8202 SDValue VecOp = ScalarOp.getOperand(0);
8203 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
8204 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
8205 DAG.getConstant(0, DL, MVT::i64));
8208 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
8209 SelectionDAG &DAG) const {
8210 SDLoc dl(Op);
8211 switch (Op.getOpcode()) {
8212 case ISD::VECREDUCE_ADD:
8213 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
8214 case ISD::VECREDUCE_SMAX:
8215 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
8216 case ISD::VECREDUCE_SMIN:
8217 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
8218 case ISD::VECREDUCE_UMAX:
8219 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
8220 case ISD::VECREDUCE_UMIN:
8221 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
8222 case ISD::VECREDUCE_FMAX: {
8223 assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
8224 return DAG.getNode(
8225 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
8226 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
8227 Op.getOperand(0));
8229 case ISD::VECREDUCE_FMIN: {
8230 assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
8231 return DAG.getNode(
8232 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
8233 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
8234 Op.getOperand(0));
8236 default:
8237 llvm_unreachable("Unhandled reduction");
8241 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
8242 SelectionDAG &DAG) const {
8243 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
8244 if (!Subtarget.hasLSE())
8245 return SDValue();
8247 // LSE has an atomic load-add instruction, but not a load-sub.
8248 SDLoc dl(Op);
8249 MVT VT = Op.getSimpleValueType();
8250 SDValue RHS = Op.getOperand(2);
8251 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
8252 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
8253 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
8254 Op.getOperand(0), Op.getOperand(1), RHS,
8255 AN->getMemOperand());
8258 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
8259 SelectionDAG &DAG) const {
8260 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
8261 if (!Subtarget.hasLSE())
8262 return SDValue();
8264 // LSE has an atomic load-clear instruction, but not a load-and.
8265 SDLoc dl(Op);
8266 MVT VT = Op.getSimpleValueType();
8267 SDValue RHS = Op.getOperand(2);
8268 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
8269 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
8270 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
8271 Op.getOperand(0), Op.getOperand(1), RHS,
8272 AN->getMemOperand());
8275 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
8276 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
8277 SDLoc dl(Op);
8278 EVT PtrVT = getPointerTy(DAG.getDataLayout());
8279 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
8281 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
8282 const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
8283 if (Subtarget->hasCustomCallingConv())
8284 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
8286 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
8287 DAG.getConstant(4, dl, MVT::i64));
8288 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
8289 Chain =
8290 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
8291 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
8292 DAG.getRegisterMask(Mask), Chain.getValue(1));
8293 // To match the actual intent better, we should read the output from X15 here
8294 // again (instead of potentially spilling it to the stack), but rereading Size
8295 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
8296 // here.
8298 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
8299 DAG.getConstant(4, dl, MVT::i64));
8300 return Chain;
8303 SDValue
8304 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8305 SelectionDAG &DAG) const {
8306 assert(Subtarget->isTargetWindows() &&
8307 "Only Windows alloca probing supported");
8308 SDLoc dl(Op);
8309 // Get the inputs.
8310 SDNode *Node = Op.getNode();
8311 SDValue Chain = Op.getOperand(0);
8312 SDValue Size = Op.getOperand(1);
8313 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8314 EVT VT = Node->getValueType(0);
8316 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
8317 "no-stack-arg-probe")) {
8318 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8319 Chain = SP.getValue(1);
8320 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8321 if (Align)
8322 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8323 DAG.getConstant(-(uint64_t)Align, dl, VT));
8324 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8325 SDValue Ops[2] = {SP, Chain};
8326 return DAG.getMergeValues(Ops, dl);
8329 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
8331 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
8333 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8334 Chain = SP.getValue(1);
8335 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8336 if (Align)
8337 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8338 DAG.getConstant(-(uint64_t)Align, dl, VT));
8339 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8341 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
8342 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
8344 SDValue Ops[2] = {SP, Chain};
8345 return DAG.getMergeValues(Ops, dl);
8348 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8349 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
8350 /// specified in the intrinsic calls.
8351 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8352 const CallInst &I,
8353 MachineFunction &MF,
8354 unsigned Intrinsic) const {
8355 auto &DL = I.getModule()->getDataLayout();
8356 switch (Intrinsic) {
8357 case Intrinsic::aarch64_neon_ld2:
8358 case Intrinsic::aarch64_neon_ld3:
8359 case Intrinsic::aarch64_neon_ld4:
8360 case Intrinsic::aarch64_neon_ld1x2:
8361 case Intrinsic::aarch64_neon_ld1x3:
8362 case Intrinsic::aarch64_neon_ld1x4:
8363 case Intrinsic::aarch64_neon_ld2lane:
8364 case Intrinsic::aarch64_neon_ld3lane:
8365 case Intrinsic::aarch64_neon_ld4lane:
8366 case Intrinsic::aarch64_neon_ld2r:
8367 case Intrinsic::aarch64_neon_ld3r:
8368 case Intrinsic::aarch64_neon_ld4r: {
8369 Info.opc = ISD::INTRINSIC_W_CHAIN;
8370 // Conservatively set memVT to the entire set of vectors loaded.
8371 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
8372 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8373 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8374 Info.offset = 0;
8375 Info.align.reset();
8376 // volatile loads with NEON intrinsics not supported
8377 Info.flags = MachineMemOperand::MOLoad;
8378 return true;
8380 case Intrinsic::aarch64_neon_st2:
8381 case Intrinsic::aarch64_neon_st3:
8382 case Intrinsic::aarch64_neon_st4:
8383 case Intrinsic::aarch64_neon_st1x2:
8384 case Intrinsic::aarch64_neon_st1x3:
8385 case Intrinsic::aarch64_neon_st1x4:
8386 case Intrinsic::aarch64_neon_st2lane:
8387 case Intrinsic::aarch64_neon_st3lane:
8388 case Intrinsic::aarch64_neon_st4lane: {
8389 Info.opc = ISD::INTRINSIC_VOID;
8390 // Conservatively set memVT to the entire set of vectors stored.
8391 unsigned NumElts = 0;
8392 for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8393 Type *ArgTy = I.getArgOperand(ArgI)->getType();
8394 if (!ArgTy->isVectorTy())
8395 break;
8396 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
8398 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8399 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8400 Info.offset = 0;
8401 Info.align.reset();
8402 // volatile stores with NEON intrinsics not supported
8403 Info.flags = MachineMemOperand::MOStore;
8404 return true;
8406 case Intrinsic::aarch64_ldaxr:
8407 case Intrinsic::aarch64_ldxr: {
8408 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
8409 Info.opc = ISD::INTRINSIC_W_CHAIN;
8410 Info.memVT = MVT::getVT(PtrTy->getElementType());
8411 Info.ptrVal = I.getArgOperand(0);
8412 Info.offset = 0;
8413 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8414 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8415 return true;
8417 case Intrinsic::aarch64_stlxr:
8418 case Intrinsic::aarch64_stxr: {
8419 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
8420 Info.opc = ISD::INTRINSIC_W_CHAIN;
8421 Info.memVT = MVT::getVT(PtrTy->getElementType());
8422 Info.ptrVal = I.getArgOperand(1);
8423 Info.offset = 0;
8424 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8425 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8426 return true;
8428 case Intrinsic::aarch64_ldaxp:
8429 case Intrinsic::aarch64_ldxp:
8430 Info.opc = ISD::INTRINSIC_W_CHAIN;
8431 Info.memVT = MVT::i128;
8432 Info.ptrVal = I.getArgOperand(0);
8433 Info.offset = 0;
8434 Info.align = Align(16);
8435 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8436 return true;
8437 case Intrinsic::aarch64_stlxp:
8438 case Intrinsic::aarch64_stxp:
8439 Info.opc = ISD::INTRINSIC_W_CHAIN;
8440 Info.memVT = MVT::i128;
8441 Info.ptrVal = I.getArgOperand(2);
8442 Info.offset = 0;
8443 Info.align = Align(16);
8444 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8445 return true;
8446 default:
8447 break;
8450 return false;
8453 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
8454 ISD::LoadExtType ExtTy,
8455 EVT NewVT) const {
8456 // TODO: This may be worth removing. Check regression tests for diffs.
8457 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
8458 return false;
8460 // If we're reducing the load width in order to avoid having to use an extra
8461 // instruction to do extension then it's probably a good idea.
8462 if (ExtTy != ISD::NON_EXTLOAD)
8463 return true;
8464 // Don't reduce load width if it would prevent us from combining a shift into
8465 // the offset.
8466 MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
8467 assert(Mem);
8468 const SDValue &Base = Mem->getBasePtr();
8469 if (Base.getOpcode() == ISD::ADD &&
8470 Base.getOperand(1).getOpcode() == ISD::SHL &&
8471 Base.getOperand(1).hasOneUse() &&
8472 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
8473 // The shift can be combined if it matches the size of the value being
8474 // loaded (and so reducing the width would make it not match).
8475 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
8476 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
8477 if (ShiftAmount == Log2_32(LoadBytes))
8478 return false;
8480 // We have no reason to disallow reducing the load width, so allow it.
8481 return true;
8484 // Truncations from 64-bit GPR to 32-bit GPR is free.
8485 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8486 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8487 return false;
8488 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8489 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8490 return NumBits1 > NumBits2;
8492 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8493 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8494 return false;
8495 unsigned NumBits1 = VT1.getSizeInBits();
8496 unsigned NumBits2 = VT2.getSizeInBits();
8497 return NumBits1 > NumBits2;
8500 /// Check if it is profitable to hoist instruction in then/else to if.
8501 /// Not profitable if I and it's user can form a FMA instruction
8502 /// because we prefer FMSUB/FMADD.
8503 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
8504 if (I->getOpcode() != Instruction::FMul)
8505 return true;
8507 if (!I->hasOneUse())
8508 return true;
8510 Instruction *User = I->user_back();
8512 if (User &&
8513 !(User->getOpcode() == Instruction::FSub ||
8514 User->getOpcode() == Instruction::FAdd))
8515 return true;
8517 const TargetOptions &Options = getTargetMachine().Options;
8518 const DataLayout &DL = I->getModule()->getDataLayout();
8519 EVT VT = getValueType(DL, User->getOperand(0)->getType());
8521 return !(isFMAFasterThanFMulAndFAdd(VT) &&
8522 isOperationLegalOrCustom(ISD::FMA, VT) &&
8523 (Options.AllowFPOpFusion == FPOpFusion::Fast ||
8524 Options.UnsafeFPMath));
8527 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8528 // 64-bit GPR.
8529 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
8530 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8531 return false;
8532 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8533 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8534 return NumBits1 == 32 && NumBits2 == 64;
8536 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8537 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8538 return false;
8539 unsigned NumBits1 = VT1.getSizeInBits();
8540 unsigned NumBits2 = VT2.getSizeInBits();
8541 return NumBits1 == 32 && NumBits2 == 64;
8544 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
8545 EVT VT1 = Val.getValueType();
8546 if (isZExtFree(VT1, VT2)) {
8547 return true;
8550 if (Val.getOpcode() != ISD::LOAD)
8551 return false;
8553 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8554 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
8555 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
8556 VT1.getSizeInBits() <= 32);
8559 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
8560 if (isa<FPExtInst>(Ext))
8561 return false;
8563 // Vector types are not free.
8564 if (Ext->getType()->isVectorTy())
8565 return false;
8567 for (const Use &U : Ext->uses()) {
8568 // The extension is free if we can fold it with a left shift in an
8569 // addressing mode or an arithmetic operation: add, sub, and cmp.
8571 // Is there a shift?
8572 const Instruction *Instr = cast<Instruction>(U.getUser());
8574 // Is this a constant shift?
8575 switch (Instr->getOpcode()) {
8576 case Instruction::Shl:
8577 if (!isa<ConstantInt>(Instr->getOperand(1)))
8578 return false;
8579 break;
8580 case Instruction::GetElementPtr: {
8581 gep_type_iterator GTI = gep_type_begin(Instr);
8582 auto &DL = Ext->getModule()->getDataLayout();
8583 std::advance(GTI, U.getOperandNo()-1);
8584 Type *IdxTy = GTI.getIndexedType();
8585 // This extension will end up with a shift because of the scaling factor.
8586 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8587 // Get the shift amount based on the scaling factor:
8588 // log2(sizeof(IdxTy)) - log2(8).
8589 uint64_t ShiftAmt =
8590 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3;
8591 // Is the constant foldable in the shift of the addressing mode?
8592 // I.e., shift amount is between 1 and 4 inclusive.
8593 if (ShiftAmt == 0 || ShiftAmt > 4)
8594 return false;
8595 break;
8597 case Instruction::Trunc:
8598 // Check if this is a noop.
8599 // trunc(sext ty1 to ty2) to ty1.
8600 if (Instr->getType() == Ext->getOperand(0)->getType())
8601 continue;
8602 LLVM_FALLTHROUGH;
8603 default:
8604 return false;
8607 // At this point we can use the bfm family, so this extension is free
8608 // for that use.
8610 return true;
8613 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8614 /// or upper half of the vector elements.
8615 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
8616 auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
8617 auto *FullVT = cast<VectorType>(FullV->getType());
8618 auto *HalfVT = cast<VectorType>(HalfV->getType());
8619 return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
8622 auto extractHalf = [](Value *FullV, Value *HalfV) {
8623 auto *FullVT = cast<VectorType>(FullV->getType());
8624 auto *HalfVT = cast<VectorType>(HalfV->getType());
8625 return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
8628 Constant *M1, *M2;
8629 Value *S1Op1, *S2Op1;
8630 if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
8631 !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
8632 return false;
8634 // Check that the operands are half as wide as the result and we extract
8635 // half of the elements of the input vectors.
8636 if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
8637 !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
8638 return false;
8640 // Check the mask extracts either the lower or upper half of vector
8641 // elements.
8642 int M1Start = -1;
8643 int M2Start = -1;
8644 int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
8645 if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
8646 !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
8647 M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
8648 return false;
8650 return true;
8653 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
8654 /// of the vector elements.
8655 static bool areExtractExts(Value *Ext1, Value *Ext2) {
8656 auto areExtDoubled = [](Instruction *Ext) {
8657 return Ext->getType()->getScalarSizeInBits() ==
8658 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
8661 if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
8662 !match(Ext2, m_ZExtOrSExt(m_Value())) ||
8663 !areExtDoubled(cast<Instruction>(Ext1)) ||
8664 !areExtDoubled(cast<Instruction>(Ext2)))
8665 return false;
8667 return true;
8670 /// Check if sinking \p I's operands to I's basic block is profitable, because
8671 /// the operands can be folded into a target instruction, e.g.
8672 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
8673 bool AArch64TargetLowering::shouldSinkOperands(
8674 Instruction *I, SmallVectorImpl<Use *> &Ops) const {
8675 if (!I->getType()->isVectorTy())
8676 return false;
8678 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
8679 switch (II->getIntrinsicID()) {
8680 case Intrinsic::aarch64_neon_umull:
8681 if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
8682 return false;
8683 Ops.push_back(&II->getOperandUse(0));
8684 Ops.push_back(&II->getOperandUse(1));
8685 return true;
8686 default:
8687 return false;
8691 switch (I->getOpcode()) {
8692 case Instruction::Sub:
8693 case Instruction::Add: {
8694 if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
8695 return false;
8697 // If the exts' operands extract either the lower or upper elements, we
8698 // can sink them too.
8699 auto Ext1 = cast<Instruction>(I->getOperand(0));
8700 auto Ext2 = cast<Instruction>(I->getOperand(1));
8701 if (areExtractShuffleVectors(Ext1, Ext2)) {
8702 Ops.push_back(&Ext1->getOperandUse(0));
8703 Ops.push_back(&Ext2->getOperandUse(0));
8706 Ops.push_back(&I->getOperandUse(0));
8707 Ops.push_back(&I->getOperandUse(1));
8709 return true;
8711 default:
8712 return false;
8714 return false;
8717 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
8718 unsigned &RequiredAligment) const {
8719 if (!LoadedType.isSimple() ||
8720 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
8721 return false;
8722 // Cyclone supports unaligned accesses.
8723 RequiredAligment = 0;
8724 unsigned NumBits = LoadedType.getSizeInBits();
8725 return NumBits == 32 || NumBits == 64;
8728 /// A helper function for determining the number of interleaved accesses we
8729 /// will generate when lowering accesses of the given type.
8730 unsigned
8731 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
8732 const DataLayout &DL) const {
8733 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
8736 MachineMemOperand::Flags
8737 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
8738 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
8739 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
8740 return MOStridedAccess;
8741 return MachineMemOperand::MONone;
8744 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8745 VectorType *VecTy, const DataLayout &DL) const {
8747 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
8748 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
8750 // Ensure the number of vector elements is greater than 1.
8751 if (VecTy->getNumElements() < 2)
8752 return false;
8754 // Ensure the element type is legal.
8755 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
8756 return false;
8758 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8759 // 128 will be split into multiple interleaved accesses.
8760 return VecSize == 64 || VecSize % 128 == 0;
8763 /// Lower an interleaved load into a ldN intrinsic.
8765 /// E.g. Lower an interleaved load (Factor = 2):
8766 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8767 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
8768 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
8770 /// Into:
8771 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8772 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8773 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
8774 bool AArch64TargetLowering::lowerInterleavedLoad(
8775 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
8776 ArrayRef<unsigned> Indices, unsigned Factor) const {
8777 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8778 "Invalid interleave factor");
8779 assert(!Shuffles.empty() && "Empty shufflevector input");
8780 assert(Shuffles.size() == Indices.size() &&
8781 "Unmatched number of shufflevectors and indices");
8783 const DataLayout &DL = LI->getModule()->getDataLayout();
8785 VectorType *VecTy = Shuffles[0]->getType();
8787 // Skip if we do not have NEON and skip illegal vector types. We can
8788 // "legalize" wide vector types into multiple interleaved accesses as long as
8789 // the vector types are divisible by 128.
8790 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
8791 return false;
8793 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
8795 // A pointer vector can not be the return type of the ldN intrinsics. Need to
8796 // load integer vectors first and then convert to pointer vectors.
8797 Type *EltTy = VecTy->getVectorElementType();
8798 if (EltTy->isPointerTy())
8799 VecTy =
8800 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
8802 IRBuilder<> Builder(LI);
8804 // The base address of the load.
8805 Value *BaseAddr = LI->getPointerOperand();
8807 if (NumLoads > 1) {
8808 // If we're going to generate more than one load, reset the sub-vector type
8809 // to something legal.
8810 VecTy = VectorType::get(VecTy->getVectorElementType(),
8811 VecTy->getVectorNumElements() / NumLoads);
8813 // We will compute the pointer operand of each load from the original base
8814 // address using GEPs. Cast the base address to a pointer to the scalar
8815 // element type.
8816 BaseAddr = Builder.CreateBitCast(
8817 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
8818 LI->getPointerAddressSpace()));
8821 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
8822 Type *Tys[2] = {VecTy, PtrTy};
8823 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
8824 Intrinsic::aarch64_neon_ld3,
8825 Intrinsic::aarch64_neon_ld4};
8826 Function *LdNFunc =
8827 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
8829 // Holds sub-vectors extracted from the load intrinsic return values. The
8830 // sub-vectors are associated with the shufflevector instructions they will
8831 // replace.
8832 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
8834 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
8836 // If we're generating more than one load, compute the base address of
8837 // subsequent loads as an offset from the previous.
8838 if (LoadCount > 0)
8839 BaseAddr =
8840 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
8841 VecTy->getVectorNumElements() * Factor);
8843 CallInst *LdN = Builder.CreateCall(
8844 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
8846 // Extract and store the sub-vectors returned by the load intrinsic.
8847 for (unsigned i = 0; i < Shuffles.size(); i++) {
8848 ShuffleVectorInst *SVI = Shuffles[i];
8849 unsigned Index = Indices[i];
8851 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
8853 // Convert the integer vector to pointer vector if the element is pointer.
8854 if (EltTy->isPointerTy())
8855 SubVec = Builder.CreateIntToPtr(
8856 SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
8857 VecTy->getVectorNumElements()));
8858 SubVecs[SVI].push_back(SubVec);
8862 // Replace uses of the shufflevector instructions with the sub-vectors
8863 // returned by the load intrinsic. If a shufflevector instruction is
8864 // associated with more than one sub-vector, those sub-vectors will be
8865 // concatenated into a single wide vector.
8866 for (ShuffleVectorInst *SVI : Shuffles) {
8867 auto &SubVec = SubVecs[SVI];
8868 auto *WideVec =
8869 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
8870 SVI->replaceAllUsesWith(WideVec);
8873 return true;
8876 /// Lower an interleaved store into a stN intrinsic.
8878 /// E.g. Lower an interleaved store (Factor = 3):
8879 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8880 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8881 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8883 /// Into:
8884 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8885 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8886 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8887 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8889 /// Note that the new shufflevectors will be removed and we'll only generate one
8890 /// st3 instruction in CodeGen.
8892 /// Example for a more general valid mask (Factor 3). Lower:
8893 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8894 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8895 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8897 /// Into:
8898 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8899 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8900 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8901 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8902 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
8903 ShuffleVectorInst *SVI,
8904 unsigned Factor) const {
8905 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8906 "Invalid interleave factor");
8908 VectorType *VecTy = SVI->getType();
8909 assert(VecTy->getVectorNumElements() % Factor == 0 &&
8910 "Invalid interleaved store");
8912 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
8913 Type *EltTy = VecTy->getVectorElementType();
8914 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
8916 const DataLayout &DL = SI->getModule()->getDataLayout();
8918 // Skip if we do not have NEON and skip illegal vector types. We can
8919 // "legalize" wide vector types into multiple interleaved accesses as long as
8920 // the vector types are divisible by 128.
8921 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
8922 return false;
8924 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
8926 Value *Op0 = SVI->getOperand(0);
8927 Value *Op1 = SVI->getOperand(1);
8928 IRBuilder<> Builder(SI);
8930 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8931 // vectors to integer vectors.
8932 if (EltTy->isPointerTy()) {
8933 Type *IntTy = DL.getIntPtrType(EltTy);
8934 unsigned NumOpElts = Op0->getType()->getVectorNumElements();
8936 // Convert to the corresponding integer vector.
8937 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
8938 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
8939 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
8941 SubVecTy = VectorType::get(IntTy, LaneLen);
8944 // The base address of the store.
8945 Value *BaseAddr = SI->getPointerOperand();
8947 if (NumStores > 1) {
8948 // If we're going to generate more than one store, reset the lane length
8949 // and sub-vector type to something legal.
8950 LaneLen /= NumStores;
8951 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
8953 // We will compute the pointer operand of each store from the original base
8954 // address using GEPs. Cast the base address to a pointer to the scalar
8955 // element type.
8956 BaseAddr = Builder.CreateBitCast(
8957 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
8958 SI->getPointerAddressSpace()));
8961 auto Mask = SVI->getShuffleMask();
8963 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
8964 Type *Tys[2] = {SubVecTy, PtrTy};
8965 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
8966 Intrinsic::aarch64_neon_st3,
8967 Intrinsic::aarch64_neon_st4};
8968 Function *StNFunc =
8969 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
8971 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
8973 SmallVector<Value *, 5> Ops;
8975 // Split the shufflevector operands into sub vectors for the new stN call.
8976 for (unsigned i = 0; i < Factor; i++) {
8977 unsigned IdxI = StoreCount * LaneLen * Factor + i;
8978 if (Mask[IdxI] >= 0) {
8979 Ops.push_back(Builder.CreateShuffleVector(
8980 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
8981 } else {
8982 unsigned StartMask = 0;
8983 for (unsigned j = 1; j < LaneLen; j++) {
8984 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
8985 if (Mask[IdxJ * Factor + IdxI] >= 0) {
8986 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
8987 break;
8990 // Note: Filling undef gaps with random elements is ok, since
8991 // those elements were being written anyway (with undefs).
8992 // In the case of all undefs we're defaulting to using elems from 0
8993 // Note: StartMask cannot be negative, it's checked in
8994 // isReInterleaveMask
8995 Ops.push_back(Builder.CreateShuffleVector(
8996 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
9000 // If we generating more than one store, we compute the base address of
9001 // subsequent stores as an offset from the previous.
9002 if (StoreCount > 0)
9003 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
9004 BaseAddr, LaneLen * Factor);
9006 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
9007 Builder.CreateCall(StNFunc, Ops);
9009 return true;
9012 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9013 unsigned AlignCheck) {
9014 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9015 (DstAlign == 0 || DstAlign % AlignCheck == 0));
9018 EVT AArch64TargetLowering::getOptimalMemOpType(
9019 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
9020 bool ZeroMemset, bool MemcpyStrSrc,
9021 const AttributeList &FuncAttributes) const {
9022 bool CanImplicitFloat =
9023 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
9024 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
9025 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
9026 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9027 // taken one instruction to materialize the v2i64 zero and one store (with
9028 // restrictive addressing mode). Just do i64 stores.
9029 bool IsSmallMemset = IsMemset && Size < 32;
9030 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
9031 if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
9032 return true;
9033 bool Fast;
9034 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
9035 &Fast) &&
9036 Fast;
9039 if (CanUseNEON && IsMemset && !IsSmallMemset &&
9040 AlignmentIsAcceptable(MVT::v2i64, 16))
9041 return MVT::v2i64;
9042 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
9043 return MVT::f128;
9044 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
9045 return MVT::i64;
9046 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
9047 return MVT::i32;
9048 return MVT::Other;
9051 LLT AArch64TargetLowering::getOptimalMemOpLLT(
9052 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
9053 bool ZeroMemset, bool MemcpyStrSrc,
9054 const AttributeList &FuncAttributes) const {
9055 bool CanImplicitFloat =
9056 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
9057 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
9058 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
9059 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9060 // taken one instruction to materialize the v2i64 zero and one store (with
9061 // restrictive addressing mode). Just do i64 stores.
9062 bool IsSmallMemset = IsMemset && Size < 32;
9063 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
9064 if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
9065 return true;
9066 bool Fast;
9067 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
9068 &Fast) &&
9069 Fast;
9072 if (CanUseNEON && IsMemset && !IsSmallMemset &&
9073 AlignmentIsAcceptable(MVT::v2i64, 16))
9074 return LLT::vector(2, 64);
9075 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
9076 return LLT::scalar(128);
9077 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
9078 return LLT::scalar(64);
9079 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
9080 return LLT::scalar(32);
9081 return LLT();
9084 // 12-bit optionally shifted immediates are legal for adds.
9085 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
9086 if (Immed == std::numeric_limits<int64_t>::min()) {
9087 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
9088 << ": avoid UB for INT64_MIN\n");
9089 return false;
9091 // Same encoding for add/sub, just flip the sign.
9092 Immed = std::abs(Immed);
9093 bool IsLegal = ((Immed >> 12) == 0 ||
9094 ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
9095 LLVM_DEBUG(dbgs() << "Is " << Immed
9096 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
9097 return IsLegal;
9100 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
9101 // immediates is the same as for an add or a sub.
9102 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
9103 return isLegalAddImmediate(Immed);
9106 /// isLegalAddressingMode - Return true if the addressing mode represented
9107 /// by AM is legal for this target, for a load/store of the specified type.
9108 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
9109 const AddrMode &AM, Type *Ty,
9110 unsigned AS, Instruction *I) const {
9111 // AArch64 has five basic addressing modes:
9112 // reg
9113 // reg + 9-bit signed offset
9114 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
9115 // reg1 + reg2
9116 // reg + SIZE_IN_BYTES * reg
9118 // No global is ever allowed as a base.
9119 if (AM.BaseGV)
9120 return false;
9122 // No reg+reg+imm addressing.
9123 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
9124 return false;
9126 // check reg + imm case:
9127 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
9128 uint64_t NumBytes = 0;
9129 if (Ty->isSized()) {
9130 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
9131 NumBytes = NumBits / 8;
9132 if (!isPowerOf2_64(NumBits))
9133 NumBytes = 0;
9136 if (!AM.Scale) {
9137 int64_t Offset = AM.BaseOffs;
9139 // 9-bit signed offset
9140 if (isInt<9>(Offset))
9141 return true;
9143 // 12-bit unsigned offset
9144 unsigned shift = Log2_64(NumBytes);
9145 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
9146 // Must be a multiple of NumBytes (NumBytes is a power of 2)
9147 (Offset >> shift) << shift == Offset)
9148 return true;
9149 return false;
9152 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
9154 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
9157 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
9158 // Consider splitting large offset of struct or array.
9159 return true;
9162 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
9163 const AddrMode &AM, Type *Ty,
9164 unsigned AS) const {
9165 // Scaling factors are not free at all.
9166 // Operands | Rt Latency
9167 // -------------------------------------------
9168 // Rt, [Xn, Xm] | 4
9169 // -------------------------------------------
9170 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
9171 // Rt, [Xn, Wm, <extend> #imm] |
9172 if (isLegalAddressingMode(DL, AM, Ty, AS))
9173 // Scale represents reg2 * scale, thus account for 1 if
9174 // it is not equal to 0 or 1.
9175 return AM.Scale != 0 && AM.Scale != 1;
9176 return -1;
9179 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
9180 VT = VT.getScalarType();
9182 if (!VT.isSimple())
9183 return false;
9185 switch (VT.getSimpleVT().SimpleTy) {
9186 case MVT::f32:
9187 case MVT::f64:
9188 return true;
9189 default:
9190 break;
9193 return false;
9196 const MCPhysReg *
9197 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
9198 // LR is a callee-save register, but we must treat it as clobbered by any call
9199 // site. Hence we include LR in the scratch registers, which are in turn added
9200 // as implicit-defs for stackmaps and patchpoints.
9201 static const MCPhysReg ScratchRegs[] = {
9202 AArch64::X16, AArch64::X17, AArch64::LR, 0
9204 return ScratchRegs;
9207 bool
9208 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
9209 CombineLevel Level) const {
9210 N = N->getOperand(0).getNode();
9211 EVT VT = N->getValueType(0);
9212 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
9213 // it with shift to let it be lowered to UBFX.
9214 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
9215 isa<ConstantSDNode>(N->getOperand(1))) {
9216 uint64_t TruncMask = N->getConstantOperandVal(1);
9217 if (isMask_64(TruncMask) &&
9218 N->getOperand(0).getOpcode() == ISD::SRL &&
9219 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
9220 return false;
9222 return true;
9225 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
9226 Type *Ty) const {
9227 assert(Ty->isIntegerTy());
9229 unsigned BitSize = Ty->getPrimitiveSizeInBits();
9230 if (BitSize == 0)
9231 return false;
9233 int64_t Val = Imm.getSExtValue();
9234 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
9235 return true;
9237 if ((int64_t)Val < 0)
9238 Val = ~Val;
9239 if (BitSize == 32)
9240 Val &= (1LL << 32) - 1;
9242 unsigned LZ = countLeadingZeros((uint64_t)Val);
9243 unsigned Shift = (63 - LZ) / 16;
9244 // MOVZ is free so return true for one or fewer MOVK.
9245 return Shift < 3;
9248 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
9249 unsigned Index) const {
9250 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
9251 return false;
9253 return (Index == 0 || Index == ResVT.getVectorNumElements());
9256 /// Turn vector tests of the signbit in the form of:
9257 /// xor (sra X, elt_size(X)-1), -1
9258 /// into:
9259 /// cmge X, X, #0
9260 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
9261 const AArch64Subtarget *Subtarget) {
9262 EVT VT = N->getValueType(0);
9263 if (!Subtarget->hasNEON() || !VT.isVector())
9264 return SDValue();
9266 // There must be a shift right algebraic before the xor, and the xor must be a
9267 // 'not' operation.
9268 SDValue Shift = N->getOperand(0);
9269 SDValue Ones = N->getOperand(1);
9270 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
9271 !ISD::isBuildVectorAllOnes(Ones.getNode()))
9272 return SDValue();
9274 // The shift should be smearing the sign bit across each vector element.
9275 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
9276 EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
9277 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
9278 return SDValue();
9280 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
9283 // Generate SUBS and CSEL for integer abs.
9284 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
9285 EVT VT = N->getValueType(0);
9287 SDValue N0 = N->getOperand(0);
9288 SDValue N1 = N->getOperand(1);
9289 SDLoc DL(N);
9291 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
9292 // and change it to SUB and CSEL.
9293 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
9294 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
9295 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
9296 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
9297 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
9298 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
9299 N0.getOperand(0));
9300 // Generate SUBS & CSEL.
9301 SDValue Cmp =
9302 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
9303 N0.getOperand(0), DAG.getConstant(0, DL, VT));
9304 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
9305 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
9306 SDValue(Cmp.getNode(), 1));
9308 return SDValue();
9311 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
9312 TargetLowering::DAGCombinerInfo &DCI,
9313 const AArch64Subtarget *Subtarget) {
9314 if (DCI.isBeforeLegalizeOps())
9315 return SDValue();
9317 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
9318 return Cmp;
9320 return performIntegerAbsCombine(N, DAG);
9323 SDValue
9324 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9325 SelectionDAG &DAG,
9326 SmallVectorImpl<SDNode *> &Created) const {
9327 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
9328 if (isIntDivCheap(N->getValueType(0), Attr))
9329 return SDValue(N,0); // Lower SDIV as SDIV
9331 // fold (sdiv X, pow2)
9332 EVT VT = N->getValueType(0);
9333 if ((VT != MVT::i32 && VT != MVT::i64) ||
9334 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
9335 return SDValue();
9337 SDLoc DL(N);
9338 SDValue N0 = N->getOperand(0);
9339 unsigned Lg2 = Divisor.countTrailingZeros();
9340 SDValue Zero = DAG.getConstant(0, DL, VT);
9341 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
9343 // Add (N0 < 0) ? Pow2 - 1 : 0;
9344 SDValue CCVal;
9345 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
9346 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
9347 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
9349 Created.push_back(Cmp.getNode());
9350 Created.push_back(Add.getNode());
9351 Created.push_back(CSel.getNode());
9353 // Divide by pow2.
9354 SDValue SRA =
9355 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
9357 // If we're dividing by a positive value, we're done. Otherwise, we must
9358 // negate the result.
9359 if (Divisor.isNonNegative())
9360 return SRA;
9362 Created.push_back(SRA.getNode());
9363 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
9366 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
9367 TargetLowering::DAGCombinerInfo &DCI,
9368 const AArch64Subtarget *Subtarget) {
9369 if (DCI.isBeforeLegalizeOps())
9370 return SDValue();
9372 // The below optimizations require a constant RHS.
9373 if (!isa<ConstantSDNode>(N->getOperand(1)))
9374 return SDValue();
9376 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
9377 const APInt &ConstValue = C->getAPIntValue();
9379 // Multiplication of a power of two plus/minus one can be done more
9380 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9381 // future CPUs have a cheaper MADD instruction, this may need to be
9382 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9383 // 64-bit is 5 cycles, so this is always a win.
9384 // More aggressively, some multiplications N0 * C can be lowered to
9385 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9386 // e.g. 6=3*2=(2+1)*2.
9387 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9388 // which equals to (1+2)*16-(1+2).
9389 SDValue N0 = N->getOperand(0);
9390 // TrailingZeroes is used to test if the mul can be lowered to
9391 // shift+add+shift.
9392 unsigned TrailingZeroes = ConstValue.countTrailingZeros();
9393 if (TrailingZeroes) {
9394 // Conservatively do not lower to shift+add+shift if the mul might be
9395 // folded into smul or umul.
9396 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
9397 isZeroExtended(N0.getNode(), DAG)))
9398 return SDValue();
9399 // Conservatively do not lower to shift+add+shift if the mul might be
9400 // folded into madd or msub.
9401 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
9402 N->use_begin()->getOpcode() == ISD::SUB))
9403 return SDValue();
9405 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9406 // and shift+add+shift.
9407 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
9409 unsigned ShiftAmt, AddSubOpc;
9410 // Is the shifted value the LHS operand of the add/sub?
9411 bool ShiftValUseIsN0 = true;
9412 // Do we need to negate the result?
9413 bool NegateResult = false;
9415 if (ConstValue.isNonNegative()) {
9416 // (mul x, 2^N + 1) => (add (shl x, N), x)
9417 // (mul x, 2^N - 1) => (sub (shl x, N), x)
9418 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9419 APInt SCVMinus1 = ShiftedConstValue - 1;
9420 APInt CVPlus1 = ConstValue + 1;
9421 if (SCVMinus1.isPowerOf2()) {
9422 ShiftAmt = SCVMinus1.logBase2();
9423 AddSubOpc = ISD::ADD;
9424 } else if (CVPlus1.isPowerOf2()) {
9425 ShiftAmt = CVPlus1.logBase2();
9426 AddSubOpc = ISD::SUB;
9427 } else
9428 return SDValue();
9429 } else {
9430 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9431 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9432 APInt CVNegPlus1 = -ConstValue + 1;
9433 APInt CVNegMinus1 = -ConstValue - 1;
9434 if (CVNegPlus1.isPowerOf2()) {
9435 ShiftAmt = CVNegPlus1.logBase2();
9436 AddSubOpc = ISD::SUB;
9437 ShiftValUseIsN0 = false;
9438 } else if (CVNegMinus1.isPowerOf2()) {
9439 ShiftAmt = CVNegMinus1.logBase2();
9440 AddSubOpc = ISD::ADD;
9441 NegateResult = true;
9442 } else
9443 return SDValue();
9446 SDLoc DL(N);
9447 EVT VT = N->getValueType(0);
9448 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
9449 DAG.getConstant(ShiftAmt, DL, MVT::i64));
9451 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
9452 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
9453 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
9454 assert(!(NegateResult && TrailingZeroes) &&
9455 "NegateResult and TrailingZeroes cannot both be true for now.");
9456 // Negate the result.
9457 if (NegateResult)
9458 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
9459 // Shift the result.
9460 if (TrailingZeroes)
9461 return DAG.getNode(ISD::SHL, DL, VT, Res,
9462 DAG.getConstant(TrailingZeroes, DL, MVT::i64));
9463 return Res;
9466 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
9467 SelectionDAG &DAG) {
9468 // Take advantage of vector comparisons producing 0 or -1 in each lane to
9469 // optimize away operation when it's from a constant.
9471 // The general transformation is:
9472 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9473 // AND(VECTOR_CMP(x,y), constant2)
9474 // constant2 = UNARYOP(constant)
9476 // Early exit if this isn't a vector operation, the operand of the
9477 // unary operation isn't a bitwise AND, or if the sizes of the operations
9478 // aren't the same.
9479 EVT VT = N->getValueType(0);
9480 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
9481 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
9482 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
9483 return SDValue();
9485 // Now check that the other operand of the AND is a constant. We could
9486 // make the transformation for non-constant splats as well, but it's unclear
9487 // that would be a benefit as it would not eliminate any operations, just
9488 // perform one more step in scalar code before moving to the vector unit.
9489 if (BuildVectorSDNode *BV =
9490 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
9491 // Bail out if the vector isn't a constant.
9492 if (!BV->isConstant())
9493 return SDValue();
9495 // Everything checks out. Build up the new and improved node.
9496 SDLoc DL(N);
9497 EVT IntVT = BV->getValueType(0);
9498 // Create a new constant of the appropriate type for the transformed
9499 // DAG.
9500 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
9501 // The AND node needs bitcasts to/from an integer vector type around it.
9502 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
9503 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
9504 N->getOperand(0)->getOperand(0), MaskConst);
9505 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
9506 return Res;
9509 return SDValue();
9512 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
9513 const AArch64Subtarget *Subtarget) {
9514 // First try to optimize away the conversion when it's conditionally from
9515 // a constant. Vectors only.
9516 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
9517 return Res;
9519 EVT VT = N->getValueType(0);
9520 if (VT != MVT::f32 && VT != MVT::f64)
9521 return SDValue();
9523 // Only optimize when the source and destination types have the same width.
9524 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
9525 return SDValue();
9527 // If the result of an integer load is only used by an integer-to-float
9528 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9529 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9530 SDValue N0 = N->getOperand(0);
9531 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9532 // Do not change the width of a volatile load.
9533 !cast<LoadSDNode>(N0)->isVolatile()) {
9534 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9535 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
9536 LN0->getPointerInfo(), LN0->getAlignment(),
9537 LN0->getMemOperand()->getFlags());
9539 // Make sure successors of the original load stay after it by updating them
9540 // to use the new Chain.
9541 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
9543 unsigned Opcode =
9544 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
9545 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
9548 return SDValue();
9551 /// Fold a floating-point multiply by power of two into floating-point to
9552 /// fixed-point conversion.
9553 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
9554 TargetLowering::DAGCombinerInfo &DCI,
9555 const AArch64Subtarget *Subtarget) {
9556 if (!Subtarget->hasNEON())
9557 return SDValue();
9559 if (!N->getValueType(0).isSimple())
9560 return SDValue();
9562 SDValue Op = N->getOperand(0);
9563 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9564 Op.getOpcode() != ISD::FMUL)
9565 return SDValue();
9567 SDValue ConstVec = Op->getOperand(1);
9568 if (!isa<BuildVectorSDNode>(ConstVec))
9569 return SDValue();
9571 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9572 uint32_t FloatBits = FloatTy.getSizeInBits();
9573 if (FloatBits != 32 && FloatBits != 64)
9574 return SDValue();
9576 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9577 uint32_t IntBits = IntTy.getSizeInBits();
9578 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9579 return SDValue();
9581 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9582 if (IntBits > FloatBits)
9583 return SDValue();
9585 BitVector UndefElements;
9586 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9587 int32_t Bits = IntBits == 64 ? 64 : 32;
9588 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
9589 if (C == -1 || C == 0 || C > Bits)
9590 return SDValue();
9592 MVT ResTy;
9593 unsigned NumLanes = Op.getValueType().getVectorNumElements();
9594 switch (NumLanes) {
9595 default:
9596 return SDValue();
9597 case 2:
9598 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9599 break;
9600 case 4:
9601 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9602 break;
9605 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9606 return SDValue();
9608 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
9609 "Illegal vector type after legalization");
9611 SDLoc DL(N);
9612 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
9613 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
9614 : Intrinsic::aarch64_neon_vcvtfp2fxu;
9615 SDValue FixConv =
9616 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
9617 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
9618 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
9619 // We can handle smaller integers by generating an extra trunc.
9620 if (IntBits < FloatBits)
9621 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
9623 return FixConv;
9626 /// Fold a floating-point divide by power of two into fixed-point to
9627 /// floating-point conversion.
9628 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
9629 TargetLowering::DAGCombinerInfo &DCI,
9630 const AArch64Subtarget *Subtarget) {
9631 if (!Subtarget->hasNEON())
9632 return SDValue();
9634 SDValue Op = N->getOperand(0);
9635 unsigned Opc = Op->getOpcode();
9636 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9637 !Op.getOperand(0).getValueType().isSimple() ||
9638 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
9639 return SDValue();
9641 SDValue ConstVec = N->getOperand(1);
9642 if (!isa<BuildVectorSDNode>(ConstVec))
9643 return SDValue();
9645 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9646 int32_t IntBits = IntTy.getSizeInBits();
9647 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9648 return SDValue();
9650 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9651 int32_t FloatBits = FloatTy.getSizeInBits();
9652 if (FloatBits != 32 && FloatBits != 64)
9653 return SDValue();
9655 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
9656 if (IntBits > FloatBits)
9657 return SDValue();
9659 BitVector UndefElements;
9660 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9661 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
9662 if (C == -1 || C == 0 || C > FloatBits)
9663 return SDValue();
9665 MVT ResTy;
9666 unsigned NumLanes = Op.getValueType().getVectorNumElements();
9667 switch (NumLanes) {
9668 default:
9669 return SDValue();
9670 case 2:
9671 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9672 break;
9673 case 4:
9674 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9675 break;
9678 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9679 return SDValue();
9681 SDLoc DL(N);
9682 SDValue ConvInput = Op.getOperand(0);
9683 bool IsSigned = Opc == ISD::SINT_TO_FP;
9684 if (IntBits < FloatBits)
9685 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
9686 ResTy, ConvInput);
9688 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
9689 : Intrinsic::aarch64_neon_vcvtfxu2fp;
9690 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
9691 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
9692 DAG.getConstant(C, DL, MVT::i32));
9695 /// An EXTR instruction is made up of two shifts, ORed together. This helper
9696 /// searches for and classifies those shifts.
9697 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
9698 bool &FromHi) {
9699 if (N.getOpcode() == ISD::SHL)
9700 FromHi = false;
9701 else if (N.getOpcode() == ISD::SRL)
9702 FromHi = true;
9703 else
9704 return false;
9706 if (!isa<ConstantSDNode>(N.getOperand(1)))
9707 return false;
9709 ShiftAmount = N->getConstantOperandVal(1);
9710 Src = N->getOperand(0);
9711 return true;
9714 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9715 /// registers viewed as a high/low pair. This function looks for the pattern:
9716 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9717 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9718 /// aren't independent.
9719 static SDValue tryCombineToEXTR(SDNode *N,
9720 TargetLowering::DAGCombinerInfo &DCI) {
9721 SelectionDAG &DAG = DCI.DAG;
9722 SDLoc DL(N);
9723 EVT VT = N->getValueType(0);
9725 assert(N->getOpcode() == ISD::OR && "Unexpected root");
9727 if (VT != MVT::i32 && VT != MVT::i64)
9728 return SDValue();
9730 SDValue LHS;
9731 uint32_t ShiftLHS = 0;
9732 bool LHSFromHi = false;
9733 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
9734 return SDValue();
9736 SDValue RHS;
9737 uint32_t ShiftRHS = 0;
9738 bool RHSFromHi = false;
9739 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
9740 return SDValue();
9742 // If they're both trying to come from the high part of the register, they're
9743 // not really an EXTR.
9744 if (LHSFromHi == RHSFromHi)
9745 return SDValue();
9747 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
9748 return SDValue();
9750 if (LHSFromHi) {
9751 std::swap(LHS, RHS);
9752 std::swap(ShiftLHS, ShiftRHS);
9755 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
9756 DAG.getConstant(ShiftRHS, DL, MVT::i64));
9759 static SDValue tryCombineToBSL(SDNode *N,
9760 TargetLowering::DAGCombinerInfo &DCI) {
9761 EVT VT = N->getValueType(0);
9762 SelectionDAG &DAG = DCI.DAG;
9763 SDLoc DL(N);
9765 if (!VT.isVector())
9766 return SDValue();
9768 SDValue N0 = N->getOperand(0);
9769 if (N0.getOpcode() != ISD::AND)
9770 return SDValue();
9772 SDValue N1 = N->getOperand(1);
9773 if (N1.getOpcode() != ISD::AND)
9774 return SDValue();
9776 // We only have to look for constant vectors here since the general, variable
9777 // case can be handled in TableGen.
9778 unsigned Bits = VT.getScalarSizeInBits();
9779 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
9780 for (int i = 1; i >= 0; --i)
9781 for (int j = 1; j >= 0; --j) {
9782 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
9783 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
9784 if (!BVN0 || !BVN1)
9785 continue;
9787 bool FoundMatch = true;
9788 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
9789 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
9790 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
9791 if (!CN0 || !CN1 ||
9792 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
9793 FoundMatch = false;
9794 break;
9798 if (FoundMatch)
9799 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
9800 N0->getOperand(1 - i), N1->getOperand(1 - j));
9803 return SDValue();
9806 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9807 const AArch64Subtarget *Subtarget) {
9808 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9809 SelectionDAG &DAG = DCI.DAG;
9810 EVT VT = N->getValueType(0);
9812 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9813 return SDValue();
9815 if (SDValue Res = tryCombineToEXTR(N, DCI))
9816 return Res;
9818 if (SDValue Res = tryCombineToBSL(N, DCI))
9819 return Res;
9821 return SDValue();
9824 static SDValue performANDCombine(SDNode *N,
9825 TargetLowering::DAGCombinerInfo &DCI) {
9826 SelectionDAG &DAG = DCI.DAG;
9827 SDValue LHS = N->getOperand(0);
9828 EVT VT = N->getValueType(0);
9829 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
9830 return SDValue();
9832 BuildVectorSDNode *BVN =
9833 dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
9834 if (!BVN)
9835 return SDValue();
9837 // AND does not accept an immediate, so check if we can use a BIC immediate
9838 // instruction instead. We do this here instead of using a (and x, (mvni imm))
9839 // pattern in isel, because some immediates may be lowered to the preferred
9840 // (and x, (movi imm)) form, even though an mvni representation also exists.
9841 APInt DefBits(VT.getSizeInBits(), 0);
9842 APInt UndefBits(VT.getSizeInBits(), 0);
9843 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
9844 SDValue NewOp;
9846 DefBits = ~DefBits;
9847 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
9848 DefBits, &LHS)) ||
9849 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
9850 DefBits, &LHS)))
9851 return NewOp;
9853 UndefBits = ~UndefBits;
9854 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
9855 UndefBits, &LHS)) ||
9856 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
9857 UndefBits, &LHS)))
9858 return NewOp;
9861 return SDValue();
9864 static SDValue performSRLCombine(SDNode *N,
9865 TargetLowering::DAGCombinerInfo &DCI) {
9866 SelectionDAG &DAG = DCI.DAG;
9867 EVT VT = N->getValueType(0);
9868 if (VT != MVT::i32 && VT != MVT::i64)
9869 return SDValue();
9871 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9872 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9873 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9874 SDValue N0 = N->getOperand(0);
9875 if (N0.getOpcode() == ISD::BSWAP) {
9876 SDLoc DL(N);
9877 SDValue N1 = N->getOperand(1);
9878 SDValue N00 = N0.getOperand(0);
9879 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9880 uint64_t ShiftAmt = C->getZExtValue();
9881 if (VT == MVT::i32 && ShiftAmt == 16 &&
9882 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
9883 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9884 if (VT == MVT::i64 && ShiftAmt == 32 &&
9885 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
9886 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9889 return SDValue();
9892 static SDValue performBitcastCombine(SDNode *N,
9893 TargetLowering::DAGCombinerInfo &DCI,
9894 SelectionDAG &DAG) {
9895 // Wait 'til after everything is legalized to try this. That way we have
9896 // legal vector types and such.
9897 if (DCI.isBeforeLegalizeOps())
9898 return SDValue();
9900 // Remove extraneous bitcasts around an extract_subvector.
9901 // For example,
9902 // (v4i16 (bitconvert
9903 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9904 // becomes
9905 // (extract_subvector ((v8i16 ...), (i64 4)))
9907 // Only interested in 64-bit vectors as the ultimate result.
9908 EVT VT = N->getValueType(0);
9909 if (!VT.isVector())
9910 return SDValue();
9911 if (VT.getSimpleVT().getSizeInBits() != 64)
9912 return SDValue();
9913 // Is the operand an extract_subvector starting at the beginning or halfway
9914 // point of the vector? A low half may also come through as an
9915 // EXTRACT_SUBREG, so look for that, too.
9916 SDValue Op0 = N->getOperand(0);
9917 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
9918 !(Op0->isMachineOpcode() &&
9919 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
9920 return SDValue();
9921 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
9922 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
9923 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
9924 return SDValue();
9925 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
9926 if (idx != AArch64::dsub)
9927 return SDValue();
9928 // The dsub reference is equivalent to a lane zero subvector reference.
9929 idx = 0;
9931 // Look through the bitcast of the input to the extract.
9932 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
9933 return SDValue();
9934 SDValue Source = Op0->getOperand(0)->getOperand(0);
9935 // If the source type has twice the number of elements as our destination
9936 // type, we know this is an extract of the high or low half of the vector.
9937 EVT SVT = Source->getValueType(0);
9938 if (!SVT.isVector() ||
9939 SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
9940 return SDValue();
9942 LLVM_DEBUG(
9943 dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9945 // Create the simplified form to just extract the low or high half of the
9946 // vector directly rather than bothering with the bitcasts.
9947 SDLoc dl(N);
9948 unsigned NumElements = VT.getVectorNumElements();
9949 if (idx) {
9950 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
9951 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
9952 } else {
9953 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
9954 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
9955 Source, SubReg),
9960 static SDValue performConcatVectorsCombine(SDNode *N,
9961 TargetLowering::DAGCombinerInfo &DCI,
9962 SelectionDAG &DAG) {
9963 SDLoc dl(N);
9964 EVT VT = N->getValueType(0);
9965 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
9967 // Optimize concat_vectors of truncated vectors, where the intermediate
9968 // type is illegal, to avoid said illegality, e.g.,
9969 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9970 // (v2i16 (truncate (v2i64)))))
9971 // ->
9972 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9973 // (v4i32 (bitcast (v2i64))),
9974 // <0, 2, 4, 6>)))
9975 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9976 // on both input and result type, so we might generate worse code.
9977 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9978 if (N->getNumOperands() == 2 &&
9979 N0->getOpcode() == ISD::TRUNCATE &&
9980 N1->getOpcode() == ISD::TRUNCATE) {
9981 SDValue N00 = N0->getOperand(0);
9982 SDValue N10 = N1->getOperand(0);
9983 EVT N00VT = N00.getValueType();
9985 if (N00VT == N10.getValueType() &&
9986 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
9987 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
9988 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
9989 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
9990 for (size_t i = 0; i < Mask.size(); ++i)
9991 Mask[i] = i * 2;
9992 return DAG.getNode(ISD::TRUNCATE, dl, VT,
9993 DAG.getVectorShuffle(
9994 MidVT, dl,
9995 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
9996 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
10000 // Wait 'til after everything is legalized to try this. That way we have
10001 // legal vector types and such.
10002 if (DCI.isBeforeLegalizeOps())
10003 return SDValue();
10005 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
10006 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
10007 // canonicalise to that.
10008 if (N0 == N1 && VT.getVectorNumElements() == 2) {
10009 assert(VT.getScalarSizeInBits() == 64);
10010 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
10011 DAG.getConstant(0, dl, MVT::i64));
10014 // Canonicalise concat_vectors so that the right-hand vector has as few
10015 // bit-casts as possible before its real operation. The primary matching
10016 // destination for these operations will be the narrowing "2" instructions,
10017 // which depend on the operation being performed on this right-hand vector.
10018 // For example,
10019 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
10020 // becomes
10021 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
10023 if (N1->getOpcode() != ISD::BITCAST)
10024 return SDValue();
10025 SDValue RHS = N1->getOperand(0);
10026 MVT RHSTy = RHS.getValueType().getSimpleVT();
10027 // If the RHS is not a vector, this is not the pattern we're looking for.
10028 if (!RHSTy.isVector())
10029 return SDValue();
10031 LLVM_DEBUG(
10032 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
10034 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
10035 RHSTy.getVectorNumElements() * 2);
10036 return DAG.getNode(ISD::BITCAST, dl, VT,
10037 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
10038 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
10039 RHS));
10042 static SDValue tryCombineFixedPointConvert(SDNode *N,
10043 TargetLowering::DAGCombinerInfo &DCI,
10044 SelectionDAG &DAG) {
10045 // Wait until after everything is legalized to try this. That way we have
10046 // legal vector types and such.
10047 if (DCI.isBeforeLegalizeOps())
10048 return SDValue();
10049 // Transform a scalar conversion of a value from a lane extract into a
10050 // lane extract of a vector conversion. E.g., from foo1 to foo2:
10051 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
10052 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
10054 // The second form interacts better with instruction selection and the
10055 // register allocator to avoid cross-class register copies that aren't
10056 // coalescable due to a lane reference.
10058 // Check the operand and see if it originates from a lane extract.
10059 SDValue Op1 = N->getOperand(1);
10060 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10061 // Yep, no additional predication needed. Perform the transform.
10062 SDValue IID = N->getOperand(0);
10063 SDValue Shift = N->getOperand(2);
10064 SDValue Vec = Op1.getOperand(0);
10065 SDValue Lane = Op1.getOperand(1);
10066 EVT ResTy = N->getValueType(0);
10067 EVT VecResTy;
10068 SDLoc DL(N);
10070 // The vector width should be 128 bits by the time we get here, even
10071 // if it started as 64 bits (the extract_vector handling will have
10072 // done so).
10073 assert(Vec.getValueSizeInBits() == 128 &&
10074 "unexpected vector size on extract_vector_elt!");
10075 if (Vec.getValueType() == MVT::v4i32)
10076 VecResTy = MVT::v4f32;
10077 else if (Vec.getValueType() == MVT::v2i64)
10078 VecResTy = MVT::v2f64;
10079 else
10080 llvm_unreachable("unexpected vector type!");
10082 SDValue Convert =
10083 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
10084 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
10086 return SDValue();
10089 // AArch64 high-vector "long" operations are formed by performing the non-high
10090 // version on an extract_subvector of each operand which gets the high half:
10092 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
10094 // However, there are cases which don't have an extract_high explicitly, but
10095 // have another operation that can be made compatible with one for free. For
10096 // example:
10098 // (dupv64 scalar) --> (extract_high (dup128 scalar))
10100 // This routine does the actual conversion of such DUPs, once outer routines
10101 // have determined that everything else is in order.
10102 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
10103 // similarly here.
10104 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
10105 switch (N.getOpcode()) {
10106 case AArch64ISD::DUP:
10107 case AArch64ISD::DUPLANE8:
10108 case AArch64ISD::DUPLANE16:
10109 case AArch64ISD::DUPLANE32:
10110 case AArch64ISD::DUPLANE64:
10111 case AArch64ISD::MOVI:
10112 case AArch64ISD::MOVIshift:
10113 case AArch64ISD::MOVIedit:
10114 case AArch64ISD::MOVImsl:
10115 case AArch64ISD::MVNIshift:
10116 case AArch64ISD::MVNImsl:
10117 break;
10118 default:
10119 // FMOV could be supported, but isn't very useful, as it would only occur
10120 // if you passed a bitcast' floating point immediate to an eligible long
10121 // integer op (addl, smull, ...).
10122 return SDValue();
10125 MVT NarrowTy = N.getSimpleValueType();
10126 if (!NarrowTy.is64BitVector())
10127 return SDValue();
10129 MVT ElementTy = NarrowTy.getVectorElementType();
10130 unsigned NumElems = NarrowTy.getVectorNumElements();
10131 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
10133 SDLoc dl(N);
10134 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
10135 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
10136 DAG.getConstant(NumElems, dl, MVT::i64));
10139 static bool isEssentiallyExtractHighSubvector(SDValue N) {
10140 if (N.getOpcode() == ISD::BITCAST)
10141 N = N.getOperand(0);
10142 if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
10143 return false;
10144 return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
10145 N.getOperand(0).getValueType().getVectorNumElements() / 2;
10148 /// Helper structure to keep track of ISD::SET_CC operands.
10149 struct GenericSetCCInfo {
10150 const SDValue *Opnd0;
10151 const SDValue *Opnd1;
10152 ISD::CondCode CC;
10155 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
10156 struct AArch64SetCCInfo {
10157 const SDValue *Cmp;
10158 AArch64CC::CondCode CC;
10161 /// Helper structure to keep track of SetCC information.
10162 union SetCCInfo {
10163 GenericSetCCInfo Generic;
10164 AArch64SetCCInfo AArch64;
10167 /// Helper structure to be able to read SetCC information. If set to
10168 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
10169 /// GenericSetCCInfo.
10170 struct SetCCInfoAndKind {
10171 SetCCInfo Info;
10172 bool IsAArch64;
10175 /// Check whether or not \p Op is a SET_CC operation, either a generic or
10176 /// an
10177 /// AArch64 lowered one.
10178 /// \p SetCCInfo is filled accordingly.
10179 /// \post SetCCInfo is meanginfull only when this function returns true.
10180 /// \return True when Op is a kind of SET_CC operation.
10181 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
10182 // If this is a setcc, this is straight forward.
10183 if (Op.getOpcode() == ISD::SETCC) {
10184 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
10185 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
10186 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10187 SetCCInfo.IsAArch64 = false;
10188 return true;
10190 // Otherwise, check if this is a matching csel instruction.
10191 // In other words:
10192 // - csel 1, 0, cc
10193 // - csel 0, 1, !cc
10194 if (Op.getOpcode() != AArch64ISD::CSEL)
10195 return false;
10196 // Set the information about the operands.
10197 // TODO: we want the operands of the Cmp not the csel
10198 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
10199 SetCCInfo.IsAArch64 = true;
10200 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
10201 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10203 // Check that the operands matches the constraints:
10204 // (1) Both operands must be constants.
10205 // (2) One must be 1 and the other must be 0.
10206 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
10207 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10209 // Check (1).
10210 if (!TValue || !FValue)
10211 return false;
10213 // Check (2).
10214 if (!TValue->isOne()) {
10215 // Update the comparison when we are interested in !cc.
10216 std::swap(TValue, FValue);
10217 SetCCInfo.Info.AArch64.CC =
10218 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
10220 return TValue->isOne() && FValue->isNullValue();
10223 // Returns true if Op is setcc or zext of setcc.
10224 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
10225 if (isSetCC(Op, Info))
10226 return true;
10227 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
10228 isSetCC(Op->getOperand(0), Info));
10231 // The folding we want to perform is:
10232 // (add x, [zext] (setcc cc ...) )
10233 // -->
10234 // (csel x, (add x, 1), !cc ...)
10236 // The latter will get matched to a CSINC instruction.
10237 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
10238 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
10239 SDValue LHS = Op->getOperand(0);
10240 SDValue RHS = Op->getOperand(1);
10241 SetCCInfoAndKind InfoAndKind;
10243 // If neither operand is a SET_CC, give up.
10244 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
10245 std::swap(LHS, RHS);
10246 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
10247 return SDValue();
10250 // FIXME: This could be generatized to work for FP comparisons.
10251 EVT CmpVT = InfoAndKind.IsAArch64
10252 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
10253 : InfoAndKind.Info.Generic.Opnd0->getValueType();
10254 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
10255 return SDValue();
10257 SDValue CCVal;
10258 SDValue Cmp;
10259 SDLoc dl(Op);
10260 if (InfoAndKind.IsAArch64) {
10261 CCVal = DAG.getConstant(
10262 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
10263 MVT::i32);
10264 Cmp = *InfoAndKind.Info.AArch64.Cmp;
10265 } else
10266 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
10267 *InfoAndKind.Info.Generic.Opnd1,
10268 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
10269 CCVal, DAG, dl);
10271 EVT VT = Op->getValueType(0);
10272 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
10273 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
10276 // The basic add/sub long vector instructions have variants with "2" on the end
10277 // which act on the high-half of their inputs. They are normally matched by
10278 // patterns like:
10280 // (add (zeroext (extract_high LHS)),
10281 // (zeroext (extract_high RHS)))
10282 // -> uaddl2 vD, vN, vM
10284 // However, if one of the extracts is something like a duplicate, this
10285 // instruction can still be used profitably. This function puts the DAG into a
10286 // more appropriate form for those patterns to trigger.
10287 static SDValue performAddSubLongCombine(SDNode *N,
10288 TargetLowering::DAGCombinerInfo &DCI,
10289 SelectionDAG &DAG) {
10290 if (DCI.isBeforeLegalizeOps())
10291 return SDValue();
10293 MVT VT = N->getSimpleValueType(0);
10294 if (!VT.is128BitVector()) {
10295 if (N->getOpcode() == ISD::ADD)
10296 return performSetccAddFolding(N, DAG);
10297 return SDValue();
10300 // Make sure both branches are extended in the same way.
10301 SDValue LHS = N->getOperand(0);
10302 SDValue RHS = N->getOperand(1);
10303 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
10304 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
10305 LHS.getOpcode() != RHS.getOpcode())
10306 return SDValue();
10308 unsigned ExtType = LHS.getOpcode();
10310 // It's not worth doing if at least one of the inputs isn't already an
10311 // extract, but we don't know which it'll be so we have to try both.
10312 if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
10313 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
10314 if (!RHS.getNode())
10315 return SDValue();
10317 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
10318 } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
10319 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
10320 if (!LHS.getNode())
10321 return SDValue();
10323 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
10326 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
10329 // Massage DAGs which we can use the high-half "long" operations on into
10330 // something isel will recognize better. E.g.
10332 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10333 // (aarch64_neon_umull (extract_high (v2i64 vec)))
10334 // (extract_high (v2i64 (dup128 scalar)))))
10336 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
10337 TargetLowering::DAGCombinerInfo &DCI,
10338 SelectionDAG &DAG) {
10339 if (DCI.isBeforeLegalizeOps())
10340 return SDValue();
10342 SDValue LHS = N->getOperand(1);
10343 SDValue RHS = N->getOperand(2);
10344 assert(LHS.getValueType().is64BitVector() &&
10345 RHS.getValueType().is64BitVector() &&
10346 "unexpected shape for long operation");
10348 // Either node could be a DUP, but it's not worth doing both of them (you'd
10349 // just as well use the non-high version) so look for a corresponding extract
10350 // operation on the other "wing".
10351 if (isEssentiallyExtractHighSubvector(LHS)) {
10352 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
10353 if (!RHS.getNode())
10354 return SDValue();
10355 } else if (isEssentiallyExtractHighSubvector(RHS)) {
10356 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
10357 if (!LHS.getNode())
10358 return SDValue();
10361 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
10362 N->getOperand(0), LHS, RHS);
10365 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
10366 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
10367 unsigned ElemBits = ElemTy.getSizeInBits();
10369 int64_t ShiftAmount;
10370 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
10371 APInt SplatValue, SplatUndef;
10372 unsigned SplatBitSize;
10373 bool HasAnyUndefs;
10374 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
10375 HasAnyUndefs, ElemBits) ||
10376 SplatBitSize != ElemBits)
10377 return SDValue();
10379 ShiftAmount = SplatValue.getSExtValue();
10380 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
10381 ShiftAmount = CVN->getSExtValue();
10382 } else
10383 return SDValue();
10385 unsigned Opcode;
10386 bool IsRightShift;
10387 switch (IID) {
10388 default:
10389 llvm_unreachable("Unknown shift intrinsic");
10390 case Intrinsic::aarch64_neon_sqshl:
10391 Opcode = AArch64ISD::SQSHL_I;
10392 IsRightShift = false;
10393 break;
10394 case Intrinsic::aarch64_neon_uqshl:
10395 Opcode = AArch64ISD::UQSHL_I;
10396 IsRightShift = false;
10397 break;
10398 case Intrinsic::aarch64_neon_srshl:
10399 Opcode = AArch64ISD::SRSHR_I;
10400 IsRightShift = true;
10401 break;
10402 case Intrinsic::aarch64_neon_urshl:
10403 Opcode = AArch64ISD::URSHR_I;
10404 IsRightShift = true;
10405 break;
10406 case Intrinsic::aarch64_neon_sqshlu:
10407 Opcode = AArch64ISD::SQSHLU_I;
10408 IsRightShift = false;
10409 break;
10410 case Intrinsic::aarch64_neon_sshl:
10411 case Intrinsic::aarch64_neon_ushl:
10412 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
10413 // left shift for positive shift amounts. Below, we only replace the current
10414 // node with VSHL, if this condition is met.
10415 Opcode = AArch64ISD::VSHL;
10416 IsRightShift = false;
10417 break;
10420 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
10421 SDLoc dl(N);
10422 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10423 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
10424 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
10425 SDLoc dl(N);
10426 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10427 DAG.getConstant(ShiftAmount, dl, MVT::i32));
10430 return SDValue();
10433 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10434 // the intrinsics must be legal and take an i32, this means there's almost
10435 // certainly going to be a zext in the DAG which we can eliminate.
10436 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
10437 SDValue AndN = N->getOperand(2);
10438 if (AndN.getOpcode() != ISD::AND)
10439 return SDValue();
10441 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
10442 if (!CMask || CMask->getZExtValue() != Mask)
10443 return SDValue();
10445 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
10446 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
10449 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
10450 SelectionDAG &DAG) {
10451 SDLoc dl(N);
10452 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
10453 DAG.getNode(Opc, dl,
10454 N->getOperand(1).getSimpleValueType(),
10455 N->getOperand(1)),
10456 DAG.getConstant(0, dl, MVT::i64));
10459 static SDValue performIntrinsicCombine(SDNode *N,
10460 TargetLowering::DAGCombinerInfo &DCI,
10461 const AArch64Subtarget *Subtarget) {
10462 SelectionDAG &DAG = DCI.DAG;
10463 unsigned IID = getIntrinsicID(N);
10464 switch (IID) {
10465 default:
10466 break;
10467 case Intrinsic::aarch64_neon_vcvtfxs2fp:
10468 case Intrinsic::aarch64_neon_vcvtfxu2fp:
10469 return tryCombineFixedPointConvert(N, DCI, DAG);
10470 case Intrinsic::aarch64_neon_saddv:
10471 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
10472 case Intrinsic::aarch64_neon_uaddv:
10473 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
10474 case Intrinsic::aarch64_neon_sminv:
10475 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
10476 case Intrinsic::aarch64_neon_uminv:
10477 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
10478 case Intrinsic::aarch64_neon_smaxv:
10479 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
10480 case Intrinsic::aarch64_neon_umaxv:
10481 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
10482 case Intrinsic::aarch64_neon_fmax:
10483 return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
10484 N->getOperand(1), N->getOperand(2));
10485 case Intrinsic::aarch64_neon_fmin:
10486 return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
10487 N->getOperand(1), N->getOperand(2));
10488 case Intrinsic::aarch64_neon_fmaxnm:
10489 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
10490 N->getOperand(1), N->getOperand(2));
10491 case Intrinsic::aarch64_neon_fminnm:
10492 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
10493 N->getOperand(1), N->getOperand(2));
10494 case Intrinsic::aarch64_neon_smull:
10495 case Intrinsic::aarch64_neon_umull:
10496 case Intrinsic::aarch64_neon_pmull:
10497 case Intrinsic::aarch64_neon_sqdmull:
10498 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
10499 case Intrinsic::aarch64_neon_sqshl:
10500 case Intrinsic::aarch64_neon_uqshl:
10501 case Intrinsic::aarch64_neon_sqshlu:
10502 case Intrinsic::aarch64_neon_srshl:
10503 case Intrinsic::aarch64_neon_urshl:
10504 case Intrinsic::aarch64_neon_sshl:
10505 case Intrinsic::aarch64_neon_ushl:
10506 return tryCombineShiftImm(IID, N, DAG);
10507 case Intrinsic::aarch64_crc32b:
10508 case Intrinsic::aarch64_crc32cb:
10509 return tryCombineCRC32(0xff, N, DAG);
10510 case Intrinsic::aarch64_crc32h:
10511 case Intrinsic::aarch64_crc32ch:
10512 return tryCombineCRC32(0xffff, N, DAG);
10514 return SDValue();
10517 static SDValue performExtendCombine(SDNode *N,
10518 TargetLowering::DAGCombinerInfo &DCI,
10519 SelectionDAG &DAG) {
10520 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
10521 // we can convert that DUP into another extract_high (of a bigger DUP), which
10522 // helps the backend to decide that an sabdl2 would be useful, saving a real
10523 // extract_high operation.
10524 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
10525 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
10526 SDNode *ABDNode = N->getOperand(0).getNode();
10527 unsigned IID = getIntrinsicID(ABDNode);
10528 if (IID == Intrinsic::aarch64_neon_sabd ||
10529 IID == Intrinsic::aarch64_neon_uabd) {
10530 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
10531 if (!NewABD.getNode())
10532 return SDValue();
10534 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
10535 NewABD);
10539 // This is effectively a custom type legalization for AArch64.
10541 // Type legalization will split an extend of a small, legal, type to a larger
10542 // illegal type by first splitting the destination type, often creating
10543 // illegal source types, which then get legalized in isel-confusing ways,
10544 // leading to really terrible codegen. E.g.,
10545 // %result = v8i32 sext v8i8 %value
10546 // becomes
10547 // %losrc = extract_subreg %value, ...
10548 // %hisrc = extract_subreg %value, ...
10549 // %lo = v4i32 sext v4i8 %losrc
10550 // %hi = v4i32 sext v4i8 %hisrc
10551 // Things go rapidly downhill from there.
10553 // For AArch64, the [sz]ext vector instructions can only go up one element
10554 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
10555 // take two instructions.
10557 // This implies that the most efficient way to do the extend from v8i8
10558 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
10559 // the normal splitting to happen for the v8i16->v8i32.
10561 // This is pre-legalization to catch some cases where the default
10562 // type legalization will create ill-tempered code.
10563 if (!DCI.isBeforeLegalizeOps())
10564 return SDValue();
10566 // We're only interested in cleaning things up for non-legal vector types
10567 // here. If both the source and destination are legal, things will just
10568 // work naturally without any fiddling.
10569 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10570 EVT ResVT = N->getValueType(0);
10571 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
10572 return SDValue();
10573 // If the vector type isn't a simple VT, it's beyond the scope of what
10574 // we're worried about here. Let legalization do its thing and hope for
10575 // the best.
10576 SDValue Src = N->getOperand(0);
10577 EVT SrcVT = Src->getValueType(0);
10578 if (!ResVT.isSimple() || !SrcVT.isSimple())
10579 return SDValue();
10581 // If the source VT is a 64-bit vector, we can play games and get the
10582 // better results we want.
10583 if (SrcVT.getSizeInBits() != 64)
10584 return SDValue();
10586 unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
10587 unsigned ElementCount = SrcVT.getVectorNumElements();
10588 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
10589 SDLoc DL(N);
10590 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
10592 // Now split the rest of the operation into two halves, each with a 64
10593 // bit source.
10594 EVT LoVT, HiVT;
10595 SDValue Lo, Hi;
10596 unsigned NumElements = ResVT.getVectorNumElements();
10597 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
10598 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
10599 ResVT.getVectorElementType(), NumElements / 2);
10601 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
10602 LoVT.getVectorNumElements());
10603 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10604 DAG.getConstant(0, DL, MVT::i64));
10605 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10606 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
10607 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
10608 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
10610 // Now combine the parts back together so we still have a single result
10611 // like the combiner expects.
10612 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
10615 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
10616 SDValue SplatVal, unsigned NumVecElts) {
10617 assert(!St.isTruncatingStore() && "cannot split truncating vector store");
10618 unsigned OrigAlignment = St.getAlignment();
10619 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
10621 // Create scalar stores. This is at least as good as the code sequence for a
10622 // split unaligned store which is a dup.s, ext.b, and two stores.
10623 // Most of the time the three stores should be replaced by store pair
10624 // instructions (stp).
10625 SDLoc DL(&St);
10626 SDValue BasePtr = St.getBasePtr();
10627 uint64_t BaseOffset = 0;
10629 const MachinePointerInfo &PtrInfo = St.getPointerInfo();
10630 SDValue NewST1 =
10631 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
10632 OrigAlignment, St.getMemOperand()->getFlags());
10634 // As this in ISel, we will not merge this add which may degrade results.
10635 if (BasePtr->getOpcode() == ISD::ADD &&
10636 isa<ConstantSDNode>(BasePtr->getOperand(1))) {
10637 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
10638 BasePtr = BasePtr->getOperand(0);
10641 unsigned Offset = EltOffset;
10642 while (--NumVecElts) {
10643 unsigned Alignment = MinAlign(OrigAlignment, Offset);
10644 SDValue OffsetPtr =
10645 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10646 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
10647 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
10648 PtrInfo.getWithOffset(Offset), Alignment,
10649 St.getMemOperand()->getFlags());
10650 Offset += EltOffset;
10652 return NewST1;
10655 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
10656 /// load store optimizer pass will merge them to store pair stores. This should
10657 /// be better than a movi to create the vector zero followed by a vector store
10658 /// if the zero constant is not re-used, since one instructions and one register
10659 /// live range will be removed.
10661 /// For example, the final generated code should be:
10663 /// stp xzr, xzr, [x0]
10665 /// instead of:
10667 /// movi v0.2d, #0
10668 /// str q0, [x0]
10670 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10671 SDValue StVal = St.getValue();
10672 EVT VT = StVal.getValueType();
10674 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
10675 // 2, 3 or 4 i32 elements.
10676 int NumVecElts = VT.getVectorNumElements();
10677 if (!(((NumVecElts == 2 || NumVecElts == 3) &&
10678 VT.getVectorElementType().getSizeInBits() == 64) ||
10679 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
10680 VT.getVectorElementType().getSizeInBits() == 32)))
10681 return SDValue();
10683 if (StVal.getOpcode() != ISD::BUILD_VECTOR)
10684 return SDValue();
10686 // If the zero constant has more than one use then the vector store could be
10687 // better since the constant mov will be amortized and stp q instructions
10688 // should be able to be formed.
10689 if (!StVal.hasOneUse())
10690 return SDValue();
10692 // If the store is truncating then it's going down to i16 or smaller, which
10693 // means it can be implemented in a single store anyway.
10694 if (St.isTruncatingStore())
10695 return SDValue();
10697 // If the immediate offset of the address operand is too large for the stp
10698 // instruction, then bail out.
10699 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
10700 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
10701 if (Offset < -512 || Offset > 504)
10702 return SDValue();
10705 for (int I = 0; I < NumVecElts; ++I) {
10706 SDValue EltVal = StVal.getOperand(I);
10707 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
10708 return SDValue();
10711 // Use a CopyFromReg WZR/XZR here to prevent
10712 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
10713 SDLoc DL(&St);
10714 unsigned ZeroReg;
10715 EVT ZeroVT;
10716 if (VT.getVectorElementType().getSizeInBits() == 32) {
10717 ZeroReg = AArch64::WZR;
10718 ZeroVT = MVT::i32;
10719 } else {
10720 ZeroReg = AArch64::XZR;
10721 ZeroVT = MVT::i64;
10723 SDValue SplatVal =
10724 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
10725 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10728 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
10729 /// value. The load store optimizer pass will merge them to store pair stores.
10730 /// This has better performance than a splat of the scalar followed by a split
10731 /// vector store. Even if the stores are not merged it is four stores vs a dup,
10732 /// followed by an ext.b and two stores.
10733 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10734 SDValue StVal = St.getValue();
10735 EVT VT = StVal.getValueType();
10737 // Don't replace floating point stores, they possibly won't be transformed to
10738 // stp because of the store pair suppress pass.
10739 if (VT.isFloatingPoint())
10740 return SDValue();
10742 // We can express a splat as store pair(s) for 2 or 4 elements.
10743 unsigned NumVecElts = VT.getVectorNumElements();
10744 if (NumVecElts != 4 && NumVecElts != 2)
10745 return SDValue();
10747 // If the store is truncating then it's going down to i16 or smaller, which
10748 // means it can be implemented in a single store anyway.
10749 if (St.isTruncatingStore())
10750 return SDValue();
10752 // Check that this is a splat.
10753 // Make sure that each of the relevant vector element locations are inserted
10754 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
10755 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
10756 SDValue SplatVal;
10757 for (unsigned I = 0; I < NumVecElts; ++I) {
10758 // Check for insert vector elements.
10759 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
10760 return SDValue();
10762 // Check that same value is inserted at each vector element.
10763 if (I == 0)
10764 SplatVal = StVal.getOperand(1);
10765 else if (StVal.getOperand(1) != SplatVal)
10766 return SDValue();
10768 // Check insert element index.
10769 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
10770 if (!CIndex)
10771 return SDValue();
10772 uint64_t IndexVal = CIndex->getZExtValue();
10773 if (IndexVal >= NumVecElts)
10774 return SDValue();
10775 IndexNotInserted.reset(IndexVal);
10777 StVal = StVal.getOperand(0);
10779 // Check that all vector element locations were inserted to.
10780 if (IndexNotInserted.any())
10781 return SDValue();
10783 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10786 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10787 SelectionDAG &DAG,
10788 const AArch64Subtarget *Subtarget) {
10790 StoreSDNode *S = cast<StoreSDNode>(N);
10791 if (S->isVolatile() || S->isIndexed())
10792 return SDValue();
10794 SDValue StVal = S->getValue();
10795 EVT VT = StVal.getValueType();
10796 if (!VT.isVector())
10797 return SDValue();
10799 // If we get a splat of zeros, convert this vector store to a store of
10800 // scalars. They will be merged into store pairs of xzr thereby removing one
10801 // instruction and one register.
10802 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
10803 return ReplacedZeroSplat;
10805 // FIXME: The logic for deciding if an unaligned store should be split should
10806 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10807 // a call to that function here.
10809 if (!Subtarget->isMisaligned128StoreSlow())
10810 return SDValue();
10812 // Don't split at -Oz.
10813 if (DAG.getMachineFunction().getFunction().hasMinSize())
10814 return SDValue();
10816 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10817 // those up regresses performance on micro-benchmarks and olden/bh.
10818 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
10819 return SDValue();
10821 // Split unaligned 16B stores. They are terrible for performance.
10822 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10823 // extensions can use this to mark that it does not want splitting to happen
10824 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10825 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10826 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
10827 S->getAlignment() <= 2)
10828 return SDValue();
10830 // If we get a splat of a scalar convert this vector store to a store of
10831 // scalars. They will be merged into store pairs thereby removing two
10832 // instructions.
10833 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
10834 return ReplacedSplat;
10836 SDLoc DL(S);
10838 // Split VT into two.
10839 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
10840 unsigned NumElts = HalfVT.getVectorNumElements();
10841 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10842 DAG.getConstant(0, DL, MVT::i64));
10843 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10844 DAG.getConstant(NumElts, DL, MVT::i64));
10845 SDValue BasePtr = S->getBasePtr();
10846 SDValue NewST1 =
10847 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
10848 S->getAlignment(), S->getMemOperand()->getFlags());
10849 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10850 DAG.getConstant(8, DL, MVT::i64));
10851 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
10852 S->getPointerInfo(), S->getAlignment(),
10853 S->getMemOperand()->getFlags());
10856 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10857 /// post-increment LD1R.
10858 static SDValue performPostLD1Combine(SDNode *N,
10859 TargetLowering::DAGCombinerInfo &DCI,
10860 bool IsLaneOp) {
10861 if (DCI.isBeforeLegalizeOps())
10862 return SDValue();
10864 SelectionDAG &DAG = DCI.DAG;
10865 EVT VT = N->getValueType(0);
10867 unsigned LoadIdx = IsLaneOp ? 1 : 0;
10868 SDNode *LD = N->getOperand(LoadIdx).getNode();
10869 // If it is not LOAD, can not do such combine.
10870 if (LD->getOpcode() != ISD::LOAD)
10871 return SDValue();
10873 // The vector lane must be a constant in the LD1LANE opcode.
10874 SDValue Lane;
10875 if (IsLaneOp) {
10876 Lane = N->getOperand(2);
10877 auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
10878 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
10879 return SDValue();
10882 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
10883 EVT MemVT = LoadSDN->getMemoryVT();
10884 // Check if memory operand is the same type as the vector element.
10885 if (MemVT != VT.getVectorElementType())
10886 return SDValue();
10888 // Check if there are other uses. If so, do not combine as it will introduce
10889 // an extra load.
10890 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
10891 ++UI) {
10892 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
10893 continue;
10894 if (*UI != N)
10895 return SDValue();
10898 SDValue Addr = LD->getOperand(1);
10899 SDValue Vector = N->getOperand(0);
10900 // Search for a use of the address operand that is an increment.
10901 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
10902 Addr.getNode()->use_end(); UI != UE; ++UI) {
10903 SDNode *User = *UI;
10904 if (User->getOpcode() != ISD::ADD
10905 || UI.getUse().getResNo() != Addr.getResNo())
10906 continue;
10908 // If the increment is a constant, it must match the memory ref size.
10909 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10910 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10911 uint32_t IncVal = CInc->getZExtValue();
10912 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
10913 if (IncVal != NumBytes)
10914 continue;
10915 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10918 // To avoid cycle construction make sure that neither the load nor the add
10919 // are predecessors to each other or the Vector.
10920 SmallPtrSet<const SDNode *, 32> Visited;
10921 SmallVector<const SDNode *, 16> Worklist;
10922 Visited.insert(Addr.getNode());
10923 Worklist.push_back(User);
10924 Worklist.push_back(LD);
10925 Worklist.push_back(Vector.getNode());
10926 if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
10927 SDNode::hasPredecessorHelper(User, Visited, Worklist))
10928 continue;
10930 SmallVector<SDValue, 8> Ops;
10931 Ops.push_back(LD->getOperand(0)); // Chain
10932 if (IsLaneOp) {
10933 Ops.push_back(Vector); // The vector to be inserted
10934 Ops.push_back(Lane); // The lane to be inserted in the vector
10936 Ops.push_back(Addr);
10937 Ops.push_back(Inc);
10939 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
10940 SDVTList SDTys = DAG.getVTList(Tys);
10941 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
10942 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
10943 MemVT,
10944 LoadSDN->getMemOperand());
10946 // Update the uses.
10947 SDValue NewResults[] = {
10948 SDValue(LD, 0), // The result of load
10949 SDValue(UpdN.getNode(), 2) // Chain
10951 DCI.CombineTo(LD, NewResults);
10952 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
10953 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
10955 break;
10957 return SDValue();
10960 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10961 /// address translation.
10962 static bool performTBISimplification(SDValue Addr,
10963 TargetLowering::DAGCombinerInfo &DCI,
10964 SelectionDAG &DAG) {
10965 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
10966 KnownBits Known;
10967 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10968 !DCI.isBeforeLegalizeOps());
10969 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10970 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
10971 DCI.CommitTargetLoweringOpt(TLO);
10972 return true;
10974 return false;
10977 static SDValue performSTORECombine(SDNode *N,
10978 TargetLowering::DAGCombinerInfo &DCI,
10979 SelectionDAG &DAG,
10980 const AArch64Subtarget *Subtarget) {
10981 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
10982 return Split;
10984 if (Subtarget->supportsAddressTopByteIgnored() &&
10985 performTBISimplification(N->getOperand(2), DCI, DAG))
10986 return SDValue(N, 0);
10988 return SDValue();
10992 /// Target-specific DAG combine function for NEON load/store intrinsics
10993 /// to merge base address updates.
10994 static SDValue performNEONPostLDSTCombine(SDNode *N,
10995 TargetLowering::DAGCombinerInfo &DCI,
10996 SelectionDAG &DAG) {
10997 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10998 return SDValue();
11000 unsigned AddrOpIdx = N->getNumOperands() - 1;
11001 SDValue Addr = N->getOperand(AddrOpIdx);
11003 // Search for a use of the address operand that is an increment.
11004 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11005 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11006 SDNode *User = *UI;
11007 if (User->getOpcode() != ISD::ADD ||
11008 UI.getUse().getResNo() != Addr.getResNo())
11009 continue;
11011 // Check that the add is independent of the load/store. Otherwise, folding
11012 // it would create a cycle.
11013 SmallPtrSet<const SDNode *, 32> Visited;
11014 SmallVector<const SDNode *, 16> Worklist;
11015 Visited.insert(Addr.getNode());
11016 Worklist.push_back(N);
11017 Worklist.push_back(User);
11018 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
11019 SDNode::hasPredecessorHelper(User, Visited, Worklist))
11020 continue;
11022 // Find the new opcode for the updating load/store.
11023 bool IsStore = false;
11024 bool IsLaneOp = false;
11025 bool IsDupOp = false;
11026 unsigned NewOpc = 0;
11027 unsigned NumVecs = 0;
11028 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11029 switch (IntNo) {
11030 default: llvm_unreachable("unexpected intrinsic for Neon base update");
11031 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
11032 NumVecs = 2; break;
11033 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
11034 NumVecs = 3; break;
11035 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
11036 NumVecs = 4; break;
11037 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
11038 NumVecs = 2; IsStore = true; break;
11039 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
11040 NumVecs = 3; IsStore = true; break;
11041 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
11042 NumVecs = 4; IsStore = true; break;
11043 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
11044 NumVecs = 2; break;
11045 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
11046 NumVecs = 3; break;
11047 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
11048 NumVecs = 4; break;
11049 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
11050 NumVecs = 2; IsStore = true; break;
11051 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
11052 NumVecs = 3; IsStore = true; break;
11053 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
11054 NumVecs = 4; IsStore = true; break;
11055 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
11056 NumVecs = 2; IsDupOp = true; break;
11057 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
11058 NumVecs = 3; IsDupOp = true; break;
11059 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
11060 NumVecs = 4; IsDupOp = true; break;
11061 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
11062 NumVecs = 2; IsLaneOp = true; break;
11063 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
11064 NumVecs = 3; IsLaneOp = true; break;
11065 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
11066 NumVecs = 4; IsLaneOp = true; break;
11067 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
11068 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
11069 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
11070 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
11071 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
11072 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
11075 EVT VecTy;
11076 if (IsStore)
11077 VecTy = N->getOperand(2).getValueType();
11078 else
11079 VecTy = N->getValueType(0);
11081 // If the increment is a constant, it must match the memory ref size.
11082 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11083 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
11084 uint32_t IncVal = CInc->getZExtValue();
11085 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11086 if (IsLaneOp || IsDupOp)
11087 NumBytes /= VecTy.getVectorNumElements();
11088 if (IncVal != NumBytes)
11089 continue;
11090 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
11092 SmallVector<SDValue, 8> Ops;
11093 Ops.push_back(N->getOperand(0)); // Incoming chain
11094 // Load lane and store have vector list as input.
11095 if (IsLaneOp || IsStore)
11096 for (unsigned i = 2; i < AddrOpIdx; ++i)
11097 Ops.push_back(N->getOperand(i));
11098 Ops.push_back(Addr); // Base register
11099 Ops.push_back(Inc);
11101 // Return Types.
11102 EVT Tys[6];
11103 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
11104 unsigned n;
11105 for (n = 0; n < NumResultVecs; ++n)
11106 Tys[n] = VecTy;
11107 Tys[n++] = MVT::i64; // Type of write back register
11108 Tys[n] = MVT::Other; // Type of the chain
11109 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
11111 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
11112 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
11113 MemInt->getMemoryVT(),
11114 MemInt->getMemOperand());
11116 // Update the uses.
11117 std::vector<SDValue> NewResults;
11118 for (unsigned i = 0; i < NumResultVecs; ++i) {
11119 NewResults.push_back(SDValue(UpdN.getNode(), i));
11121 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
11122 DCI.CombineTo(N, NewResults);
11123 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11125 break;
11127 return SDValue();
11130 // Checks to see if the value is the prescribed width and returns information
11131 // about its extension mode.
11132 static
11133 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
11134 ExtType = ISD::NON_EXTLOAD;
11135 switch(V.getNode()->getOpcode()) {
11136 default:
11137 return false;
11138 case ISD::LOAD: {
11139 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
11140 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
11141 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
11142 ExtType = LoadNode->getExtensionType();
11143 return true;
11145 return false;
11147 case ISD::AssertSext: {
11148 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
11149 if ((TypeNode->getVT() == MVT::i8 && width == 8)
11150 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
11151 ExtType = ISD::SEXTLOAD;
11152 return true;
11154 return false;
11156 case ISD::AssertZext: {
11157 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
11158 if ((TypeNode->getVT() == MVT::i8 && width == 8)
11159 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
11160 ExtType = ISD::ZEXTLOAD;
11161 return true;
11163 return false;
11165 case ISD::Constant:
11166 case ISD::TargetConstant: {
11167 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
11168 1LL << (width - 1);
11172 return true;
11175 // This function does a whole lot of voodoo to determine if the tests are
11176 // equivalent without and with a mask. Essentially what happens is that given a
11177 // DAG resembling:
11179 // +-------------+ +-------------+ +-------------+ +-------------+
11180 // | Input | | AddConstant | | CompConstant| | CC |
11181 // +-------------+ +-------------+ +-------------+ +-------------+
11182 // | | | |
11183 // V V | +----------+
11184 // +-------------+ +----+ | |
11185 // | ADD | |0xff| | |
11186 // +-------------+ +----+ | |
11187 // | | | |
11188 // V V | |
11189 // +-------------+ | |
11190 // | AND | | |
11191 // +-------------+ | |
11192 // | | |
11193 // +-----+ | |
11194 // | | |
11195 // V V V
11196 // +-------------+
11197 // | CMP |
11198 // +-------------+
11200 // The AND node may be safely removed for some combinations of inputs. In
11201 // particular we need to take into account the extension type of the Input,
11202 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
11203 // width of the input (this can work for any width inputs, the above graph is
11204 // specific to 8 bits.
11206 // The specific equations were worked out by generating output tables for each
11207 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
11208 // problem was simplified by working with 4 bit inputs, which means we only
11209 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
11210 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
11211 // patterns present in both extensions (0,7). For every distinct set of
11212 // AddConstant and CompConstants bit patterns we can consider the masked and
11213 // unmasked versions to be equivalent if the result of this function is true for
11214 // all 16 distinct bit patterns of for the current extension type of Input (w0).
11216 // sub w8, w0, w1
11217 // and w10, w8, #0x0f
11218 // cmp w8, w2
11219 // cset w9, AArch64CC
11220 // cmp w10, w2
11221 // cset w11, AArch64CC
11222 // cmp w9, w11
11223 // cset w0, eq
11224 // ret
11226 // Since the above function shows when the outputs are equivalent it defines
11227 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
11228 // would be expensive to run during compiles. The equations below were written
11229 // in a test harness that confirmed they gave equivalent outputs to the above
11230 // for all inputs function, so they can be used determine if the removal is
11231 // legal instead.
11233 // isEquivalentMaskless() is the code for testing if the AND can be removed
11234 // factored out of the DAG recognition as the DAG can take several forms.
11236 static bool isEquivalentMaskless(unsigned CC, unsigned width,
11237 ISD::LoadExtType ExtType, int AddConstant,
11238 int CompConstant) {
11239 // By being careful about our equations and only writing the in term
11240 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
11241 // make them generally applicable to all bit widths.
11242 int MaxUInt = (1 << width);
11244 // For the purposes of these comparisons sign extending the type is
11245 // equivalent to zero extending the add and displacing it by half the integer
11246 // width. Provided we are careful and make sure our equations are valid over
11247 // the whole range we can just adjust the input and avoid writing equations
11248 // for sign extended inputs.
11249 if (ExtType == ISD::SEXTLOAD)
11250 AddConstant -= (1 << (width-1));
11252 switch(CC) {
11253 case AArch64CC::LE:
11254 case AArch64CC::GT:
11255 if ((AddConstant == 0) ||
11256 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
11257 (AddConstant >= 0 && CompConstant < 0) ||
11258 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
11259 return true;
11260 break;
11261 case AArch64CC::LT:
11262 case AArch64CC::GE:
11263 if ((AddConstant == 0) ||
11264 (AddConstant >= 0 && CompConstant <= 0) ||
11265 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
11266 return true;
11267 break;
11268 case AArch64CC::HI:
11269 case AArch64CC::LS:
11270 if ((AddConstant >= 0 && CompConstant < 0) ||
11271 (AddConstant <= 0 && CompConstant >= -1 &&
11272 CompConstant < AddConstant + MaxUInt))
11273 return true;
11274 break;
11275 case AArch64CC::PL:
11276 case AArch64CC::MI:
11277 if ((AddConstant == 0) ||
11278 (AddConstant > 0 && CompConstant <= 0) ||
11279 (AddConstant < 0 && CompConstant <= AddConstant))
11280 return true;
11281 break;
11282 case AArch64CC::LO:
11283 case AArch64CC::HS:
11284 if ((AddConstant >= 0 && CompConstant <= 0) ||
11285 (AddConstant <= 0 && CompConstant >= 0 &&
11286 CompConstant <= AddConstant + MaxUInt))
11287 return true;
11288 break;
11289 case AArch64CC::EQ:
11290 case AArch64CC::NE:
11291 if ((AddConstant > 0 && CompConstant < 0) ||
11292 (AddConstant < 0 && CompConstant >= 0 &&
11293 CompConstant < AddConstant + MaxUInt) ||
11294 (AddConstant >= 0 && CompConstant >= 0 &&
11295 CompConstant >= AddConstant) ||
11296 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
11297 return true;
11298 break;
11299 case AArch64CC::VS:
11300 case AArch64CC::VC:
11301 case AArch64CC::AL:
11302 case AArch64CC::NV:
11303 return true;
11304 case AArch64CC::Invalid:
11305 break;
11308 return false;
11311 static
11312 SDValue performCONDCombine(SDNode *N,
11313 TargetLowering::DAGCombinerInfo &DCI,
11314 SelectionDAG &DAG, unsigned CCIndex,
11315 unsigned CmpIndex) {
11316 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
11317 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
11318 unsigned CondOpcode = SubsNode->getOpcode();
11320 if (CondOpcode != AArch64ISD::SUBS)
11321 return SDValue();
11323 // There is a SUBS feeding this condition. Is it fed by a mask we can
11324 // use?
11326 SDNode *AndNode = SubsNode->getOperand(0).getNode();
11327 unsigned MaskBits = 0;
11329 if (AndNode->getOpcode() != ISD::AND)
11330 return SDValue();
11332 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
11333 uint32_t CNV = CN->getZExtValue();
11334 if (CNV == 255)
11335 MaskBits = 8;
11336 else if (CNV == 65535)
11337 MaskBits = 16;
11340 if (!MaskBits)
11341 return SDValue();
11343 SDValue AddValue = AndNode->getOperand(0);
11345 if (AddValue.getOpcode() != ISD::ADD)
11346 return SDValue();
11348 // The basic dag structure is correct, grab the inputs and validate them.
11350 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
11351 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
11352 SDValue SubsInputValue = SubsNode->getOperand(1);
11354 // The mask is present and the provenance of all the values is a smaller type,
11355 // lets see if the mask is superfluous.
11357 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
11358 !isa<ConstantSDNode>(SubsInputValue.getNode()))
11359 return SDValue();
11361 ISD::LoadExtType ExtType;
11363 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
11364 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
11365 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
11366 return SDValue();
11368 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
11369 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
11370 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
11371 return SDValue();
11373 // The AND is not necessary, remove it.
11375 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
11376 SubsNode->getValueType(1));
11377 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
11379 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
11380 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
11382 return SDValue(N, 0);
11385 // Optimize compare with zero and branch.
11386 static SDValue performBRCONDCombine(SDNode *N,
11387 TargetLowering::DAGCombinerInfo &DCI,
11388 SelectionDAG &DAG) {
11389 MachineFunction &MF = DAG.getMachineFunction();
11390 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
11391 // will not be produced, as they are conditional branch instructions that do
11392 // not set flags.
11393 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
11394 return SDValue();
11396 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
11397 N = NV.getNode();
11398 SDValue Chain = N->getOperand(0);
11399 SDValue Dest = N->getOperand(1);
11400 SDValue CCVal = N->getOperand(2);
11401 SDValue Cmp = N->getOperand(3);
11403 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
11404 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
11405 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
11406 return SDValue();
11408 unsigned CmpOpc = Cmp.getOpcode();
11409 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
11410 return SDValue();
11412 // Only attempt folding if there is only one use of the flag and no use of the
11413 // value.
11414 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
11415 return SDValue();
11417 SDValue LHS = Cmp.getOperand(0);
11418 SDValue RHS = Cmp.getOperand(1);
11420 assert(LHS.getValueType() == RHS.getValueType() &&
11421 "Expected the value type to be the same for both operands!");
11422 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
11423 return SDValue();
11425 if (isNullConstant(LHS))
11426 std::swap(LHS, RHS);
11428 if (!isNullConstant(RHS))
11429 return SDValue();
11431 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
11432 LHS.getOpcode() == ISD::SRL)
11433 return SDValue();
11435 // Fold the compare into the branch instruction.
11436 SDValue BR;
11437 if (CC == AArch64CC::EQ)
11438 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
11439 else
11440 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
11442 // Do not add new nodes to DAG combiner worklist.
11443 DCI.CombineTo(N, BR, false);
11445 return SDValue();
11448 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
11449 // as well as whether the test should be inverted. This code is required to
11450 // catch these cases (as opposed to standard dag combines) because
11451 // AArch64ISD::TBZ is matched during legalization.
11452 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
11453 SelectionDAG &DAG) {
11455 if (!Op->hasOneUse())
11456 return Op;
11458 // We don't handle undef/constant-fold cases below, as they should have
11459 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
11460 // etc.)
11462 // (tbz (trunc x), b) -> (tbz x, b)
11463 // This case is just here to enable more of the below cases to be caught.
11464 if (Op->getOpcode() == ISD::TRUNCATE &&
11465 Bit < Op->getValueType(0).getSizeInBits()) {
11466 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11469 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
11470 if (Op->getOpcode() == ISD::ANY_EXTEND &&
11471 Bit < Op->getOperand(0).getValueSizeInBits()) {
11472 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11475 if (Op->getNumOperands() != 2)
11476 return Op;
11478 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11479 if (!C)
11480 return Op;
11482 switch (Op->getOpcode()) {
11483 default:
11484 return Op;
11486 // (tbz (and x, m), b) -> (tbz x, b)
11487 case ISD::AND:
11488 if ((C->getZExtValue() >> Bit) & 1)
11489 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11490 return Op;
11492 // (tbz (shl x, c), b) -> (tbz x, b-c)
11493 case ISD::SHL:
11494 if (C->getZExtValue() <= Bit &&
11495 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
11496 Bit = Bit - C->getZExtValue();
11497 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11499 return Op;
11501 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
11502 case ISD::SRA:
11503 Bit = Bit + C->getZExtValue();
11504 if (Bit >= Op->getValueType(0).getSizeInBits())
11505 Bit = Op->getValueType(0).getSizeInBits() - 1;
11506 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11508 // (tbz (srl x, c), b) -> (tbz x, b+c)
11509 case ISD::SRL:
11510 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
11511 Bit = Bit + C->getZExtValue();
11512 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11514 return Op;
11516 // (tbz (xor x, -1), b) -> (tbnz x, b)
11517 case ISD::XOR:
11518 if ((C->getZExtValue() >> Bit) & 1)
11519 Invert = !Invert;
11520 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11524 // Optimize test single bit zero/non-zero and branch.
11525 static SDValue performTBZCombine(SDNode *N,
11526 TargetLowering::DAGCombinerInfo &DCI,
11527 SelectionDAG &DAG) {
11528 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11529 bool Invert = false;
11530 SDValue TestSrc = N->getOperand(1);
11531 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
11533 if (TestSrc == NewTestSrc)
11534 return SDValue();
11536 unsigned NewOpc = N->getOpcode();
11537 if (Invert) {
11538 if (NewOpc == AArch64ISD::TBZ)
11539 NewOpc = AArch64ISD::TBNZ;
11540 else {
11541 assert(NewOpc == AArch64ISD::TBNZ);
11542 NewOpc = AArch64ISD::TBZ;
11546 SDLoc DL(N);
11547 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
11548 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
11551 // vselect (v1i1 setcc) ->
11552 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
11553 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
11554 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
11555 // such VSELECT.
11556 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
11557 SDValue N0 = N->getOperand(0);
11558 EVT CCVT = N0.getValueType();
11560 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
11561 CCVT.getVectorElementType() != MVT::i1)
11562 return SDValue();
11564 EVT ResVT = N->getValueType(0);
11565 EVT CmpVT = N0.getOperand(0).getValueType();
11566 // Only combine when the result type is of the same size as the compared
11567 // operands.
11568 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
11569 return SDValue();
11571 SDValue IfTrue = N->getOperand(1);
11572 SDValue IfFalse = N->getOperand(2);
11573 SDValue SetCC =
11574 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
11575 N0.getOperand(0), N0.getOperand(1),
11576 cast<CondCodeSDNode>(N0.getOperand(2))->get());
11577 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
11578 IfTrue, IfFalse);
11581 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
11582 /// the compare-mask instructions rather than going via NZCV, even if LHS and
11583 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
11584 /// with a vector one followed by a DUP shuffle on the result.
11585 static SDValue performSelectCombine(SDNode *N,
11586 TargetLowering::DAGCombinerInfo &DCI) {
11587 SelectionDAG &DAG = DCI.DAG;
11588 SDValue N0 = N->getOperand(0);
11589 EVT ResVT = N->getValueType(0);
11591 if (N0.getOpcode() != ISD::SETCC)
11592 return SDValue();
11594 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
11595 // scalar SetCCResultType. We also don't expect vectors, because we assume
11596 // that selects fed by vector SETCCs are canonicalized to VSELECT.
11597 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
11598 "Scalar-SETCC feeding SELECT has unexpected result type!");
11600 // If NumMaskElts == 0, the comparison is larger than select result. The
11601 // largest real NEON comparison is 64-bits per lane, which means the result is
11602 // at most 32-bits and an illegal vector. Just bail out for now.
11603 EVT SrcVT = N0.getOperand(0).getValueType();
11605 // Don't try to do this optimization when the setcc itself has i1 operands.
11606 // There are no legal vectors of i1, so this would be pointless.
11607 if (SrcVT == MVT::i1)
11608 return SDValue();
11610 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
11611 if (!ResVT.isVector() || NumMaskElts == 0)
11612 return SDValue();
11614 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
11615 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
11617 // Also bail out if the vector CCVT isn't the same size as ResVT.
11618 // This can happen if the SETCC operand size doesn't divide the ResVT size
11619 // (e.g., f64 vs v3f32).
11620 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
11621 return SDValue();
11623 // Make sure we didn't create illegal types, if we're not supposed to.
11624 assert(DCI.isBeforeLegalize() ||
11625 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
11627 // First perform a vector comparison, where lane 0 is the one we're interested
11628 // in.
11629 SDLoc DL(N0);
11630 SDValue LHS =
11631 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
11632 SDValue RHS =
11633 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
11634 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
11636 // Now duplicate the comparison mask we want across all other lanes.
11637 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
11638 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
11639 Mask = DAG.getNode(ISD::BITCAST, DL,
11640 ResVT.changeVectorElementTypeToInteger(), Mask);
11642 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
11645 /// Get rid of unnecessary NVCASTs (that don't change the type).
11646 static SDValue performNVCASTCombine(SDNode *N) {
11647 if (N->getValueType(0) == N->getOperand(0).getValueType())
11648 return N->getOperand(0);
11650 return SDValue();
11653 // If all users of the globaladdr are of the form (globaladdr + constant), find
11654 // the smallest constant, fold it into the globaladdr's offset and rewrite the
11655 // globaladdr as (globaladdr + constant) - constant.
11656 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
11657 const AArch64Subtarget *Subtarget,
11658 const TargetMachine &TM) {
11659 auto *GN = cast<GlobalAddressSDNode>(N);
11660 if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
11661 AArch64II::MO_NO_FLAG)
11662 return SDValue();
11664 uint64_t MinOffset = -1ull;
11665 for (SDNode *N : GN->uses()) {
11666 if (N->getOpcode() != ISD::ADD)
11667 return SDValue();
11668 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
11669 if (!C)
11670 C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11671 if (!C)
11672 return SDValue();
11673 MinOffset = std::min(MinOffset, C->getZExtValue());
11675 uint64_t Offset = MinOffset + GN->getOffset();
11677 // Require that the new offset is larger than the existing one. Otherwise, we
11678 // can end up oscillating between two possible DAGs, for example,
11679 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
11680 if (Offset <= uint64_t(GN->getOffset()))
11681 return SDValue();
11683 // Check whether folding this offset is legal. It must not go out of bounds of
11684 // the referenced object to avoid violating the code model, and must be
11685 // smaller than 2^21 because this is the largest offset expressible in all
11686 // object formats.
11688 // This check also prevents us from folding negative offsets, which will end
11689 // up being treated in the same way as large positive ones. They could also
11690 // cause code model violations, and aren't really common enough to matter.
11691 if (Offset >= (1 << 21))
11692 return SDValue();
11694 const GlobalValue *GV = GN->getGlobal();
11695 Type *T = GV->getValueType();
11696 if (!T->isSized() ||
11697 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
11698 return SDValue();
11700 SDLoc DL(GN);
11701 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
11702 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
11703 DAG.getConstant(MinOffset, DL, MVT::i64));
11706 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
11707 DAGCombinerInfo &DCI) const {
11708 SelectionDAG &DAG = DCI.DAG;
11709 switch (N->getOpcode()) {
11710 default:
11711 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
11712 break;
11713 case ISD::ADD:
11714 case ISD::SUB:
11715 return performAddSubLongCombine(N, DCI, DAG);
11716 case ISD::XOR:
11717 return performXorCombine(N, DAG, DCI, Subtarget);
11718 case ISD::MUL:
11719 return performMulCombine(N, DAG, DCI, Subtarget);
11720 case ISD::SINT_TO_FP:
11721 case ISD::UINT_TO_FP:
11722 return performIntToFpCombine(N, DAG, Subtarget);
11723 case ISD::FP_TO_SINT:
11724 case ISD::FP_TO_UINT:
11725 return performFpToIntCombine(N, DAG, DCI, Subtarget);
11726 case ISD::FDIV:
11727 return performFDivCombine(N, DAG, DCI, Subtarget);
11728 case ISD::OR:
11729 return performORCombine(N, DCI, Subtarget);
11730 case ISD::AND:
11731 return performANDCombine(N, DCI);
11732 case ISD::SRL:
11733 return performSRLCombine(N, DCI);
11734 case ISD::INTRINSIC_WO_CHAIN:
11735 return performIntrinsicCombine(N, DCI, Subtarget);
11736 case ISD::ANY_EXTEND:
11737 case ISD::ZERO_EXTEND:
11738 case ISD::SIGN_EXTEND:
11739 return performExtendCombine(N, DCI, DAG);
11740 case ISD::BITCAST:
11741 return performBitcastCombine(N, DCI, DAG);
11742 case ISD::CONCAT_VECTORS:
11743 return performConcatVectorsCombine(N, DCI, DAG);
11744 case ISD::SELECT:
11745 return performSelectCombine(N, DCI);
11746 case ISD::VSELECT:
11747 return performVSelectCombine(N, DCI.DAG);
11748 case ISD::LOAD:
11749 if (performTBISimplification(N->getOperand(1), DCI, DAG))
11750 return SDValue(N, 0);
11751 break;
11752 case ISD::STORE:
11753 return performSTORECombine(N, DCI, DAG, Subtarget);
11754 case AArch64ISD::BRCOND:
11755 return performBRCONDCombine(N, DCI, DAG);
11756 case AArch64ISD::TBNZ:
11757 case AArch64ISD::TBZ:
11758 return performTBZCombine(N, DCI, DAG);
11759 case AArch64ISD::CSEL:
11760 return performCONDCombine(N, DCI, DAG, 2, 3);
11761 case AArch64ISD::DUP:
11762 return performPostLD1Combine(N, DCI, false);
11763 case AArch64ISD::NVCAST:
11764 return performNVCASTCombine(N);
11765 case ISD::INSERT_VECTOR_ELT:
11766 return performPostLD1Combine(N, DCI, true);
11767 case ISD::INTRINSIC_VOID:
11768 case ISD::INTRINSIC_W_CHAIN:
11769 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11770 case Intrinsic::aarch64_neon_ld2:
11771 case Intrinsic::aarch64_neon_ld3:
11772 case Intrinsic::aarch64_neon_ld4:
11773 case Intrinsic::aarch64_neon_ld1x2:
11774 case Intrinsic::aarch64_neon_ld1x3:
11775 case Intrinsic::aarch64_neon_ld1x4:
11776 case Intrinsic::aarch64_neon_ld2lane:
11777 case Intrinsic::aarch64_neon_ld3lane:
11778 case Intrinsic::aarch64_neon_ld4lane:
11779 case Intrinsic::aarch64_neon_ld2r:
11780 case Intrinsic::aarch64_neon_ld3r:
11781 case Intrinsic::aarch64_neon_ld4r:
11782 case Intrinsic::aarch64_neon_st2:
11783 case Intrinsic::aarch64_neon_st3:
11784 case Intrinsic::aarch64_neon_st4:
11785 case Intrinsic::aarch64_neon_st1x2:
11786 case Intrinsic::aarch64_neon_st1x3:
11787 case Intrinsic::aarch64_neon_st1x4:
11788 case Intrinsic::aarch64_neon_st2lane:
11789 case Intrinsic::aarch64_neon_st3lane:
11790 case Intrinsic::aarch64_neon_st4lane:
11791 return performNEONPostLDSTCombine(N, DCI, DAG);
11792 default:
11793 break;
11795 break;
11796 case ISD::GlobalAddress:
11797 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
11799 return SDValue();
11802 // Check if the return value is used as only a return value, as otherwise
11803 // we can't perform a tail-call. In particular, we need to check for
11804 // target ISD nodes that are returns and any other "odd" constructs
11805 // that the generic analysis code won't necessarily catch.
11806 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
11807 SDValue &Chain) const {
11808 if (N->getNumValues() != 1)
11809 return false;
11810 if (!N->hasNUsesOfValue(1, 0))
11811 return false;
11813 SDValue TCChain = Chain;
11814 SDNode *Copy = *N->use_begin();
11815 if (Copy->getOpcode() == ISD::CopyToReg) {
11816 // If the copy has a glue operand, we conservatively assume it isn't safe to
11817 // perform a tail call.
11818 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
11819 MVT::Glue)
11820 return false;
11821 TCChain = Copy->getOperand(0);
11822 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
11823 return false;
11825 bool HasRet = false;
11826 for (SDNode *Node : Copy->uses()) {
11827 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
11828 return false;
11829 HasRet = true;
11832 if (!HasRet)
11833 return false;
11835 Chain = TCChain;
11836 return true;
11839 // Return whether the an instruction can potentially be optimized to a tail
11840 // call. This will cause the optimizers to attempt to move, or duplicate,
11841 // return instructions to help enable tail call optimizations for this
11842 // instruction.
11843 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11844 return CI->isTailCall();
11847 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
11848 SDValue &Offset,
11849 ISD::MemIndexedMode &AM,
11850 bool &IsInc,
11851 SelectionDAG &DAG) const {
11852 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
11853 return false;
11855 Base = Op->getOperand(0);
11856 // All of the indexed addressing mode instructions take a signed
11857 // 9 bit immediate offset.
11858 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
11859 int64_t RHSC = RHS->getSExtValue();
11860 if (Op->getOpcode() == ISD::SUB)
11861 RHSC = -(uint64_t)RHSC;
11862 if (!isInt<9>(RHSC))
11863 return false;
11864 IsInc = (Op->getOpcode() == ISD::ADD);
11865 Offset = Op->getOperand(1);
11866 return true;
11868 return false;
11871 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11872 SDValue &Offset,
11873 ISD::MemIndexedMode &AM,
11874 SelectionDAG &DAG) const {
11875 EVT VT;
11876 SDValue Ptr;
11877 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11878 VT = LD->getMemoryVT();
11879 Ptr = LD->getBasePtr();
11880 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11881 VT = ST->getMemoryVT();
11882 Ptr = ST->getBasePtr();
11883 } else
11884 return false;
11886 bool IsInc;
11887 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
11888 return false;
11889 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
11890 return true;
11893 bool AArch64TargetLowering::getPostIndexedAddressParts(
11894 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
11895 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
11896 EVT VT;
11897 SDValue Ptr;
11898 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11899 VT = LD->getMemoryVT();
11900 Ptr = LD->getBasePtr();
11901 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11902 VT = ST->getMemoryVT();
11903 Ptr = ST->getBasePtr();
11904 } else
11905 return false;
11907 bool IsInc;
11908 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
11909 return false;
11910 // Post-indexing updates the base, so it's not a valid transform
11911 // if that's not the same as the load's pointer.
11912 if (Ptr != Base)
11913 return false;
11914 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
11915 return true;
11918 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
11919 SelectionDAG &DAG) {
11920 SDLoc DL(N);
11921 SDValue Op = N->getOperand(0);
11923 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
11924 return;
11926 Op = SDValue(
11927 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
11928 DAG.getUNDEF(MVT::i32), Op,
11929 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
11931 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
11932 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
11935 static void ReplaceReductionResults(SDNode *N,
11936 SmallVectorImpl<SDValue> &Results,
11937 SelectionDAG &DAG, unsigned InterOp,
11938 unsigned AcrossOp) {
11939 EVT LoVT, HiVT;
11940 SDValue Lo, Hi;
11941 SDLoc dl(N);
11942 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
11943 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
11944 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
11945 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
11946 Results.push_back(SplitVal);
11949 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
11950 SDLoc DL(N);
11951 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
11952 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
11953 DAG.getNode(ISD::SRL, DL, MVT::i128, N,
11954 DAG.getConstant(64, DL, MVT::i64)));
11955 return std::make_pair(Lo, Hi);
11958 // Create an even/odd pair of X registers holding integer value V.
11959 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
11960 SDLoc dl(V.getNode());
11961 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
11962 SDValue VHi = DAG.getAnyExtOrTrunc(
11963 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
11964 dl, MVT::i64);
11965 if (DAG.getDataLayout().isBigEndian())
11966 std::swap (VLo, VHi);
11967 SDValue RegClass =
11968 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
11969 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
11970 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
11971 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
11972 return SDValue(
11973 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
11976 static void ReplaceCMP_SWAP_128Results(SDNode *N,
11977 SmallVectorImpl<SDValue> &Results,
11978 SelectionDAG &DAG,
11979 const AArch64Subtarget *Subtarget) {
11980 assert(N->getValueType(0) == MVT::i128 &&
11981 "AtomicCmpSwap on types less than 128 should be legal");
11983 if (Subtarget->hasLSE()) {
11984 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11985 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11986 SDValue Ops[] = {
11987 createGPRPairNode(DAG, N->getOperand(2)), // Compare value
11988 createGPRPairNode(DAG, N->getOperand(3)), // Store value
11989 N->getOperand(1), // Ptr
11990 N->getOperand(0), // Chain in
11993 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11995 unsigned Opcode;
11996 switch (MemOp->getOrdering()) {
11997 case AtomicOrdering::Monotonic:
11998 Opcode = AArch64::CASPX;
11999 break;
12000 case AtomicOrdering::Acquire:
12001 Opcode = AArch64::CASPAX;
12002 break;
12003 case AtomicOrdering::Release:
12004 Opcode = AArch64::CASPLX;
12005 break;
12006 case AtomicOrdering::AcquireRelease:
12007 case AtomicOrdering::SequentiallyConsistent:
12008 Opcode = AArch64::CASPALX;
12009 break;
12010 default:
12011 llvm_unreachable("Unexpected ordering!");
12014 MachineSDNode *CmpSwap = DAG.getMachineNode(
12015 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
12016 DAG.setNodeMemRefs(CmpSwap, {MemOp});
12018 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
12019 if (DAG.getDataLayout().isBigEndian())
12020 std::swap(SubReg1, SubReg2);
12021 Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
12022 SDValue(CmpSwap, 0)));
12023 Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
12024 SDValue(CmpSwap, 0)));
12025 Results.push_back(SDValue(CmpSwap, 1)); // Chain out
12026 return;
12029 auto Desired = splitInt128(N->getOperand(2), DAG);
12030 auto New = splitInt128(N->getOperand(3), DAG);
12031 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
12032 New.first, New.second, N->getOperand(0)};
12033 SDNode *CmpSwap = DAG.getMachineNode(
12034 AArch64::CMP_SWAP_128, SDLoc(N),
12035 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
12037 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
12038 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
12040 Results.push_back(SDValue(CmpSwap, 0));
12041 Results.push_back(SDValue(CmpSwap, 1));
12042 Results.push_back(SDValue(CmpSwap, 3));
12045 void AArch64TargetLowering::ReplaceNodeResults(
12046 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
12047 switch (N->getOpcode()) {
12048 default:
12049 llvm_unreachable("Don't know how to custom expand this");
12050 case ISD::BITCAST:
12051 ReplaceBITCASTResults(N, Results, DAG);
12052 return;
12053 case ISD::VECREDUCE_ADD:
12054 case ISD::VECREDUCE_SMAX:
12055 case ISD::VECREDUCE_SMIN:
12056 case ISD::VECREDUCE_UMAX:
12057 case ISD::VECREDUCE_UMIN:
12058 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
12059 return;
12061 case AArch64ISD::SADDV:
12062 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
12063 return;
12064 case AArch64ISD::UADDV:
12065 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
12066 return;
12067 case AArch64ISD::SMINV:
12068 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
12069 return;
12070 case AArch64ISD::UMINV:
12071 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
12072 return;
12073 case AArch64ISD::SMAXV:
12074 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
12075 return;
12076 case AArch64ISD::UMAXV:
12077 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
12078 return;
12079 case ISD::FP_TO_UINT:
12080 case ISD::FP_TO_SINT:
12081 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
12082 // Let normal code take care of it by not adding anything to Results.
12083 return;
12084 case ISD::ATOMIC_CMP_SWAP:
12085 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
12086 return;
12090 bool AArch64TargetLowering::useLoadStackGuardNode() const {
12091 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
12092 return TargetLowering::useLoadStackGuardNode();
12093 return true;
12096 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
12097 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12098 // reciprocal if there are three or more FDIVs.
12099 return 3;
12102 TargetLoweringBase::LegalizeTypeAction
12103 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
12104 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
12105 // v4i16, v2i32 instead of to promote.
12106 if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
12107 VT == MVT::v1f32)
12108 return TypeWidenVector;
12110 return TargetLoweringBase::getPreferredVectorAction(VT);
12113 // Loads and stores less than 128-bits are already atomic; ones above that
12114 // are doomed anyway, so defer to the default libcall and blame the OS when
12115 // things go wrong.
12116 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12117 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
12118 return Size == 128;
12121 // Loads and stores less than 128-bits are already atomic; ones above that
12122 // are doomed anyway, so defer to the default libcall and blame the OS when
12123 // things go wrong.
12124 TargetLowering::AtomicExpansionKind
12125 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12126 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
12127 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
12130 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
12131 TargetLowering::AtomicExpansionKind
12132 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12133 if (AI->isFloatingPointOperation())
12134 return AtomicExpansionKind::CmpXChg;
12136 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12137 if (Size > 128) return AtomicExpansionKind::None;
12138 // Nand not supported in LSE.
12139 if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
12140 // Leave 128 bits to LLSC.
12141 return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
12144 TargetLowering::AtomicExpansionKind
12145 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
12146 AtomicCmpXchgInst *AI) const {
12147 // If subtarget has LSE, leave cmpxchg intact for codegen.
12148 if (Subtarget->hasLSE())
12149 return AtomicExpansionKind::None;
12150 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12151 // implement cmpxchg without spilling. If the address being exchanged is also
12152 // on the stack and close enough to the spill slot, this can lead to a
12153 // situation where the monitor always gets cleared and the atomic operation
12154 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12155 if (getTargetMachine().getOptLevel() == 0)
12156 return AtomicExpansionKind::None;
12157 return AtomicExpansionKind::LLSC;
12160 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
12161 AtomicOrdering Ord) const {
12162 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12163 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
12164 bool IsAcquire = isAcquireOrStronger(Ord);
12166 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
12167 // intrinsic must return {i64, i64} and we have to recombine them into a
12168 // single i128 here.
12169 if (ValTy->getPrimitiveSizeInBits() == 128) {
12170 Intrinsic::ID Int =
12171 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
12172 Function *Ldxr = Intrinsic::getDeclaration(M, Int);
12174 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12175 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
12177 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
12178 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
12179 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
12180 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
12181 return Builder.CreateOr(
12182 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
12185 Type *Tys[] = { Addr->getType() };
12186 Intrinsic::ID Int =
12187 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
12188 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
12190 Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
12192 const DataLayout &DL = M->getDataLayout();
12193 IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
12194 Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
12196 return Builder.CreateBitCast(Trunc, EltTy);
12199 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12200 IRBuilder<> &Builder) const {
12201 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12202 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
12205 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
12206 Value *Val, Value *Addr,
12207 AtomicOrdering Ord) const {
12208 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12209 bool IsRelease = isReleaseOrStronger(Ord);
12211 // Since the intrinsics must have legal type, the i128 intrinsics take two
12212 // parameters: "i64, i64". We must marshal Val into the appropriate form
12213 // before the call.
12214 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
12215 Intrinsic::ID Int =
12216 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
12217 Function *Stxr = Intrinsic::getDeclaration(M, Int);
12218 Type *Int64Ty = Type::getInt64Ty(M->getContext());
12220 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
12221 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
12222 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12223 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
12226 Intrinsic::ID Int =
12227 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
12228 Type *Tys[] = { Addr->getType() };
12229 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
12231 const DataLayout &DL = M->getDataLayout();
12232 IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
12233 Val = Builder.CreateBitCast(Val, IntValTy);
12235 return Builder.CreateCall(Stxr,
12236 {Builder.CreateZExtOrBitCast(
12237 Val, Stxr->getFunctionType()->getParamType(0)),
12238 Addr});
12241 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
12242 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
12243 return Ty->isArrayTy();
12246 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
12247 EVT) const {
12248 return false;
12251 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
12252 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
12253 Function *ThreadPointerFunc =
12254 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
12255 return IRB.CreatePointerCast(
12256 IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
12257 Offset),
12258 IRB.getInt8PtrTy()->getPointerTo(0));
12261 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
12262 // Android provides a fixed TLS slot for the stack cookie. See the definition
12263 // of TLS_SLOT_STACK_GUARD in
12264 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12265 if (Subtarget->isTargetAndroid())
12266 return UseTlsOffset(IRB, 0x28);
12268 // Fuchsia is similar.
12269 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
12270 if (Subtarget->isTargetFuchsia())
12271 return UseTlsOffset(IRB, -0x10);
12273 return TargetLowering::getIRStackGuard(IRB);
12276 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
12277 // MSVC CRT provides functionalities for stack protection.
12278 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
12279 // MSVC CRT has a global variable holding security cookie.
12280 M.getOrInsertGlobal("__security_cookie",
12281 Type::getInt8PtrTy(M.getContext()));
12283 // MSVC CRT has a function to validate security cookie.
12284 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
12285 "__security_check_cookie", Type::getVoidTy(M.getContext()),
12286 Type::getInt8PtrTy(M.getContext()));
12287 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
12288 F->setCallingConv(CallingConv::Win64);
12289 F->addAttribute(1, Attribute::AttrKind::InReg);
12291 return;
12293 TargetLowering::insertSSPDeclarations(M);
12296 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
12297 // MSVC CRT has a global variable holding security cookie.
12298 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
12299 return M.getGlobalVariable("__security_cookie");
12300 return TargetLowering::getSDagStackGuard(M);
12303 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
12304 // MSVC CRT has a function to validate security cookie.
12305 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
12306 return M.getFunction("__security_check_cookie");
12307 return TargetLowering::getSSPStackGuardCheck(M);
12310 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
12311 // Android provides a fixed TLS slot for the SafeStack pointer. See the
12312 // definition of TLS_SLOT_SAFESTACK in
12313 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12314 if (Subtarget->isTargetAndroid())
12315 return UseTlsOffset(IRB, 0x48);
12317 // Fuchsia is similar.
12318 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
12319 if (Subtarget->isTargetFuchsia())
12320 return UseTlsOffset(IRB, -0x8);
12322 return TargetLowering::getSafeStackPointerLocation(IRB);
12325 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
12326 const Instruction &AndI) const {
12327 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
12328 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
12329 // may be beneficial to sink in other cases, but we would have to check that
12330 // the cmp would not get folded into the br to form a cbz for these to be
12331 // beneficial.
12332 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
12333 if (!Mask)
12334 return false;
12335 return Mask->getValue().isPowerOf2();
12338 bool AArch64TargetLowering::
12339 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12340 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
12341 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
12342 SelectionDAG &DAG) const {
12343 // Does baseline recommend not to perform the fold by default?
12344 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12345 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
12346 return false;
12347 // Else, if this is a vector shift, prefer 'shl'.
12348 return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
12351 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
12352 SDNode *N) const {
12353 if (DAG.getMachineFunction().getFunction().hasMinSize() &&
12354 !Subtarget->isTargetWindows())
12355 return false;
12356 return true;
12359 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12360 // Update IsSplitCSR in AArch64unctionInfo.
12361 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
12362 AFI->setIsSplitCSR(true);
12365 void AArch64TargetLowering::insertCopiesSplitCSR(
12366 MachineBasicBlock *Entry,
12367 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12368 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
12369 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12370 if (!IStart)
12371 return;
12373 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12374 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12375 MachineBasicBlock::iterator MBBI = Entry->begin();
12376 for (const MCPhysReg *I = IStart; *I; ++I) {
12377 const TargetRegisterClass *RC = nullptr;
12378 if (AArch64::GPR64RegClass.contains(*I))
12379 RC = &AArch64::GPR64RegClass;
12380 else if (AArch64::FPR64RegClass.contains(*I))
12381 RC = &AArch64::FPR64RegClass;
12382 else
12383 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12385 Register NewVR = MRI->createVirtualRegister(RC);
12386 // Create copy from CSR to a virtual register.
12387 // FIXME: this currently does not emit CFI pseudo-instructions, it works
12388 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12389 // nounwind. If we want to generalize this later, we may need to emit
12390 // CFI pseudo-instructions.
12391 assert(Entry->getParent()->getFunction().hasFnAttribute(
12392 Attribute::NoUnwind) &&
12393 "Function should be nounwind in insertCopiesSplitCSR!");
12394 Entry->addLiveIn(*I);
12395 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12396 .addReg(*I);
12398 // Insert the copy-back instructions right before the terminator.
12399 for (auto *Exit : Exits)
12400 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12401 TII->get(TargetOpcode::COPY), *I)
12402 .addReg(NewVR);
12406 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
12407 // Integer division on AArch64 is expensive. However, when aggressively
12408 // optimizing for code size, we prefer to use a div instruction, as it is
12409 // usually smaller than the alternative sequence.
12410 // The exception to this is vector division. Since AArch64 doesn't have vector
12411 // integer division, leaving the division as-is is a loss even in terms of
12412 // size, because it will have to be scalarized, while the alternative code
12413 // sequence can be performed in vector form.
12414 bool OptSize =
12415 Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
12416 return OptSize && !VT.isVector();
12419 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
12420 // We want inc-of-add for scalars and sub-of-not for vectors.
12421 return VT.isScalarInteger();
12424 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
12425 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
12428 unsigned
12429 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
12430 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
12431 return getPointerTy(DL).getSizeInBits();
12433 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
12436 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
12437 MF.getFrameInfo().computeMaxCallFrameSize(MF);
12438 TargetLoweringBase::finalizeLowering(MF);
12441 // Unlike X86, we let frame lowering assign offsets to all catch objects.
12442 bool AArch64TargetLowering::needsFixedCatchObjects() const {
12443 return false;