1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AArch64TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64ExpandImm.h"
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RuntimeLibcalls.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetCallingConv.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/OperandTraits.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
93 using namespace llvm::PatternMatch
;
95 #define DEBUG_TYPE "aarch64-lower"
97 STATISTIC(NumTailCalls
, "Number of tail calls");
98 STATISTIC(NumShiftInserts
, "Number of vector shift inserts");
99 STATISTIC(NumOptimizedImms
, "Number of times immediates were optimized");
102 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden
,
103 cl::desc("Allow AArch64 SLI/SRI formation"),
106 // FIXME: The necessary dtprel relocations don't seem to be supported
107 // well in the GNU bfd and gold linkers at the moment. Therefore, by
108 // default, for now, fall back to GeneralDynamic code generation.
109 cl::opt
<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
110 "aarch64-elf-ldtls-generation", cl::Hidden
,
111 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
115 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden
,
116 cl::desc("Enable AArch64 logical imm instruction "
120 /// Value type used for condition codes.
121 static const MVT MVT_CC
= MVT::i32
;
123 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine
&TM
,
124 const AArch64Subtarget
&STI
)
125 : TargetLowering(TM
), Subtarget(&STI
) {
126 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
127 // we have to make something up. Arbitrarily, choose ZeroOrOne.
128 setBooleanContents(ZeroOrOneBooleanContent
);
129 // When comparing vectors the result sets the different elements in the
130 // vector to all-one or all-zero.
131 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
133 // Set up the register classes.
134 addRegisterClass(MVT::i32
, &AArch64::GPR32allRegClass
);
135 addRegisterClass(MVT::i64
, &AArch64::GPR64allRegClass
);
137 if (Subtarget
->hasFPARMv8()) {
138 addRegisterClass(MVT::f16
, &AArch64::FPR16RegClass
);
139 addRegisterClass(MVT::f32
, &AArch64::FPR32RegClass
);
140 addRegisterClass(MVT::f64
, &AArch64::FPR64RegClass
);
141 addRegisterClass(MVT::f128
, &AArch64::FPR128RegClass
);
144 if (Subtarget
->hasNEON()) {
145 addRegisterClass(MVT::v16i8
, &AArch64::FPR8RegClass
);
146 addRegisterClass(MVT::v8i16
, &AArch64::FPR16RegClass
);
147 // Someone set us up the NEON.
148 addDRTypeForNEON(MVT::v2f32
);
149 addDRTypeForNEON(MVT::v8i8
);
150 addDRTypeForNEON(MVT::v4i16
);
151 addDRTypeForNEON(MVT::v2i32
);
152 addDRTypeForNEON(MVT::v1i64
);
153 addDRTypeForNEON(MVT::v1f64
);
154 addDRTypeForNEON(MVT::v4f16
);
156 addQRTypeForNEON(MVT::v4f32
);
157 addQRTypeForNEON(MVT::v2f64
);
158 addQRTypeForNEON(MVT::v16i8
);
159 addQRTypeForNEON(MVT::v8i16
);
160 addQRTypeForNEON(MVT::v4i32
);
161 addQRTypeForNEON(MVT::v2i64
);
162 addQRTypeForNEON(MVT::v8f16
);
165 if (Subtarget
->hasSVE()) {
166 // Add legal sve predicate types
167 addRegisterClass(MVT::nxv2i1
, &AArch64::PPRRegClass
);
168 addRegisterClass(MVT::nxv4i1
, &AArch64::PPRRegClass
);
169 addRegisterClass(MVT::nxv8i1
, &AArch64::PPRRegClass
);
170 addRegisterClass(MVT::nxv16i1
, &AArch64::PPRRegClass
);
172 // Add legal sve data types
173 addRegisterClass(MVT::nxv16i8
, &AArch64::ZPRRegClass
);
174 addRegisterClass(MVT::nxv8i16
, &AArch64::ZPRRegClass
);
175 addRegisterClass(MVT::nxv4i32
, &AArch64::ZPRRegClass
);
176 addRegisterClass(MVT::nxv2i64
, &AArch64::ZPRRegClass
);
178 addRegisterClass(MVT::nxv2f16
, &AArch64::ZPRRegClass
);
179 addRegisterClass(MVT::nxv4f16
, &AArch64::ZPRRegClass
);
180 addRegisterClass(MVT::nxv8f16
, &AArch64::ZPRRegClass
);
181 addRegisterClass(MVT::nxv1f32
, &AArch64::ZPRRegClass
);
182 addRegisterClass(MVT::nxv2f32
, &AArch64::ZPRRegClass
);
183 addRegisterClass(MVT::nxv4f32
, &AArch64::ZPRRegClass
);
184 addRegisterClass(MVT::nxv1f64
, &AArch64::ZPRRegClass
);
185 addRegisterClass(MVT::nxv2f64
, &AArch64::ZPRRegClass
);
188 // Compute derived properties from the register classes
189 computeRegisterProperties(Subtarget
->getRegisterInfo());
191 // Provide all sorts of operation actions
192 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
193 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
194 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
195 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
196 setOperationAction(ISD::SETCC
, MVT::f16
, Custom
);
197 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
198 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
199 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
200 setOperationAction(ISD::BITREVERSE
, MVT::i64
, Legal
);
201 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
202 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
203 setOperationAction(ISD::BR_CC
, MVT::i64
, Custom
);
204 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
205 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
206 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
207 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
208 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
209 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
210 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
211 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
212 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
213 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Custom
);
214 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
215 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
216 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
217 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
218 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
220 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
221 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
222 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
224 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
225 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
226 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
228 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
230 // Custom lowering hooks are needed for XOR
231 // to fold it into CSINC/CSINV.
232 setOperationAction(ISD::XOR
, MVT::i32
, Custom
);
233 setOperationAction(ISD::XOR
, MVT::i64
, Custom
);
235 // Virtually no operation on f128 is legal, but LLVM can't expand them when
236 // there's a valid register class, so we need custom operations in most cases.
237 setOperationAction(ISD::FABS
, MVT::f128
, Expand
);
238 setOperationAction(ISD::FADD
, MVT::f128
, Custom
);
239 setOperationAction(ISD::FCOPYSIGN
, MVT::f128
, Expand
);
240 setOperationAction(ISD::FCOS
, MVT::f128
, Expand
);
241 setOperationAction(ISD::FDIV
, MVT::f128
, Custom
);
242 setOperationAction(ISD::FMA
, MVT::f128
, Expand
);
243 setOperationAction(ISD::FMUL
, MVT::f128
, Custom
);
244 setOperationAction(ISD::FNEG
, MVT::f128
, Expand
);
245 setOperationAction(ISD::FPOW
, MVT::f128
, Expand
);
246 setOperationAction(ISD::FREM
, MVT::f128
, Expand
);
247 setOperationAction(ISD::FRINT
, MVT::f128
, Expand
);
248 setOperationAction(ISD::FSIN
, MVT::f128
, Expand
);
249 setOperationAction(ISD::FSINCOS
, MVT::f128
, Expand
);
250 setOperationAction(ISD::FSQRT
, MVT::f128
, Expand
);
251 setOperationAction(ISD::FSUB
, MVT::f128
, Custom
);
252 setOperationAction(ISD::FTRUNC
, MVT::f128
, Expand
);
253 setOperationAction(ISD::SETCC
, MVT::f128
, Custom
);
254 setOperationAction(ISD::BR_CC
, MVT::f128
, Custom
);
255 setOperationAction(ISD::SELECT
, MVT::f128
, Custom
);
256 setOperationAction(ISD::SELECT_CC
, MVT::f128
, Custom
);
257 setOperationAction(ISD::FP_EXTEND
, MVT::f128
, Custom
);
259 // Lowering for many of the conversions is actually specified by the non-f128
260 // type. The LowerXXX function will be trivial when f128 isn't involved.
261 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
262 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
263 setOperationAction(ISD::FP_TO_SINT
, MVT::i128
, Custom
);
264 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
265 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
266 setOperationAction(ISD::FP_TO_UINT
, MVT::i128
, Custom
);
267 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
268 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
269 setOperationAction(ISD::SINT_TO_FP
, MVT::i128
, Custom
);
270 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
271 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
272 setOperationAction(ISD::UINT_TO_FP
, MVT::i128
, Custom
);
273 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
274 setOperationAction(ISD::FP_ROUND
, MVT::f64
, Custom
);
276 // Variable arguments.
277 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
278 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
279 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
280 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
282 // Variable-sized objects.
283 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
284 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
286 if (Subtarget
->isTargetWindows())
287 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
289 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
291 // Constant pool entries
292 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
295 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
297 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
298 setOperationAction(ISD::ADDC
, MVT::i32
, Custom
);
299 setOperationAction(ISD::ADDE
, MVT::i32
, Custom
);
300 setOperationAction(ISD::SUBC
, MVT::i32
, Custom
);
301 setOperationAction(ISD::SUBE
, MVT::i32
, Custom
);
302 setOperationAction(ISD::ADDC
, MVT::i64
, Custom
);
303 setOperationAction(ISD::ADDE
, MVT::i64
, Custom
);
304 setOperationAction(ISD::SUBC
, MVT::i64
, Custom
);
305 setOperationAction(ISD::SUBE
, MVT::i64
, Custom
);
307 // AArch64 lacks both left-rotate and popcount instructions.
308 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
309 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
310 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
311 setOperationAction(ISD::ROTL
, VT
, Expand
);
312 setOperationAction(ISD::ROTR
, VT
, Expand
);
315 // AArch64 doesn't have {U|S}MUL_LOHI.
316 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
317 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
319 setOperationAction(ISD::CTPOP
, MVT::i32
, Custom
);
320 setOperationAction(ISD::CTPOP
, MVT::i64
, Custom
);
322 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
323 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
324 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
325 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
326 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
328 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
329 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
330 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
331 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
332 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
333 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
335 // Custom lower Add/Sub/Mul with overflow.
336 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
337 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
338 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
339 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
340 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
341 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
342 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
343 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
344 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
345 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
346 setOperationAction(ISD::UMULO
, MVT::i32
, Custom
);
347 setOperationAction(ISD::UMULO
, MVT::i64
, Custom
);
349 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
350 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
351 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
352 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
353 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
354 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
355 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
356 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
357 if (Subtarget
->hasFullFP16())
358 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Custom
);
360 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Promote
);
362 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
363 setOperationAction(ISD::FREM
, MVT::v4f16
, Expand
);
364 setOperationAction(ISD::FREM
, MVT::v8f16
, Expand
);
365 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
366 setOperationAction(ISD::FPOW
, MVT::v4f16
, Expand
);
367 setOperationAction(ISD::FPOW
, MVT::v8f16
, Expand
);
368 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
369 setOperationAction(ISD::FPOWI
, MVT::v4f16
, Expand
);
370 setOperationAction(ISD::FPOWI
, MVT::v8f16
, Expand
);
371 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
372 setOperationAction(ISD::FCOS
, MVT::v4f16
, Expand
);
373 setOperationAction(ISD::FCOS
, MVT::v8f16
, Expand
);
374 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
375 setOperationAction(ISD::FSIN
, MVT::v4f16
, Expand
);
376 setOperationAction(ISD::FSIN
, MVT::v8f16
, Expand
);
377 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
378 setOperationAction(ISD::FSINCOS
, MVT::v4f16
, Expand
);
379 setOperationAction(ISD::FSINCOS
, MVT::v8f16
, Expand
);
380 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
381 setOperationAction(ISD::FEXP
, MVT::v4f16
, Expand
);
382 setOperationAction(ISD::FEXP
, MVT::v8f16
, Expand
);
383 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
384 setOperationAction(ISD::FEXP2
, MVT::v4f16
, Expand
);
385 setOperationAction(ISD::FEXP2
, MVT::v8f16
, Expand
);
386 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
387 setOperationAction(ISD::FLOG
, MVT::v4f16
, Expand
);
388 setOperationAction(ISD::FLOG
, MVT::v8f16
, Expand
);
389 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
390 setOperationAction(ISD::FLOG2
, MVT::v4f16
, Expand
);
391 setOperationAction(ISD::FLOG2
, MVT::v8f16
, Expand
);
392 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
393 setOperationAction(ISD::FLOG10
, MVT::v4f16
, Expand
);
394 setOperationAction(ISD::FLOG10
, MVT::v8f16
, Expand
);
396 if (!Subtarget
->hasFullFP16()) {
397 setOperationAction(ISD::SELECT
, MVT::f16
, Promote
);
398 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Promote
);
399 setOperationAction(ISD::SETCC
, MVT::f16
, Promote
);
400 setOperationAction(ISD::BR_CC
, MVT::f16
, Promote
);
401 setOperationAction(ISD::FADD
, MVT::f16
, Promote
);
402 setOperationAction(ISD::FSUB
, MVT::f16
, Promote
);
403 setOperationAction(ISD::FMUL
, MVT::f16
, Promote
);
404 setOperationAction(ISD::FDIV
, MVT::f16
, Promote
);
405 setOperationAction(ISD::FMA
, MVT::f16
, Promote
);
406 setOperationAction(ISD::FNEG
, MVT::f16
, Promote
);
407 setOperationAction(ISD::FABS
, MVT::f16
, Promote
);
408 setOperationAction(ISD::FCEIL
, MVT::f16
, Promote
);
409 setOperationAction(ISD::FSQRT
, MVT::f16
, Promote
);
410 setOperationAction(ISD::FFLOOR
, MVT::f16
, Promote
);
411 setOperationAction(ISD::FNEARBYINT
, MVT::f16
, Promote
);
412 setOperationAction(ISD::FRINT
, MVT::f16
, Promote
);
413 setOperationAction(ISD::FROUND
, MVT::f16
, Promote
);
414 setOperationAction(ISD::FTRUNC
, MVT::f16
, Promote
);
415 setOperationAction(ISD::FMINNUM
, MVT::f16
, Promote
);
416 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Promote
);
417 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Promote
);
418 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Promote
);
420 // promote v4f16 to v4f32 when that is known to be safe.
421 setOperationAction(ISD::FADD
, MVT::v4f16
, Promote
);
422 setOperationAction(ISD::FSUB
, MVT::v4f16
, Promote
);
423 setOperationAction(ISD::FMUL
, MVT::v4f16
, Promote
);
424 setOperationAction(ISD::FDIV
, MVT::v4f16
, Promote
);
425 setOperationAction(ISD::FP_EXTEND
, MVT::v4f16
, Promote
);
426 setOperationAction(ISD::FP_ROUND
, MVT::v4f16
, Promote
);
427 AddPromotedToType(ISD::FADD
, MVT::v4f16
, MVT::v4f32
);
428 AddPromotedToType(ISD::FSUB
, MVT::v4f16
, MVT::v4f32
);
429 AddPromotedToType(ISD::FMUL
, MVT::v4f16
, MVT::v4f32
);
430 AddPromotedToType(ISD::FDIV
, MVT::v4f16
, MVT::v4f32
);
431 AddPromotedToType(ISD::FP_EXTEND
, MVT::v4f16
, MVT::v4f32
);
432 AddPromotedToType(ISD::FP_ROUND
, MVT::v4f16
, MVT::v4f32
);
434 setOperationAction(ISD::FABS
, MVT::v4f16
, Expand
);
435 setOperationAction(ISD::FNEG
, MVT::v4f16
, Expand
);
436 setOperationAction(ISD::FROUND
, MVT::v4f16
, Expand
);
437 setOperationAction(ISD::FMA
, MVT::v4f16
, Expand
);
438 setOperationAction(ISD::SETCC
, MVT::v4f16
, Expand
);
439 setOperationAction(ISD::BR_CC
, MVT::v4f16
, Expand
);
440 setOperationAction(ISD::SELECT
, MVT::v4f16
, Expand
);
441 setOperationAction(ISD::SELECT_CC
, MVT::v4f16
, Expand
);
442 setOperationAction(ISD::FTRUNC
, MVT::v4f16
, Expand
);
443 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f16
, Expand
);
444 setOperationAction(ISD::FFLOOR
, MVT::v4f16
, Expand
);
445 setOperationAction(ISD::FCEIL
, MVT::v4f16
, Expand
);
446 setOperationAction(ISD::FRINT
, MVT::v4f16
, Expand
);
447 setOperationAction(ISD::FNEARBYINT
, MVT::v4f16
, Expand
);
448 setOperationAction(ISD::FSQRT
, MVT::v4f16
, Expand
);
450 setOperationAction(ISD::FABS
, MVT::v8f16
, Expand
);
451 setOperationAction(ISD::FADD
, MVT::v8f16
, Expand
);
452 setOperationAction(ISD::FCEIL
, MVT::v8f16
, Expand
);
453 setOperationAction(ISD::FCOPYSIGN
, MVT::v8f16
, Expand
);
454 setOperationAction(ISD::FDIV
, MVT::v8f16
, Expand
);
455 setOperationAction(ISD::FFLOOR
, MVT::v8f16
, Expand
);
456 setOperationAction(ISD::FMA
, MVT::v8f16
, Expand
);
457 setOperationAction(ISD::FMUL
, MVT::v8f16
, Expand
);
458 setOperationAction(ISD::FNEARBYINT
, MVT::v8f16
, Expand
);
459 setOperationAction(ISD::FNEG
, MVT::v8f16
, Expand
);
460 setOperationAction(ISD::FROUND
, MVT::v8f16
, Expand
);
461 setOperationAction(ISD::FRINT
, MVT::v8f16
, Expand
);
462 setOperationAction(ISD::FSQRT
, MVT::v8f16
, Expand
);
463 setOperationAction(ISD::FSUB
, MVT::v8f16
, Expand
);
464 setOperationAction(ISD::FTRUNC
, MVT::v8f16
, Expand
);
465 setOperationAction(ISD::SETCC
, MVT::v8f16
, Expand
);
466 setOperationAction(ISD::BR_CC
, MVT::v8f16
, Expand
);
467 setOperationAction(ISD::SELECT
, MVT::v8f16
, Expand
);
468 setOperationAction(ISD::SELECT_CC
, MVT::v8f16
, Expand
);
469 setOperationAction(ISD::FP_EXTEND
, MVT::v8f16
, Expand
);
472 // AArch64 has implementations of a lot of rounding-like FP operations.
473 for (MVT Ty
: {MVT::f32
, MVT::f64
}) {
474 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
475 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
476 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
477 setOperationAction(ISD::FRINT
, Ty
, Legal
);
478 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
479 setOperationAction(ISD::FROUND
, Ty
, Legal
);
480 setOperationAction(ISD::FMINNUM
, Ty
, Legal
);
481 setOperationAction(ISD::FMAXNUM
, Ty
, Legal
);
482 setOperationAction(ISD::FMINIMUM
, Ty
, Legal
);
483 setOperationAction(ISD::FMAXIMUM
, Ty
, Legal
);
484 setOperationAction(ISD::LROUND
, Ty
, Legal
);
485 setOperationAction(ISD::LLROUND
, Ty
, Legal
);
486 setOperationAction(ISD::LRINT
, Ty
, Legal
);
487 setOperationAction(ISD::LLRINT
, Ty
, Legal
);
490 if (Subtarget
->hasFullFP16()) {
491 setOperationAction(ISD::FNEARBYINT
, MVT::f16
, Legal
);
492 setOperationAction(ISD::FFLOOR
, MVT::f16
, Legal
);
493 setOperationAction(ISD::FCEIL
, MVT::f16
, Legal
);
494 setOperationAction(ISD::FRINT
, MVT::f16
, Legal
);
495 setOperationAction(ISD::FTRUNC
, MVT::f16
, Legal
);
496 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
497 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
498 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
499 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
500 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
503 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
505 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
507 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i128
, Custom
);
508 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
509 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
510 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Custom
);
511 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
513 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
514 // This requires the Performance Monitors extension.
515 if (Subtarget
->hasPerfMon())
516 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Legal
);
518 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
519 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
520 // Issue __sincos_stret if available.
521 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
522 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
524 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
525 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
528 // Make floating-point constants legal for the large code model, so they don't
529 // become loads from the constant pool.
530 if (Subtarget
->isTargetMachO() && TM
.getCodeModel() == CodeModel::Large
) {
531 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
532 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
535 // AArch64 does not have floating-point extending loads, i1 sign-extending
536 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
537 for (MVT VT
: MVT::fp_valuetypes()) {
538 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
539 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
540 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f64
, Expand
);
541 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f80
, Expand
);
543 for (MVT VT
: MVT::integer_valuetypes())
544 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Expand
);
546 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
547 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
548 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
549 setTruncStoreAction(MVT::f128
, MVT::f80
, Expand
);
550 setTruncStoreAction(MVT::f128
, MVT::f64
, Expand
);
551 setTruncStoreAction(MVT::f128
, MVT::f32
, Expand
);
552 setTruncStoreAction(MVT::f128
, MVT::f16
, Expand
);
554 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
555 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
557 // Indexed loads and stores are supported.
558 for (unsigned im
= (unsigned)ISD::PRE_INC
;
559 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
560 setIndexedLoadAction(im
, MVT::i8
, Legal
);
561 setIndexedLoadAction(im
, MVT::i16
, Legal
);
562 setIndexedLoadAction(im
, MVT::i32
, Legal
);
563 setIndexedLoadAction(im
, MVT::i64
, Legal
);
564 setIndexedLoadAction(im
, MVT::f64
, Legal
);
565 setIndexedLoadAction(im
, MVT::f32
, Legal
);
566 setIndexedLoadAction(im
, MVT::f16
, Legal
);
567 setIndexedStoreAction(im
, MVT::i8
, Legal
);
568 setIndexedStoreAction(im
, MVT::i16
, Legal
);
569 setIndexedStoreAction(im
, MVT::i32
, Legal
);
570 setIndexedStoreAction(im
, MVT::i64
, Legal
);
571 setIndexedStoreAction(im
, MVT::f64
, Legal
);
572 setIndexedStoreAction(im
, MVT::f32
, Legal
);
573 setIndexedStoreAction(im
, MVT::f16
, Legal
);
577 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
578 if (Subtarget
->isTargetWindows())
579 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
581 // We combine OR nodes for bitfield operations.
582 setTargetDAGCombine(ISD::OR
);
583 // Try to create BICs for vector ANDs.
584 setTargetDAGCombine(ISD::AND
);
586 // Vector add and sub nodes may conceal a high-half opportunity.
587 // Also, try to fold ADD into CSINC/CSINV..
588 setTargetDAGCombine(ISD::ADD
);
589 setTargetDAGCombine(ISD::SUB
);
590 setTargetDAGCombine(ISD::SRL
);
591 setTargetDAGCombine(ISD::XOR
);
592 setTargetDAGCombine(ISD::SINT_TO_FP
);
593 setTargetDAGCombine(ISD::UINT_TO_FP
);
595 setTargetDAGCombine(ISD::FP_TO_SINT
);
596 setTargetDAGCombine(ISD::FP_TO_UINT
);
597 setTargetDAGCombine(ISD::FDIV
);
599 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
601 setTargetDAGCombine(ISD::ANY_EXTEND
);
602 setTargetDAGCombine(ISD::ZERO_EXTEND
);
603 setTargetDAGCombine(ISD::SIGN_EXTEND
);
604 setTargetDAGCombine(ISD::BITCAST
);
605 setTargetDAGCombine(ISD::CONCAT_VECTORS
);
606 setTargetDAGCombine(ISD::STORE
);
607 if (Subtarget
->supportsAddressTopByteIgnored())
608 setTargetDAGCombine(ISD::LOAD
);
610 setTargetDAGCombine(ISD::MUL
);
612 setTargetDAGCombine(ISD::SELECT
);
613 setTargetDAGCombine(ISD::VSELECT
);
615 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
616 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
617 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
619 setTargetDAGCombine(ISD::GlobalAddress
);
621 // In case of strict alignment, avoid an excessive number of byte wide stores.
622 MaxStoresPerMemsetOptSize
= 8;
623 MaxStoresPerMemset
= Subtarget
->requiresStrictAlign()
624 ? MaxStoresPerMemsetOptSize
: 32;
626 MaxGluedStoresPerMemcpy
= 4;
627 MaxStoresPerMemcpyOptSize
= 4;
628 MaxStoresPerMemcpy
= Subtarget
->requiresStrictAlign()
629 ? MaxStoresPerMemcpyOptSize
: 16;
631 MaxStoresPerMemmoveOptSize
= MaxStoresPerMemmove
= 4;
633 MaxLoadsPerMemcmpOptSize
= 4;
634 MaxLoadsPerMemcmp
= Subtarget
->requiresStrictAlign()
635 ? MaxLoadsPerMemcmpOptSize
: 8;
637 setStackPointerRegisterToSaveRestore(AArch64::SP
);
639 setSchedulingPreference(Sched::Hybrid
);
641 EnableExtLdPromotion
= true;
643 // Set required alignment.
644 setMinFunctionAlignment(Align(4));
645 // Set preferred alignments.
646 setPrefLoopAlignment(Align(1ULL << STI
.getPrefLoopLogAlignment()));
647 setPrefFunctionAlignment(Align(1ULL << STI
.getPrefFunctionLogAlignment()));
649 // Only change the limit for entries in a jump table if specified by
650 // the sub target, but not at the command line.
651 unsigned MaxJT
= STI
.getMaximumJumpTableSize();
652 if (MaxJT
&& getMaximumJumpTableSize() == UINT_MAX
)
653 setMaximumJumpTableSize(MaxJT
);
655 setHasExtractBitsInsn(true);
657 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
659 if (Subtarget
->hasNEON()) {
660 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
661 // silliness like this:
662 setOperationAction(ISD::FABS
, MVT::v1f64
, Expand
);
663 setOperationAction(ISD::FADD
, MVT::v1f64
, Expand
);
664 setOperationAction(ISD::FCEIL
, MVT::v1f64
, Expand
);
665 setOperationAction(ISD::FCOPYSIGN
, MVT::v1f64
, Expand
);
666 setOperationAction(ISD::FCOS
, MVT::v1f64
, Expand
);
667 setOperationAction(ISD::FDIV
, MVT::v1f64
, Expand
);
668 setOperationAction(ISD::FFLOOR
, MVT::v1f64
, Expand
);
669 setOperationAction(ISD::FMA
, MVT::v1f64
, Expand
);
670 setOperationAction(ISD::FMUL
, MVT::v1f64
, Expand
);
671 setOperationAction(ISD::FNEARBYINT
, MVT::v1f64
, Expand
);
672 setOperationAction(ISD::FNEG
, MVT::v1f64
, Expand
);
673 setOperationAction(ISD::FPOW
, MVT::v1f64
, Expand
);
674 setOperationAction(ISD::FREM
, MVT::v1f64
, Expand
);
675 setOperationAction(ISD::FROUND
, MVT::v1f64
, Expand
);
676 setOperationAction(ISD::FRINT
, MVT::v1f64
, Expand
);
677 setOperationAction(ISD::FSIN
, MVT::v1f64
, Expand
);
678 setOperationAction(ISD::FSINCOS
, MVT::v1f64
, Expand
);
679 setOperationAction(ISD::FSQRT
, MVT::v1f64
, Expand
);
680 setOperationAction(ISD::FSUB
, MVT::v1f64
, Expand
);
681 setOperationAction(ISD::FTRUNC
, MVT::v1f64
, Expand
);
682 setOperationAction(ISD::SETCC
, MVT::v1f64
, Expand
);
683 setOperationAction(ISD::BR_CC
, MVT::v1f64
, Expand
);
684 setOperationAction(ISD::SELECT
, MVT::v1f64
, Expand
);
685 setOperationAction(ISD::SELECT_CC
, MVT::v1f64
, Expand
);
686 setOperationAction(ISD::FP_EXTEND
, MVT::v1f64
, Expand
);
688 setOperationAction(ISD::FP_TO_SINT
, MVT::v1i64
, Expand
);
689 setOperationAction(ISD::FP_TO_UINT
, MVT::v1i64
, Expand
);
690 setOperationAction(ISD::SINT_TO_FP
, MVT::v1i64
, Expand
);
691 setOperationAction(ISD::UINT_TO_FP
, MVT::v1i64
, Expand
);
692 setOperationAction(ISD::FP_ROUND
, MVT::v1f64
, Expand
);
694 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
696 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
697 // elements smaller than i32, so promote the input to i32 first.
698 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v4i8
, MVT::v4i32
);
699 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v4i8
, MVT::v4i32
);
700 // i8 vector elements also need promotion to i32 for v8i8
701 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v8i8
, MVT::v8i32
);
702 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v8i8
, MVT::v8i32
);
703 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
704 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
705 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i32
, Custom
);
706 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i64
, Custom
);
707 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i64
, Custom
);
708 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
709 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
710 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Custom
);
711 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i32
, Custom
);
713 if (Subtarget
->hasFullFP16()) {
714 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
715 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
716 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
717 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
719 // when AArch64 doesn't have fullfp16 support, promote the input
721 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v4i16
, MVT::v4i32
);
722 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v4i16
, MVT::v4i32
);
723 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v8i16
, MVT::v8i32
);
724 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v8i16
, MVT::v8i32
);
727 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
728 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
730 // AArch64 doesn't have MUL.2d:
731 setOperationAction(ISD::MUL
, MVT::v2i64
, Expand
);
732 // Custom handling for some quad-vector types to detect MULL.
733 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
734 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
735 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
738 for (MVT VT
: { MVT::v8i8
, MVT::v4i16
, MVT::v2i32
,
739 MVT::v16i8
, MVT::v8i16
, MVT::v4i32
, MVT::v2i64
}) {
740 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Custom
);
741 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Custom
);
742 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Custom
);
743 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Custom
);
744 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Custom
);
746 for (MVT VT
: { MVT::v4f16
, MVT::v2f32
,
747 MVT::v8f16
, MVT::v4f32
, MVT::v2f64
}) {
748 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Custom
);
749 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Custom
);
752 setOperationAction(ISD::ANY_EXTEND
, MVT::v4i32
, Legal
);
753 setTruncStoreAction(MVT::v2i32
, MVT::v2i16
, Expand
);
754 // Likewise, narrowing and extending vector loads/stores aren't handled
756 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
757 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
759 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
) {
760 setOperationAction(ISD::MULHS
, VT
, Legal
);
761 setOperationAction(ISD::MULHU
, VT
, Legal
);
763 setOperationAction(ISD::MULHS
, VT
, Expand
);
764 setOperationAction(ISD::MULHU
, VT
, Expand
);
766 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
767 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
769 setOperationAction(ISD::BSWAP
, VT
, Expand
);
770 setOperationAction(ISD::CTTZ
, VT
, Expand
);
772 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
773 setTruncStoreAction(VT
, InnerVT
, Expand
);
774 setLoadExtAction(ISD::SEXTLOAD
, VT
, InnerVT
, Expand
);
775 setLoadExtAction(ISD::ZEXTLOAD
, VT
, InnerVT
, Expand
);
776 setLoadExtAction(ISD::EXTLOAD
, VT
, InnerVT
, Expand
);
780 // AArch64 has implementations of a lot of rounding-like FP operations.
781 for (MVT Ty
: {MVT::v2f32
, MVT::v4f32
, MVT::v2f64
}) {
782 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
783 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
784 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
785 setOperationAction(ISD::FRINT
, Ty
, Legal
);
786 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
787 setOperationAction(ISD::FROUND
, Ty
, Legal
);
790 if (Subtarget
->hasFullFP16()) {
791 for (MVT Ty
: {MVT::v4f16
, MVT::v8f16
}) {
792 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
793 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
794 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
795 setOperationAction(ISD::FRINT
, Ty
, Legal
);
796 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
797 setOperationAction(ISD::FROUND
, Ty
, Legal
);
801 setTruncStoreAction(MVT::v4i16
, MVT::v4i8
, Custom
);
804 if (Subtarget
->hasSVE()) {
805 for (MVT VT
: MVT::integer_scalable_vector_valuetypes()) {
806 if (isTypeLegal(VT
) && VT
.getVectorElementType() != MVT::i1
)
807 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Custom
);
811 PredictableSelectIsExpensive
= Subtarget
->predictableSelectIsExpensive();
814 void AArch64TargetLowering::addTypeForNEON(MVT VT
, MVT PromotedBitwiseVT
) {
815 assert(VT
.isVector() && "VT should be a vector type");
817 if (VT
.isFloatingPoint()) {
818 MVT PromoteTo
= EVT(VT
).changeVectorElementTypeToInteger().getSimpleVT();
819 setOperationPromotedToType(ISD::LOAD
, VT
, PromoteTo
);
820 setOperationPromotedToType(ISD::STORE
, VT
, PromoteTo
);
823 // Mark vector float intrinsics as expand.
824 if (VT
== MVT::v2f32
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
) {
825 setOperationAction(ISD::FSIN
, VT
, Expand
);
826 setOperationAction(ISD::FCOS
, VT
, Expand
);
827 setOperationAction(ISD::FPOW
, VT
, Expand
);
828 setOperationAction(ISD::FLOG
, VT
, Expand
);
829 setOperationAction(ISD::FLOG2
, VT
, Expand
);
830 setOperationAction(ISD::FLOG10
, VT
, Expand
);
831 setOperationAction(ISD::FEXP
, VT
, Expand
);
832 setOperationAction(ISD::FEXP2
, VT
, Expand
);
834 // But we do support custom-lowering for FCOPYSIGN.
835 setOperationAction(ISD::FCOPYSIGN
, VT
, Custom
);
838 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
839 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
840 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
841 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
842 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
843 setOperationAction(ISD::SRA
, VT
, Custom
);
844 setOperationAction(ISD::SRL
, VT
, Custom
);
845 setOperationAction(ISD::SHL
, VT
, Custom
);
846 setOperationAction(ISD::OR
, VT
, Custom
);
847 setOperationAction(ISD::SETCC
, VT
, Custom
);
848 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
850 setOperationAction(ISD::SELECT
, VT
, Expand
);
851 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
852 setOperationAction(ISD::VSELECT
, VT
, Expand
);
853 for (MVT InnerVT
: MVT::all_valuetypes())
854 setLoadExtAction(ISD::EXTLOAD
, InnerVT
, VT
, Expand
);
856 // CNT supports only B element sizes, then use UADDLP to widen.
857 if (VT
!= MVT::v8i8
&& VT
!= MVT::v16i8
)
858 setOperationAction(ISD::CTPOP
, VT
, Custom
);
860 setOperationAction(ISD::UDIV
, VT
, Expand
);
861 setOperationAction(ISD::SDIV
, VT
, Expand
);
862 setOperationAction(ISD::UREM
, VT
, Expand
);
863 setOperationAction(ISD::SREM
, VT
, Expand
);
864 setOperationAction(ISD::FREM
, VT
, Expand
);
866 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
867 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
869 if (!VT
.isFloatingPoint())
870 setOperationAction(ISD::ABS
, VT
, Legal
);
872 // [SU][MIN|MAX] are available for all NEON types apart from i64.
873 if (!VT
.isFloatingPoint() && VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
874 for (unsigned Opcode
: {ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
875 setOperationAction(Opcode
, VT
, Legal
);
877 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
878 if (VT
.isFloatingPoint() &&
879 (VT
.getVectorElementType() != MVT::f16
|| Subtarget
->hasFullFP16()))
880 for (unsigned Opcode
:
881 {ISD::FMINIMUM
, ISD::FMAXIMUM
, ISD::FMINNUM
, ISD::FMAXNUM
})
882 setOperationAction(Opcode
, VT
, Legal
);
884 if (Subtarget
->isLittleEndian()) {
885 for (unsigned im
= (unsigned)ISD::PRE_INC
;
886 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
887 setIndexedLoadAction(im
, VT
, Legal
);
888 setIndexedStoreAction(im
, VT
, Legal
);
893 void AArch64TargetLowering::addDRTypeForNEON(MVT VT
) {
894 addRegisterClass(VT
, &AArch64::FPR64RegClass
);
895 addTypeForNEON(VT
, MVT::v2i32
);
898 void AArch64TargetLowering::addQRTypeForNEON(MVT VT
) {
899 addRegisterClass(VT
, &AArch64::FPR128RegClass
);
900 addTypeForNEON(VT
, MVT::v4i32
);
903 EVT
AArch64TargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
907 return VT
.changeVectorElementTypeToInteger();
910 static bool optimizeLogicalImm(SDValue Op
, unsigned Size
, uint64_t Imm
,
911 const APInt
&Demanded
,
912 TargetLowering::TargetLoweringOpt
&TLO
,
914 uint64_t OldImm
= Imm
, NewImm
, Enc
;
915 uint64_t Mask
= ((uint64_t)(-1LL) >> (64 - Size
)), OrigMask
= Mask
;
917 // Return if the immediate is already all zeros, all ones, a bimm32 or a
919 if (Imm
== 0 || Imm
== Mask
||
920 AArch64_AM::isLogicalImmediate(Imm
& Mask
, Size
))
923 unsigned EltSize
= Size
;
924 uint64_t DemandedBits
= Demanded
.getZExtValue();
926 // Clear bits that are not demanded.
930 // The goal here is to set the non-demanded bits in a way that minimizes
931 // the number of switching between 0 and 1. In order to achieve this goal,
932 // we set the non-demanded bits to the value of the preceding demanded bits.
933 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
934 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
935 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
936 // The final result is 0b11000011.
937 uint64_t NonDemandedBits
= ~DemandedBits
;
938 uint64_t InvertedImm
= ~Imm
& DemandedBits
;
939 uint64_t RotatedImm
=
940 ((InvertedImm
<< 1) | (InvertedImm
>> (EltSize
- 1) & 1)) &
942 uint64_t Sum
= RotatedImm
+ NonDemandedBits
;
943 bool Carry
= NonDemandedBits
& ~Sum
& (1ULL << (EltSize
- 1));
944 uint64_t Ones
= (Sum
+ Carry
) & NonDemandedBits
;
945 NewImm
= (Imm
| Ones
) & Mask
;
947 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
948 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
949 // we halve the element size and continue the search.
950 if (isShiftedMask_64(NewImm
) || isShiftedMask_64(~(NewImm
| ~Mask
)))
953 // We cannot shrink the element size any further if it is 2-bits.
959 uint64_t Hi
= Imm
>> EltSize
, DemandedBitsHi
= DemandedBits
>> EltSize
;
961 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
962 if (((Imm
^ Hi
) & (DemandedBits
& DemandedBitsHi
) & Mask
) != 0)
965 // Merge the upper and lower halves of Imm and DemandedBits.
967 DemandedBits
|= DemandedBitsHi
;
972 // Replicate the element across the register width.
973 while (EltSize
< Size
) {
974 NewImm
|= NewImm
<< EltSize
;
979 assert(((OldImm
^ NewImm
) & Demanded
.getZExtValue()) == 0 &&
980 "demanded bits should never be altered");
981 assert(OldImm
!= NewImm
&& "the new imm shouldn't be equal to the old imm");
983 // Create the new constant immediate node.
984 EVT VT
= Op
.getValueType();
988 // If the new constant immediate is all-zeros or all-ones, let the target
989 // independent DAG combine optimize this node.
990 if (NewImm
== 0 || NewImm
== OrigMask
) {
991 New
= TLO
.DAG
.getNode(Op
.getOpcode(), DL
, VT
, Op
.getOperand(0),
992 TLO
.DAG
.getConstant(NewImm
, DL
, VT
));
993 // Otherwise, create a machine node so that target independent DAG combine
994 // doesn't undo this optimization.
996 Enc
= AArch64_AM::encodeLogicalImmediate(NewImm
, Size
);
997 SDValue EncConst
= TLO
.DAG
.getTargetConstant(Enc
, DL
, VT
);
999 TLO
.DAG
.getMachineNode(NewOpc
, DL
, VT
, Op
.getOperand(0), EncConst
), 0);
1002 return TLO
.CombineTo(Op
, New
);
1005 bool AArch64TargetLowering::targetShrinkDemandedConstant(
1006 SDValue Op
, const APInt
&Demanded
, TargetLoweringOpt
&TLO
) const {
1007 // Delay this optimization to as late as possible.
1011 if (!EnableOptimizeLogicalImm
)
1014 EVT VT
= Op
.getValueType();
1018 unsigned Size
= VT
.getSizeInBits();
1019 assert((Size
== 32 || Size
== 64) &&
1020 "i32 or i64 is expected after legalization.");
1022 // Exit early if we demand all bits.
1023 if (Demanded
.countPopulation() == Size
)
1027 switch (Op
.getOpcode()) {
1031 NewOpc
= Size
== 32 ? AArch64::ANDWri
: AArch64::ANDXri
;
1034 NewOpc
= Size
== 32 ? AArch64::ORRWri
: AArch64::ORRXri
;
1037 NewOpc
= Size
== 32 ? AArch64::EORWri
: AArch64::EORXri
;
1040 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
1043 uint64_t Imm
= C
->getZExtValue();
1044 return optimizeLogicalImm(Op
, Size
, Imm
, Demanded
, TLO
, NewOpc
);
1047 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1048 /// Mask are known to be either zero or one and return them Known.
1049 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1050 const SDValue Op
, KnownBits
&Known
,
1051 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
1052 switch (Op
.getOpcode()) {
1055 case AArch64ISD::CSEL
: {
1057 Known
= DAG
.computeKnownBits(Op
->getOperand(0), Depth
+ 1);
1058 Known2
= DAG
.computeKnownBits(Op
->getOperand(1), Depth
+ 1);
1059 Known
.Zero
&= Known2
.Zero
;
1060 Known
.One
&= Known2
.One
;
1063 case AArch64ISD::LOADgot
:
1064 case AArch64ISD::ADDlow
: {
1065 if (!Subtarget
->isTargetILP32())
1067 // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
1068 Known
.Zero
= APInt::getHighBitsSet(64, 32);
1071 case ISD::INTRINSIC_W_CHAIN
: {
1072 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
1073 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
1076 case Intrinsic::aarch64_ldaxr
:
1077 case Intrinsic::aarch64_ldxr
: {
1078 unsigned BitWidth
= Known
.getBitWidth();
1079 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
1080 unsigned MemBits
= VT
.getScalarSizeInBits();
1081 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
1087 case ISD::INTRINSIC_WO_CHAIN
:
1088 case ISD::INTRINSIC_VOID
: {
1089 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
1093 case Intrinsic::aarch64_neon_umaxv
:
1094 case Intrinsic::aarch64_neon_uminv
: {
1095 // Figure out the datatype of the vector operand. The UMINV instruction
1096 // will zero extend the result, so we can mark as known zero all the
1097 // bits larger than the element datatype. 32-bit or larget doesn't need
1098 // this as those are legal types and will be handled by isel directly.
1099 MVT VT
= Op
.getOperand(1).getValueType().getSimpleVT();
1100 unsigned BitWidth
= Known
.getBitWidth();
1101 if (VT
== MVT::v8i8
|| VT
== MVT::v16i8
) {
1102 assert(BitWidth
>= 8 && "Unexpected width!");
1103 APInt Mask
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 8);
1105 } else if (VT
== MVT::v4i16
|| VT
== MVT::v8i16
) {
1106 assert(BitWidth
>= 16 && "Unexpected width!");
1107 APInt Mask
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
1117 MVT
AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout
&DL
,
1122 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1123 EVT VT
, unsigned AddrSpace
, unsigned Align
, MachineMemOperand::Flags Flags
,
1125 if (Subtarget
->requiresStrictAlign())
1129 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1130 *Fast
= !Subtarget
->isMisaligned128StoreSlow() || VT
.getStoreSize() != 16 ||
1131 // See comments in performSTORECombine() for more details about
1132 // these conditions.
1134 // Code that uses clang vector extensions can mark that it
1135 // wants unaligned accesses to be treated as fast by
1136 // underspecifying alignment to be 1 or 2.
1139 // Disregard v2i64. Memcpy lowering produces those and splitting
1140 // them regresses performance on micro-benchmarks and olden/bh.
1146 // Same as above but handling LLTs instead.
1147 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1148 LLT Ty
, unsigned AddrSpace
, unsigned Align
, MachineMemOperand::Flags Flags
,
1150 if (Subtarget
->requiresStrictAlign())
1154 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1155 *Fast
= !Subtarget
->isMisaligned128StoreSlow() ||
1156 Ty
.getSizeInBytes() != 16 ||
1157 // See comments in performSTORECombine() for more details about
1158 // these conditions.
1160 // Code that uses clang vector extensions can mark that it
1161 // wants unaligned accesses to be treated as fast by
1162 // underspecifying alignment to be 1 or 2.
1165 // Disregard v2i64. Memcpy lowering produces those and splitting
1166 // them regresses performance on micro-benchmarks and olden/bh.
1167 Ty
== LLT::vector(2, 64);
1173 AArch64TargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1174 const TargetLibraryInfo
*libInfo
) const {
1175 return AArch64::createFastISel(funcInfo
, libInfo
);
1178 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode
) const {
1179 switch ((AArch64ISD::NodeType
)Opcode
) {
1180 case AArch64ISD::FIRST_NUMBER
: break;
1181 case AArch64ISD::CALL
: return "AArch64ISD::CALL";
1182 case AArch64ISD::ADRP
: return "AArch64ISD::ADRP";
1183 case AArch64ISD::ADR
: return "AArch64ISD::ADR";
1184 case AArch64ISD::ADDlow
: return "AArch64ISD::ADDlow";
1185 case AArch64ISD::LOADgot
: return "AArch64ISD::LOADgot";
1186 case AArch64ISD::RET_FLAG
: return "AArch64ISD::RET_FLAG";
1187 case AArch64ISD::BRCOND
: return "AArch64ISD::BRCOND";
1188 case AArch64ISD::CSEL
: return "AArch64ISD::CSEL";
1189 case AArch64ISD::FCSEL
: return "AArch64ISD::FCSEL";
1190 case AArch64ISD::CSINV
: return "AArch64ISD::CSINV";
1191 case AArch64ISD::CSNEG
: return "AArch64ISD::CSNEG";
1192 case AArch64ISD::CSINC
: return "AArch64ISD::CSINC";
1193 case AArch64ISD::THREAD_POINTER
: return "AArch64ISD::THREAD_POINTER";
1194 case AArch64ISD::TLSDESC_CALLSEQ
: return "AArch64ISD::TLSDESC_CALLSEQ";
1195 case AArch64ISD::ADC
: return "AArch64ISD::ADC";
1196 case AArch64ISD::SBC
: return "AArch64ISD::SBC";
1197 case AArch64ISD::ADDS
: return "AArch64ISD::ADDS";
1198 case AArch64ISD::SUBS
: return "AArch64ISD::SUBS";
1199 case AArch64ISD::ADCS
: return "AArch64ISD::ADCS";
1200 case AArch64ISD::SBCS
: return "AArch64ISD::SBCS";
1201 case AArch64ISD::ANDS
: return "AArch64ISD::ANDS";
1202 case AArch64ISD::CCMP
: return "AArch64ISD::CCMP";
1203 case AArch64ISD::CCMN
: return "AArch64ISD::CCMN";
1204 case AArch64ISD::FCCMP
: return "AArch64ISD::FCCMP";
1205 case AArch64ISD::FCMP
: return "AArch64ISD::FCMP";
1206 case AArch64ISD::DUP
: return "AArch64ISD::DUP";
1207 case AArch64ISD::DUPLANE8
: return "AArch64ISD::DUPLANE8";
1208 case AArch64ISD::DUPLANE16
: return "AArch64ISD::DUPLANE16";
1209 case AArch64ISD::DUPLANE32
: return "AArch64ISD::DUPLANE32";
1210 case AArch64ISD::DUPLANE64
: return "AArch64ISD::DUPLANE64";
1211 case AArch64ISD::MOVI
: return "AArch64ISD::MOVI";
1212 case AArch64ISD::MOVIshift
: return "AArch64ISD::MOVIshift";
1213 case AArch64ISD::MOVIedit
: return "AArch64ISD::MOVIedit";
1214 case AArch64ISD::MOVImsl
: return "AArch64ISD::MOVImsl";
1215 case AArch64ISD::FMOV
: return "AArch64ISD::FMOV";
1216 case AArch64ISD::MVNIshift
: return "AArch64ISD::MVNIshift";
1217 case AArch64ISD::MVNImsl
: return "AArch64ISD::MVNImsl";
1218 case AArch64ISD::BICi
: return "AArch64ISD::BICi";
1219 case AArch64ISD::ORRi
: return "AArch64ISD::ORRi";
1220 case AArch64ISD::BSL
: return "AArch64ISD::BSL";
1221 case AArch64ISD::NEG
: return "AArch64ISD::NEG";
1222 case AArch64ISD::EXTR
: return "AArch64ISD::EXTR";
1223 case AArch64ISD::ZIP1
: return "AArch64ISD::ZIP1";
1224 case AArch64ISD::ZIP2
: return "AArch64ISD::ZIP2";
1225 case AArch64ISD::UZP1
: return "AArch64ISD::UZP1";
1226 case AArch64ISD::UZP2
: return "AArch64ISD::UZP2";
1227 case AArch64ISD::TRN1
: return "AArch64ISD::TRN1";
1228 case AArch64ISD::TRN2
: return "AArch64ISD::TRN2";
1229 case AArch64ISD::REV16
: return "AArch64ISD::REV16";
1230 case AArch64ISD::REV32
: return "AArch64ISD::REV32";
1231 case AArch64ISD::REV64
: return "AArch64ISD::REV64";
1232 case AArch64ISD::EXT
: return "AArch64ISD::EXT";
1233 case AArch64ISD::VSHL
: return "AArch64ISD::VSHL";
1234 case AArch64ISD::VLSHR
: return "AArch64ISD::VLSHR";
1235 case AArch64ISD::VASHR
: return "AArch64ISD::VASHR";
1236 case AArch64ISD::CMEQ
: return "AArch64ISD::CMEQ";
1237 case AArch64ISD::CMGE
: return "AArch64ISD::CMGE";
1238 case AArch64ISD::CMGT
: return "AArch64ISD::CMGT";
1239 case AArch64ISD::CMHI
: return "AArch64ISD::CMHI";
1240 case AArch64ISD::CMHS
: return "AArch64ISD::CMHS";
1241 case AArch64ISD::FCMEQ
: return "AArch64ISD::FCMEQ";
1242 case AArch64ISD::FCMGE
: return "AArch64ISD::FCMGE";
1243 case AArch64ISD::FCMGT
: return "AArch64ISD::FCMGT";
1244 case AArch64ISD::CMEQz
: return "AArch64ISD::CMEQz";
1245 case AArch64ISD::CMGEz
: return "AArch64ISD::CMGEz";
1246 case AArch64ISD::CMGTz
: return "AArch64ISD::CMGTz";
1247 case AArch64ISD::CMLEz
: return "AArch64ISD::CMLEz";
1248 case AArch64ISD::CMLTz
: return "AArch64ISD::CMLTz";
1249 case AArch64ISD::FCMEQz
: return "AArch64ISD::FCMEQz";
1250 case AArch64ISD::FCMGEz
: return "AArch64ISD::FCMGEz";
1251 case AArch64ISD::FCMGTz
: return "AArch64ISD::FCMGTz";
1252 case AArch64ISD::FCMLEz
: return "AArch64ISD::FCMLEz";
1253 case AArch64ISD::FCMLTz
: return "AArch64ISD::FCMLTz";
1254 case AArch64ISD::SADDV
: return "AArch64ISD::SADDV";
1255 case AArch64ISD::UADDV
: return "AArch64ISD::UADDV";
1256 case AArch64ISD::SMINV
: return "AArch64ISD::SMINV";
1257 case AArch64ISD::UMINV
: return "AArch64ISD::UMINV";
1258 case AArch64ISD::SMAXV
: return "AArch64ISD::SMAXV";
1259 case AArch64ISD::UMAXV
: return "AArch64ISD::UMAXV";
1260 case AArch64ISD::NOT
: return "AArch64ISD::NOT";
1261 case AArch64ISD::BIT
: return "AArch64ISD::BIT";
1262 case AArch64ISD::CBZ
: return "AArch64ISD::CBZ";
1263 case AArch64ISD::CBNZ
: return "AArch64ISD::CBNZ";
1264 case AArch64ISD::TBZ
: return "AArch64ISD::TBZ";
1265 case AArch64ISD::TBNZ
: return "AArch64ISD::TBNZ";
1266 case AArch64ISD::TC_RETURN
: return "AArch64ISD::TC_RETURN";
1267 case AArch64ISD::PREFETCH
: return "AArch64ISD::PREFETCH";
1268 case AArch64ISD::SITOF
: return "AArch64ISD::SITOF";
1269 case AArch64ISD::UITOF
: return "AArch64ISD::UITOF";
1270 case AArch64ISD::NVCAST
: return "AArch64ISD::NVCAST";
1271 case AArch64ISD::SQSHL_I
: return "AArch64ISD::SQSHL_I";
1272 case AArch64ISD::UQSHL_I
: return "AArch64ISD::UQSHL_I";
1273 case AArch64ISD::SRSHR_I
: return "AArch64ISD::SRSHR_I";
1274 case AArch64ISD::URSHR_I
: return "AArch64ISD::URSHR_I";
1275 case AArch64ISD::SQSHLU_I
: return "AArch64ISD::SQSHLU_I";
1276 case AArch64ISD::WrapperLarge
: return "AArch64ISD::WrapperLarge";
1277 case AArch64ISD::LD2post
: return "AArch64ISD::LD2post";
1278 case AArch64ISD::LD3post
: return "AArch64ISD::LD3post";
1279 case AArch64ISD::LD4post
: return "AArch64ISD::LD4post";
1280 case AArch64ISD::ST2post
: return "AArch64ISD::ST2post";
1281 case AArch64ISD::ST3post
: return "AArch64ISD::ST3post";
1282 case AArch64ISD::ST4post
: return "AArch64ISD::ST4post";
1283 case AArch64ISD::LD1x2post
: return "AArch64ISD::LD1x2post";
1284 case AArch64ISD::LD1x3post
: return "AArch64ISD::LD1x3post";
1285 case AArch64ISD::LD1x4post
: return "AArch64ISD::LD1x4post";
1286 case AArch64ISD::ST1x2post
: return "AArch64ISD::ST1x2post";
1287 case AArch64ISD::ST1x3post
: return "AArch64ISD::ST1x3post";
1288 case AArch64ISD::ST1x4post
: return "AArch64ISD::ST1x4post";
1289 case AArch64ISD::LD1DUPpost
: return "AArch64ISD::LD1DUPpost";
1290 case AArch64ISD::LD2DUPpost
: return "AArch64ISD::LD2DUPpost";
1291 case AArch64ISD::LD3DUPpost
: return "AArch64ISD::LD3DUPpost";
1292 case AArch64ISD::LD4DUPpost
: return "AArch64ISD::LD4DUPpost";
1293 case AArch64ISD::LD1LANEpost
: return "AArch64ISD::LD1LANEpost";
1294 case AArch64ISD::LD2LANEpost
: return "AArch64ISD::LD2LANEpost";
1295 case AArch64ISD::LD3LANEpost
: return "AArch64ISD::LD3LANEpost";
1296 case AArch64ISD::LD4LANEpost
: return "AArch64ISD::LD4LANEpost";
1297 case AArch64ISD::ST2LANEpost
: return "AArch64ISD::ST2LANEpost";
1298 case AArch64ISD::ST3LANEpost
: return "AArch64ISD::ST3LANEpost";
1299 case AArch64ISD::ST4LANEpost
: return "AArch64ISD::ST4LANEpost";
1300 case AArch64ISD::SMULL
: return "AArch64ISD::SMULL";
1301 case AArch64ISD::UMULL
: return "AArch64ISD::UMULL";
1302 case AArch64ISD::FRECPE
: return "AArch64ISD::FRECPE";
1303 case AArch64ISD::FRECPS
: return "AArch64ISD::FRECPS";
1304 case AArch64ISD::FRSQRTE
: return "AArch64ISD::FRSQRTE";
1305 case AArch64ISD::FRSQRTS
: return "AArch64ISD::FRSQRTS";
1306 case AArch64ISD::STG
: return "AArch64ISD::STG";
1307 case AArch64ISD::STZG
: return "AArch64ISD::STZG";
1308 case AArch64ISD::ST2G
: return "AArch64ISD::ST2G";
1309 case AArch64ISD::STZ2G
: return "AArch64ISD::STZ2G";
1310 case AArch64ISD::SUNPKHI
: return "AArch64ISD::SUNPKHI";
1311 case AArch64ISD::SUNPKLO
: return "AArch64ISD::SUNPKLO";
1312 case AArch64ISD::UUNPKHI
: return "AArch64ISD::UUNPKHI";
1313 case AArch64ISD::UUNPKLO
: return "AArch64ISD::UUNPKLO";
1319 AArch64TargetLowering::EmitF128CSEL(MachineInstr
&MI
,
1320 MachineBasicBlock
*MBB
) const {
1321 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1325 // [... previous instrs leading to comparison ...]
1331 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1333 MachineFunction
*MF
= MBB
->getParent();
1334 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1335 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
1336 DebugLoc DL
= MI
.getDebugLoc();
1337 MachineFunction::iterator It
= ++MBB
->getIterator();
1339 Register DestReg
= MI
.getOperand(0).getReg();
1340 Register IfTrueReg
= MI
.getOperand(1).getReg();
1341 Register IfFalseReg
= MI
.getOperand(2).getReg();
1342 unsigned CondCode
= MI
.getOperand(3).getImm();
1343 bool NZCVKilled
= MI
.getOperand(4).isKill();
1345 MachineBasicBlock
*TrueBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1346 MachineBasicBlock
*EndBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1347 MF
->insert(It
, TrueBB
);
1348 MF
->insert(It
, EndBB
);
1350 // Transfer rest of current basic-block to EndBB
1351 EndBB
->splice(EndBB
->begin(), MBB
, std::next(MachineBasicBlock::iterator(MI
)),
1353 EndBB
->transferSuccessorsAndUpdatePHIs(MBB
);
1355 BuildMI(MBB
, DL
, TII
->get(AArch64::Bcc
)).addImm(CondCode
).addMBB(TrueBB
);
1356 BuildMI(MBB
, DL
, TII
->get(AArch64::B
)).addMBB(EndBB
);
1357 MBB
->addSuccessor(TrueBB
);
1358 MBB
->addSuccessor(EndBB
);
1360 // TrueBB falls through to the end.
1361 TrueBB
->addSuccessor(EndBB
);
1364 TrueBB
->addLiveIn(AArch64::NZCV
);
1365 EndBB
->addLiveIn(AArch64::NZCV
);
1368 BuildMI(*EndBB
, EndBB
->begin(), DL
, TII
->get(AArch64::PHI
), DestReg
)
1374 MI
.eraseFromParent();
1378 MachineBasicBlock
*AArch64TargetLowering::EmitLoweredCatchRet(
1379 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1380 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1381 BB
->getParent()->getFunction().getPersonalityFn())) &&
1382 "SEH does not use catchret!");
1386 MachineBasicBlock
*AArch64TargetLowering::EmitLoweredCatchPad(
1387 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1388 MI
.eraseFromParent();
1392 MachineBasicBlock
*AArch64TargetLowering::EmitInstrWithCustomInserter(
1393 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1394 switch (MI
.getOpcode()) {
1399 llvm_unreachable("Unexpected instruction for custom inserter!");
1401 case AArch64::F128CSEL
:
1402 return EmitF128CSEL(MI
, BB
);
1404 case TargetOpcode::STACKMAP
:
1405 case TargetOpcode::PATCHPOINT
:
1406 return emitPatchPoint(MI
, BB
);
1408 case AArch64::CATCHRET
:
1409 return EmitLoweredCatchRet(MI
, BB
);
1410 case AArch64::CATCHPAD
:
1411 return EmitLoweredCatchPad(MI
, BB
);
1415 //===----------------------------------------------------------------------===//
1416 // AArch64 Lowering private implementation.
1417 //===----------------------------------------------------------------------===//
1419 //===----------------------------------------------------------------------===//
1421 //===----------------------------------------------------------------------===//
1423 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1425 static AArch64CC::CondCode
changeIntCCToAArch64CC(ISD::CondCode CC
) {
1428 llvm_unreachable("Unknown condition code!");
1430 return AArch64CC::NE
;
1432 return AArch64CC::EQ
;
1434 return AArch64CC::GT
;
1436 return AArch64CC::GE
;
1438 return AArch64CC::LT
;
1440 return AArch64CC::LE
;
1442 return AArch64CC::HI
;
1444 return AArch64CC::HS
;
1446 return AArch64CC::LO
;
1448 return AArch64CC::LS
;
1452 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1453 static void changeFPCCToAArch64CC(ISD::CondCode CC
,
1454 AArch64CC::CondCode
&CondCode
,
1455 AArch64CC::CondCode
&CondCode2
) {
1456 CondCode2
= AArch64CC::AL
;
1459 llvm_unreachable("Unknown FP condition!");
1462 CondCode
= AArch64CC::EQ
;
1466 CondCode
= AArch64CC::GT
;
1470 CondCode
= AArch64CC::GE
;
1473 CondCode
= AArch64CC::MI
;
1476 CondCode
= AArch64CC::LS
;
1479 CondCode
= AArch64CC::MI
;
1480 CondCode2
= AArch64CC::GT
;
1483 CondCode
= AArch64CC::VC
;
1486 CondCode
= AArch64CC::VS
;
1489 CondCode
= AArch64CC::EQ
;
1490 CondCode2
= AArch64CC::VS
;
1493 CondCode
= AArch64CC::HI
;
1496 CondCode
= AArch64CC::PL
;
1500 CondCode
= AArch64CC::LT
;
1504 CondCode
= AArch64CC::LE
;
1508 CondCode
= AArch64CC::NE
;
1513 /// Convert a DAG fp condition code to an AArch64 CC.
1514 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1515 /// should be AND'ed instead of OR'ed.
1516 static void changeFPCCToANDAArch64CC(ISD::CondCode CC
,
1517 AArch64CC::CondCode
&CondCode
,
1518 AArch64CC::CondCode
&CondCode2
) {
1519 CondCode2
= AArch64CC::AL
;
1522 changeFPCCToAArch64CC(CC
, CondCode
, CondCode2
);
1523 assert(CondCode2
== AArch64CC::AL
);
1527 // == ((a olt b) || (a ogt b))
1528 // == ((a ord b) && (a une b))
1529 CondCode
= AArch64CC::VC
;
1530 CondCode2
= AArch64CC::NE
;
1534 // == ((a uno b) || (a oeq b))
1535 // == ((a ule b) && (a uge b))
1536 CondCode
= AArch64CC::PL
;
1537 CondCode2
= AArch64CC::LE
;
1542 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1543 /// CC usable with the vector instructions. Fewer operations are available
1544 /// without a real NZCV register, so we have to use less efficient combinations
1545 /// to get the same effect.
1546 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC
,
1547 AArch64CC::CondCode
&CondCode
,
1548 AArch64CC::CondCode
&CondCode2
,
1553 // Mostly the scalar mappings work fine.
1554 changeFPCCToAArch64CC(CC
, CondCode
, CondCode2
);
1560 CondCode
= AArch64CC::MI
;
1561 CondCode2
= AArch64CC::GE
;
1568 // All of the compare-mask comparisons are ordered, but we can switch
1569 // between the two by a double inversion. E.g. ULE == !OGT.
1571 changeFPCCToAArch64CC(getSetCCInverse(CC
, false), CondCode
, CondCode2
);
1576 static bool isLegalArithImmed(uint64_t C
) {
1577 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1578 bool IsLegal
= (C
>> 12 == 0) || ((C
& 0xFFFULL
) == 0 && C
>> 24 == 0);
1579 LLVM_DEBUG(dbgs() << "Is imm " << C
1580 << " legal: " << (IsLegal
? "yes\n" : "no\n"));
1584 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1585 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1586 // can be set differently by this operation. It comes down to whether
1587 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1588 // everything is fine. If not then the optimization is wrong. Thus general
1589 // comparisons are only valid if op2 != 0.
1591 // So, finally, the only LLVM-native comparisons that don't mention C and V
1592 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1593 // the absence of information about op2.
1594 static bool isCMN(SDValue Op
, ISD::CondCode CC
) {
1595 return Op
.getOpcode() == ISD::SUB
&& isNullConstant(Op
.getOperand(0)) &&
1596 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
);
1599 static SDValue
emitComparison(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
1600 const SDLoc
&dl
, SelectionDAG
&DAG
) {
1601 EVT VT
= LHS
.getValueType();
1602 const bool FullFP16
=
1603 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
1605 if (VT
.isFloatingPoint()) {
1606 assert(VT
!= MVT::f128
);
1607 if (VT
== MVT::f16
&& !FullFP16
) {
1608 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, LHS
);
1609 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, RHS
);
1612 return DAG
.getNode(AArch64ISD::FCMP
, dl
, VT
, LHS
, RHS
);
1615 // The CMP instruction is just an alias for SUBS, and representing it as
1616 // SUBS means that it's possible to get CSE with subtract operations.
1617 // A later phase can perform the optimization of setting the destination
1618 // register to WZR/XZR if it ends up being unused.
1619 unsigned Opcode
= AArch64ISD::SUBS
;
1621 if (isCMN(RHS
, CC
)) {
1622 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1623 Opcode
= AArch64ISD::ADDS
;
1624 RHS
= RHS
.getOperand(1);
1625 } else if (isCMN(LHS
, CC
)) {
1626 // As we are looking for EQ/NE compares, the operands can be commuted ; can
1627 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1628 Opcode
= AArch64ISD::ADDS
;
1629 LHS
= LHS
.getOperand(1);
1630 } else if (LHS
.getOpcode() == ISD::AND
&& isNullConstant(RHS
) &&
1631 !isUnsignedIntSetCC(CC
)) {
1632 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1633 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1634 // of the signed comparisons.
1635 Opcode
= AArch64ISD::ANDS
;
1636 RHS
= LHS
.getOperand(1);
1637 LHS
= LHS
.getOperand(0);
1640 return DAG
.getNode(Opcode
, dl
, DAG
.getVTList(VT
, MVT_CC
), LHS
, RHS
)
1644 /// \defgroup AArch64CCMP CMP;CCMP matching
1646 /// These functions deal with the formation of CMP;CCMP;... sequences.
1647 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1648 /// a comparison. They set the NZCV flags to a predefined value if their
1649 /// predicate is false. This allows to express arbitrary conjunctions, for
1650 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1653 /// ccmp B, inv(CB), CA
1654 /// check for CB flags
1656 /// This naturally lets us implement chains of AND operations with SETCC
1657 /// operands. And we can even implement some other situations by transforming
1659 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
1660 /// negating the flags used in a CCMP/FCCMP operations.
1661 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1662 /// by negating the flags we test for afterwards. i.e.
1663 /// NEG (CMP CCMP CCCMP ...) can be implemented.
1664 /// - Note that we can only ever negate all previously processed results.
1665 /// What we can not implement by flipping the flags to test is a negation
1666 /// of two sub-trees (because the negation affects all sub-trees emitted so
1667 /// far, so the 2nd sub-tree we emit would also affect the first).
1668 /// With those tools we can implement some OR operations:
1669 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
1670 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1671 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
1672 /// elimination rules from earlier to implement the whole thing as a
1673 /// CCMP/FCCMP chain.
1675 /// As complete example:
1676 /// or (or (setCA (cmp A)) (setCB (cmp B)))
1677 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1678 /// can be reassociated to:
1679 /// or (and (setCC (cmp C)) setCD (cmp D))
1680 // (or (setCA (cmp A)) (setCB (cmp B)))
1681 /// can be transformed to:
1682 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1683 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1684 /// which can be implemented as:
1686 /// ccmp D, inv(CD), CC
1687 /// ccmp A, CA, inv(CD)
1688 /// ccmp B, CB, inv(CA)
1689 /// check for CB flags
1691 /// A counterexample is "or (and A B) (and C D)" which translates to
1692 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1693 /// can only implement 1 of the inner (not) operations, but not both!
1696 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1697 static SDValue
emitConditionalComparison(SDValue LHS
, SDValue RHS
,
1698 ISD::CondCode CC
, SDValue CCOp
,
1699 AArch64CC::CondCode Predicate
,
1700 AArch64CC::CondCode OutCC
,
1701 const SDLoc
&DL
, SelectionDAG
&DAG
) {
1702 unsigned Opcode
= 0;
1703 const bool FullFP16
=
1704 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
1706 if (LHS
.getValueType().isFloatingPoint()) {
1707 assert(LHS
.getValueType() != MVT::f128
);
1708 if (LHS
.getValueType() == MVT::f16
&& !FullFP16
) {
1709 LHS
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, LHS
);
1710 RHS
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, RHS
);
1712 Opcode
= AArch64ISD::FCCMP
;
1713 } else if (RHS
.getOpcode() == ISD::SUB
) {
1714 SDValue SubOp0
= RHS
.getOperand(0);
1715 if (isNullConstant(SubOp0
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1716 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1717 Opcode
= AArch64ISD::CCMN
;
1718 RHS
= RHS
.getOperand(1);
1722 Opcode
= AArch64ISD::CCMP
;
1724 SDValue Condition
= DAG
.getConstant(Predicate
, DL
, MVT_CC
);
1725 AArch64CC::CondCode InvOutCC
= AArch64CC::getInvertedCondCode(OutCC
);
1726 unsigned NZCV
= AArch64CC::getNZCVToSatisfyCondCode(InvOutCC
);
1727 SDValue NZCVOp
= DAG
.getConstant(NZCV
, DL
, MVT::i32
);
1728 return DAG
.getNode(Opcode
, DL
, MVT_CC
, LHS
, RHS
, NZCVOp
, Condition
, CCOp
);
1731 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1732 /// expressed as a conjunction. See \ref AArch64CCMP.
1733 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
1734 /// changing the conditions on the SETCC tests.
1735 /// (this means we can call emitConjunctionRec() with
1736 /// Negate==true on this sub-tree)
1737 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
1738 /// cannot do the negation naturally. We are required to
1739 /// emit the subtree first in this case.
1740 /// \param WillNegate Is true if are called when the result of this
1741 /// subexpression must be negated. This happens when the
1742 /// outer expression is an OR. We can use this fact to know
1743 /// that we have a double negation (or (or ...) ...) that
1744 /// can be implemented for free.
1745 static bool canEmitConjunction(const SDValue Val
, bool &CanNegate
,
1746 bool &MustBeFirst
, bool WillNegate
,
1747 unsigned Depth
= 0) {
1748 if (!Val
.hasOneUse())
1750 unsigned Opcode
= Val
->getOpcode();
1751 if (Opcode
== ISD::SETCC
) {
1752 if (Val
->getOperand(0).getValueType() == MVT::f128
)
1755 MustBeFirst
= false;
1758 // Protect against exponential runtime and stack overflow.
1761 if (Opcode
== ISD::AND
|| Opcode
== ISD::OR
) {
1762 bool IsOR
= Opcode
== ISD::OR
;
1763 SDValue O0
= Val
->getOperand(0);
1764 SDValue O1
= Val
->getOperand(1);
1767 if (!canEmitConjunction(O0
, CanNegateL
, MustBeFirstL
, IsOR
, Depth
+1))
1771 if (!canEmitConjunction(O1
, CanNegateR
, MustBeFirstR
, IsOR
, Depth
+1))
1774 if (MustBeFirstL
&& MustBeFirstR
)
1778 // For an OR expression we need to be able to naturally negate at least
1779 // one side or we cannot do the transformation at all.
1780 if (!CanNegateL
&& !CanNegateR
)
1782 // If we the result of the OR will be negated and we can naturally negate
1783 // the leafs, then this sub-tree as a whole negates naturally.
1784 CanNegate
= WillNegate
&& CanNegateL
&& CanNegateR
;
1785 // If we cannot naturally negate the whole sub-tree, then this must be
1787 MustBeFirst
= !CanNegate
;
1789 assert(Opcode
== ISD::AND
&& "Must be OR or AND");
1790 // We cannot naturally negate an AND operation.
1792 MustBeFirst
= MustBeFirstL
|| MustBeFirstR
;
1799 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1800 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1801 /// Tries to transform the given i1 producing node @p Val to a series compare
1802 /// and conditional compare operations. @returns an NZCV flags producing node
1803 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1804 /// transformation was not possible.
1805 /// \p Negate is true if we want this sub-tree being negated just by changing
1806 /// SETCC conditions.
1807 static SDValue
emitConjunctionRec(SelectionDAG
&DAG
, SDValue Val
,
1808 AArch64CC::CondCode
&OutCC
, bool Negate
, SDValue CCOp
,
1809 AArch64CC::CondCode Predicate
) {
1810 // We're at a tree leaf, produce a conditional comparison operation.
1811 unsigned Opcode
= Val
->getOpcode();
1812 if (Opcode
== ISD::SETCC
) {
1813 SDValue LHS
= Val
->getOperand(0);
1814 SDValue RHS
= Val
->getOperand(1);
1815 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Val
->getOperand(2))->get();
1816 bool isInteger
= LHS
.getValueType().isInteger();
1818 CC
= getSetCCInverse(CC
, isInteger
);
1820 // Determine OutCC and handle FP special case.
1822 OutCC
= changeIntCCToAArch64CC(CC
);
1824 assert(LHS
.getValueType().isFloatingPoint());
1825 AArch64CC::CondCode ExtraCC
;
1826 changeFPCCToANDAArch64CC(CC
, OutCC
, ExtraCC
);
1827 // Some floating point conditions can't be tested with a single condition
1828 // code. Construct an additional comparison in this case.
1829 if (ExtraCC
!= AArch64CC::AL
) {
1831 if (!CCOp
.getNode())
1832 ExtraCmp
= emitComparison(LHS
, RHS
, CC
, DL
, DAG
);
1834 ExtraCmp
= emitConditionalComparison(LHS
, RHS
, CC
, CCOp
, Predicate
,
1837 Predicate
= ExtraCC
;
1841 // Produce a normal comparison if we are first in the chain
1843 return emitComparison(LHS
, RHS
, CC
, DL
, DAG
);
1844 // Otherwise produce a ccmp.
1845 return emitConditionalComparison(LHS
, RHS
, CC
, CCOp
, Predicate
, OutCC
, DL
,
1848 assert(Val
->hasOneUse() && "Valid conjunction/disjunction tree");
1850 bool IsOR
= Opcode
== ISD::OR
;
1852 SDValue LHS
= Val
->getOperand(0);
1855 bool ValidL
= canEmitConjunction(LHS
, CanNegateL
, MustBeFirstL
, IsOR
);
1856 assert(ValidL
&& "Valid conjunction/disjunction tree");
1859 SDValue RHS
= Val
->getOperand(1);
1862 bool ValidR
= canEmitConjunction(RHS
, CanNegateR
, MustBeFirstR
, IsOR
);
1863 assert(ValidR
&& "Valid conjunction/disjunction tree");
1866 // Swap sub-tree that must come first to the right side.
1868 assert(!MustBeFirstR
&& "Valid conjunction/disjunction tree");
1869 std::swap(LHS
, RHS
);
1870 std::swap(CanNegateL
, CanNegateR
);
1871 std::swap(MustBeFirstL
, MustBeFirstR
);
1877 bool NegateAfterAll
;
1878 if (Opcode
== ISD::OR
) {
1879 // Swap the sub-tree that we can negate naturally to the left.
1881 assert(CanNegateR
&& "at least one side must be negatable");
1882 assert(!MustBeFirstR
&& "invalid conjunction/disjunction tree");
1884 std::swap(LHS
, RHS
);
1886 NegateAfterR
= true;
1888 // Negate the left sub-tree if possible, otherwise negate the result.
1889 NegateR
= CanNegateR
;
1890 NegateAfterR
= !CanNegateR
;
1893 NegateAfterAll
= !Negate
;
1895 assert(Opcode
== ISD::AND
&& "Valid conjunction/disjunction tree");
1896 assert(!Negate
&& "Valid conjunction/disjunction tree");
1900 NegateAfterR
= false;
1901 NegateAfterAll
= false;
1905 AArch64CC::CondCode RHSCC
;
1906 SDValue CmpR
= emitConjunctionRec(DAG
, RHS
, RHSCC
, NegateR
, CCOp
, Predicate
);
1908 RHSCC
= AArch64CC::getInvertedCondCode(RHSCC
);
1909 SDValue CmpL
= emitConjunctionRec(DAG
, LHS
, OutCC
, NegateL
, CmpR
, RHSCC
);
1911 OutCC
= AArch64CC::getInvertedCondCode(OutCC
);
1915 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1916 /// In some cases this is even possible with OR operations in the expression.
1917 /// See \ref AArch64CCMP.
1918 /// \see emitConjunctionRec().
1919 static SDValue
emitConjunction(SelectionDAG
&DAG
, SDValue Val
,
1920 AArch64CC::CondCode
&OutCC
) {
1921 bool DummyCanNegate
;
1922 bool DummyMustBeFirst
;
1923 if (!canEmitConjunction(Val
, DummyCanNegate
, DummyMustBeFirst
, false))
1926 return emitConjunctionRec(DAG
, Val
, OutCC
, false, SDValue(), AArch64CC::AL
);
1931 /// Returns how profitable it is to fold a comparison's operand's shift and/or
1932 /// extension operations.
1933 static unsigned getCmpOperandFoldingProfit(SDValue Op
) {
1934 auto isSupportedExtend
= [&](SDValue V
) {
1935 if (V
.getOpcode() == ISD::SIGN_EXTEND_INREG
)
1938 if (V
.getOpcode() == ISD::AND
)
1939 if (ConstantSDNode
*MaskCst
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
1940 uint64_t Mask
= MaskCst
->getZExtValue();
1941 return (Mask
== 0xFF || Mask
== 0xFFFF || Mask
== 0xFFFFFFFF);
1947 if (!Op
.hasOneUse())
1950 if (isSupportedExtend(Op
))
1953 unsigned Opc
= Op
.getOpcode();
1954 if (Opc
== ISD::SHL
|| Opc
== ISD::SRL
|| Opc
== ISD::SRA
)
1955 if (ConstantSDNode
*ShiftCst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1956 uint64_t Shift
= ShiftCst
->getZExtValue();
1957 if (isSupportedExtend(Op
.getOperand(0)))
1958 return (Shift
<= 4) ? 2 : 1;
1959 EVT VT
= Op
.getValueType();
1960 if ((VT
== MVT::i32
&& Shift
<= 31) || (VT
== MVT::i64
&& Shift
<= 63))
1967 static SDValue
getAArch64Cmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
1968 SDValue
&AArch64cc
, SelectionDAG
&DAG
,
1970 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
1971 EVT VT
= RHS
.getValueType();
1972 uint64_t C
= RHSC
->getZExtValue();
1973 if (!isLegalArithImmed(C
)) {
1974 // Constant does not fit, try adjusting it by one?
1980 if ((VT
== MVT::i32
&& C
!= 0x80000000 &&
1981 isLegalArithImmed((uint32_t)(C
- 1))) ||
1982 (VT
== MVT::i64
&& C
!= 0x80000000ULL
&&
1983 isLegalArithImmed(C
- 1ULL))) {
1984 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
1985 C
= (VT
== MVT::i32
) ? (uint32_t)(C
- 1) : C
- 1;
1986 RHS
= DAG
.getConstant(C
, dl
, VT
);
1991 if ((VT
== MVT::i32
&& C
!= 0 &&
1992 isLegalArithImmed((uint32_t)(C
- 1))) ||
1993 (VT
== MVT::i64
&& C
!= 0ULL && isLegalArithImmed(C
- 1ULL))) {
1994 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
1995 C
= (VT
== MVT::i32
) ? (uint32_t)(C
- 1) : C
- 1;
1996 RHS
= DAG
.getConstant(C
, dl
, VT
);
2001 if ((VT
== MVT::i32
&& C
!= INT32_MAX
&&
2002 isLegalArithImmed((uint32_t)(C
+ 1))) ||
2003 (VT
== MVT::i64
&& C
!= INT64_MAX
&&
2004 isLegalArithImmed(C
+ 1ULL))) {
2005 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
2006 C
= (VT
== MVT::i32
) ? (uint32_t)(C
+ 1) : C
+ 1;
2007 RHS
= DAG
.getConstant(C
, dl
, VT
);
2012 if ((VT
== MVT::i32
&& C
!= UINT32_MAX
&&
2013 isLegalArithImmed((uint32_t)(C
+ 1))) ||
2014 (VT
== MVT::i64
&& C
!= UINT64_MAX
&&
2015 isLegalArithImmed(C
+ 1ULL))) {
2016 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
2017 C
= (VT
== MVT::i32
) ? (uint32_t)(C
+ 1) : C
+ 1;
2018 RHS
= DAG
.getConstant(C
, dl
, VT
);
2025 // Comparisons are canonicalized so that the RHS operand is simpler than the
2026 // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2027 // can fold some shift+extend operations on the RHS operand, so swap the
2028 // operands if that can be done.
2033 // can be turned into:
2034 // cmp w12, w11, lsl #1
2035 if (!isa
<ConstantSDNode
>(RHS
) ||
2036 !isLegalArithImmed(cast
<ConstantSDNode
>(RHS
)->getZExtValue())) {
2037 SDValue TheLHS
= isCMN(LHS
, CC
) ? LHS
.getOperand(1) : LHS
;
2039 if (getCmpOperandFoldingProfit(TheLHS
) > getCmpOperandFoldingProfit(RHS
)) {
2040 std::swap(LHS
, RHS
);
2041 CC
= ISD::getSetCCSwappedOperands(CC
);
2046 AArch64CC::CondCode AArch64CC
;
2047 if ((CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) && isa
<ConstantSDNode
>(RHS
)) {
2048 const ConstantSDNode
*RHSC
= cast
<ConstantSDNode
>(RHS
);
2050 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2051 // For the i8 operand, the largest immediate is 255, so this can be easily
2052 // encoded in the compare instruction. For the i16 operand, however, the
2053 // largest immediate cannot be encoded in the compare.
2054 // Therefore, use a sign extending load and cmn to avoid materializing the
2055 // -1 constant. For example,
2057 // ldrh w0, [x0, #0]
2060 // ldrsh w0, [x0, #0]
2062 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2063 // if and only if (sext LHS) == (sext RHS). The checks are in place to
2064 // ensure both the LHS and RHS are truly zero extended and to make sure the
2065 // transformation is profitable.
2066 if ((RHSC
->getZExtValue() >> 16 == 0) && isa
<LoadSDNode
>(LHS
) &&
2067 cast
<LoadSDNode
>(LHS
)->getExtensionType() == ISD::ZEXTLOAD
&&
2068 cast
<LoadSDNode
>(LHS
)->getMemoryVT() == MVT::i16
&&
2069 LHS
.getNode()->hasNUsesOfValue(1, 0)) {
2070 int16_t ValueofRHS
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
2071 if (ValueofRHS
< 0 && isLegalArithImmed(-ValueofRHS
)) {
2073 DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, LHS
.getValueType(), LHS
,
2074 DAG
.getValueType(MVT::i16
));
2075 Cmp
= emitComparison(SExt
, DAG
.getConstant(ValueofRHS
, dl
,
2076 RHS
.getValueType()),
2078 AArch64CC
= changeIntCCToAArch64CC(CC
);
2082 if (!Cmp
&& (RHSC
->isNullValue() || RHSC
->isOne())) {
2083 if ((Cmp
= emitConjunction(DAG
, LHS
, AArch64CC
))) {
2084 if ((CC
== ISD::SETNE
) ^ RHSC
->isNullValue())
2085 AArch64CC
= AArch64CC::getInvertedCondCode(AArch64CC
);
2091 Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
2092 AArch64CC
= changeIntCCToAArch64CC(CC
);
2094 AArch64cc
= DAG
.getConstant(AArch64CC
, dl
, MVT_CC
);
2098 static std::pair
<SDValue
, SDValue
>
2099 getAArch64XALUOOp(AArch64CC::CondCode
&CC
, SDValue Op
, SelectionDAG
&DAG
) {
2100 assert((Op
.getValueType() == MVT::i32
|| Op
.getValueType() == MVT::i64
) &&
2101 "Unsupported value type");
2102 SDValue Value
, Overflow
;
2104 SDValue LHS
= Op
.getOperand(0);
2105 SDValue RHS
= Op
.getOperand(1);
2107 switch (Op
.getOpcode()) {
2109 llvm_unreachable("Unknown overflow instruction!");
2111 Opc
= AArch64ISD::ADDS
;
2115 Opc
= AArch64ISD::ADDS
;
2119 Opc
= AArch64ISD::SUBS
;
2123 Opc
= AArch64ISD::SUBS
;
2126 // Multiply needs a little bit extra work.
2130 bool IsSigned
= Op
.getOpcode() == ISD::SMULO
;
2131 if (Op
.getValueType() == MVT::i32
) {
2132 unsigned ExtendOpc
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2133 // For a 32 bit multiply with overflow check we want the instruction
2134 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2135 // need to generate the following pattern:
2136 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2137 LHS
= DAG
.getNode(ExtendOpc
, DL
, MVT::i64
, LHS
);
2138 RHS
= DAG
.getNode(ExtendOpc
, DL
, MVT::i64
, RHS
);
2139 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, MVT::i64
, LHS
, RHS
);
2140 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Mul
,
2141 DAG
.getConstant(0, DL
, MVT::i64
));
2142 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2143 // operation. We need to clear out the upper 32 bits, because we used a
2144 // widening multiply that wrote all 64 bits. In the end this should be a
2146 Value
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Add
);
2148 // The signed overflow check requires more than just a simple check for
2149 // any bit set in the upper 32 bits of the result. These bits could be
2150 // just the sign bits of a negative number. To perform the overflow
2151 // check we have to arithmetic shift right the 32nd bit of the result by
2152 // 31 bits. Then we compare the result to the upper 32 bits.
2153 SDValue UpperBits
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, Add
,
2154 DAG
.getConstant(32, DL
, MVT::i64
));
2155 UpperBits
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, UpperBits
);
2156 SDValue LowerBits
= DAG
.getNode(ISD::SRA
, DL
, MVT::i32
, Value
,
2157 DAG
.getConstant(31, DL
, MVT::i64
));
2158 // It is important that LowerBits is last, otherwise the arithmetic
2159 // shift will not be folded into the compare (SUBS).
2160 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::i32
);
2161 Overflow
= DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
, UpperBits
, LowerBits
)
2164 // The overflow check for unsigned multiply is easy. We only need to
2165 // check if any of the upper 32 bits are set. This can be done with a
2166 // CMP (shifted register). For that we need to generate the following
2168 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2169 SDValue UpperBits
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, Mul
,
2170 DAG
.getConstant(32, DL
, MVT::i64
));
2171 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2173 DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
,
2174 DAG
.getConstant(0, DL
, MVT::i64
),
2175 UpperBits
).getValue(1);
2179 assert(Op
.getValueType() == MVT::i64
&& "Expected an i64 value type");
2180 // For the 64 bit multiply
2181 Value
= DAG
.getNode(ISD::MUL
, DL
, MVT::i64
, LHS
, RHS
);
2183 SDValue UpperBits
= DAG
.getNode(ISD::MULHS
, DL
, MVT::i64
, LHS
, RHS
);
2184 SDValue LowerBits
= DAG
.getNode(ISD::SRA
, DL
, MVT::i64
, Value
,
2185 DAG
.getConstant(63, DL
, MVT::i64
));
2186 // It is important that LowerBits is last, otherwise the arithmetic
2187 // shift will not be folded into the compare (SUBS).
2188 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2189 Overflow
= DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
, UpperBits
, LowerBits
)
2192 SDValue UpperBits
= DAG
.getNode(ISD::MULHU
, DL
, MVT::i64
, LHS
, RHS
);
2193 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2195 DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
,
2196 DAG
.getConstant(0, DL
, MVT::i64
),
2197 UpperBits
).getValue(1);
2204 SDVTList VTs
= DAG
.getVTList(Op
->getValueType(0), MVT::i32
);
2206 // Emit the AArch64 operation with overflow check.
2207 Value
= DAG
.getNode(Opc
, DL
, VTs
, LHS
, RHS
);
2208 Overflow
= Value
.getValue(1);
2210 return std::make_pair(Value
, Overflow
);
2213 SDValue
AArch64TargetLowering::LowerF128Call(SDValue Op
, SelectionDAG
&DAG
,
2214 RTLIB::Libcall Call
) const {
2215 SmallVector
<SDValue
, 2> Ops(Op
->op_begin(), Op
->op_end());
2216 MakeLibCallOptions CallOptions
;
2217 return makeLibCall(DAG
, Call
, MVT::f128
, Ops
, CallOptions
, SDLoc(Op
)).first
;
2220 // Returns true if the given Op is the overflow flag result of an overflow
2221 // intrinsic operation.
2222 static bool isOverflowIntrOpRes(SDValue Op
) {
2223 unsigned Opc
= Op
.getOpcode();
2224 return (Op
.getResNo() == 1 &&
2225 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
2226 Opc
== ISD::USUBO
|| Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
));
2229 static SDValue
LowerXOR(SDValue Op
, SelectionDAG
&DAG
) {
2230 SDValue Sel
= Op
.getOperand(0);
2231 SDValue Other
= Op
.getOperand(1);
2234 // If the operand is an overflow checking operation, invert the condition
2235 // code and kill the Not operation. I.e., transform:
2236 // (xor (overflow_op_bool, 1))
2238 // (csel 1, 0, invert(cc), overflow_op_bool)
2239 // ... which later gets transformed to just a cset instruction with an
2240 // inverted condition code, rather than a cset + eor sequence.
2241 if (isOneConstant(Other
) && isOverflowIntrOpRes(Sel
)) {
2242 // Only lower legal XALUO ops.
2243 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Sel
->getValueType(0)))
2246 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
2247 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
2248 AArch64CC::CondCode CC
;
2249 SDValue Value
, Overflow
;
2250 std::tie(Value
, Overflow
) = getAArch64XALUOOp(CC
, Sel
.getValue(0), DAG
);
2251 SDValue CCVal
= DAG
.getConstant(getInvertedCondCode(CC
), dl
, MVT::i32
);
2252 return DAG
.getNode(AArch64ISD::CSEL
, dl
, Op
.getValueType(), TVal
, FVal
,
2255 // If neither operand is a SELECT_CC, give up.
2256 if (Sel
.getOpcode() != ISD::SELECT_CC
)
2257 std::swap(Sel
, Other
);
2258 if (Sel
.getOpcode() != ISD::SELECT_CC
)
2261 // The folding we want to perform is:
2262 // (xor x, (select_cc a, b, cc, 0, -1) )
2264 // (csel x, (xor x, -1), cc ...)
2266 // The latter will get matched to a CSINV instruction.
2268 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Sel
.getOperand(4))->get();
2269 SDValue LHS
= Sel
.getOperand(0);
2270 SDValue RHS
= Sel
.getOperand(1);
2271 SDValue TVal
= Sel
.getOperand(2);
2272 SDValue FVal
= Sel
.getOperand(3);
2274 // FIXME: This could be generalized to non-integer comparisons.
2275 if (LHS
.getValueType() != MVT::i32
&& LHS
.getValueType() != MVT::i64
)
2278 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FVal
);
2279 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TVal
);
2281 // The values aren't constants, this isn't the pattern we're looking for.
2282 if (!CFVal
|| !CTVal
)
2285 // We can commute the SELECT_CC by inverting the condition. This
2286 // might be needed to make this fit into a CSINV pattern.
2287 if (CTVal
->isAllOnesValue() && CFVal
->isNullValue()) {
2288 std::swap(TVal
, FVal
);
2289 std::swap(CTVal
, CFVal
);
2290 CC
= ISD::getSetCCInverse(CC
, true);
2293 // If the constants line up, perform the transform!
2294 if (CTVal
->isNullValue() && CFVal
->isAllOnesValue()) {
2296 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
2299 TVal
= DAG
.getNode(ISD::XOR
, dl
, Other
.getValueType(), Other
,
2300 DAG
.getConstant(-1ULL, dl
, Other
.getValueType()));
2302 return DAG
.getNode(AArch64ISD::CSEL
, dl
, Sel
.getValueType(), FVal
, TVal
,
2309 static SDValue
LowerADDC_ADDE_SUBC_SUBE(SDValue Op
, SelectionDAG
&DAG
) {
2310 EVT VT
= Op
.getValueType();
2312 // Let legalize expand this if it isn't a legal type yet.
2313 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
2316 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
2319 bool ExtraOp
= false;
2320 switch (Op
.getOpcode()) {
2322 llvm_unreachable("Invalid code");
2324 Opc
= AArch64ISD::ADDS
;
2327 Opc
= AArch64ISD::SUBS
;
2330 Opc
= AArch64ISD::ADCS
;
2334 Opc
= AArch64ISD::SBCS
;
2340 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1));
2341 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1),
2345 static SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
2346 // Let legalize expand this if it isn't a legal type yet.
2347 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
2351 AArch64CC::CondCode CC
;
2352 // The actual operation that sets the overflow or carry flag.
2353 SDValue Value
, Overflow
;
2354 std::tie(Value
, Overflow
) = getAArch64XALUOOp(CC
, Op
, DAG
);
2356 // We use 0 and 1 as false and true values.
2357 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
2358 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
2360 // We use an inverted condition, because the conditional select is inverted
2361 // too. This will allow it to be selected to a single instruction:
2362 // CSINC Wd, WZR, WZR, invert(cond).
2363 SDValue CCVal
= DAG
.getConstant(getInvertedCondCode(CC
), dl
, MVT::i32
);
2364 Overflow
= DAG
.getNode(AArch64ISD::CSEL
, dl
, MVT::i32
, FVal
, TVal
,
2367 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
2368 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
2371 // Prefetch operands are:
2372 // 1: Address to prefetch
2374 // 3: int locality (0 = no locality ... 3 = extreme locality)
2375 // 4: bool isDataCache
2376 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
) {
2378 unsigned IsWrite
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
2379 unsigned Locality
= cast
<ConstantSDNode
>(Op
.getOperand(3))->getZExtValue();
2380 unsigned IsData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
2382 bool IsStream
= !Locality
;
2383 // When the locality number is set
2385 // The front-end should have filtered out the out-of-range values
2386 assert(Locality
<= 3 && "Prefetch locality out-of-range");
2387 // The locality degree is the opposite of the cache speed.
2388 // Put the number the other way around.
2389 // The encoding starts at 0 for level 1
2390 Locality
= 3 - Locality
;
2393 // built the mask value encoding the expected behavior.
2394 unsigned PrfOp
= (IsWrite
<< 4) | // Load/Store bit
2395 (!IsData
<< 3) | // IsDataCache bit
2396 (Locality
<< 1) | // Cache level bits
2397 (unsigned)IsStream
; // Stream bit
2398 return DAG
.getNode(AArch64ISD::PREFETCH
, DL
, MVT::Other
, Op
.getOperand(0),
2399 DAG
.getConstant(PrfOp
, DL
, MVT::i32
), Op
.getOperand(1));
2402 SDValue
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op
,
2403 SelectionDAG
&DAG
) const {
2404 assert(Op
.getValueType() == MVT::f128
&& "Unexpected lowering");
2407 LC
= RTLIB::getFPEXT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2409 return LowerF128Call(Op
, DAG
, LC
);
2412 SDValue
AArch64TargetLowering::LowerFP_ROUND(SDValue Op
,
2413 SelectionDAG
&DAG
) const {
2414 if (Op
.getOperand(0).getValueType() != MVT::f128
) {
2415 // It's legal except when f128 is involved
2420 LC
= RTLIB::getFPROUND(Op
.getOperand(0).getValueType(), Op
.getValueType());
2422 // FP_ROUND node has a second operand indicating whether it is known to be
2423 // precise. That doesn't take part in the LibCall so we can't directly use
2425 SDValue SrcVal
= Op
.getOperand(0);
2426 MakeLibCallOptions CallOptions
;
2427 return makeLibCall(DAG
, LC
, Op
.getValueType(), SrcVal
, CallOptions
,
2431 SDValue
AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op
,
2432 SelectionDAG
&DAG
) const {
2433 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2434 // Any additional optimization in this function should be recorded
2435 // in the cost tables.
2436 EVT InVT
= Op
.getOperand(0).getValueType();
2437 EVT VT
= Op
.getValueType();
2438 unsigned NumElts
= InVT
.getVectorNumElements();
2440 // f16 conversions are promoted to f32 when full fp16 is not supported.
2441 if (InVT
.getVectorElementType() == MVT::f16
&&
2442 !Subtarget
->hasFullFP16()) {
2443 MVT NewVT
= MVT::getVectorVT(MVT::f32
, NumElts
);
2446 Op
.getOpcode(), dl
, Op
.getValueType(),
2447 DAG
.getNode(ISD::FP_EXTEND
, dl
, NewVT
, Op
.getOperand(0)));
2450 if (VT
.getSizeInBits() < InVT
.getSizeInBits()) {
2453 DAG
.getNode(Op
.getOpcode(), dl
, InVT
.changeVectorElementTypeToInteger(),
2455 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Cv
);
2458 if (VT
.getSizeInBits() > InVT
.getSizeInBits()) {
2461 MVT::getVectorVT(MVT::getFloatingPointVT(VT
.getScalarSizeInBits()),
2462 VT
.getVectorNumElements());
2463 SDValue Ext
= DAG
.getNode(ISD::FP_EXTEND
, dl
, ExtVT
, Op
.getOperand(0));
2464 return DAG
.getNode(Op
.getOpcode(), dl
, VT
, Ext
);
2467 // Type changing conversions are illegal.
2471 SDValue
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op
,
2472 SelectionDAG
&DAG
) const {
2473 if (Op
.getOperand(0).getValueType().isVector())
2474 return LowerVectorFP_TO_INT(Op
, DAG
);
2476 // f16 conversions are promoted to f32 when full fp16 is not supported.
2477 if (Op
.getOperand(0).getValueType() == MVT::f16
&&
2478 !Subtarget
->hasFullFP16()) {
2481 Op
.getOpcode(), dl
, Op
.getValueType(),
2482 DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, Op
.getOperand(0)));
2485 if (Op
.getOperand(0).getValueType() != MVT::f128
) {
2486 // It's legal except when f128 is involved
2491 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
2492 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2494 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2496 SmallVector
<SDValue
, 2> Ops(Op
->op_begin(), Op
->op_end());
2497 MakeLibCallOptions CallOptions
;
2498 return makeLibCall(DAG
, LC
, Op
.getValueType(), Ops
, CallOptions
, SDLoc(Op
)).first
;
2501 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
2502 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2503 // Any additional optimization in this function should be recorded
2504 // in the cost tables.
2505 EVT VT
= Op
.getValueType();
2507 SDValue In
= Op
.getOperand(0);
2508 EVT InVT
= In
.getValueType();
2510 if (VT
.getSizeInBits() < InVT
.getSizeInBits()) {
2512 MVT::getVectorVT(MVT::getFloatingPointVT(InVT
.getScalarSizeInBits()),
2513 InVT
.getVectorNumElements());
2514 In
= DAG
.getNode(Op
.getOpcode(), dl
, CastVT
, In
);
2515 return DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, In
, DAG
.getIntPtrConstant(0, dl
));
2518 if (VT
.getSizeInBits() > InVT
.getSizeInBits()) {
2520 Op
.getOpcode() == ISD::SINT_TO_FP
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2521 EVT CastVT
= VT
.changeVectorElementTypeToInteger();
2522 In
= DAG
.getNode(CastOpc
, dl
, CastVT
, In
);
2523 return DAG
.getNode(Op
.getOpcode(), dl
, VT
, In
);
2529 SDValue
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op
,
2530 SelectionDAG
&DAG
) const {
2531 if (Op
.getValueType().isVector())
2532 return LowerVectorINT_TO_FP(Op
, DAG
);
2534 // f16 conversions are promoted to f32 when full fp16 is not supported.
2535 if (Op
.getValueType() == MVT::f16
&&
2536 !Subtarget
->hasFullFP16()) {
2539 ISD::FP_ROUND
, dl
, MVT::f16
,
2540 DAG
.getNode(Op
.getOpcode(), dl
, MVT::f32
, Op
.getOperand(0)),
2541 DAG
.getIntPtrConstant(0, dl
));
2544 // i128 conversions are libcalls.
2545 if (Op
.getOperand(0).getValueType() == MVT::i128
)
2548 // Other conversions are legal, unless it's to the completely software-based
2550 if (Op
.getValueType() != MVT::f128
)
2554 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
2555 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(), Op
.getValueType());
2557 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(), Op
.getValueType());
2559 return LowerF128Call(Op
, DAG
, LC
);
2562 SDValue
AArch64TargetLowering::LowerFSINCOS(SDValue Op
,
2563 SelectionDAG
&DAG
) const {
2564 // For iOS, we want to call an alternative entry point: __sincos_stret,
2565 // which returns the values in two S / D registers.
2567 SDValue Arg
= Op
.getOperand(0);
2568 EVT ArgVT
= Arg
.getValueType();
2569 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2576 Entry
.IsSExt
= false;
2577 Entry
.IsZExt
= false;
2578 Args
.push_back(Entry
);
2580 RTLIB::Libcall LC
= ArgVT
== MVT::f64
? RTLIB::SINCOS_STRET_F64
2581 : RTLIB::SINCOS_STRET_F32
;
2582 const char *LibcallName
= getLibcallName(LC
);
2584 DAG
.getExternalSymbol(LibcallName
, getPointerTy(DAG
.getDataLayout()));
2586 StructType
*RetTy
= StructType::get(ArgTy
, ArgTy
);
2587 TargetLowering::CallLoweringInfo
CLI(DAG
);
2589 .setChain(DAG
.getEntryNode())
2590 .setLibCallee(CallingConv::Fast
, RetTy
, Callee
, std::move(Args
));
2592 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2593 return CallResult
.first
;
2596 static SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) {
2597 if (Op
.getValueType() != MVT::f16
)
2600 assert(Op
.getOperand(0).getValueType() == MVT::i16
);
2603 Op
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, Op
.getOperand(0));
2604 Op
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Op
);
2606 DAG
.getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
, MVT::f16
, Op
,
2607 DAG
.getTargetConstant(AArch64::hsub
, DL
, MVT::i32
)),
2611 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
2612 if (OrigVT
.getSizeInBits() >= 64)
2615 assert(OrigVT
.isSimple() && "Expecting a simple value type");
2617 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
2618 switch (OrigSimpleTy
) {
2619 default: llvm_unreachable("Unexpected Vector Type");
2628 static SDValue
addRequiredExtensionForVectorMULL(SDValue N
, SelectionDAG
&DAG
,
2631 unsigned ExtOpcode
) {
2632 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2633 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2634 // 64-bits we need to insert a new extension so that it will be 64-bits.
2635 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
2636 if (OrigTy
.getSizeInBits() >= 64)
2639 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2640 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
2642 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
2645 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
2647 EVT VT
= N
->getValueType(0);
2649 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2652 for (const SDValue
&Elt
: N
->op_values()) {
2653 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
2654 unsigned EltSize
= VT
.getScalarSizeInBits();
2655 unsigned HalfSize
= EltSize
/ 2;
2657 if (!isIntN(HalfSize
, C
->getSExtValue()))
2660 if (!isUIntN(HalfSize
, C
->getZExtValue()))
2671 static SDValue
skipExtensionForVectorMULL(SDNode
*N
, SelectionDAG
&DAG
) {
2672 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
2673 return addRequiredExtensionForVectorMULL(N
->getOperand(0), DAG
,
2674 N
->getOperand(0)->getValueType(0),
2678 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
2679 EVT VT
= N
->getValueType(0);
2681 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
2682 unsigned NumElts
= VT
.getVectorNumElements();
2683 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
2684 SmallVector
<SDValue
, 8> Ops
;
2685 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2686 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
2687 const APInt
&CInt
= C
->getAPIntValue();
2688 // Element types smaller than 32 bits are not legal, so use i32 elements.
2689 // The values are implicitly truncated so sext vs. zext doesn't matter.
2690 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
2692 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
2695 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
2696 return N
->getOpcode() == ISD::SIGN_EXTEND
||
2697 isExtendedBUILD_VECTOR(N
, DAG
, true);
2700 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
2701 return N
->getOpcode() == ISD::ZERO_EXTEND
||
2702 isExtendedBUILD_VECTOR(N
, DAG
, false);
2705 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
2706 unsigned Opcode
= N
->getOpcode();
2707 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
2708 SDNode
*N0
= N
->getOperand(0).getNode();
2709 SDNode
*N1
= N
->getOperand(1).getNode();
2710 return N0
->hasOneUse() && N1
->hasOneUse() &&
2711 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
2716 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
2717 unsigned Opcode
= N
->getOpcode();
2718 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
2719 SDNode
*N0
= N
->getOperand(0).getNode();
2720 SDNode
*N1
= N
->getOperand(1).getNode();
2721 return N0
->hasOneUse() && N1
->hasOneUse() &&
2722 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
2727 SDValue
AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
2728 SelectionDAG
&DAG
) const {
2729 // The rounding mode is in bits 23:22 of the FPSCR.
2730 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2731 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2732 // so that the shift + and get folded into a bitfield extract.
2735 SDValue FPCR_64
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::i64
,
2736 DAG
.getConstant(Intrinsic::aarch64_get_fpcr
, dl
,
2738 SDValue FPCR_32
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, FPCR_64
);
2739 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPCR_32
,
2740 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
2741 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
2742 DAG
.getConstant(22, dl
, MVT::i32
));
2743 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
2744 DAG
.getConstant(3, dl
, MVT::i32
));
2747 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
2748 // Multiplications are only custom-lowered for 128-bit vectors so that
2749 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2750 EVT VT
= Op
.getValueType();
2751 assert(VT
.is128BitVector() && VT
.isInteger() &&
2752 "unexpected type for custom-lowering ISD::MUL");
2753 SDNode
*N0
= Op
.getOperand(0).getNode();
2754 SDNode
*N1
= Op
.getOperand(1).getNode();
2755 unsigned NewOpc
= 0;
2757 bool isN0SExt
= isSignExtended(N0
, DAG
);
2758 bool isN1SExt
= isSignExtended(N1
, DAG
);
2759 if (isN0SExt
&& isN1SExt
)
2760 NewOpc
= AArch64ISD::SMULL
;
2762 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
2763 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
2764 if (isN0ZExt
&& isN1ZExt
)
2765 NewOpc
= AArch64ISD::UMULL
;
2766 else if (isN1SExt
|| isN1ZExt
) {
2767 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2768 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2769 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
2770 NewOpc
= AArch64ISD::SMULL
;
2772 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
2773 NewOpc
= AArch64ISD::UMULL
;
2775 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
2777 NewOpc
= AArch64ISD::UMULL
;
2783 if (VT
== MVT::v2i64
)
2784 // Fall through to expand this. It is not legal.
2787 // Other vector multiplications are legal.
2792 // Legalize to a S/UMULL instruction
2795 SDValue Op1
= skipExtensionForVectorMULL(N1
, DAG
);
2797 Op0
= skipExtensionForVectorMULL(N0
, DAG
);
2798 assert(Op0
.getValueType().is64BitVector() &&
2799 Op1
.getValueType().is64BitVector() &&
2800 "unexpected types for extended operands to VMULL");
2801 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
2803 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2804 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2805 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2806 SDValue N00
= skipExtensionForVectorMULL(N0
->getOperand(0).getNode(), DAG
);
2807 SDValue N01
= skipExtensionForVectorMULL(N0
->getOperand(1).getNode(), DAG
);
2808 EVT Op1VT
= Op1
.getValueType();
2809 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
2810 DAG
.getNode(NewOpc
, DL
, VT
,
2811 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
2812 DAG
.getNode(NewOpc
, DL
, VT
,
2813 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
2816 SDValue
AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
2817 SelectionDAG
&DAG
) const {
2818 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
2821 default: return SDValue(); // Don't custom lower most intrinsics.
2822 case Intrinsic::thread_pointer
: {
2823 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2824 return DAG
.getNode(AArch64ISD::THREAD_POINTER
, dl
, PtrVT
);
2826 case Intrinsic::aarch64_neon_abs
: {
2827 EVT Ty
= Op
.getValueType();
2828 if (Ty
== MVT::i64
) {
2829 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
,
2831 Result
= DAG
.getNode(ISD::ABS
, dl
, MVT::v1i64
, Result
);
2832 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, Result
);
2833 } else if (Ty
.isVector() && Ty
.isInteger() && isTypeLegal(Ty
)) {
2834 return DAG
.getNode(ISD::ABS
, dl
, Ty
, Op
.getOperand(1));
2836 report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2839 case Intrinsic::aarch64_neon_smax
:
2840 return DAG
.getNode(ISD::SMAX
, dl
, Op
.getValueType(),
2841 Op
.getOperand(1), Op
.getOperand(2));
2842 case Intrinsic::aarch64_neon_umax
:
2843 return DAG
.getNode(ISD::UMAX
, dl
, Op
.getValueType(),
2844 Op
.getOperand(1), Op
.getOperand(2));
2845 case Intrinsic::aarch64_neon_smin
:
2846 return DAG
.getNode(ISD::SMIN
, dl
, Op
.getValueType(),
2847 Op
.getOperand(1), Op
.getOperand(2));
2848 case Intrinsic::aarch64_neon_umin
:
2849 return DAG
.getNode(ISD::UMIN
, dl
, Op
.getValueType(),
2850 Op
.getOperand(1), Op
.getOperand(2));
2852 case Intrinsic::aarch64_sve_sunpkhi
:
2853 return DAG
.getNode(AArch64ISD::SUNPKHI
, dl
, Op
.getValueType(),
2855 case Intrinsic::aarch64_sve_sunpklo
:
2856 return DAG
.getNode(AArch64ISD::SUNPKLO
, dl
, Op
.getValueType(),
2858 case Intrinsic::aarch64_sve_uunpkhi
:
2859 return DAG
.getNode(AArch64ISD::UUNPKHI
, dl
, Op
.getValueType(),
2861 case Intrinsic::aarch64_sve_uunpklo
:
2862 return DAG
.getNode(AArch64ISD::UUNPKLO
, dl
, Op
.getValueType(),
2865 case Intrinsic::localaddress
: {
2866 const auto &MF
= DAG
.getMachineFunction();
2867 const auto *RegInfo
= Subtarget
->getRegisterInfo();
2868 unsigned Reg
= RegInfo
->getLocalAddressRegister(MF
);
2869 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
,
2870 Op
.getSimpleValueType());
2873 case Intrinsic::eh_recoverfp
: {
2874 // FIXME: This needs to be implemented to correctly handle highly aligned
2875 // stack objects. For now we simply return the incoming FP. Refer D53541
2876 // for more details.
2877 SDValue FnOp
= Op
.getOperand(1);
2878 SDValue IncomingFPOp
= Op
.getOperand(2);
2879 GlobalAddressSDNode
*GSD
= dyn_cast
<GlobalAddressSDNode
>(FnOp
);
2880 auto *Fn
= dyn_cast_or_null
<Function
>(GSD
? GSD
->getGlobal() : nullptr);
2883 "llvm.eh.recoverfp must take a function as the first argument");
2884 return IncomingFPOp
;
2889 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
2890 static SDValue
LowerTruncateVectorStore(SDLoc DL
, StoreSDNode
*ST
,
2892 SelectionDAG
&DAG
) {
2893 assert(VT
.isVector() && "VT should be a vector type");
2894 assert(MemVT
== MVT::v4i8
&& VT
== MVT::v4i16
);
2896 SDValue Value
= ST
->getValue();
2898 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2899 // the word lane which represent the v4i8 subvector. It optimizes the store
2905 SDValue Undef
= DAG
.getUNDEF(MVT::i16
);
2906 SDValue UndefVec
= DAG
.getBuildVector(MVT::v4i16
, DL
,
2907 {Undef
, Undef
, Undef
, Undef
});
2909 SDValue TruncExt
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v8i16
,
2911 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::v8i8
, TruncExt
);
2913 Trunc
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2i32
, Trunc
);
2914 SDValue ExtractTrunc
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
,
2915 Trunc
, DAG
.getConstant(0, DL
, MVT::i64
));
2917 return DAG
.getStore(ST
->getChain(), DL
, ExtractTrunc
,
2918 ST
->getBasePtr(), ST
->getMemOperand());
2921 // Custom lowering for any store, vector or scalar and/or default or with
2922 // a truncate operations. Currently only custom lower truncate operation
2923 // from vector v4i16 to v4i8.
2924 SDValue
AArch64TargetLowering::LowerSTORE(SDValue Op
,
2925 SelectionDAG
&DAG
) const {
2927 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Op
);
2928 assert (StoreNode
&& "Can only custom lower store nodes");
2930 SDValue Value
= StoreNode
->getValue();
2932 EVT VT
= Value
.getValueType();
2933 EVT MemVT
= StoreNode
->getMemoryVT();
2935 assert (VT
.isVector() && "Can only custom lower vector store types");
2937 unsigned AS
= StoreNode
->getAddressSpace();
2938 unsigned Align
= StoreNode
->getAlignment();
2939 if (Align
< MemVT
.getStoreSize() &&
2940 !allowsMisalignedMemoryAccesses(
2941 MemVT
, AS
, Align
, StoreNode
->getMemOperand()->getFlags(), nullptr)) {
2942 return scalarizeVectorStore(StoreNode
, DAG
);
2945 if (StoreNode
->isTruncatingStore()) {
2946 return LowerTruncateVectorStore(Dl
, StoreNode
, VT
, MemVT
, DAG
);
2952 SDValue
AArch64TargetLowering::LowerOperation(SDValue Op
,
2953 SelectionDAG
&DAG
) const {
2954 LLVM_DEBUG(dbgs() << "Custom lowering: ");
2955 LLVM_DEBUG(Op
.dump());
2957 switch (Op
.getOpcode()) {
2959 llvm_unreachable("unimplemented operand");
2962 return LowerBITCAST(Op
, DAG
);
2963 case ISD::GlobalAddress
:
2964 return LowerGlobalAddress(Op
, DAG
);
2965 case ISD::GlobalTLSAddress
:
2966 return LowerGlobalTLSAddress(Op
, DAG
);
2968 return LowerSETCC(Op
, DAG
);
2970 return LowerBR_CC(Op
, DAG
);
2972 return LowerSELECT(Op
, DAG
);
2973 case ISD::SELECT_CC
:
2974 return LowerSELECT_CC(Op
, DAG
);
2975 case ISD::JumpTable
:
2976 return LowerJumpTable(Op
, DAG
);
2978 return LowerBR_JT(Op
, DAG
);
2979 case ISD::ConstantPool
:
2980 return LowerConstantPool(Op
, DAG
);
2981 case ISD::BlockAddress
:
2982 return LowerBlockAddress(Op
, DAG
);
2984 return LowerVASTART(Op
, DAG
);
2986 return LowerVACOPY(Op
, DAG
);
2988 return LowerVAARG(Op
, DAG
);
2993 return LowerADDC_ADDE_SUBC_SUBE(Op
, DAG
);
3000 return LowerXALUO(Op
, DAG
);
3002 return LowerF128Call(Op
, DAG
, RTLIB::ADD_F128
);
3004 return LowerF128Call(Op
, DAG
, RTLIB::SUB_F128
);
3006 return LowerF128Call(Op
, DAG
, RTLIB::MUL_F128
);
3008 return LowerF128Call(Op
, DAG
, RTLIB::DIV_F128
);
3010 return LowerFP_ROUND(Op
, DAG
);
3011 case ISD::FP_EXTEND
:
3012 return LowerFP_EXTEND(Op
, DAG
);
3013 case ISD::FRAMEADDR
:
3014 return LowerFRAMEADDR(Op
, DAG
);
3015 case ISD::SPONENTRY
:
3016 return LowerSPONENTRY(Op
, DAG
);
3017 case ISD::RETURNADDR
:
3018 return LowerRETURNADDR(Op
, DAG
);
3019 case ISD::ADDROFRETURNADDR
:
3020 return LowerADDROFRETURNADDR(Op
, DAG
);
3021 case ISD::INSERT_VECTOR_ELT
:
3022 return LowerINSERT_VECTOR_ELT(Op
, DAG
);
3023 case ISD::EXTRACT_VECTOR_ELT
:
3024 return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
3025 case ISD::BUILD_VECTOR
:
3026 return LowerBUILD_VECTOR(Op
, DAG
);
3027 case ISD::VECTOR_SHUFFLE
:
3028 return LowerVECTOR_SHUFFLE(Op
, DAG
);
3029 case ISD::SPLAT_VECTOR
:
3030 return LowerSPLAT_VECTOR(Op
, DAG
);
3031 case ISD::EXTRACT_SUBVECTOR
:
3032 return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
3036 return LowerVectorSRA_SRL_SHL(Op
, DAG
);
3037 case ISD::SHL_PARTS
:
3038 return LowerShiftLeftParts(Op
, DAG
);
3039 case ISD::SRL_PARTS
:
3040 case ISD::SRA_PARTS
:
3041 return LowerShiftRightParts(Op
, DAG
);
3043 return LowerCTPOP(Op
, DAG
);
3044 case ISD::FCOPYSIGN
:
3045 return LowerFCOPYSIGN(Op
, DAG
);
3047 return LowerVectorOR(Op
, DAG
);
3049 return LowerXOR(Op
, DAG
);
3051 return LowerPREFETCH(Op
, DAG
);
3052 case ISD::SINT_TO_FP
:
3053 case ISD::UINT_TO_FP
:
3054 return LowerINT_TO_FP(Op
, DAG
);
3055 case ISD::FP_TO_SINT
:
3056 case ISD::FP_TO_UINT
:
3057 return LowerFP_TO_INT(Op
, DAG
);
3059 return LowerFSINCOS(Op
, DAG
);
3060 case ISD::FLT_ROUNDS_
:
3061 return LowerFLT_ROUNDS_(Op
, DAG
);
3063 return LowerMUL(Op
, DAG
);
3064 case ISD::INTRINSIC_WO_CHAIN
:
3065 return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
3067 return LowerSTORE(Op
, DAG
);
3068 case ISD::VECREDUCE_ADD
:
3069 case ISD::VECREDUCE_SMAX
:
3070 case ISD::VECREDUCE_SMIN
:
3071 case ISD::VECREDUCE_UMAX
:
3072 case ISD::VECREDUCE_UMIN
:
3073 case ISD::VECREDUCE_FMAX
:
3074 case ISD::VECREDUCE_FMIN
:
3075 return LowerVECREDUCE(Op
, DAG
);
3076 case ISD::ATOMIC_LOAD_SUB
:
3077 return LowerATOMIC_LOAD_SUB(Op
, DAG
);
3078 case ISD::ATOMIC_LOAD_AND
:
3079 return LowerATOMIC_LOAD_AND(Op
, DAG
);
3080 case ISD::DYNAMIC_STACKALLOC
:
3081 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
3085 //===----------------------------------------------------------------------===//
3086 // Calling Convention Implementation
3087 //===----------------------------------------------------------------------===//
3089 /// Selects the correct CCAssignFn for a given CallingConvention value.
3090 CCAssignFn
*AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
3091 bool IsVarArg
) const {
3094 report_fatal_error("Unsupported calling convention.");
3095 case CallingConv::WebKit_JS
:
3096 return CC_AArch64_WebKit_JS
;
3097 case CallingConv::GHC
:
3098 return CC_AArch64_GHC
;
3099 case CallingConv::C
:
3100 case CallingConv::Fast
:
3101 case CallingConv::PreserveMost
:
3102 case CallingConv::CXX_FAST_TLS
:
3103 case CallingConv::Swift
:
3104 if (Subtarget
->isTargetWindows() && IsVarArg
)
3105 return CC_AArch64_Win64_VarArg
;
3106 if (!Subtarget
->isTargetDarwin())
3107 return CC_AArch64_AAPCS
;
3109 return CC_AArch64_DarwinPCS
;
3110 return Subtarget
->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
3111 : CC_AArch64_DarwinPCS_VarArg
;
3112 case CallingConv::Win64
:
3113 return IsVarArg
? CC_AArch64_Win64_VarArg
: CC_AArch64_AAPCS
;
3114 case CallingConv::AArch64_VectorCall
:
3115 return CC_AArch64_AAPCS
;
3120 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC
) const {
3121 return CC
== CallingConv::WebKit_JS
? RetCC_AArch64_WebKit_JS
3122 : RetCC_AArch64_AAPCS
;
3125 SDValue
AArch64TargetLowering::LowerFormalArguments(
3126 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3127 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3128 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3129 MachineFunction
&MF
= DAG
.getMachineFunction();
3130 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3131 bool IsWin64
= Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv());
3133 // Assign locations to all of the incoming arguments.
3134 SmallVector
<CCValAssign
, 16> ArgLocs
;
3135 DenseMap
<unsigned, SDValue
> CopiedRegs
;
3136 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3139 // At this point, Ins[].VT may already be promoted to i32. To correctly
3140 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3141 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3142 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3143 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3145 unsigned NumArgs
= Ins
.size();
3146 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3147 unsigned CurArgIdx
= 0;
3148 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3149 MVT ValVT
= Ins
[i
].VT
;
3150 if (Ins
[i
].isOrigArg()) {
3151 std::advance(CurOrigArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3152 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3154 // Get type of the original argument.
3155 EVT ActualVT
= getValueType(DAG
.getDataLayout(), CurOrigArg
->getType(),
3156 /*AllowUnknown*/ true);
3157 MVT ActualMVT
= ActualVT
.isSimple() ? ActualVT
.getSimpleVT() : MVT::Other
;
3158 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3159 if (ActualMVT
== MVT::i1
|| ActualMVT
== MVT::i8
)
3161 else if (ActualMVT
== MVT::i16
)
3164 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
, /*IsVarArg=*/false);
3166 AssignFn(i
, ValVT
, ValVT
, CCValAssign::Full
, Ins
[i
].Flags
, CCInfo
);
3167 assert(!Res
&& "Call operand has unhandled type");
3170 assert(ArgLocs
.size() == Ins
.size());
3171 SmallVector
<SDValue
, 16> ArgValues
;
3172 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3173 CCValAssign
&VA
= ArgLocs
[i
];
3175 if (Ins
[i
].Flags
.isByVal()) {
3176 // Byval is used for HFAs in the PCS, but the system should work in a
3177 // non-compliant manner for larger structs.
3178 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3179 int Size
= Ins
[i
].Flags
.getByValSize();
3180 unsigned NumRegs
= (Size
+ 7) / 8;
3182 // FIXME: This works on big-endian for composite byvals, which are the common
3183 // case. It should also work for fundamental types too.
3185 MFI
.CreateFixedObject(8 * NumRegs
, VA
.getLocMemOffset(), false);
3186 SDValue FrameIdxN
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
3187 InVals
.push_back(FrameIdxN
);
3193 if (VA
.isRegLoc()) {
3194 // Arguments stored in registers.
3195 EVT RegVT
= VA
.getLocVT();
3196 const TargetRegisterClass
*RC
;
3198 if (RegVT
== MVT::i32
)
3199 RC
= &AArch64::GPR32RegClass
;
3200 else if (RegVT
== MVT::i64
)
3201 RC
= &AArch64::GPR64RegClass
;
3202 else if (RegVT
== MVT::f16
)
3203 RC
= &AArch64::FPR16RegClass
;
3204 else if (RegVT
== MVT::f32
)
3205 RC
= &AArch64::FPR32RegClass
;
3206 else if (RegVT
== MVT::f64
|| RegVT
.is64BitVector())
3207 RC
= &AArch64::FPR64RegClass
;
3208 else if (RegVT
== MVT::f128
|| RegVT
.is128BitVector())
3209 RC
= &AArch64::FPR128RegClass
;
3210 else if (RegVT
.isScalableVector() &&
3211 RegVT
.getVectorElementType() == MVT::i1
)
3212 RC
= &AArch64::PPRRegClass
;
3213 else if (RegVT
.isScalableVector())
3214 RC
= &AArch64::ZPRRegClass
;
3216 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3218 // Transform the arguments in physical registers into virtual ones.
3219 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3220 ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3222 // If this is an 8, 16 or 32-bit value, it is really passed promoted
3223 // to 64 bits. Insert an assert[sz]ext to capture this, then
3224 // truncate to the right size.
3225 switch (VA
.getLocInfo()) {
3227 llvm_unreachable("Unknown loc info!");
3228 case CCValAssign::Full
:
3230 case CCValAssign::Indirect
:
3231 assert(VA
.getValVT().isScalableVector() &&
3232 "Only scalable vectors can be passed indirectly");
3233 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3234 case CCValAssign::BCvt
:
3235 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), ArgValue
);
3237 case CCValAssign::AExt
:
3238 case CCValAssign::SExt
:
3239 case CCValAssign::ZExt
:
3241 case CCValAssign::AExtUpper
:
3242 ArgValue
= DAG
.getNode(ISD::SRL
, DL
, RegVT
, ArgValue
,
3243 DAG
.getConstant(32, DL
, RegVT
));
3244 ArgValue
= DAG
.getZExtOrTrunc(ArgValue
, DL
, VA
.getValVT());
3247 } else { // VA.isRegLoc()
3248 assert(VA
.isMemLoc() && "CCValAssign is neither reg nor mem");
3249 unsigned ArgOffset
= VA
.getLocMemOffset();
3250 unsigned ArgSize
= VA
.getValVT().getSizeInBits() / 8;
3252 uint32_t BEAlign
= 0;
3253 if (!Subtarget
->isLittleEndian() && ArgSize
< 8 &&
3254 !Ins
[i
].Flags
.isInConsecutiveRegs())
3255 BEAlign
= 8 - ArgSize
;
3257 int FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
+ BEAlign
, true);
3259 // Create load nodes to retrieve arguments from the stack.
3260 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3262 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3263 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3264 MVT MemVT
= VA
.getValVT();
3266 switch (VA
.getLocInfo()) {
3269 case CCValAssign::Trunc
:
3270 case CCValAssign::BCvt
:
3271 MemVT
= VA
.getLocVT();
3273 case CCValAssign::Indirect
:
3274 assert(VA
.getValVT().isScalableVector() &&
3275 "Only scalable vectors can be passed indirectly");
3276 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3277 case CCValAssign::SExt
:
3278 ExtType
= ISD::SEXTLOAD
;
3280 case CCValAssign::ZExt
:
3281 ExtType
= ISD::ZEXTLOAD
;
3283 case CCValAssign::AExt
:
3284 ExtType
= ISD::EXTLOAD
;
3288 ArgValue
= DAG
.getExtLoad(
3289 ExtType
, DL
, VA
.getLocVT(), Chain
, FIN
,
3290 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
),
3294 if (Subtarget
->isTargetILP32() && Ins
[i
].Flags
.isPointer())
3295 ArgValue
= DAG
.getNode(ISD::AssertZext
, DL
, ArgValue
.getValueType(),
3296 ArgValue
, DAG
.getValueType(MVT::i32
));
3297 InVals
.push_back(ArgValue
);
3301 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3303 if (!Subtarget
->isTargetDarwin() || IsWin64
) {
3304 // The AAPCS variadic function ABI is identical to the non-variadic
3305 // one. As a result there may be more arguments in registers and we should
3306 // save them for future reference.
3307 // Win64 variadic functions also pass arguments in registers, but all float
3308 // arguments are passed in integer registers.
3309 saveVarArgRegisters(CCInfo
, DAG
, DL
, Chain
);
3312 // This will point to the next argument passed via stack.
3313 unsigned StackOffset
= CCInfo
.getNextStackOffset();
3314 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
3315 StackOffset
= alignTo(StackOffset
, Subtarget
->isTargetILP32() ? 4 : 8);
3316 FuncInfo
->setVarArgsStackIndex(MFI
.CreateFixedObject(4, StackOffset
, true));
3318 if (MFI
.hasMustTailInVarArgFunc()) {
3319 SmallVector
<MVT
, 2> RegParmTypes
;
3320 RegParmTypes
.push_back(MVT::i64
);
3321 RegParmTypes
.push_back(MVT::f128
);
3322 // Compute the set of forwarded registers. The rest are scratch.
3323 SmallVectorImpl
<ForwardedRegister
> &Forwards
=
3324 FuncInfo
->getForwardedMustTailRegParms();
3325 CCInfo
.analyzeMustTailForwardedRegisters(Forwards
, RegParmTypes
,
3328 // Conservatively forward X8, since it might be used for aggregate return.
3329 if (!CCInfo
.isAllocated(AArch64::X8
)) {
3330 unsigned X8VReg
= MF
.addLiveIn(AArch64::X8
, &AArch64::GPR64RegClass
);
3331 Forwards
.push_back(ForwardedRegister(X8VReg
, AArch64::X8
, MVT::i64
));
3336 // On Windows, InReg pointers must be returned, so record the pointer in a
3337 // virtual register at the start of the function so it can be returned in the
3340 for (unsigned I
= 0, E
= Ins
.size(); I
!= E
; ++I
) {
3341 if (Ins
[I
].Flags
.isInReg()) {
3342 assert(!FuncInfo
->getSRetReturnReg());
3344 MVT PtrTy
= getPointerTy(DAG
.getDataLayout());
3346 MF
.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy
));
3347 FuncInfo
->setSRetReturnReg(Reg
);
3349 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[I
]);
3350 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3356 unsigned StackArgSize
= CCInfo
.getNextStackOffset();
3357 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
3358 if (DoesCalleeRestoreStack(CallConv
, TailCallOpt
)) {
3359 // This is a non-standard ABI so by fiat I say we're allowed to make full
3360 // use of the stack area to be popped, which must be aligned to 16 bytes in
3362 StackArgSize
= alignTo(StackArgSize
, 16);
3364 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3365 // a multiple of 16.
3366 FuncInfo
->setArgumentStackToRestore(StackArgSize
);
3368 // This realignment carries over to the available bytes below. Our own
3369 // callers will guarantee the space is free by giving an aligned value to
3372 // Even if we're not expected to free up the space, it's useful to know how
3373 // much is there while considering tail calls (because we can reuse it).
3374 FuncInfo
->setBytesInStackArgArea(StackArgSize
);
3376 if (Subtarget
->hasCustomCallingConv())
3377 Subtarget
->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF
);
3382 void AArch64TargetLowering::saveVarArgRegisters(CCState
&CCInfo
,
3385 SDValue
&Chain
) const {
3386 MachineFunction
&MF
= DAG
.getMachineFunction();
3387 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3388 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3389 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3390 bool IsWin64
= Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv());
3392 SmallVector
<SDValue
, 8> MemOps
;
3394 static const MCPhysReg GPRArgRegs
[] = { AArch64::X0
, AArch64::X1
, AArch64::X2
,
3395 AArch64::X3
, AArch64::X4
, AArch64::X5
,
3396 AArch64::X6
, AArch64::X7
};
3397 static const unsigned NumGPRArgRegs
= array_lengthof(GPRArgRegs
);
3398 unsigned FirstVariadicGPR
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3400 unsigned GPRSaveSize
= 8 * (NumGPRArgRegs
- FirstVariadicGPR
);
3402 if (GPRSaveSize
!= 0) {
3404 GPRIdx
= MFI
.CreateFixedObject(GPRSaveSize
, -(int)GPRSaveSize
, false);
3405 if (GPRSaveSize
& 15)
3406 // The extra size here, if triggered, will always be 8.
3407 MFI
.CreateFixedObject(16 - (GPRSaveSize
& 15), -(int)alignTo(GPRSaveSize
, 16), false);
3409 GPRIdx
= MFI
.CreateStackObject(GPRSaveSize
, 8, false);
3411 SDValue FIN
= DAG
.getFrameIndex(GPRIdx
, PtrVT
);
3413 for (unsigned i
= FirstVariadicGPR
; i
< NumGPRArgRegs
; ++i
) {
3414 unsigned VReg
= MF
.addLiveIn(GPRArgRegs
[i
], &AArch64::GPR64RegClass
);
3415 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, MVT::i64
);
3416 SDValue Store
= DAG
.getStore(
3417 Val
.getValue(1), DL
, Val
, FIN
,
3419 ? MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
3421 (i
- FirstVariadicGPR
) * 8)
3422 : MachinePointerInfo::getStack(DAG
.getMachineFunction(), i
* 8));
3423 MemOps
.push_back(Store
);
3425 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, FIN
, DAG
.getConstant(8, DL
, PtrVT
));
3428 FuncInfo
->setVarArgsGPRIndex(GPRIdx
);
3429 FuncInfo
->setVarArgsGPRSize(GPRSaveSize
);
3431 if (Subtarget
->hasFPARMv8() && !IsWin64
) {
3432 static const MCPhysReg FPRArgRegs
[] = {
3433 AArch64::Q0
, AArch64::Q1
, AArch64::Q2
, AArch64::Q3
,
3434 AArch64::Q4
, AArch64::Q5
, AArch64::Q6
, AArch64::Q7
};
3435 static const unsigned NumFPRArgRegs
= array_lengthof(FPRArgRegs
);
3436 unsigned FirstVariadicFPR
= CCInfo
.getFirstUnallocated(FPRArgRegs
);
3438 unsigned FPRSaveSize
= 16 * (NumFPRArgRegs
- FirstVariadicFPR
);
3440 if (FPRSaveSize
!= 0) {
3441 FPRIdx
= MFI
.CreateStackObject(FPRSaveSize
, 16, false);
3443 SDValue FIN
= DAG
.getFrameIndex(FPRIdx
, PtrVT
);
3445 for (unsigned i
= FirstVariadicFPR
; i
< NumFPRArgRegs
; ++i
) {
3446 unsigned VReg
= MF
.addLiveIn(FPRArgRegs
[i
], &AArch64::FPR128RegClass
);
3447 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, MVT::f128
);
3449 SDValue Store
= DAG
.getStore(
3450 Val
.getValue(1), DL
, Val
, FIN
,
3451 MachinePointerInfo::getStack(DAG
.getMachineFunction(), i
* 16));
3452 MemOps
.push_back(Store
);
3453 FIN
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, FIN
,
3454 DAG
.getConstant(16, DL
, PtrVT
));
3457 FuncInfo
->setVarArgsFPRIndex(FPRIdx
);
3458 FuncInfo
->setVarArgsFPRSize(FPRSaveSize
);
3461 if (!MemOps
.empty()) {
3462 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOps
);
3466 /// LowerCallResult - Lower the result values of a call into the
3467 /// appropriate copies out of appropriate physical registers.
3468 SDValue
AArch64TargetLowering::LowerCallResult(
3469 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
3470 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3471 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
3472 SDValue ThisVal
) const {
3473 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
3474 ? RetCC_AArch64_WebKit_JS
3475 : RetCC_AArch64_AAPCS
;
3476 // Assign locations to each value returned by this call.
3477 SmallVector
<CCValAssign
, 16> RVLocs
;
3478 DenseMap
<unsigned, SDValue
> CopiedRegs
;
3479 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
3481 CCInfo
.AnalyzeCallResult(Ins
, RetCC
);
3483 // Copy all of the result registers out of their specified physreg.
3484 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3485 CCValAssign VA
= RVLocs
[i
];
3487 // Pass 'this' value directly from the argument to return value, to avoid
3488 // reg unit interference
3489 if (i
== 0 && isThisReturn
) {
3490 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i64
&&
3491 "unexpected return calling convention register assignment");
3492 InVals
.push_back(ThisVal
);
3496 // Avoid copying a physreg twice since RegAllocFast is incompetent and only
3497 // allows one use of a physreg per block.
3498 SDValue Val
= CopiedRegs
.lookup(VA
.getLocReg());
3501 DAG
.getCopyFromReg(Chain
, DL
, VA
.getLocReg(), VA
.getLocVT(), InFlag
);
3502 Chain
= Val
.getValue(1);
3503 InFlag
= Val
.getValue(2);
3504 CopiedRegs
[VA
.getLocReg()] = Val
;
3507 switch (VA
.getLocInfo()) {
3509 llvm_unreachable("Unknown loc info!");
3510 case CCValAssign::Full
:
3512 case CCValAssign::BCvt
:
3513 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3515 case CCValAssign::AExtUpper
:
3516 Val
= DAG
.getNode(ISD::SRL
, DL
, VA
.getLocVT(), Val
,
3517 DAG
.getConstant(32, DL
, VA
.getLocVT()));
3519 case CCValAssign::AExt
:
3521 case CCValAssign::ZExt
:
3522 Val
= DAG
.getZExtOrTrunc(Val
, DL
, VA
.getValVT());
3526 InVals
.push_back(Val
);
3532 /// Return true if the calling convention is one that we can guarantee TCO for.
3533 static bool canGuaranteeTCO(CallingConv::ID CC
) {
3534 return CC
== CallingConv::Fast
;
3537 /// Return true if we might ever do TCO for calls with this calling convention.
3538 static bool mayTailCallThisCC(CallingConv::ID CC
) {
3540 case CallingConv::C
:
3541 case CallingConv::PreserveMost
:
3542 case CallingConv::Swift
:
3545 return canGuaranteeTCO(CC
);
3549 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3550 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
3551 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3552 const SmallVectorImpl
<SDValue
> &OutVals
,
3553 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
) const {
3554 if (!mayTailCallThisCC(CalleeCC
))
3557 MachineFunction
&MF
= DAG
.getMachineFunction();
3558 const Function
&CallerF
= MF
.getFunction();
3559 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
3560 bool CCMatch
= CallerCC
== CalleeCC
;
3562 // Byval parameters hand the function a pointer directly into the stack area
3563 // we want to reuse during a tail call. Working around this *is* possible (see
3564 // X86) but less efficient and uglier in LowerCall.
3565 for (Function::const_arg_iterator i
= CallerF
.arg_begin(),
3566 e
= CallerF
.arg_end();
3568 if (i
->hasByValAttr())
3571 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3572 // In this case, it is necessary to save/restore X0 in the callee. Tail
3573 // call opt interferes with this. So we disable tail call opt when the
3574 // caller has an argument with "inreg" attribute.
3576 // FIXME: Check whether the callee also has an "inreg" argument.
3577 if (i
->hasInRegAttr())
3581 if (getTargetMachine().Options
.GuaranteedTailCallOpt
)
3582 return canGuaranteeTCO(CalleeCC
) && CCMatch
;
3584 // Externally-defined functions with weak linkage should not be
3585 // tail-called on AArch64 when the OS does not support dynamic
3586 // pre-emption of symbols, as the AAELF spec requires normal calls
3587 // to undefined weak functions to be replaced with a NOP or jump to the
3588 // next instruction. The behaviour of branch instructions in this
3589 // situation (as used for tail calls) is implementation-defined, so we
3590 // cannot rely on the linker replacing the tail call with a return.
3591 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3592 const GlobalValue
*GV
= G
->getGlobal();
3593 const Triple
&TT
= getTargetMachine().getTargetTriple();
3594 if (GV
->hasExternalWeakLinkage() &&
3595 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
3599 // Now we search for cases where we can use a tail call without changing the
3600 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3603 // I want anyone implementing a new calling convention to think long and hard
3604 // about this assert.
3605 assert((!isVarArg
|| CalleeCC
== CallingConv::C
) &&
3606 "Unexpected variadic calling convention");
3608 LLVMContext
&C
= *DAG
.getContext();
3609 if (isVarArg
&& !Outs
.empty()) {
3610 // At least two cases here: if caller is fastcc then we can't have any
3611 // memory arguments (we'd be expected to clean up the stack afterwards). If
3612 // caller is C then we could potentially use its argument area.
3614 // FIXME: for now we take the most conservative of these in both cases:
3615 // disallow all variadic memory operands.
3616 SmallVector
<CCValAssign
, 16> ArgLocs
;
3617 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
3619 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, true));
3620 for (const CCValAssign
&ArgLoc
: ArgLocs
)
3621 if (!ArgLoc
.isRegLoc())
3625 // Check that the call results are passed in the same way.
3626 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
3627 CCAssignFnForCall(CalleeCC
, isVarArg
),
3628 CCAssignFnForCall(CallerCC
, isVarArg
)))
3630 // The callee has to preserve all registers the caller needs to preserve.
3631 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
3632 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
3634 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
3635 if (Subtarget
->hasCustomCallingConv()) {
3636 TRI
->UpdateCustomCallPreservedMask(MF
, &CallerPreserved
);
3637 TRI
->UpdateCustomCallPreservedMask(MF
, &CalleePreserved
);
3639 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
3643 // Nothing more to check if the callee is taking no arguments
3647 SmallVector
<CCValAssign
, 16> ArgLocs
;
3648 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
3650 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
3652 const AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3654 // If the stack arguments for this call do not fit into our own save area then
3655 // the call cannot be made tail.
3656 if (CCInfo
.getNextStackOffset() > FuncInfo
->getBytesInStackArgArea())
3659 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3660 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
3666 SDValue
AArch64TargetLowering::addTokenForArgument(SDValue Chain
,
3668 MachineFrameInfo
&MFI
,
3669 int ClobberedFI
) const {
3670 SmallVector
<SDValue
, 8> ArgChains
;
3671 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
3672 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
3674 // Include the original chain at the beginning of the list. When this is
3675 // used by target LowerCall hooks, this helps legalize find the
3676 // CALLSEQ_BEGIN node.
3677 ArgChains
.push_back(Chain
);
3679 // Add a chain value for each stack argument corresponding
3680 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
3681 UE
= DAG
.getEntryNode().getNode()->use_end();
3683 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3684 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3685 if (FI
->getIndex() < 0) {
3686 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
3687 int64_t InLastByte
= InFirstByte
;
3688 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
3690 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
3691 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
3692 ArgChains
.push_back(SDValue(L
, 1));
3695 // Build a tokenfactor for all the chains.
3696 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
3699 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC
,
3700 bool TailCallOpt
) const {
3701 return CallCC
== CallingConv::Fast
&& TailCallOpt
;
3704 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3705 /// and add input and output parameter nodes.
3707 AArch64TargetLowering::LowerCall(CallLoweringInfo
&CLI
,
3708 SmallVectorImpl
<SDValue
> &InVals
) const {
3709 SelectionDAG
&DAG
= CLI
.DAG
;
3711 SmallVector
<ISD::OutputArg
, 32> &Outs
= CLI
.Outs
;
3712 SmallVector
<SDValue
, 32> &OutVals
= CLI
.OutVals
;
3713 SmallVector
<ISD::InputArg
, 32> &Ins
= CLI
.Ins
;
3714 SDValue Chain
= CLI
.Chain
;
3715 SDValue Callee
= CLI
.Callee
;
3716 bool &IsTailCall
= CLI
.IsTailCall
;
3717 CallingConv::ID CallConv
= CLI
.CallConv
;
3718 bool IsVarArg
= CLI
.IsVarArg
;
3720 MachineFunction
&MF
= DAG
.getMachineFunction();
3721 MachineFunction::CallSiteInfo CSInfo
;
3722 bool IsThisReturn
= false;
3724 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3725 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
3726 bool IsSibCall
= false;
3729 // Check if it's really possible to do a tail call.
3730 IsTailCall
= isEligibleForTailCallOptimization(
3731 Callee
, CallConv
, IsVarArg
, Outs
, OutVals
, Ins
, DAG
);
3732 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3733 report_fatal_error("failed to perform tail call elimination on a call "
3734 "site marked musttail");
3736 // A sibling call is one where we're under the usual C ABI and not planning
3737 // to change that but can still do a tail call:
3738 if (!TailCallOpt
&& IsTailCall
)
3745 // Analyze operands of the call, assigning locations to each operand.
3746 SmallVector
<CCValAssign
, 16> ArgLocs
;
3747 CCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3751 // Handle fixed and variable vector arguments differently.
3752 // Variable vector arguments always go into memory.
3753 unsigned NumArgs
= Outs
.size();
3755 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3756 MVT ArgVT
= Outs
[i
].VT
;
3757 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
3758 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
,
3759 /*IsVarArg=*/ !Outs
[i
].IsFixed
);
3760 bool Res
= AssignFn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, CCInfo
);
3761 assert(!Res
&& "Call operand has unhandled type");
3765 // At this point, Outs[].VT may already be promoted to i32. To correctly
3766 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3767 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3768 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3769 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3771 unsigned NumArgs
= Outs
.size();
3772 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3773 MVT ValVT
= Outs
[i
].VT
;
3774 // Get type of the original argument.
3775 EVT ActualVT
= getValueType(DAG
.getDataLayout(),
3776 CLI
.getArgs()[Outs
[i
].OrigArgIndex
].Ty
,
3777 /*AllowUnknown*/ true);
3778 MVT ActualMVT
= ActualVT
.isSimple() ? ActualVT
.getSimpleVT() : ValVT
;
3779 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
3780 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3781 if (ActualMVT
== MVT::i1
|| ActualMVT
== MVT::i8
)
3783 else if (ActualMVT
== MVT::i16
)
3786 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
, /*IsVarArg=*/false);
3787 bool Res
= AssignFn(i
, ValVT
, ValVT
, CCValAssign::Full
, ArgFlags
, CCInfo
);
3788 assert(!Res
&& "Call operand has unhandled type");
3793 // Get a count of how many bytes are to be pushed on the stack.
3794 unsigned NumBytes
= CCInfo
.getNextStackOffset();
3797 // Since we're not changing the ABI to make this a tail call, the memory
3798 // operands are already available in the caller's incoming argument space.
3802 // FPDiff is the byte offset of the call's argument area from the callee's.
3803 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3804 // by this amount for a tail call. In a sibling call it must be 0 because the
3805 // caller will deallocate the entire stack and the callee still expects its
3806 // arguments to begin at SP+0. Completely unused for non-tail calls.
3809 if (IsTailCall
&& !IsSibCall
) {
3810 unsigned NumReusableBytes
= FuncInfo
->getBytesInStackArgArea();
3812 // Since callee will pop argument stack as a tail call, we must keep the
3813 // popped size 16-byte aligned.
3814 NumBytes
= alignTo(NumBytes
, 16);
3816 // FPDiff will be negative if this tail call requires more space than we
3817 // would automatically have in our incoming argument space. Positive if we
3818 // can actually shrink the stack.
3819 FPDiff
= NumReusableBytes
- NumBytes
;
3821 // The stack pointer must be 16-byte aligned at all times it's used for a
3822 // memory operation, which in practice means at *all* times and in
3823 // particular across call boundaries. Therefore our own arguments started at
3824 // a 16-byte aligned SP and the delta applied for the tail call should
3825 // satisfy the same constraint.
3826 assert(FPDiff
% 16 == 0 && "unaligned stack on tail call");
3829 // Adjust the stack pointer for the new arguments...
3830 // These operations are automatically eliminated by the prolog/epilog pass
3832 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, DL
);
3834 SDValue StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, AArch64::SP
,
3835 getPointerTy(DAG
.getDataLayout()));
3837 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
3838 SmallSet
<unsigned, 8> RegsUsed
;
3839 SmallVector
<SDValue
, 8> MemOpChains
;
3840 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3842 if (IsVarArg
&& CLI
.CS
&& CLI
.CS
.isMustTailCall()) {
3843 const auto &Forwards
= FuncInfo
->getForwardedMustTailRegParms();
3844 for (const auto &F
: Forwards
) {
3845 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, F
.VReg
, F
.VT
);
3846 RegsToPass
.emplace_back(F
.PReg
, Val
);
3850 // Walk the register/memloc assignments, inserting copies/loads.
3851 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size(); i
!= e
;
3852 ++i
, ++realArgIdx
) {
3853 CCValAssign
&VA
= ArgLocs
[i
];
3854 SDValue Arg
= OutVals
[realArgIdx
];
3855 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
3857 // Promote the value if needed.
3858 switch (VA
.getLocInfo()) {
3860 llvm_unreachable("Unknown loc info!");
3861 case CCValAssign::Full
:
3863 case CCValAssign::SExt
:
3864 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3866 case CCValAssign::ZExt
:
3867 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3869 case CCValAssign::AExt
:
3870 if (Outs
[realArgIdx
].ArgVT
== MVT::i1
) {
3871 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3872 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Arg
);
3873 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i8
, Arg
);
3875 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3877 case CCValAssign::AExtUpper
:
3878 assert(VA
.getValVT() == MVT::i32
&& "only expect 32 -> 64 upper bits");
3879 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3880 Arg
= DAG
.getNode(ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3881 DAG
.getConstant(32, DL
, VA
.getLocVT()));
3883 case CCValAssign::BCvt
:
3884 Arg
= DAG
.getBitcast(VA
.getLocVT(), Arg
);
3886 case CCValAssign::Trunc
:
3887 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
3889 case CCValAssign::FPExt
:
3890 Arg
= DAG
.getNode(ISD::FP_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3892 case CCValAssign::Indirect
:
3893 assert(VA
.getValVT().isScalableVector() &&
3894 "Only scalable vectors can be passed indirectly");
3895 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3898 if (VA
.isRegLoc()) {
3899 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
3900 Outs
[0].VT
== MVT::i64
) {
3901 assert(VA
.getLocVT() == MVT::i64
&&
3902 "unexpected calling convention register assignment");
3903 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i64
&&
3904 "unexpected use of 'returned'");
3905 IsThisReturn
= true;
3907 if (RegsUsed
.count(VA
.getLocReg())) {
3908 // If this register has already been used then we're trying to pack
3909 // parts of an [N x i32] into an X-register. The extension type will
3910 // take care of putting the two halves in the right place but we have to
3913 std::find_if(RegsToPass
.begin(), RegsToPass
.end(),
3914 [=](const std::pair
<unsigned, SDValue
> &Elt
) {
3915 return Elt
.first
== VA
.getLocReg();
3918 Bits
= DAG
.getNode(ISD::OR
, DL
, Bits
.getValueType(), Bits
, Arg
);
3919 // Call site info is used for function's parameter entry value
3920 // tracking. For now we track only simple cases when parameter
3921 // is transferred through whole register.
3922 CSInfo
.erase(std::remove_if(CSInfo
.begin(), CSInfo
.end(),
3923 [&VA
](MachineFunction::ArgRegPair ArgReg
) {
3924 return ArgReg
.Reg
== VA
.getLocReg();
3928 RegsToPass
.emplace_back(VA
.getLocReg(), Arg
);
3929 RegsUsed
.insert(VA
.getLocReg());
3930 const TargetOptions
&Options
= DAG
.getTarget().Options
;
3931 if (Options
.EnableDebugEntryValues
)
3932 CSInfo
.emplace_back(VA
.getLocReg(), i
);
3935 assert(VA
.isMemLoc());
3938 MachinePointerInfo DstInfo
;
3940 // FIXME: This works on big-endian for composite byvals, which are the
3941 // common case. It should also work for fundamental types too.
3942 uint32_t BEAlign
= 0;
3943 unsigned OpSize
= Flags
.isByVal() ? Flags
.getByValSize() * 8
3944 : VA
.getValVT().getSizeInBits();
3945 OpSize
= (OpSize
+ 7) / 8;
3946 if (!Subtarget
->isLittleEndian() && !Flags
.isByVal() &&
3947 !Flags
.isInConsecutiveRegs()) {
3949 BEAlign
= 8 - OpSize
;
3951 unsigned LocMemOffset
= VA
.getLocMemOffset();
3952 int32_t Offset
= LocMemOffset
+ BEAlign
;
3953 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, DL
);
3954 PtrOff
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
, PtrOff
);
3957 Offset
= Offset
+ FPDiff
;
3958 int FI
= MF
.getFrameInfo().CreateFixedObject(OpSize
, Offset
, true);
3960 DstAddr
= DAG
.getFrameIndex(FI
, PtrVT
);
3962 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
3964 // Make sure any stack arguments overlapping with where we're storing
3965 // are loaded before this eventual operation. Otherwise they'll be
3967 Chain
= addTokenForArgument(Chain
, DAG
, MF
.getFrameInfo(), FI
);
3969 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, DL
);
3971 DstAddr
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
, PtrOff
);
3972 DstInfo
= MachinePointerInfo::getStack(DAG
.getMachineFunction(),
3976 if (Outs
[i
].Flags
.isByVal()) {
3978 DAG
.getConstant(Outs
[i
].Flags
.getByValSize(), DL
, MVT::i64
);
3979 SDValue Cpy
= DAG
.getMemcpy(
3980 Chain
, DL
, DstAddr
, Arg
, SizeNode
, Outs
[i
].Flags
.getByValAlign(),
3981 /*isVol = */ false, /*AlwaysInline = */ false,
3982 /*isTailCall = */ false,
3983 DstInfo
, MachinePointerInfo());
3985 MemOpChains
.push_back(Cpy
);
3987 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3988 // promoted to a legal register type i32, we should truncate Arg back to
3990 if (VA
.getValVT() == MVT::i1
|| VA
.getValVT() == MVT::i8
||
3991 VA
.getValVT() == MVT::i16
)
3992 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Arg
);
3994 SDValue Store
= DAG
.getStore(Chain
, DL
, Arg
, DstAddr
, DstInfo
);
3995 MemOpChains
.push_back(Store
);
4000 if (!MemOpChains
.empty())
4001 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
4003 // Build a sequence of copy-to-reg nodes chained together with token chain
4004 // and flag operands which copy the outgoing args into the appropriate regs.
4006 for (auto &RegToPass
: RegsToPass
) {
4007 Chain
= DAG
.getCopyToReg(Chain
, DL
, RegToPass
.first
,
4008 RegToPass
.second
, InFlag
);
4009 InFlag
= Chain
.getValue(1);
4012 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
4013 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
4014 // node so that legalize doesn't hack it.
4015 if (auto *G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
4016 auto GV
= G
->getGlobal();
4017 if (Subtarget
->classifyGlobalFunctionReference(GV
, getTargetMachine()) ==
4018 AArch64II::MO_GOT
) {
4019 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_GOT
);
4020 Callee
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, Callee
);
4021 } else if (Subtarget
->isTargetCOFF() && GV
->hasDLLImportStorageClass()) {
4022 assert(Subtarget
->isTargetWindows() &&
4023 "Windows is the only supported COFF target");
4024 Callee
= getGOT(G
, DAG
, AArch64II::MO_DLLIMPORT
);
4026 const GlobalValue
*GV
= G
->getGlobal();
4027 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, 0);
4029 } else if (auto *S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
4030 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
4031 Subtarget
->isTargetMachO()) {
4032 const char *Sym
= S
->getSymbol();
4033 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, AArch64II::MO_GOT
);
4034 Callee
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, Callee
);
4036 const char *Sym
= S
->getSymbol();
4037 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, 0);
4041 // We don't usually want to end the call-sequence here because we would tidy
4042 // the frame up *after* the call, however in the ABI-changing tail-call case
4043 // we've carefully laid out the parameters so that when sp is reset they'll be
4044 // in the correct location.
4045 if (IsTailCall
&& !IsSibCall
) {
4046 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, DL
, true),
4047 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
4048 InFlag
= Chain
.getValue(1);
4051 std::vector
<SDValue
> Ops
;
4052 Ops
.push_back(Chain
);
4053 Ops
.push_back(Callee
);
4056 // Each tail call may have to adjust the stack by a different amount, so
4057 // this information must travel along with the operation for eventual
4058 // consumption by emitEpilogue.
4059 Ops
.push_back(DAG
.getTargetConstant(FPDiff
, DL
, MVT::i32
));
4062 // Add argument registers to the end of the list so that they are known live
4064 for (auto &RegToPass
: RegsToPass
)
4065 Ops
.push_back(DAG
.getRegister(RegToPass
.first
,
4066 RegToPass
.second
.getValueType()));
4068 // Check callee args/returns for SVE registers and set calling convention
4070 if (CallConv
== CallingConv::C
) {
4071 bool CalleeOutSVE
= any_of(Outs
, [](ISD::OutputArg
&Out
){
4072 return Out
.VT
.isScalableVector();
4074 bool CalleeInSVE
= any_of(Ins
, [](ISD::InputArg
&In
){
4075 return In
.VT
.isScalableVector();
4078 if (CalleeInSVE
|| CalleeOutSVE
)
4079 CallConv
= CallingConv::AArch64_SVE_VectorCall
;
4082 // Add a register mask operand representing the call-preserved registers.
4083 const uint32_t *Mask
;
4084 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4086 // For 'this' returns, use the X0-preserving mask if applicable
4087 Mask
= TRI
->getThisReturnPreservedMask(MF
, CallConv
);
4089 IsThisReturn
= false;
4090 Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
4093 Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
4095 if (Subtarget
->hasCustomCallingConv())
4096 TRI
->UpdateCustomCallPreservedMask(MF
, &Mask
);
4098 if (TRI
->isAnyArgRegReserved(MF
))
4099 TRI
->emitReservedArgRegCallError(MF
);
4101 assert(Mask
&& "Missing call preserved mask for calling convention");
4102 Ops
.push_back(DAG
.getRegisterMask(Mask
));
4104 if (InFlag
.getNode())
4105 Ops
.push_back(InFlag
);
4107 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4109 // If we're doing a tall call, use a TC_RETURN here rather than an
4110 // actual call instruction.
4112 MF
.getFrameInfo().setHasTailCall();
4113 SDValue Ret
= DAG
.getNode(AArch64ISD::TC_RETURN
, DL
, NodeTys
, Ops
);
4114 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
4118 // Returns a chain and a flag for retval copy to use.
4119 Chain
= DAG
.getNode(AArch64ISD::CALL
, DL
, NodeTys
, Ops
);
4120 InFlag
= Chain
.getValue(1);
4121 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
4123 uint64_t CalleePopBytes
=
4124 DoesCalleeRestoreStack(CallConv
, TailCallOpt
) ? alignTo(NumBytes
, 16) : 0;
4126 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, DL
, true),
4127 DAG
.getIntPtrConstant(CalleePopBytes
, DL
, true),
4130 InFlag
= Chain
.getValue(1);
4132 // Handle result values, copying them out of physregs into vregs that we
4134 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
4135 InVals
, IsThisReturn
,
4136 IsThisReturn
? OutVals
[0] : SDValue());
4139 bool AArch64TargetLowering::CanLowerReturn(
4140 CallingConv::ID CallConv
, MachineFunction
&MF
, bool isVarArg
,
4141 const SmallVectorImpl
<ISD::OutputArg
> &Outs
, LLVMContext
&Context
) const {
4142 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
4143 ? RetCC_AArch64_WebKit_JS
4144 : RetCC_AArch64_AAPCS
;
4145 SmallVector
<CCValAssign
, 16> RVLocs
;
4146 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
4147 return CCInfo
.CheckReturn(Outs
, RetCC
);
4151 AArch64TargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
4153 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
4154 const SmallVectorImpl
<SDValue
> &OutVals
,
4155 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
4156 auto &MF
= DAG
.getMachineFunction();
4157 auto *FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
4159 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
4160 ? RetCC_AArch64_WebKit_JS
4161 : RetCC_AArch64_AAPCS
;
4162 SmallVector
<CCValAssign
, 16> RVLocs
;
4163 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
4165 CCInfo
.AnalyzeReturn(Outs
, RetCC
);
4167 // Copy the result values into the output registers.
4169 SmallVector
<std::pair
<unsigned, SDValue
>, 4> RetVals
;
4170 SmallSet
<unsigned, 4> RegsUsed
;
4171 for (unsigned i
= 0, realRVLocIdx
= 0; i
!= RVLocs
.size();
4172 ++i
, ++realRVLocIdx
) {
4173 CCValAssign
&VA
= RVLocs
[i
];
4174 assert(VA
.isRegLoc() && "Can only return in registers!");
4175 SDValue Arg
= OutVals
[realRVLocIdx
];
4177 switch (VA
.getLocInfo()) {
4179 llvm_unreachable("Unknown loc info!");
4180 case CCValAssign::Full
:
4181 if (Outs
[i
].ArgVT
== MVT::i1
) {
4182 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4183 // value. This is strictly redundant on Darwin (which uses "zeroext
4184 // i1"), but will be optimised out before ISel.
4185 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Arg
);
4186 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4189 case CCValAssign::BCvt
:
4190 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Arg
);
4192 case CCValAssign::AExt
:
4193 case CCValAssign::ZExt
:
4194 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4196 case CCValAssign::AExtUpper
:
4197 assert(VA
.getValVT() == MVT::i32
&& "only expect 32 -> 64 upper bits");
4198 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4199 Arg
= DAG
.getNode(ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
4200 DAG
.getConstant(32, DL
, VA
.getLocVT()));
4204 if (RegsUsed
.count(VA
.getLocReg())) {
4206 std::find_if(RetVals
.begin(), RetVals
.end(),
4207 [=](const std::pair
<unsigned, SDValue
> &Elt
) {
4208 return Elt
.first
== VA
.getLocReg();
4211 Bits
= DAG
.getNode(ISD::OR
, DL
, Bits
.getValueType(), Bits
, Arg
);
4213 RetVals
.emplace_back(VA
.getLocReg(), Arg
);
4214 RegsUsed
.insert(VA
.getLocReg());
4218 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
4219 for (auto &RetVal
: RetVals
) {
4220 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetVal
.first
, RetVal
.second
, Flag
);
4221 Flag
= Chain
.getValue(1);
4223 DAG
.getRegister(RetVal
.first
, RetVal
.second
.getValueType()));
4226 // Windows AArch64 ABIs require that for returning structs by value we copy
4227 // the sret argument into X0 for the return.
4228 // We saved the argument into a virtual register in the entry block,
4229 // so now we copy the value out and into X0.
4230 if (unsigned SRetReg
= FuncInfo
->getSRetReturnReg()) {
4231 SDValue Val
= DAG
.getCopyFromReg(RetOps
[0], DL
, SRetReg
,
4232 getPointerTy(MF
.getDataLayout()));
4234 unsigned RetValReg
= AArch64::X0
;
4235 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetValReg
, Val
, Flag
);
4236 Flag
= Chain
.getValue(1);
4239 DAG
.getRegister(RetValReg
, getPointerTy(DAG
.getDataLayout())));
4242 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4243 const MCPhysReg
*I
=
4244 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
4247 if (AArch64::GPR64RegClass
.contains(*I
))
4248 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i64
));
4249 else if (AArch64::FPR64RegClass
.contains(*I
))
4250 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
4252 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4256 RetOps
[0] = Chain
; // Update chain.
4258 // Add the flag if we have it.
4260 RetOps
.push_back(Flag
);
4262 return DAG
.getNode(AArch64ISD::RET_FLAG
, DL
, MVT::Other
, RetOps
);
4265 //===----------------------------------------------------------------------===//
4266 // Other Lowering Code
4267 //===----------------------------------------------------------------------===//
4269 SDValue
AArch64TargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
4271 unsigned Flag
) const {
4272 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
,
4273 N
->getOffset(), Flag
);
4276 SDValue
AArch64TargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
4278 unsigned Flag
) const {
4279 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
4282 SDValue
AArch64TargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
4284 unsigned Flag
) const {
4285 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
4286 N
->getOffset(), Flag
);
4289 SDValue
AArch64TargetLowering::getTargetNode(BlockAddressSDNode
* N
, EVT Ty
,
4291 unsigned Flag
) const {
4292 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
4296 template <class NodeTy
>
4297 SDValue
AArch64TargetLowering::getGOT(NodeTy
*N
, SelectionDAG
&DAG
,
4298 unsigned Flags
) const {
4299 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4301 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4302 SDValue GotAddr
= getTargetNode(N
, Ty
, DAG
, AArch64II::MO_GOT
| Flags
);
4303 // FIXME: Once remat is capable of dealing with instructions with register
4304 // operands, expand this into two nodes instead of using a wrapper node.
4305 return DAG
.getNode(AArch64ISD::LOADgot
, DL
, Ty
, GotAddr
);
4308 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4309 template <class NodeTy
>
4310 SDValue
AArch64TargetLowering::getAddrLarge(NodeTy
*N
, SelectionDAG
&DAG
,
4311 unsigned Flags
) const {
4312 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4314 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4315 const unsigned char MO_NC
= AArch64II::MO_NC
;
4317 AArch64ISD::WrapperLarge
, DL
, Ty
,
4318 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G3
| Flags
),
4319 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G2
| MO_NC
| Flags
),
4320 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G1
| MO_NC
| Flags
),
4321 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G0
| MO_NC
| Flags
));
4324 // (addlow (adrp %hi(sym)) %lo(sym))
4325 template <class NodeTy
>
4326 SDValue
AArch64TargetLowering::getAddr(NodeTy
*N
, SelectionDAG
&DAG
,
4327 unsigned Flags
) const {
4328 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4330 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4331 SDValue Hi
= getTargetNode(N
, Ty
, DAG
, AArch64II::MO_PAGE
| Flags
);
4332 SDValue Lo
= getTargetNode(N
, Ty
, DAG
,
4333 AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
| Flags
);
4334 SDValue ADRP
= DAG
.getNode(AArch64ISD::ADRP
, DL
, Ty
, Hi
);
4335 return DAG
.getNode(AArch64ISD::ADDlow
, DL
, Ty
, ADRP
, Lo
);
4339 template <class NodeTy
>
4340 SDValue
AArch64TargetLowering::getAddrTiny(NodeTy
*N
, SelectionDAG
&DAG
,
4341 unsigned Flags
) const {
4342 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4344 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4345 SDValue Sym
= getTargetNode(N
, Ty
, DAG
, Flags
);
4346 return DAG
.getNode(AArch64ISD::ADR
, DL
, Ty
, Sym
);
4349 SDValue
AArch64TargetLowering::LowerGlobalAddress(SDValue Op
,
4350 SelectionDAG
&DAG
) const {
4351 GlobalAddressSDNode
*GN
= cast
<GlobalAddressSDNode
>(Op
);
4352 const GlobalValue
*GV
= GN
->getGlobal();
4353 unsigned OpFlags
= Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4355 if (OpFlags
!= AArch64II::MO_NO_FLAG
)
4356 assert(cast
<GlobalAddressSDNode
>(Op
)->getOffset() == 0 &&
4357 "unexpected offset in global node");
4359 // This also catches the large code model case for Darwin, and tiny code
4360 // model with got relocations.
4361 if ((OpFlags
& AArch64II::MO_GOT
) != 0) {
4362 return getGOT(GN
, DAG
, OpFlags
);
4366 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
4367 Result
= getAddrLarge(GN
, DAG
, OpFlags
);
4368 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
4369 Result
= getAddrTiny(GN
, DAG
, OpFlags
);
4371 Result
= getAddr(GN
, DAG
, OpFlags
);
4373 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4375 if (OpFlags
& (AArch64II::MO_DLLIMPORT
| AArch64II::MO_COFFSTUB
))
4376 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
4377 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
4381 /// Convert a TLS address reference into the correct sequence of loads
4382 /// and calls to compute the variable's address (for Darwin, currently) and
4383 /// return an SDValue containing the final node.
4385 /// Darwin only has one TLS scheme which must be capable of dealing with the
4386 /// fully general situation, in the worst case. This means:
4387 /// + "extern __thread" declaration.
4388 /// + Defined in a possibly unknown dynamic library.
4390 /// The general system is that each __thread variable has a [3 x i64] descriptor
4391 /// which contains information used by the runtime to calculate the address. The
4392 /// only part of this the compiler needs to know about is the first xword, which
4393 /// contains a function pointer that must be called with the address of the
4394 /// entire descriptor in "x0".
4396 /// Since this descriptor may be in a different unit, in general even the
4397 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4399 /// adrp x0, _var@TLVPPAGE
4400 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
4401 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
4402 /// ; the function pointer
4403 /// blr x1 ; Uses descriptor address in x0
4404 /// ; Address of _var is now in x0.
4406 /// If the address of _var's descriptor *is* known to the linker, then it can
4407 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4408 /// a slight efficiency gain.
4410 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op
,
4411 SelectionDAG
&DAG
) const {
4412 assert(Subtarget
->isTargetDarwin() &&
4413 "This function expects a Darwin target");
4416 MVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4417 MVT PtrMemVT
= getPointerMemTy(DAG
.getDataLayout());
4418 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4421 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4422 SDValue DescAddr
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, TLVPAddr
);
4424 // The first entry in the descriptor is a function pointer that we must call
4425 // to obtain the address of the variable.
4426 SDValue Chain
= DAG
.getEntryNode();
4427 SDValue FuncTLVGet
= DAG
.getLoad(
4428 PtrMemVT
, DL
, Chain
, DescAddr
,
4429 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
4430 /* Alignment = */ PtrMemVT
.getSizeInBits() / 8,
4431 MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
4432 Chain
= FuncTLVGet
.getValue(1);
4434 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
4435 FuncTLVGet
= DAG
.getZExtOrTrunc(FuncTLVGet
, DL
, PtrVT
);
4437 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
4438 MFI
.setAdjustsStack(true);
4440 // TLS calls preserve all registers except those that absolutely must be
4441 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4443 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4444 const uint32_t *Mask
= TRI
->getTLSCallPreservedMask();
4445 if (Subtarget
->hasCustomCallingConv())
4446 TRI
->UpdateCustomCallPreservedMask(DAG
.getMachineFunction(), &Mask
);
4448 // Finally, we can make the call. This is just a degenerate version of a
4449 // normal AArch64 call node: x0 takes the address of the descriptor, and
4450 // returns the address of the variable in this thread.
4451 Chain
= DAG
.getCopyToReg(Chain
, DL
, AArch64::X0
, DescAddr
, SDValue());
4453 DAG
.getNode(AArch64ISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
4454 Chain
, FuncTLVGet
, DAG
.getRegister(AArch64::X0
, MVT::i64
),
4455 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
4456 return DAG
.getCopyFromReg(Chain
, DL
, AArch64::X0
, PtrVT
, Chain
.getValue(1));
4459 /// When accessing thread-local variables under either the general-dynamic or
4460 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4461 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4462 /// is a function pointer to carry out the resolution.
4464 /// The sequence is:
4465 /// adrp x0, :tlsdesc:var
4466 /// ldr x1, [x0, #:tlsdesc_lo12:var]
4467 /// add x0, x0, #:tlsdesc_lo12:var
4468 /// .tlsdesccall var
4470 /// (TPIDR_EL0 offset now in x0)
4472 /// The above sequence must be produced unscheduled, to enable the linker to
4473 /// optimize/relax this sequence.
4474 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4475 /// above sequence, and expanded really late in the compilation flow, to ensure
4476 /// the sequence is produced as per above.
4477 SDValue
AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr
,
4479 SelectionDAG
&DAG
) const {
4480 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4482 SDValue Chain
= DAG
.getEntryNode();
4483 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4486 DAG
.getNode(AArch64ISD::TLSDESC_CALLSEQ
, DL
, NodeTys
, {Chain
, SymAddr
});
4487 SDValue Glue
= Chain
.getValue(1);
4489 return DAG
.getCopyFromReg(Chain
, DL
, AArch64::X0
, PtrVT
, Glue
);
4493 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op
,
4494 SelectionDAG
&DAG
) const {
4495 assert(Subtarget
->isTargetELF() && "This function expects an ELF target");
4496 if (getTargetMachine().getCodeModel() == CodeModel::Large
)
4497 report_fatal_error("ELF TLS only supported in small memory model");
4498 // Different choices can be made for the maximum size of the TLS area for a
4499 // module. For the small address model, the default TLS size is 16MiB and the
4500 // maximum TLS size is 4GiB.
4501 // FIXME: add -mtls-size command line option and make it control the 16MiB
4502 // vs. 4GiB code sequence generation.
4503 // FIXME: add tiny codemodel support. We currently generate the same code as
4504 // small, which may be larger than needed.
4505 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4507 TLSModel::Model Model
= getTargetMachine().getTLSModel(GA
->getGlobal());
4509 if (!EnableAArch64ELFLocalDynamicTLSGeneration
) {
4510 if (Model
== TLSModel::LocalDynamic
)
4511 Model
= TLSModel::GeneralDynamic
;
4515 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4517 const GlobalValue
*GV
= GA
->getGlobal();
4519 SDValue ThreadBase
= DAG
.getNode(AArch64ISD::THREAD_POINTER
, DL
, PtrVT
);
4521 if (Model
== TLSModel::LocalExec
) {
4522 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4523 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4524 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4526 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4528 SDValue TPWithOff_lo
=
4529 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, ThreadBase
,
4531 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4534 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPWithOff_lo
,
4536 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4539 } else if (Model
== TLSModel::InitialExec
) {
4540 TPOff
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4541 TPOff
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, TPOff
);
4542 } else if (Model
== TLSModel::LocalDynamic
) {
4543 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4544 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4545 // the beginning of the module's TLS region, followed by a DTPREL offset
4548 // These accesses will need deduplicating if there's more than one.
4549 AArch64FunctionInfo
*MFI
=
4550 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
4551 MFI
->incNumLocalDynamicTLSAccesses();
4553 // The call needs a relocation too for linker relaxation. It doesn't make
4554 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4556 SDValue SymAddr
= DAG
.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT
,
4559 // Now we can calculate the offset from TPIDR_EL0 to this module's
4560 // thread-local area.
4561 TPOff
= LowerELFTLSDescCallSeq(SymAddr
, DL
, DAG
);
4563 // Now use :dtprel_whatever: operations to calculate this variable's offset
4564 // in its thread-storage area.
4565 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4566 GV
, DL
, MVT::i64
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4567 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4568 GV
, DL
, MVT::i64
, 0,
4569 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4571 TPOff
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPOff
, HiVar
,
4572 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4574 TPOff
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPOff
, LoVar
,
4575 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4577 } else if (Model
== TLSModel::GeneralDynamic
) {
4578 // The call needs a relocation too for linker relaxation. It doesn't make
4579 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4582 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4584 // Finally we can make a call to calculate the offset from tpidr_el0.
4585 TPOff
= LowerELFTLSDescCallSeq(SymAddr
, DL
, DAG
);
4587 llvm_unreachable("Unsupported ELF TLS access model");
4589 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadBase
, TPOff
);
4593 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op
,
4594 SelectionDAG
&DAG
) const {
4595 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
4597 SDValue Chain
= DAG
.getEntryNode();
4598 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4601 SDValue TEB
= DAG
.getRegister(AArch64::X18
, MVT::i64
);
4603 // Load the ThreadLocalStoragePointer from the TEB
4604 // A pointer to the TLS array is located at offset 0x58 from the TEB.
4606 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x58, DL
));
4607 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
4608 Chain
= TLSArray
.getValue(1);
4610 // Load the TLS index from the C runtime;
4611 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4612 // This also does the same as LOADgot, but using a generic i32 load,
4613 // while LOADgot only loads i64.
4614 SDValue TLSIndexHi
=
4615 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, AArch64II::MO_PAGE
);
4616 SDValue TLSIndexLo
= DAG
.getTargetExternalSymbol(
4617 "_tls_index", PtrVT
, AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4618 SDValue ADRP
= DAG
.getNode(AArch64ISD::ADRP
, DL
, PtrVT
, TLSIndexHi
);
4620 DAG
.getNode(AArch64ISD::ADDlow
, DL
, PtrVT
, ADRP
, TLSIndexLo
);
4621 TLSIndex
= DAG
.getLoad(MVT::i32
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
4622 Chain
= TLSIndex
.getValue(1);
4624 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4625 // offset into the TLSArray.
4626 TLSIndex
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, PtrVT
, TLSIndex
);
4627 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
4628 DAG
.getConstant(3, DL
, PtrVT
));
4629 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
4630 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
4631 MachinePointerInfo());
4632 Chain
= TLS
.getValue(1);
4634 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4635 const GlobalValue
*GV
= GA
->getGlobal();
4636 SDValue TGAHi
= DAG
.getTargetGlobalAddress(
4637 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4638 SDValue TGALo
= DAG
.getTargetGlobalAddress(
4640 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4642 // Add the offset from the start of the .tls section (section base).
4644 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TLS
, TGAHi
,
4645 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4647 Addr
= DAG
.getNode(AArch64ISD::ADDlow
, DL
, PtrVT
, Addr
, TGALo
);
4651 SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op
,
4652 SelectionDAG
&DAG
) const {
4653 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4654 if (DAG
.getTarget().useEmulatedTLS())
4655 return LowerToTLSEmulatedModel(GA
, DAG
);
4657 if (Subtarget
->isTargetDarwin())
4658 return LowerDarwinGlobalTLSAddress(Op
, DAG
);
4659 if (Subtarget
->isTargetELF())
4660 return LowerELFGlobalTLSAddress(Op
, DAG
);
4661 if (Subtarget
->isTargetWindows())
4662 return LowerWindowsGlobalTLSAddress(Op
, DAG
);
4664 llvm_unreachable("Unexpected platform trying to use TLS");
4667 SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4668 SDValue Chain
= Op
.getOperand(0);
4669 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4670 SDValue LHS
= Op
.getOperand(2);
4671 SDValue RHS
= Op
.getOperand(3);
4672 SDValue Dest
= Op
.getOperand(4);
4675 MachineFunction
&MF
= DAG
.getMachineFunction();
4676 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4677 // will not be produced, as they are conditional branch instructions that do
4679 bool ProduceNonFlagSettingCondBr
=
4680 !MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
);
4682 // Handle f128 first, since lowering it will result in comparing the return
4683 // value of a libcall against zero, which is just what the rest of LowerBR_CC
4684 // is expecting to deal with.
4685 if (LHS
.getValueType() == MVT::f128
) {
4686 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4688 // If softenSetCCOperands returned a scalar, we need to compare the result
4689 // against zero to select between true and false values.
4690 if (!RHS
.getNode()) {
4691 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4696 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4698 if (isOverflowIntrOpRes(LHS
) && isOneConstant(RHS
) &&
4699 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
4700 // Only lower legal XALUO ops.
4701 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
4704 // The actual operation with overflow check.
4705 AArch64CC::CondCode OFCC
;
4706 SDValue Value
, Overflow
;
4707 std::tie(Value
, Overflow
) = getAArch64XALUOOp(OFCC
, LHS
.getValue(0), DAG
);
4709 if (CC
== ISD::SETNE
)
4710 OFCC
= getInvertedCondCode(OFCC
);
4711 SDValue CCVal
= DAG
.getConstant(OFCC
, dl
, MVT::i32
);
4713 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CCVal
,
4717 if (LHS
.getValueType().isInteger()) {
4718 assert((LHS
.getValueType() == RHS
.getValueType()) &&
4719 (LHS
.getValueType() == MVT::i32
|| LHS
.getValueType() == MVT::i64
));
4721 // If the RHS of the comparison is zero, we can potentially fold this
4722 // to a specialized branch.
4723 const ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
4724 if (RHSC
&& RHSC
->getZExtValue() == 0 && ProduceNonFlagSettingCondBr
) {
4725 if (CC
== ISD::SETEQ
) {
4726 // See if we can use a TBZ to fold in an AND as well.
4727 // TBZ has a smaller branch displacement than CBZ. If the offset is
4728 // out of bounds, a late MI-layer pass rewrites branches.
4729 // 403.gcc is an example that hits this case.
4730 if (LHS
.getOpcode() == ISD::AND
&&
4731 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4732 isPowerOf2_64(LHS
.getConstantOperandVal(1))) {
4733 SDValue Test
= LHS
.getOperand(0);
4734 uint64_t Mask
= LHS
.getConstantOperandVal(1);
4735 return DAG
.getNode(AArch64ISD::TBZ
, dl
, MVT::Other
, Chain
, Test
,
4736 DAG
.getConstant(Log2_64(Mask
), dl
, MVT::i64
),
4740 return DAG
.getNode(AArch64ISD::CBZ
, dl
, MVT::Other
, Chain
, LHS
, Dest
);
4741 } else if (CC
== ISD::SETNE
) {
4742 // See if we can use a TBZ to fold in an AND as well.
4743 // TBZ has a smaller branch displacement than CBZ. If the offset is
4744 // out of bounds, a late MI-layer pass rewrites branches.
4745 // 403.gcc is an example that hits this case.
4746 if (LHS
.getOpcode() == ISD::AND
&&
4747 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4748 isPowerOf2_64(LHS
.getConstantOperandVal(1))) {
4749 SDValue Test
= LHS
.getOperand(0);
4750 uint64_t Mask
= LHS
.getConstantOperandVal(1);
4751 return DAG
.getNode(AArch64ISD::TBNZ
, dl
, MVT::Other
, Chain
, Test
,
4752 DAG
.getConstant(Log2_64(Mask
), dl
, MVT::i64
),
4756 return DAG
.getNode(AArch64ISD::CBNZ
, dl
, MVT::Other
, Chain
, LHS
, Dest
);
4757 } else if (CC
== ISD::SETLT
&& LHS
.getOpcode() != ISD::AND
) {
4758 // Don't combine AND since emitComparison converts the AND to an ANDS
4759 // (a.k.a. TST) and the test in the test bit and branch instruction
4760 // becomes redundant. This would also increase register pressure.
4761 uint64_t Mask
= LHS
.getValueSizeInBits() - 1;
4762 return DAG
.getNode(AArch64ISD::TBNZ
, dl
, MVT::Other
, Chain
, LHS
,
4763 DAG
.getConstant(Mask
, dl
, MVT::i64
), Dest
);
4766 if (RHSC
&& RHSC
->getSExtValue() == -1 && CC
== ISD::SETGT
&&
4767 LHS
.getOpcode() != ISD::AND
&& ProduceNonFlagSettingCondBr
) {
4768 // Don't combine AND since emitComparison converts the AND to an ANDS
4769 // (a.k.a. TST) and the test in the test bit and branch instruction
4770 // becomes redundant. This would also increase register pressure.
4771 uint64_t Mask
= LHS
.getValueSizeInBits() - 1;
4772 return DAG
.getNode(AArch64ISD::TBZ
, dl
, MVT::Other
, Chain
, LHS
,
4773 DAG
.getConstant(Mask
, dl
, MVT::i64
), Dest
);
4777 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
4778 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CCVal
,
4782 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
4783 LHS
.getValueType() == MVT::f64
);
4785 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4786 // clean. Some of them require two branches to implement.
4787 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
4788 AArch64CC::CondCode CC1
, CC2
;
4789 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
4790 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
4792 DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CC1Val
, Cmp
);
4793 if (CC2
!= AArch64CC::AL
) {
4794 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
4795 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, BR1
, Dest
, CC2Val
,
4802 SDValue
AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op
,
4803 SelectionDAG
&DAG
) const {
4804 EVT VT
= Op
.getValueType();
4807 SDValue In1
= Op
.getOperand(0);
4808 SDValue In2
= Op
.getOperand(1);
4809 EVT SrcVT
= In2
.getValueType();
4811 if (SrcVT
.bitsLT(VT
))
4812 In2
= DAG
.getNode(ISD::FP_EXTEND
, DL
, VT
, In2
);
4813 else if (SrcVT
.bitsGT(VT
))
4814 In2
= DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, In2
, DAG
.getIntPtrConstant(0, DL
));
4818 SDValue VecVal1
, VecVal2
;
4820 auto setVecVal
= [&] (int Idx
) {
4821 if (!VT
.isVector()) {
4822 VecVal1
= DAG
.getTargetInsertSubreg(Idx
, DL
, VecVT
,
4823 DAG
.getUNDEF(VecVT
), In1
);
4824 VecVal2
= DAG
.getTargetInsertSubreg(Idx
, DL
, VecVT
,
4825 DAG
.getUNDEF(VecVT
), In2
);
4827 VecVal1
= DAG
.getNode(ISD::BITCAST
, DL
, VecVT
, In1
);
4828 VecVal2
= DAG
.getNode(ISD::BITCAST
, DL
, VecVT
, In2
);
4832 if (VT
== MVT::f32
|| VT
== MVT::v2f32
|| VT
== MVT::v4f32
) {
4833 VecVT
= (VT
== MVT::v2f32
? MVT::v2i32
: MVT::v4i32
);
4834 EltMask
= 0x80000000ULL
;
4835 setVecVal(AArch64::ssub
);
4836 } else if (VT
== MVT::f64
|| VT
== MVT::v2f64
) {
4839 // We want to materialize a mask with the high bit set, but the AdvSIMD
4840 // immediate moves cannot materialize that in a single instruction for
4841 // 64-bit elements. Instead, materialize zero and then negate it.
4844 setVecVal(AArch64::dsub
);
4845 } else if (VT
== MVT::f16
|| VT
== MVT::v4f16
|| VT
== MVT::v8f16
) {
4846 VecVT
= (VT
== MVT::v4f16
? MVT::v4i16
: MVT::v8i16
);
4847 EltMask
= 0x8000ULL
;
4848 setVecVal(AArch64::hsub
);
4850 llvm_unreachable("Invalid type for copysign!");
4853 SDValue BuildVec
= DAG
.getConstant(EltMask
, DL
, VecVT
);
4855 // If we couldn't materialize the mask above, then the mask vector will be
4856 // the zero vector, and we need to negate it here.
4857 if (VT
== MVT::f64
|| VT
== MVT::v2f64
) {
4858 BuildVec
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f64
, BuildVec
);
4859 BuildVec
= DAG
.getNode(ISD::FNEG
, DL
, MVT::v2f64
, BuildVec
);
4860 BuildVec
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2i64
, BuildVec
);
4864 DAG
.getNode(AArch64ISD::BIT
, DL
, VecVT
, VecVal1
, VecVal2
, BuildVec
);
4867 return DAG
.getTargetExtractSubreg(AArch64::hsub
, DL
, VT
, Sel
);
4869 return DAG
.getTargetExtractSubreg(AArch64::ssub
, DL
, VT
, Sel
);
4870 else if (VT
== MVT::f64
)
4871 return DAG
.getTargetExtractSubreg(AArch64::dsub
, DL
, VT
, Sel
);
4873 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Sel
);
4876 SDValue
AArch64TargetLowering::LowerCTPOP(SDValue Op
, SelectionDAG
&DAG
) const {
4877 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
4878 Attribute::NoImplicitFloat
))
4881 if (!Subtarget
->hasNEON())
4884 // While there is no integer popcount instruction, it can
4885 // be more efficiently lowered to the following sequence that uses
4886 // AdvSIMD registers/instructions as long as the copies to/from
4887 // the AdvSIMD registers are cheap.
4888 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
4889 // CNT V0.8B, V0.8B // 8xbyte pop-counts
4890 // ADDV B0, V0.8B // sum 8xbyte pop-counts
4891 // UMOV X0, V0.B[0] // copy byte result back to integer reg
4892 SDValue Val
= Op
.getOperand(0);
4894 EVT VT
= Op
.getValueType();
4896 if (VT
== MVT::i32
|| VT
== MVT::i64
) {
4898 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, Val
);
4899 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v8i8
, Val
);
4901 SDValue CtPop
= DAG
.getNode(ISD::CTPOP
, DL
, MVT::v8i8
, Val
);
4902 SDValue UaddLV
= DAG
.getNode(
4903 ISD::INTRINSIC_WO_CHAIN
, DL
, MVT::i32
,
4904 DAG
.getConstant(Intrinsic::aarch64_neon_uaddlv
, DL
, MVT::i32
), CtPop
);
4907 UaddLV
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, UaddLV
);
4911 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
4912 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
4913 "Unexpected type for custom ctpop lowering");
4915 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
4916 Val
= DAG
.getBitcast(VT8Bit
, Val
);
4917 Val
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Val
);
4919 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
4920 unsigned EltSize
= 8;
4921 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
4922 while (EltSize
!= VT
.getScalarSizeInBits()) {
4925 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
4927 ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
,
4928 DAG
.getConstant(Intrinsic::aarch64_neon_uaddlp
, DL
, MVT::i32
), Val
);
4934 SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
4936 if (Op
.getValueType().isVector())
4937 return LowerVSETCC(Op
, DAG
);
4939 SDValue LHS
= Op
.getOperand(0);
4940 SDValue RHS
= Op
.getOperand(1);
4941 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
4944 // We chose ZeroOrOneBooleanContents, so use zero and one.
4945 EVT VT
= Op
.getValueType();
4946 SDValue TVal
= DAG
.getConstant(1, dl
, VT
);
4947 SDValue FVal
= DAG
.getConstant(0, dl
, VT
);
4949 // Handle f128 first, since one possible outcome is a normal integer
4950 // comparison which gets picked up by the next if statement.
4951 if (LHS
.getValueType() == MVT::f128
) {
4952 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4954 // If softenSetCCOperands returned a scalar, use it.
4955 if (!RHS
.getNode()) {
4956 assert(LHS
.getValueType() == Op
.getValueType() &&
4957 "Unexpected setcc expansion!");
4962 if (LHS
.getValueType().isInteger()) {
4965 getAArch64Cmp(LHS
, RHS
, ISD::getSetCCInverse(CC
, true), CCVal
, DAG
, dl
);
4967 // Note that we inverted the condition above, so we reverse the order of
4968 // the true and false operands here. This will allow the setcc to be
4969 // matched to a single CSINC instruction.
4970 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, FVal
, TVal
, CCVal
, Cmp
);
4973 // Now we know we're dealing with FP values.
4974 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
4975 LHS
.getValueType() == MVT::f64
);
4977 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
4978 // and do the comparison.
4979 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
4981 AArch64CC::CondCode CC1
, CC2
;
4982 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
4983 if (CC2
== AArch64CC::AL
) {
4984 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC
, false), CC1
, CC2
);
4985 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
4987 // Note that we inverted the condition above, so we reverse the order of
4988 // the true and false operands here. This will allow the setcc to be
4989 // matched to a single CSINC instruction.
4990 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, FVal
, TVal
, CC1Val
, Cmp
);
4992 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4993 // totally clean. Some of them require two CSELs to implement. As is in
4994 // this case, we emit the first CSEL and then emit a second using the output
4995 // of the first as the RHS. We're effectively OR'ing the two CC's together.
4997 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4998 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5000 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, FVal
, CC1Val
, Cmp
);
5002 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
5003 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, CS1
, CC2Val
, Cmp
);
5007 SDValue
AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC
, SDValue LHS
,
5008 SDValue RHS
, SDValue TVal
,
5009 SDValue FVal
, const SDLoc
&dl
,
5010 SelectionDAG
&DAG
) const {
5011 // Handle f128 first, because it will result in a comparison of some RTLIB
5012 // call result against zero.
5013 if (LHS
.getValueType() == MVT::f128
) {
5014 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5016 // If softenSetCCOperands returned a scalar, we need to compare the result
5017 // against zero to select between true and false values.
5018 if (!RHS
.getNode()) {
5019 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5024 // Also handle f16, for which we need to do a f32 comparison.
5025 if (LHS
.getValueType() == MVT::f16
&& !Subtarget
->hasFullFP16()) {
5026 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, LHS
);
5027 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, RHS
);
5030 // Next, handle integers.
5031 if (LHS
.getValueType().isInteger()) {
5032 assert((LHS
.getValueType() == RHS
.getValueType()) &&
5033 (LHS
.getValueType() == MVT::i32
|| LHS
.getValueType() == MVT::i64
));
5035 unsigned Opcode
= AArch64ISD::CSEL
;
5037 // If both the TVal and the FVal are constants, see if we can swap them in
5038 // order to for a CSINV or CSINC out of them.
5039 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FVal
);
5040 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TVal
);
5042 if (CTVal
&& CFVal
&& CTVal
->isAllOnesValue() && CFVal
->isNullValue()) {
5043 std::swap(TVal
, FVal
);
5044 std::swap(CTVal
, CFVal
);
5045 CC
= ISD::getSetCCInverse(CC
, true);
5046 } else if (CTVal
&& CFVal
&& CTVal
->isOne() && CFVal
->isNullValue()) {
5047 std::swap(TVal
, FVal
);
5048 std::swap(CTVal
, CFVal
);
5049 CC
= ISD::getSetCCInverse(CC
, true);
5050 } else if (TVal
.getOpcode() == ISD::XOR
) {
5051 // If TVal is a NOT we want to swap TVal and FVal so that we can match
5052 // with a CSINV rather than a CSEL.
5053 if (isAllOnesConstant(TVal
.getOperand(1))) {
5054 std::swap(TVal
, FVal
);
5055 std::swap(CTVal
, CFVal
);
5056 CC
= ISD::getSetCCInverse(CC
, true);
5058 } else if (TVal
.getOpcode() == ISD::SUB
) {
5059 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
5060 // that we can match with a CSNEG rather than a CSEL.
5061 if (isNullConstant(TVal
.getOperand(0))) {
5062 std::swap(TVal
, FVal
);
5063 std::swap(CTVal
, CFVal
);
5064 CC
= ISD::getSetCCInverse(CC
, true);
5066 } else if (CTVal
&& CFVal
) {
5067 const int64_t TrueVal
= CTVal
->getSExtValue();
5068 const int64_t FalseVal
= CFVal
->getSExtValue();
5071 // If both TVal and FVal are constants, see if FVal is the
5072 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
5073 // instead of a CSEL in that case.
5074 if (TrueVal
== ~FalseVal
) {
5075 Opcode
= AArch64ISD::CSINV
;
5076 } else if (TrueVal
== -FalseVal
) {
5077 Opcode
= AArch64ISD::CSNEG
;
5078 } else if (TVal
.getValueType() == MVT::i32
) {
5079 // If our operands are only 32-bit wide, make sure we use 32-bit
5080 // arithmetic for the check whether we can use CSINC. This ensures that
5081 // the addition in the check will wrap around properly in case there is
5082 // an overflow (which would not be the case if we do the check with
5083 // 64-bit arithmetic).
5084 const uint32_t TrueVal32
= CTVal
->getZExtValue();
5085 const uint32_t FalseVal32
= CFVal
->getZExtValue();
5087 if ((TrueVal32
== FalseVal32
+ 1) || (TrueVal32
+ 1 == FalseVal32
)) {
5088 Opcode
= AArch64ISD::CSINC
;
5090 if (TrueVal32
> FalseVal32
) {
5094 // 64-bit check whether we can use CSINC.
5095 } else if ((TrueVal
== FalseVal
+ 1) || (TrueVal
+ 1 == FalseVal
)) {
5096 Opcode
= AArch64ISD::CSINC
;
5098 if (TrueVal
> FalseVal
) {
5103 // Swap TVal and FVal if necessary.
5105 std::swap(TVal
, FVal
);
5106 std::swap(CTVal
, CFVal
);
5107 CC
= ISD::getSetCCInverse(CC
, true);
5110 if (Opcode
!= AArch64ISD::CSEL
) {
5111 // Drop FVal since we can get its value by simply inverting/negating
5117 // Avoid materializing a constant when possible by reusing a known value in
5118 // a register. However, don't perform this optimization if the known value
5119 // is one, zero or negative one in the case of a CSEL. We can always
5120 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
5121 // FVal, respectively.
5122 ConstantSDNode
*RHSVal
= dyn_cast
<ConstantSDNode
>(RHS
);
5123 if (Opcode
== AArch64ISD::CSEL
&& RHSVal
&& !RHSVal
->isOne() &&
5124 !RHSVal
->isNullValue() && !RHSVal
->isAllOnesValue()) {
5125 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
5126 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
5127 // "a != C ? x : a" to avoid materializing C.
5128 if (CTVal
&& CTVal
== RHSVal
&& AArch64CC
== AArch64CC::EQ
)
5130 else if (CFVal
&& CFVal
== RHSVal
&& AArch64CC
== AArch64CC::NE
)
5132 } else if (Opcode
== AArch64ISD::CSNEG
&& RHSVal
&& RHSVal
->isOne()) {
5133 assert (CTVal
&& CFVal
&& "Expected constant operands for CSNEG.");
5134 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
5135 // avoid materializing C.
5136 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
5137 if (CTVal
== RHSVal
&& AArch64CC
== AArch64CC::EQ
) {
5138 Opcode
= AArch64ISD::CSINV
;
5140 FVal
= DAG
.getConstant(0, dl
, FVal
.getValueType());
5145 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
5146 EVT VT
= TVal
.getValueType();
5147 return DAG
.getNode(Opcode
, dl
, VT
, TVal
, FVal
, CCVal
, Cmp
);
5150 // Now we know we're dealing with FP values.
5151 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
5152 LHS
.getValueType() == MVT::f64
);
5153 assert(LHS
.getValueType() == RHS
.getValueType());
5154 EVT VT
= TVal
.getValueType();
5155 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
5157 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5158 // clean. Some of them require two CSELs to implement.
5159 AArch64CC::CondCode CC1
, CC2
;
5160 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
5162 if (DAG
.getTarget().Options
.UnsafeFPMath
) {
5163 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
5164 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
5165 ConstantFPSDNode
*RHSVal
= dyn_cast
<ConstantFPSDNode
>(RHS
);
5166 if (RHSVal
&& RHSVal
->isZero()) {
5167 ConstantFPSDNode
*CFVal
= dyn_cast
<ConstantFPSDNode
>(FVal
);
5168 ConstantFPSDNode
*CTVal
= dyn_cast
<ConstantFPSDNode
>(TVal
);
5170 if ((CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
|| CC
== ISD::SETUEQ
) &&
5171 CTVal
&& CTVal
->isZero() && TVal
.getValueType() == LHS
.getValueType())
5173 else if ((CC
== ISD::SETNE
|| CC
== ISD::SETONE
|| CC
== ISD::SETUNE
) &&
5174 CFVal
&& CFVal
->isZero() &&
5175 FVal
.getValueType() == LHS
.getValueType())
5180 // Emit first, and possibly only, CSEL.
5181 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5182 SDValue CS1
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, FVal
, CC1Val
, Cmp
);
5184 // If we need a second CSEL, emit it, using the output of the first as the
5185 // RHS. We're effectively OR'ing the two CC's together.
5186 if (CC2
!= AArch64CC::AL
) {
5187 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
5188 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, CS1
, CC2Val
, Cmp
);
5191 // Otherwise, return the output of the first CSEL.
5195 SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op
,
5196 SelectionDAG
&DAG
) const {
5197 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
5198 SDValue LHS
= Op
.getOperand(0);
5199 SDValue RHS
= Op
.getOperand(1);
5200 SDValue TVal
= Op
.getOperand(2);
5201 SDValue FVal
= Op
.getOperand(3);
5203 return LowerSELECT_CC(CC
, LHS
, RHS
, TVal
, FVal
, DL
, DAG
);
5206 SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op
,
5207 SelectionDAG
&DAG
) const {
5208 SDValue CCVal
= Op
->getOperand(0);
5209 SDValue TVal
= Op
->getOperand(1);
5210 SDValue FVal
= Op
->getOperand(2);
5213 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5215 if (isOverflowIntrOpRes(CCVal
)) {
5216 // Only lower legal XALUO ops.
5217 if (!DAG
.getTargetLoweringInfo().isTypeLegal(CCVal
->getValueType(0)))
5220 AArch64CC::CondCode OFCC
;
5221 SDValue Value
, Overflow
;
5222 std::tie(Value
, Overflow
) = getAArch64XALUOOp(OFCC
, CCVal
.getValue(0), DAG
);
5223 SDValue CCVal
= DAG
.getConstant(OFCC
, DL
, MVT::i32
);
5225 return DAG
.getNode(AArch64ISD::CSEL
, DL
, Op
.getValueType(), TVal
, FVal
,
5229 // Lower it the same way as we would lower a SELECT_CC node.
5232 if (CCVal
.getOpcode() == ISD::SETCC
) {
5233 LHS
= CCVal
.getOperand(0);
5234 RHS
= CCVal
.getOperand(1);
5235 CC
= cast
<CondCodeSDNode
>(CCVal
->getOperand(2))->get();
5238 RHS
= DAG
.getConstant(0, DL
, CCVal
.getValueType());
5241 return LowerSELECT_CC(CC
, LHS
, RHS
, TVal
, FVal
, DL
, DAG
);
5244 SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op
,
5245 SelectionDAG
&DAG
) const {
5246 // Jump table entries as PC relative offsets. No additional tweaking
5247 // is necessary here. Just get the address of the jump table.
5248 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
5250 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
5251 !Subtarget
->isTargetMachO()) {
5252 return getAddrLarge(JT
, DAG
);
5253 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5254 return getAddrTiny(JT
, DAG
);
5256 return getAddr(JT
, DAG
);
5259 SDValue
AArch64TargetLowering::LowerBR_JT(SDValue Op
,
5260 SelectionDAG
&DAG
) const {
5261 // Jump table entries as PC relative offsets. No additional tweaking
5262 // is necessary here. Just get the address of the jump table.
5264 SDValue JT
= Op
.getOperand(1);
5265 SDValue Entry
= Op
.getOperand(2);
5266 int JTI
= cast
<JumpTableSDNode
>(JT
.getNode())->getIndex();
5269 DAG
.getMachineNode(AArch64::JumpTableDest32
, DL
, MVT::i64
, MVT::i64
, JT
,
5270 Entry
, DAG
.getTargetJumpTable(JTI
, MVT::i32
));
5271 return DAG
.getNode(ISD::BRIND
, DL
, MVT::Other
, Op
.getOperand(0),
5275 SDValue
AArch64TargetLowering::LowerConstantPool(SDValue Op
,
5276 SelectionDAG
&DAG
) const {
5277 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
5279 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
5280 // Use the GOT for the large code model on iOS.
5281 if (Subtarget
->isTargetMachO()) {
5282 return getGOT(CP
, DAG
);
5284 return getAddrLarge(CP
, DAG
);
5285 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5286 return getAddrTiny(CP
, DAG
);
5288 return getAddr(CP
, DAG
);
5292 SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op
,
5293 SelectionDAG
&DAG
) const {
5294 BlockAddressSDNode
*BA
= cast
<BlockAddressSDNode
>(Op
);
5295 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
5296 !Subtarget
->isTargetMachO()) {
5297 return getAddrLarge(BA
, DAG
);
5298 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5299 return getAddrTiny(BA
, DAG
);
5301 return getAddr(BA
, DAG
);
5304 SDValue
AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op
,
5305 SelectionDAG
&DAG
) const {
5306 AArch64FunctionInfo
*FuncInfo
=
5307 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
5310 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackIndex(),
5311 getPointerTy(DAG
.getDataLayout()));
5312 FR
= DAG
.getZExtOrTrunc(FR
, DL
, getPointerMemTy(DAG
.getDataLayout()));
5313 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5314 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
5315 MachinePointerInfo(SV
));
5318 SDValue
AArch64TargetLowering::LowerWin64_VASTART(SDValue Op
,
5319 SelectionDAG
&DAG
) const {
5320 AArch64FunctionInfo
*FuncInfo
=
5321 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
5324 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsGPRSize() > 0
5325 ? FuncInfo
->getVarArgsGPRIndex()
5326 : FuncInfo
->getVarArgsStackIndex(),
5327 getPointerTy(DAG
.getDataLayout()));
5328 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5329 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
5330 MachinePointerInfo(SV
));
5333 SDValue
AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op
,
5334 SelectionDAG
&DAG
) const {
5335 // The layout of the va_list struct is specified in the AArch64 Procedure Call
5336 // Standard, section B.3.
5337 MachineFunction
&MF
= DAG
.getMachineFunction();
5338 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
5339 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
5342 SDValue Chain
= Op
.getOperand(0);
5343 SDValue VAList
= Op
.getOperand(1);
5344 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5345 SmallVector
<SDValue
, 4> MemOps
;
5347 // void *__stack at offset 0
5348 SDValue Stack
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackIndex(), PtrVT
);
5349 MemOps
.push_back(DAG
.getStore(Chain
, DL
, Stack
, VAList
,
5350 MachinePointerInfo(SV
), /* Alignment = */ 8));
5352 // void *__gr_top at offset 8
5353 int GPRSize
= FuncInfo
->getVarArgsGPRSize();
5355 SDValue GRTop
, GRTopAddr
;
5358 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(8, DL
, PtrVT
));
5360 GRTop
= DAG
.getFrameIndex(FuncInfo
->getVarArgsGPRIndex(), PtrVT
);
5361 GRTop
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, GRTop
,
5362 DAG
.getConstant(GPRSize
, DL
, PtrVT
));
5364 MemOps
.push_back(DAG
.getStore(Chain
, DL
, GRTop
, GRTopAddr
,
5365 MachinePointerInfo(SV
, 8),
5366 /* Alignment = */ 8));
5369 // void *__vr_top at offset 16
5370 int FPRSize
= FuncInfo
->getVarArgsFPRSize();
5372 SDValue VRTop
, VRTopAddr
;
5373 VRTopAddr
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5374 DAG
.getConstant(16, DL
, PtrVT
));
5376 VRTop
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFPRIndex(), PtrVT
);
5377 VRTop
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VRTop
,
5378 DAG
.getConstant(FPRSize
, DL
, PtrVT
));
5380 MemOps
.push_back(DAG
.getStore(Chain
, DL
, VRTop
, VRTopAddr
,
5381 MachinePointerInfo(SV
, 16),
5382 /* Alignment = */ 8));
5385 // int __gr_offs at offset 24
5386 SDValue GROffsAddr
=
5387 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(24, DL
, PtrVT
));
5388 MemOps
.push_back(DAG
.getStore(
5389 Chain
, DL
, DAG
.getConstant(-GPRSize
, DL
, MVT::i32
), GROffsAddr
,
5390 MachinePointerInfo(SV
, 24), /* Alignment = */ 4));
5392 // int __vr_offs at offset 28
5393 SDValue VROffsAddr
=
5394 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(28, DL
, PtrVT
));
5395 MemOps
.push_back(DAG
.getStore(
5396 Chain
, DL
, DAG
.getConstant(-FPRSize
, DL
, MVT::i32
), VROffsAddr
,
5397 MachinePointerInfo(SV
, 28), /* Alignment = */ 4));
5399 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOps
);
5402 SDValue
AArch64TargetLowering::LowerVASTART(SDValue Op
,
5403 SelectionDAG
&DAG
) const {
5404 MachineFunction
&MF
= DAG
.getMachineFunction();
5406 if (Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv()))
5407 return LowerWin64_VASTART(Op
, DAG
);
5408 else if (Subtarget
->isTargetDarwin())
5409 return LowerDarwin_VASTART(Op
, DAG
);
5411 return LowerAAPCS_VASTART(Op
, DAG
);
5414 SDValue
AArch64TargetLowering::LowerVACOPY(SDValue Op
,
5415 SelectionDAG
&DAG
) const {
5416 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5419 unsigned PtrSize
= Subtarget
->isTargetILP32() ? 4 : 8;
5420 unsigned VaListSize
= (Subtarget
->isTargetDarwin() ||
5421 Subtarget
->isTargetWindows()) ? PtrSize
: 32;
5422 const Value
*DestSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
5423 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
5425 return DAG
.getMemcpy(Op
.getOperand(0), DL
, Op
.getOperand(1), Op
.getOperand(2),
5426 DAG
.getConstant(VaListSize
, DL
, MVT::i32
), PtrSize
,
5427 false, false, false, MachinePointerInfo(DestSV
),
5428 MachinePointerInfo(SrcSV
));
5431 SDValue
AArch64TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
5432 assert(Subtarget
->isTargetDarwin() &&
5433 "automatic va_arg instruction only works on Darwin");
5435 const Value
*V
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5436 EVT VT
= Op
.getValueType();
5438 SDValue Chain
= Op
.getOperand(0);
5439 SDValue Addr
= Op
.getOperand(1);
5440 unsigned Align
= Op
.getConstantOperandVal(3);
5441 unsigned MinSlotSize
= Subtarget
->isTargetILP32() ? 4 : 8;
5442 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
5443 auto PtrMemVT
= getPointerMemTy(DAG
.getDataLayout());
5445 DAG
.getLoad(PtrMemVT
, DL
, Chain
, Addr
, MachinePointerInfo(V
));
5446 Chain
= VAList
.getValue(1);
5447 VAList
= DAG
.getZExtOrTrunc(VAList
, DL
, PtrVT
);
5449 if (Align
> MinSlotSize
) {
5450 assert(((Align
& (Align
- 1)) == 0) && "Expected Align to be a power of 2");
5451 VAList
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5452 DAG
.getConstant(Align
- 1, DL
, PtrVT
));
5453 VAList
= DAG
.getNode(ISD::AND
, DL
, PtrVT
, VAList
,
5454 DAG
.getConstant(-(int64_t)Align
, DL
, PtrVT
));
5457 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
5458 unsigned ArgSize
= DAG
.getDataLayout().getTypeAllocSize(ArgTy
);
5460 // Scalar integer and FP values smaller than 64 bits are implicitly extended
5461 // up to 64 bits. At the very least, we have to increase the striding of the
5462 // vaargs list to match this, and for FP values we need to introduce
5463 // FP_ROUND nodes as well.
5464 if (VT
.isInteger() && !VT
.isVector())
5465 ArgSize
= std::max(ArgSize
, MinSlotSize
);
5466 bool NeedFPTrunc
= false;
5467 if (VT
.isFloatingPoint() && !VT
.isVector() && VT
!= MVT::f64
) {
5472 // Increment the pointer, VAList, to the next vaarg
5473 SDValue VANext
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5474 DAG
.getConstant(ArgSize
, DL
, PtrVT
));
5475 VANext
= DAG
.getZExtOrTrunc(VANext
, DL
, PtrMemVT
);
5477 // Store the incremented VAList to the legalized pointer
5479 DAG
.getStore(Chain
, DL
, VANext
, Addr
, MachinePointerInfo(V
));
5481 // Load the actual argument out of the pointer VAList
5483 // Load the value as an f64.
5485 DAG
.getLoad(MVT::f64
, DL
, APStore
, VAList
, MachinePointerInfo());
5486 // Round the value down to an f32.
5487 SDValue NarrowFP
= DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, WideFP
.getValue(0),
5488 DAG
.getIntPtrConstant(1, DL
));
5489 SDValue Ops
[] = { NarrowFP
, WideFP
.getValue(1) };
5490 // Merge the rounded value with the chain output of the load.
5491 return DAG
.getMergeValues(Ops
, DL
);
5494 return DAG
.getLoad(VT
, DL
, APStore
, VAList
, MachinePointerInfo());
5497 SDValue
AArch64TargetLowering::LowerFRAMEADDR(SDValue Op
,
5498 SelectionDAG
&DAG
) const {
5499 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5500 MFI
.setFrameAddressIsTaken(true);
5502 EVT VT
= Op
.getValueType();
5504 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5506 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, AArch64::FP
, MVT::i64
);
5508 FrameAddr
= DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(), FrameAddr
,
5509 MachinePointerInfo());
5511 if (Subtarget
->isTargetILP32())
5512 FrameAddr
= DAG
.getNode(ISD::AssertZext
, DL
, MVT::i64
, FrameAddr
,
5513 DAG
.getValueType(VT
));
5518 SDValue
AArch64TargetLowering::LowerSPONENTRY(SDValue Op
,
5519 SelectionDAG
&DAG
) const {
5520 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5522 EVT VT
= getPointerTy(DAG
.getDataLayout());
5524 int FI
= MFI
.CreateFixedObject(4, 0, false);
5525 return DAG
.getFrameIndex(FI
, VT
);
5528 #define GET_REGISTER_MATCHER
5529 #include "AArch64GenAsmMatcher.inc"
5531 // FIXME? Maybe this could be a TableGen attribute on some registers and
5532 // this table could be generated automatically from RegInfo.
5533 Register
AArch64TargetLowering::
5534 getRegisterByName(const char* RegName
, EVT VT
, const MachineFunction
&MF
) const {
5535 Register Reg
= MatchRegisterName(RegName
);
5536 if (AArch64::X1
<= Reg
&& Reg
<= AArch64::X28
) {
5537 const MCRegisterInfo
*MRI
= Subtarget
->getRegisterInfo();
5538 unsigned DwarfRegNum
= MRI
->getDwarfRegNum(Reg
, false);
5539 if (!Subtarget
->isXRegisterReserved(DwarfRegNum
))
5544 report_fatal_error(Twine("Invalid register name \""
5545 + StringRef(RegName
) + "\"."));
5548 SDValue
AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op
,
5549 SelectionDAG
&DAG
) const {
5550 DAG
.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5552 EVT VT
= Op
.getValueType();
5556 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, AArch64::FP
, VT
);
5557 SDValue Offset
= DAG
.getConstant(8, DL
, getPointerTy(DAG
.getDataLayout()));
5559 return DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
);
5562 SDValue
AArch64TargetLowering::LowerRETURNADDR(SDValue Op
,
5563 SelectionDAG
&DAG
) const {
5564 MachineFunction
&MF
= DAG
.getMachineFunction();
5565 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5566 MFI
.setReturnAddressIsTaken(true);
5568 EVT VT
= Op
.getValueType();
5570 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5572 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5573 SDValue Offset
= DAG
.getConstant(8, DL
, getPointerTy(DAG
.getDataLayout()));
5574 return DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(),
5575 DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
),
5576 MachinePointerInfo());
5579 // Return LR, which contains the return address. Mark it an implicit live-in.
5580 unsigned Reg
= MF
.addLiveIn(AArch64::LR
, &AArch64::GPR64RegClass
);
5581 return DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, Reg
, VT
);
5584 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5585 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5586 SDValue
AArch64TargetLowering::LowerShiftRightParts(SDValue Op
,
5587 SelectionDAG
&DAG
) const {
5588 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5589 EVT VT
= Op
.getValueType();
5590 unsigned VTBits
= VT
.getSizeInBits();
5592 SDValue ShOpLo
= Op
.getOperand(0);
5593 SDValue ShOpHi
= Op
.getOperand(1);
5594 SDValue ShAmt
= Op
.getOperand(2);
5595 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5597 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5599 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
,
5600 DAG
.getConstant(VTBits
, dl
, MVT::i64
), ShAmt
);
5601 SDValue HiBitsForLo
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5603 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5604 // is "undef". We wanted 0, so CSEL it directly.
5605 SDValue Cmp
= emitComparison(ShAmt
, DAG
.getConstant(0, dl
, MVT::i64
),
5606 ISD::SETEQ
, dl
, DAG
);
5607 SDValue CCVal
= DAG
.getConstant(AArch64CC::EQ
, dl
, MVT::i32
);
5609 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, DAG
.getConstant(0, dl
, MVT::i64
),
5610 HiBitsForLo
, CCVal
, Cmp
);
5612 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, ShAmt
,
5613 DAG
.getConstant(VTBits
, dl
, MVT::i64
));
5615 SDValue LoBitsForLo
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5616 SDValue LoForNormalShift
=
5617 DAG
.getNode(ISD::OR
, dl
, VT
, LoBitsForLo
, HiBitsForLo
);
5619 Cmp
= emitComparison(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i64
), ISD::SETGE
,
5621 CCVal
= DAG
.getConstant(AArch64CC::GE
, dl
, MVT::i32
);
5622 SDValue LoForBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5623 SDValue Lo
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, LoForBigShift
,
5624 LoForNormalShift
, CCVal
, Cmp
);
5626 // AArch64 shifts larger than the register width are wrapped rather than
5627 // clamped, so we can't just emit "hi >> x".
5628 SDValue HiForNormalShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5629 SDValue HiForBigShift
=
5631 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5632 DAG
.getConstant(VTBits
- 1, dl
, MVT::i64
))
5633 : DAG
.getConstant(0, dl
, VT
);
5634 SDValue Hi
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, HiForBigShift
,
5635 HiForNormalShift
, CCVal
, Cmp
);
5637 SDValue Ops
[2] = { Lo
, Hi
};
5638 return DAG
.getMergeValues(Ops
, dl
);
5641 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5642 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5643 SDValue
AArch64TargetLowering::LowerShiftLeftParts(SDValue Op
,
5644 SelectionDAG
&DAG
) const {
5645 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5646 EVT VT
= Op
.getValueType();
5647 unsigned VTBits
= VT
.getSizeInBits();
5649 SDValue ShOpLo
= Op
.getOperand(0);
5650 SDValue ShOpHi
= Op
.getOperand(1);
5651 SDValue ShAmt
= Op
.getOperand(2);
5653 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5654 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
,
5655 DAG
.getConstant(VTBits
, dl
, MVT::i64
), ShAmt
);
5656 SDValue LoBitsForHi
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5658 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5659 // is "undef". We wanted 0, so CSEL it directly.
5660 SDValue Cmp
= emitComparison(ShAmt
, DAG
.getConstant(0, dl
, MVT::i64
),
5661 ISD::SETEQ
, dl
, DAG
);
5662 SDValue CCVal
= DAG
.getConstant(AArch64CC::EQ
, dl
, MVT::i32
);
5664 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, DAG
.getConstant(0, dl
, MVT::i64
),
5665 LoBitsForHi
, CCVal
, Cmp
);
5667 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, ShAmt
,
5668 DAG
.getConstant(VTBits
, dl
, MVT::i64
));
5669 SDValue HiBitsForHi
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5670 SDValue HiForNormalShift
=
5671 DAG
.getNode(ISD::OR
, dl
, VT
, LoBitsForHi
, HiBitsForHi
);
5673 SDValue HiForBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5675 Cmp
= emitComparison(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i64
), ISD::SETGE
,
5677 CCVal
= DAG
.getConstant(AArch64CC::GE
, dl
, MVT::i32
);
5678 SDValue Hi
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, HiForBigShift
,
5679 HiForNormalShift
, CCVal
, Cmp
);
5681 // AArch64 shifts of larger than register sizes are wrapped rather than
5682 // clamped, so we can't just emit "lo << a" if a is too big.
5683 SDValue LoForBigShift
= DAG
.getConstant(0, dl
, VT
);
5684 SDValue LoForNormalShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5685 SDValue Lo
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, LoForBigShift
,
5686 LoForNormalShift
, CCVal
, Cmp
);
5688 SDValue Ops
[2] = { Lo
, Hi
};
5689 return DAG
.getMergeValues(Ops
, dl
);
5692 bool AArch64TargetLowering::isOffsetFoldingLegal(
5693 const GlobalAddressSDNode
*GA
) const {
5694 // Offsets are folded in the DAG combine rather than here so that we can
5695 // intelligently choose an offset based on the uses.
5699 bool AArch64TargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
5700 bool OptForSize
) const {
5701 bool IsLegal
= false;
5702 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5703 // 16-bit case when target has full fp16 support.
5704 // FIXME: We should be able to handle f128 as well with a clever lowering.
5705 const APInt ImmInt
= Imm
.bitcastToAPInt();
5707 IsLegal
= AArch64_AM::getFP64Imm(ImmInt
) != -1 || Imm
.isPosZero();
5708 else if (VT
== MVT::f32
)
5709 IsLegal
= AArch64_AM::getFP32Imm(ImmInt
) != -1 || Imm
.isPosZero();
5710 else if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
5711 IsLegal
= AArch64_AM::getFP16Imm(ImmInt
) != -1 || Imm
.isPosZero();
5712 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
5713 // generate that fmov.
5715 // If we can not materialize in immediate field for fmov, check if the
5716 // value can be encoded as the immediate operand of a logical instruction.
5717 // The immediate value will be created with either MOVZ, MOVN, or ORR.
5718 if (!IsLegal
&& (VT
== MVT::f64
|| VT
== MVT::f32
)) {
5719 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
5720 // however the mov+fmov sequence is always better because of the reduced
5721 // cache pressure. The timings are still the same if you consider
5722 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
5723 // movw+movk is fused). So we limit up to 2 instrdduction at most.
5724 SmallVector
<AArch64_IMM::ImmInsnModel
, 4> Insn
;
5725 AArch64_IMM::expandMOVImm(ImmInt
.getZExtValue(), VT
.getSizeInBits(),
5727 unsigned Limit
= (OptForSize
? 1 : (Subtarget
->hasFuseLiterals() ? 5 : 2));
5728 IsLegal
= Insn
.size() <= Limit
;
5731 LLVM_DEBUG(dbgs() << (IsLegal
? "Legal " : "Illegal ") << VT
.getEVTString()
5732 << " imm value: "; Imm
.dump(););
5736 //===----------------------------------------------------------------------===//
5737 // AArch64 Optimization Hooks
5738 //===----------------------------------------------------------------------===//
5740 static SDValue
getEstimate(const AArch64Subtarget
*ST
, unsigned Opcode
,
5741 SDValue Operand
, SelectionDAG
&DAG
,
5743 EVT VT
= Operand
.getValueType();
5744 if (ST
->hasNEON() &&
5745 (VT
== MVT::f64
|| VT
== MVT::v1f64
|| VT
== MVT::v2f64
||
5746 VT
== MVT::f32
|| VT
== MVT::v1f32
||
5747 VT
== MVT::v2f32
|| VT
== MVT::v4f32
)) {
5748 if (ExtraSteps
== TargetLoweringBase::ReciprocalEstimate::Unspecified
)
5749 // For the reciprocal estimates, convergence is quadratic, so the number
5750 // of digits is doubled after each iteration. In ARMv8, the accuracy of
5751 // the initial estimate is 2^-8. Thus the number of extra steps to refine
5752 // the result for float (23 mantissa bits) is 2 and for double (52
5753 // mantissa bits) is 3.
5754 ExtraSteps
= VT
.getScalarType() == MVT::f64
? 3 : 2;
5756 return DAG
.getNode(Opcode
, SDLoc(Operand
), VT
, Operand
);
5762 SDValue
AArch64TargetLowering::getSqrtEstimate(SDValue Operand
,
5763 SelectionDAG
&DAG
, int Enabled
,
5766 bool Reciprocal
) const {
5767 if (Enabled
== ReciprocalEstimate::Enabled
||
5768 (Enabled
== ReciprocalEstimate::Unspecified
&& Subtarget
->useRSqrt()))
5769 if (SDValue Estimate
= getEstimate(Subtarget
, AArch64ISD::FRSQRTE
, Operand
,
5772 EVT VT
= Operand
.getValueType();
5775 Flags
.setAllowReassociation(true);
5777 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5778 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5779 for (int i
= ExtraSteps
; i
> 0; --i
) {
5780 SDValue Step
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Estimate
,
5782 Step
= DAG
.getNode(AArch64ISD::FRSQRTS
, DL
, VT
, Operand
, Step
, Flags
);
5783 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Step
, Flags
);
5786 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
5788 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
5789 SDValue Eq
= DAG
.getSetCC(DL
, CCVT
, Operand
, FPZero
, ISD::SETEQ
);
5791 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Operand
, Estimate
, Flags
);
5792 // Correct the result if the operand is 0.0.
5793 Estimate
= DAG
.getNode(VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
, DL
,
5794 VT
, Eq
, Operand
, Estimate
);
5804 SDValue
AArch64TargetLowering::getRecipEstimate(SDValue Operand
,
5805 SelectionDAG
&DAG
, int Enabled
,
5806 int &ExtraSteps
) const {
5807 if (Enabled
== ReciprocalEstimate::Enabled
)
5808 if (SDValue Estimate
= getEstimate(Subtarget
, AArch64ISD::FRECPE
, Operand
,
5811 EVT VT
= Operand
.getValueType();
5814 Flags
.setAllowReassociation(true);
5816 // Newton reciprocal iteration: E * (2 - X * E)
5817 // AArch64 reciprocal iteration instruction: (2 - M * N)
5818 for (int i
= ExtraSteps
; i
> 0; --i
) {
5819 SDValue Step
= DAG
.getNode(AArch64ISD::FRECPS
, DL
, VT
, Operand
,
5821 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Step
, Flags
);
5831 //===----------------------------------------------------------------------===//
5832 // AArch64 Inline Assembly Support
5833 //===----------------------------------------------------------------------===//
5835 // Table of Constraints
5836 // TODO: This is the current set of constraints supported by ARM for the
5837 // compiler, not all of them may make sense.
5839 // r - A general register
5840 // w - An FP/SIMD register of some size in the range v0-v31
5841 // x - An FP/SIMD register of some size in the range v0-v15
5842 // I - Constant that can be used with an ADD instruction
5843 // J - Constant that can be used with a SUB instruction
5844 // K - Constant that can be used with a 32-bit logical instruction
5845 // L - Constant that can be used with a 64-bit logical instruction
5846 // M - Constant that can be used as a 32-bit MOV immediate
5847 // N - Constant that can be used as a 64-bit MOV immediate
5848 // Q - A memory reference with base register and no offset
5849 // S - A symbolic address
5850 // Y - Floating point constant zero
5851 // Z - Integer constant zero
5853 // Note that general register operands will be output using their 64-bit x
5854 // register name, whatever the size of the variable, unless the asm operand
5855 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5856 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5858 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
5859 // At this point, we have to lower this constraint to something else, so we
5860 // lower it to an "r" or "w". However, by doing this we will force the result
5861 // to be in register, while the X constraint is much more permissive.
5863 // Although we are correct (we are free to emit anything, without
5864 // constraints), we might break use cases that would expect us to be more
5865 // efficient and emit something else.
5866 if (!Subtarget
->hasFPARMv8())
5869 if (ConstraintVT
.isFloatingPoint())
5872 if (ConstraintVT
.isVector() &&
5873 (ConstraintVT
.getSizeInBits() == 64 ||
5874 ConstraintVT
.getSizeInBits() == 128))
5880 enum PredicateConstraint
{
5886 static PredicateConstraint
parsePredicateConstraint(StringRef Constraint
) {
5887 PredicateConstraint P
= PredicateConstraint::Invalid
;
5888 if (Constraint
== "Upa")
5889 P
= PredicateConstraint::Upa
;
5890 if (Constraint
== "Upl")
5891 P
= PredicateConstraint::Upl
;
5895 /// getConstraintType - Given a constraint letter, return the type of
5896 /// constraint it is for this target.
5897 AArch64TargetLowering::ConstraintType
5898 AArch64TargetLowering::getConstraintType(StringRef Constraint
) const {
5899 if (Constraint
.size() == 1) {
5900 switch (Constraint
[0]) {
5906 return C_RegisterClass
;
5907 // An address with a single base register. Due to the way we
5908 // currently handle addresses it is the same as 'r'.
5921 case 'S': // A symbolic address
5924 } else if (parsePredicateConstraint(Constraint
) !=
5925 PredicateConstraint::Invalid
)
5926 return C_RegisterClass
;
5927 return TargetLowering::getConstraintType(Constraint
);
5930 /// Examine constraint type and operand type and determine a weight value.
5931 /// This object must already have been set up with the operand type
5932 /// and the current alternative constraint selected.
5933 TargetLowering::ConstraintWeight
5934 AArch64TargetLowering::getSingleConstraintMatchWeight(
5935 AsmOperandInfo
&info
, const char *constraint
) const {
5936 ConstraintWeight weight
= CW_Invalid
;
5937 Value
*CallOperandVal
= info
.CallOperandVal
;
5938 // If we don't have a value, we can't do a match,
5939 // but allow it at the lowest weight.
5940 if (!CallOperandVal
)
5942 Type
*type
= CallOperandVal
->getType();
5943 // Look at the constraint type.
5944 switch (*constraint
) {
5946 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
5951 if (type
->isFloatingPointTy() || type
->isVectorTy())
5952 weight
= CW_Register
;
5955 weight
= CW_Constant
;
5958 if (parsePredicateConstraint(constraint
) != PredicateConstraint::Invalid
)
5959 weight
= CW_Register
;
5965 std::pair
<unsigned, const TargetRegisterClass
*>
5966 AArch64TargetLowering::getRegForInlineAsmConstraint(
5967 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
5968 if (Constraint
.size() == 1) {
5969 switch (Constraint
[0]) {
5971 if (VT
.getSizeInBits() == 64)
5972 return std::make_pair(0U, &AArch64::GPR64commonRegClass
);
5973 return std::make_pair(0U, &AArch64::GPR32commonRegClass
);
5975 if (!Subtarget
->hasFPARMv8())
5977 if (VT
.isScalableVector())
5978 return std::make_pair(0U, &AArch64::ZPRRegClass
);
5979 if (VT
.getSizeInBits() == 16)
5980 return std::make_pair(0U, &AArch64::FPR16RegClass
);
5981 if (VT
.getSizeInBits() == 32)
5982 return std::make_pair(0U, &AArch64::FPR32RegClass
);
5983 if (VT
.getSizeInBits() == 64)
5984 return std::make_pair(0U, &AArch64::FPR64RegClass
);
5985 if (VT
.getSizeInBits() == 128)
5986 return std::make_pair(0U, &AArch64::FPR128RegClass
);
5988 // The instructions that this constraint is designed for can
5989 // only take 128-bit registers so just use that regclass.
5991 if (!Subtarget
->hasFPARMv8())
5993 if (VT
.isScalableVector())
5994 return std::make_pair(0U, &AArch64::ZPR_4bRegClass
);
5995 if (VT
.getSizeInBits() == 128)
5996 return std::make_pair(0U, &AArch64::FPR128_loRegClass
);
5999 if (!Subtarget
->hasFPARMv8())
6001 if (VT
.isScalableVector())
6002 return std::make_pair(0U, &AArch64::ZPR_3bRegClass
);
6006 PredicateConstraint PC
= parsePredicateConstraint(Constraint
);
6007 if (PC
!= PredicateConstraint::Invalid
) {
6008 assert(VT
.isScalableVector());
6009 bool restricted
= (PC
== PredicateConstraint::Upl
);
6010 return restricted
? std::make_pair(0U, &AArch64::PPR_3bRegClass
)
6011 : std::make_pair(0U, &AArch64::PPRRegClass
);
6014 if (StringRef("{cc}").equals_lower(Constraint
))
6015 return std::make_pair(unsigned(AArch64::NZCV
), &AArch64::CCRRegClass
);
6017 // Use the default implementation in TargetLowering to convert the register
6018 // constraint into a member of a register class.
6019 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
6020 Res
= TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
6022 // Not found as a standard register?
6024 unsigned Size
= Constraint
.size();
6025 if ((Size
== 4 || Size
== 5) && Constraint
[0] == '{' &&
6026 tolower(Constraint
[1]) == 'v' && Constraint
[Size
- 1] == '}') {
6028 bool Failed
= Constraint
.slice(2, Size
- 1).getAsInteger(10, RegNo
);
6029 if (!Failed
&& RegNo
>= 0 && RegNo
<= 31) {
6030 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
6031 // By default we'll emit v0-v31 for this unless there's a modifier where
6032 // we'll emit the correct register as well.
6033 if (VT
!= MVT::Other
&& VT
.getSizeInBits() == 64) {
6034 Res
.first
= AArch64::FPR64RegClass
.getRegister(RegNo
);
6035 Res
.second
= &AArch64::FPR64RegClass
;
6037 Res
.first
= AArch64::FPR128RegClass
.getRegister(RegNo
);
6038 Res
.second
= &AArch64::FPR128RegClass
;
6044 if (Res
.second
&& !Subtarget
->hasFPARMv8() &&
6045 !AArch64::GPR32allRegClass
.hasSubClassEq(Res
.second
) &&
6046 !AArch64::GPR64allRegClass
.hasSubClassEq(Res
.second
))
6047 return std::make_pair(0U, nullptr);
6052 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6053 /// vector. If it is invalid, don't add anything to Ops.
6054 void AArch64TargetLowering::LowerAsmOperandForConstraint(
6055 SDValue Op
, std::string
&Constraint
, std::vector
<SDValue
> &Ops
,
6056 SelectionDAG
&DAG
) const {
6059 // Currently only support length 1 constraints.
6060 if (Constraint
.length() != 1)
6063 char ConstraintLetter
= Constraint
[0];
6064 switch (ConstraintLetter
) {
6068 // This set of constraints deal with valid constants for various instructions.
6069 // Validate and return a target constant for them if we can.
6071 // 'z' maps to xzr or wzr so it needs an input of 0.
6072 if (!isNullConstant(Op
))
6075 if (Op
.getValueType() == MVT::i64
)
6076 Result
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
6078 Result
= DAG
.getRegister(AArch64::WZR
, MVT::i32
);
6082 // An absolute symbolic address or label reference.
6083 if (const GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) {
6084 Result
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
6085 GA
->getValueType(0));
6086 } else if (const BlockAddressSDNode
*BA
=
6087 dyn_cast
<BlockAddressSDNode
>(Op
)) {
6089 DAG
.getTargetBlockAddress(BA
->getBlockAddress(), BA
->getValueType(0));
6090 } else if (const ExternalSymbolSDNode
*ES
=
6091 dyn_cast
<ExternalSymbolSDNode
>(Op
)) {
6093 DAG
.getTargetExternalSymbol(ES
->getSymbol(), ES
->getValueType(0));
6105 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
6109 // Grab the value and do some validation.
6110 uint64_t CVal
= C
->getZExtValue();
6111 switch (ConstraintLetter
) {
6112 // The I constraint applies only to simple ADD or SUB immediate operands:
6113 // i.e. 0 to 4095 with optional shift by 12
6114 // The J constraint applies only to ADD or SUB immediates that would be
6115 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
6116 // instruction [or vice versa], in other words -1 to -4095 with optional
6117 // left shift by 12.
6119 if (isUInt
<12>(CVal
) || isShiftedUInt
<12, 12>(CVal
))
6123 uint64_t NVal
= -C
->getSExtValue();
6124 if (isUInt
<12>(NVal
) || isShiftedUInt
<12, 12>(NVal
)) {
6125 CVal
= C
->getSExtValue();
6130 // The K and L constraints apply *only* to logical immediates, including
6131 // what used to be the MOVI alias for ORR (though the MOVI alias has now
6132 // been removed and MOV should be used). So these constraints have to
6133 // distinguish between bit patterns that are valid 32-bit or 64-bit
6134 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
6135 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
6138 if (AArch64_AM::isLogicalImmediate(CVal
, 32))
6142 if (AArch64_AM::isLogicalImmediate(CVal
, 64))
6145 // The M and N constraints are a superset of K and L respectively, for use
6146 // with the MOV (immediate) alias. As well as the logical immediates they
6147 // also match 32 or 64-bit immediates that can be loaded either using a
6148 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
6149 // (M) or 64-bit 0x1234000000000000 (N) etc.
6150 // As a note some of this code is liberally stolen from the asm parser.
6152 if (!isUInt
<32>(CVal
))
6154 if (AArch64_AM::isLogicalImmediate(CVal
, 32))
6156 if ((CVal
& 0xFFFF) == CVal
)
6158 if ((CVal
& 0xFFFF0000ULL
) == CVal
)
6160 uint64_t NCVal
= ~(uint32_t)CVal
;
6161 if ((NCVal
& 0xFFFFULL
) == NCVal
)
6163 if ((NCVal
& 0xFFFF0000ULL
) == NCVal
)
6168 if (AArch64_AM::isLogicalImmediate(CVal
, 64))
6170 if ((CVal
& 0xFFFFULL
) == CVal
)
6172 if ((CVal
& 0xFFFF0000ULL
) == CVal
)
6174 if ((CVal
& 0xFFFF00000000ULL
) == CVal
)
6176 if ((CVal
& 0xFFFF000000000000ULL
) == CVal
)
6178 uint64_t NCVal
= ~CVal
;
6179 if ((NCVal
& 0xFFFFULL
) == NCVal
)
6181 if ((NCVal
& 0xFFFF0000ULL
) == NCVal
)
6183 if ((NCVal
& 0xFFFF00000000ULL
) == NCVal
)
6185 if ((NCVal
& 0xFFFF000000000000ULL
) == NCVal
)
6193 // All assembler immediates are 64-bit integers.
6194 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), MVT::i64
);
6198 if (Result
.getNode()) {
6199 Ops
.push_back(Result
);
6203 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
6206 //===----------------------------------------------------------------------===//
6207 // AArch64 Advanced SIMD Support
6208 //===----------------------------------------------------------------------===//
6210 /// WidenVector - Given a value in the V64 register class, produce the
6211 /// equivalent value in the V128 register class.
6212 static SDValue
WidenVector(SDValue V64Reg
, SelectionDAG
&DAG
) {
6213 EVT VT
= V64Reg
.getValueType();
6214 unsigned NarrowSize
= VT
.getVectorNumElements();
6215 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
6216 MVT WideTy
= MVT::getVectorVT(EltTy
, 2 * NarrowSize
);
6219 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, WideTy
, DAG
.getUNDEF(WideTy
),
6220 V64Reg
, DAG
.getConstant(0, DL
, MVT::i32
));
6223 /// getExtFactor - Determine the adjustment factor for the position when
6224 /// generating an "extract from vector registers" instruction.
6225 static unsigned getExtFactor(SDValue
&V
) {
6226 EVT EltType
= V
.getValueType().getVectorElementType();
6227 return EltType
.getSizeInBits() / 8;
6230 /// NarrowVector - Given a value in the V128 register class, produce the
6231 /// equivalent value in the V64 register class.
6232 static SDValue
NarrowVector(SDValue V128Reg
, SelectionDAG
&DAG
) {
6233 EVT VT
= V128Reg
.getValueType();
6234 unsigned WideSize
= VT
.getVectorNumElements();
6235 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
6236 MVT NarrowTy
= MVT::getVectorVT(EltTy
, WideSize
/ 2);
6239 return DAG
.getTargetExtractSubreg(AArch64::dsub
, DL
, NarrowTy
, V128Reg
);
6242 // Gather data to see if the operation can be modelled as a
6243 // shuffle in combination with VEXTs.
6244 SDValue
AArch64TargetLowering::ReconstructShuffle(SDValue Op
,
6245 SelectionDAG
&DAG
) const {
6246 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
6247 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
6249 EVT VT
= Op
.getValueType();
6250 unsigned NumElts
= VT
.getVectorNumElements();
6252 struct ShuffleSourceInfo
{
6257 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6258 // be compatible with the shuffle we intend to construct. As a result
6259 // ShuffleVec will be some sliding window into the original Vec.
6262 // Code should guarantee that element i in Vec starts at element "WindowBase
6263 // + i * WindowScale in ShuffleVec".
6267 ShuffleSourceInfo(SDValue Vec
)
6268 : Vec(Vec
), MinElt(std::numeric_limits
<unsigned>::max()), MaxElt(0),
6269 ShuffleVec(Vec
), WindowBase(0), WindowScale(1) {}
6271 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
6274 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6276 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
6277 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6278 SDValue V
= Op
.getOperand(i
);
6281 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
6282 !isa
<ConstantSDNode
>(V
.getOperand(1))) {
6284 dbgs() << "Reshuffle failed: "
6285 "a shuffle can only come from building a vector from "
6286 "various elements of other vectors, provided their "
6287 "indices are constant\n");
6291 // Add this element source to the list if it's not already there.
6292 SDValue SourceVec
= V
.getOperand(0);
6293 auto Source
= find(Sources
, SourceVec
);
6294 if (Source
== Sources
.end())
6295 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
6297 // Update the minimum and maximum lane number seen.
6298 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
6299 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
6300 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
6303 if (Sources
.size() > 2) {
6305 dbgs() << "Reshuffle failed: currently only do something sane when at "
6306 "most two source vectors are involved\n");
6310 // Find out the smallest element size among result and two sources, and use
6311 // it as element size to build the shuffle_vector.
6312 EVT SmallestEltTy
= VT
.getVectorElementType();
6313 for (auto &Source
: Sources
) {
6314 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
6315 if (SrcEltTy
.bitsLT(SmallestEltTy
)) {
6316 SmallestEltTy
= SrcEltTy
;
6319 unsigned ResMultiplier
=
6320 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
6321 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6322 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
6324 // If the source vector is too wide or too narrow, we may nevertheless be able
6325 // to construct a compatible shuffle either by concatenating it with UNDEF or
6326 // extracting a suitable range of elements.
6327 for (auto &Src
: Sources
) {
6328 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
6330 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
6333 // This stage of the search produces a source with the same element type as
6334 // the original, but with a total width matching the BUILD_VECTOR output.
6335 EVT EltVT
= SrcVT
.getVectorElementType();
6336 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
6337 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
6339 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
6340 assert(2 * SrcVT
.getSizeInBits() == VT
.getSizeInBits());
6341 // We can pad out the smaller vector for free, so if it's part of a
6344 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
6345 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
6349 assert(SrcVT
.getSizeInBits() == 2 * VT
.getSizeInBits());
6351 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
6353 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6357 if (Src
.MinElt
>= NumSrcElts
) {
6358 // The extraction can just take the second half
6360 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6361 DAG
.getConstant(NumSrcElts
, dl
, MVT::i64
));
6362 Src
.WindowBase
= -NumSrcElts
;
6363 } else if (Src
.MaxElt
< NumSrcElts
) {
6364 // The extraction can just take the first half
6366 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6367 DAG
.getConstant(0, dl
, MVT::i64
));
6369 // An actual VEXT is needed
6371 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6372 DAG
.getConstant(0, dl
, MVT::i64
));
6374 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6375 DAG
.getConstant(NumSrcElts
, dl
, MVT::i64
));
6376 unsigned Imm
= Src
.MinElt
* getExtFactor(VEXTSrc1
);
6378 Src
.ShuffleVec
= DAG
.getNode(AArch64ISD::EXT
, dl
, DestVT
, VEXTSrc1
,
6380 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6381 Src
.WindowBase
= -Src
.MinElt
;
6385 // Another possible incompatibility occurs from the vector element types. We
6386 // can fix this by bitcasting the source vectors to the same type we intend
6388 for (auto &Src
: Sources
) {
6389 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
6390 if (SrcEltTy
== SmallestEltTy
)
6392 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
6393 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
6394 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6395 Src
.WindowBase
*= Src
.WindowScale
;
6398 // Final sanity check before we try to actually produce a shuffle.
6399 LLVM_DEBUG(for (auto Src
6401 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
6403 // The stars all align, our next step is to produce the mask for the shuffle.
6404 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
6405 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
6406 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
6407 SDValue Entry
= Op
.getOperand(i
);
6408 if (Entry
.isUndef())
6411 auto Src
= find(Sources
, Entry
.getOperand(0));
6412 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
6414 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6415 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6417 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
6419 std::min(OrigEltTy
.getSizeInBits(), VT
.getScalarSizeInBits());
6420 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
6422 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6423 // starting at the appropriate offset.
6424 int *LaneMask
= &Mask
[i
* ResMultiplier
];
6426 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
6427 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
6428 for (int j
= 0; j
< LanesDefined
; ++j
)
6429 LaneMask
[j
] = ExtractBase
+ j
;
6432 // Final check before we try to produce nonsense...
6433 if (!isShuffleMaskLegal(Mask
, ShuffleVT
)) {
6434 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6438 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
6439 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
6440 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
6442 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
6443 ShuffleOps
[1], Mask
);
6444 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
6446 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle
.dump();
6447 dbgs() << "Reshuffle, creating node: "; V
.dump(););
6452 // check if an EXT instruction can handle the shuffle mask when the
6453 // vector sources of the shuffle are the same.
6454 static bool isSingletonEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6455 unsigned NumElts
= VT
.getVectorNumElements();
6457 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6463 // If this is a VEXT shuffle, the immediate value is the index of the first
6464 // element. The other shuffle indices must be the successive elements after
6466 unsigned ExpectedElt
= Imm
;
6467 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6468 // Increment the expected index. If it wraps around, just follow it
6469 // back to index zero and keep going.
6471 if (ExpectedElt
== NumElts
)
6475 continue; // ignore UNDEF indices
6476 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6483 // check if an EXT instruction can handle the shuffle mask when the
6484 // vector sources of the shuffle are different.
6485 static bool isEXTMask(ArrayRef
<int> M
, EVT VT
, bool &ReverseEXT
,
6487 // Look for the first non-undef element.
6488 const int *FirstRealElt
= find_if(M
, [](int Elt
) { return Elt
>= 0; });
6490 // Benefit form APInt to handle overflow when calculating expected element.
6491 unsigned NumElts
= VT
.getVectorNumElements();
6492 unsigned MaskBits
= APInt(32, NumElts
* 2).logBase2();
6493 APInt ExpectedElt
= APInt(MaskBits
, *FirstRealElt
+ 1);
6494 // The following shuffle indices must be the successive elements after the
6495 // first real element.
6496 const int *FirstWrongElt
= std::find_if(FirstRealElt
+ 1, M
.end(),
6497 [&](int Elt
) {return Elt
!= ExpectedElt
++ && Elt
!= -1;});
6498 if (FirstWrongElt
!= M
.end())
6501 // The index of an EXT is the first element if it is not UNDEF.
6502 // Watch out for the beginning UNDEFs. The EXT index should be the expected
6503 // value of the first element. E.g.
6504 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6505 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6506 // ExpectedElt is the last mask index plus 1.
6507 Imm
= ExpectedElt
.getZExtValue();
6509 // There are two difference cases requiring to reverse input vectors.
6510 // For example, for vector <4 x i32> we have the following cases,
6511 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6512 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6513 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6514 // to reverse two input vectors.
6523 /// isREVMask - Check if a vector shuffle corresponds to a REV
6524 /// instruction with the specified blocksize. (The order of the elements
6525 /// within each block of the vector is reversed.)
6526 static bool isREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6527 assert((BlockSize
== 16 || BlockSize
== 32 || BlockSize
== 64) &&
6528 "Only possible block sizes for REV are: 16, 32, 64");
6530 unsigned EltSz
= VT
.getScalarSizeInBits();
6534 unsigned NumElts
= VT
.getVectorNumElements();
6535 unsigned BlockElts
= M
[0] + 1;
6536 // If the first shuffle index is UNDEF, be optimistic.
6538 BlockElts
= BlockSize
/ EltSz
;
6540 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6543 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6545 continue; // ignore UNDEF indices
6546 if ((unsigned)M
[i
] != (i
- i
% BlockElts
) + (BlockElts
- 1 - i
% BlockElts
))
6553 static bool isZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6554 unsigned NumElts
= VT
.getVectorNumElements();
6555 if (NumElts
% 2 != 0)
6557 WhichResult
= (M
[0] == 0 ? 0 : 1);
6558 unsigned Idx
= WhichResult
* NumElts
/ 2;
6559 for (unsigned i
= 0; i
!= NumElts
; i
+= 2) {
6560 if ((M
[i
] >= 0 && (unsigned)M
[i
] != Idx
) ||
6561 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != Idx
+ NumElts
))
6569 static bool isUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6570 unsigned NumElts
= VT
.getVectorNumElements();
6571 WhichResult
= (M
[0] == 0 ? 0 : 1);
6572 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6574 continue; // ignore UNDEF indices
6575 if ((unsigned)M
[i
] != 2 * i
+ WhichResult
)
6582 static bool isTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6583 unsigned NumElts
= VT
.getVectorNumElements();
6584 if (NumElts
% 2 != 0)
6586 WhichResult
= (M
[0] == 0 ? 0 : 1);
6587 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
6588 if ((M
[i
] >= 0 && (unsigned)M
[i
] != i
+ WhichResult
) ||
6589 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != i
+ NumElts
+ WhichResult
))
6595 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6596 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6597 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6598 static bool isZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6599 unsigned NumElts
= VT
.getVectorNumElements();
6600 if (NumElts
% 2 != 0)
6602 WhichResult
= (M
[0] == 0 ? 0 : 1);
6603 unsigned Idx
= WhichResult
* NumElts
/ 2;
6604 for (unsigned i
= 0; i
!= NumElts
; i
+= 2) {
6605 if ((M
[i
] >= 0 && (unsigned)M
[i
] != Idx
) ||
6606 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != Idx
))
6614 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6615 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6616 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6617 static bool isUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6618 unsigned Half
= VT
.getVectorNumElements() / 2;
6619 WhichResult
= (M
[0] == 0 ? 0 : 1);
6620 for (unsigned j
= 0; j
!= 2; ++j
) {
6621 unsigned Idx
= WhichResult
;
6622 for (unsigned i
= 0; i
!= Half
; ++i
) {
6623 int MIdx
= M
[i
+ j
* Half
];
6624 if (MIdx
>= 0 && (unsigned)MIdx
!= Idx
)
6633 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6634 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6635 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6636 static bool isTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6637 unsigned NumElts
= VT
.getVectorNumElements();
6638 if (NumElts
% 2 != 0)
6640 WhichResult
= (M
[0] == 0 ? 0 : 1);
6641 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
6642 if ((M
[i
] >= 0 && (unsigned)M
[i
] != i
+ WhichResult
) ||
6643 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != i
+ WhichResult
))
6649 static bool isINSMask(ArrayRef
<int> M
, int NumInputElements
,
6650 bool &DstIsLeft
, int &Anomaly
) {
6651 if (M
.size() != static_cast<size_t>(NumInputElements
))
6654 int NumLHSMatch
= 0, NumRHSMatch
= 0;
6655 int LastLHSMismatch
= -1, LastRHSMismatch
= -1;
6657 for (int i
= 0; i
< NumInputElements
; ++i
) {
6667 LastLHSMismatch
= i
;
6669 if (M
[i
] == i
+ NumInputElements
)
6672 LastRHSMismatch
= i
;
6675 if (NumLHSMatch
== NumInputElements
- 1) {
6677 Anomaly
= LastLHSMismatch
;
6679 } else if (NumRHSMatch
== NumInputElements
- 1) {
6681 Anomaly
= LastRHSMismatch
;
6688 static bool isConcatMask(ArrayRef
<int> Mask
, EVT VT
, bool SplitLHS
) {
6689 if (VT
.getSizeInBits() != 128)
6692 unsigned NumElts
= VT
.getVectorNumElements();
6694 for (int I
= 0, E
= NumElts
/ 2; I
!= E
; I
++) {
6699 int Offset
= NumElts
/ 2;
6700 for (int I
= NumElts
/ 2, E
= NumElts
; I
!= E
; I
++) {
6701 if (Mask
[I
] != I
+ SplitLHS
* Offset
)
6708 static SDValue
tryFormConcatFromShuffle(SDValue Op
, SelectionDAG
&DAG
) {
6710 EVT VT
= Op
.getValueType();
6711 SDValue V0
= Op
.getOperand(0);
6712 SDValue V1
= Op
.getOperand(1);
6713 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
6715 if (VT
.getVectorElementType() != V0
.getValueType().getVectorElementType() ||
6716 VT
.getVectorElementType() != V1
.getValueType().getVectorElementType())
6719 bool SplitV0
= V0
.getValueSizeInBits() == 128;
6721 if (!isConcatMask(Mask
, VT
, SplitV0
))
6724 EVT CastVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
6726 V0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, CastVT
, V0
,
6727 DAG
.getConstant(0, DL
, MVT::i64
));
6729 if (V1
.getValueSizeInBits() == 128) {
6730 V1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, CastVT
, V1
,
6731 DAG
.getConstant(0, DL
, MVT::i64
));
6733 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, V0
, V1
);
6736 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6737 /// the specified operations to build the shuffle.
6738 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
6739 SDValue RHS
, SelectionDAG
&DAG
,
6741 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
6742 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13) - 1);
6743 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13) - 1);
6746 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6755 OP_VUZPL
, // VUZP, left result
6756 OP_VUZPR
, // VUZP, right result
6757 OP_VZIPL
, // VZIP, left result
6758 OP_VZIPR
, // VZIP, right result
6759 OP_VTRNL
, // VTRN, left result
6760 OP_VTRNR
// VTRN, right result
6763 if (OpNum
== OP_COPY
) {
6764 if (LHSID
== (1 * 9 + 2) * 9 + 3)
6766 assert(LHSID
== ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6770 SDValue OpLHS
, OpRHS
;
6771 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
6772 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
6773 EVT VT
= OpLHS
.getValueType();
6777 llvm_unreachable("Unknown shuffle opcode!");
6779 // VREV divides the vector in half and swaps within the half.
6780 if (VT
.getVectorElementType() == MVT::i32
||
6781 VT
.getVectorElementType() == MVT::f32
)
6782 return DAG
.getNode(AArch64ISD::REV64
, dl
, VT
, OpLHS
);
6783 // vrev <4 x i16> -> REV32
6784 if (VT
.getVectorElementType() == MVT::i16
||
6785 VT
.getVectorElementType() == MVT::f16
)
6786 return DAG
.getNode(AArch64ISD::REV32
, dl
, VT
, OpLHS
);
6787 // vrev <4 x i8> -> REV16
6788 assert(VT
.getVectorElementType() == MVT::i8
);
6789 return DAG
.getNode(AArch64ISD::REV16
, dl
, VT
, OpLHS
);
6794 EVT EltTy
= VT
.getVectorElementType();
6796 if (EltTy
== MVT::i8
)
6797 Opcode
= AArch64ISD::DUPLANE8
;
6798 else if (EltTy
== MVT::i16
|| EltTy
== MVT::f16
)
6799 Opcode
= AArch64ISD::DUPLANE16
;
6800 else if (EltTy
== MVT::i32
|| EltTy
== MVT::f32
)
6801 Opcode
= AArch64ISD::DUPLANE32
;
6802 else if (EltTy
== MVT::i64
|| EltTy
== MVT::f64
)
6803 Opcode
= AArch64ISD::DUPLANE64
;
6805 llvm_unreachable("Invalid vector element type?");
6807 if (VT
.getSizeInBits() == 64)
6808 OpLHS
= WidenVector(OpLHS
, DAG
);
6809 SDValue Lane
= DAG
.getConstant(OpNum
- OP_VDUP0
, dl
, MVT::i64
);
6810 return DAG
.getNode(Opcode
, dl
, VT
, OpLHS
, Lane
);
6815 unsigned Imm
= (OpNum
- OP_VEXT1
+ 1) * getExtFactor(OpLHS
);
6816 return DAG
.getNode(AArch64ISD::EXT
, dl
, VT
, OpLHS
, OpRHS
,
6817 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6820 return DAG
.getNode(AArch64ISD::UZP1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6823 return DAG
.getNode(AArch64ISD::UZP2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6826 return DAG
.getNode(AArch64ISD::ZIP1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6829 return DAG
.getNode(AArch64ISD::ZIP2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6832 return DAG
.getNode(AArch64ISD::TRN1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6835 return DAG
.getNode(AArch64ISD::TRN2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6840 static SDValue
GenerateTBL(SDValue Op
, ArrayRef
<int> ShuffleMask
,
6841 SelectionDAG
&DAG
) {
6842 // Check to see if we can use the TBL instruction.
6843 SDValue V1
= Op
.getOperand(0);
6844 SDValue V2
= Op
.getOperand(1);
6847 EVT EltVT
= Op
.getValueType().getVectorElementType();
6848 unsigned BytesPerElt
= EltVT
.getSizeInBits() / 8;
6850 SmallVector
<SDValue
, 8> TBLMask
;
6851 for (int Val
: ShuffleMask
) {
6852 for (unsigned Byte
= 0; Byte
< BytesPerElt
; ++Byte
) {
6853 unsigned Offset
= Byte
+ Val
* BytesPerElt
;
6854 TBLMask
.push_back(DAG
.getConstant(Offset
, DL
, MVT::i32
));
6858 MVT IndexVT
= MVT::v8i8
;
6859 unsigned IndexLen
= 8;
6860 if (Op
.getValueSizeInBits() == 128) {
6861 IndexVT
= MVT::v16i8
;
6865 SDValue V1Cst
= DAG
.getNode(ISD::BITCAST
, DL
, IndexVT
, V1
);
6866 SDValue V2Cst
= DAG
.getNode(ISD::BITCAST
, DL
, IndexVT
, V2
);
6869 if (V2
.getNode()->isUndef()) {
6871 V1Cst
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v16i8
, V1Cst
, V1Cst
);
6872 Shuffle
= DAG
.getNode(
6873 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
6874 DAG
.getConstant(Intrinsic::aarch64_neon_tbl1
, DL
, MVT::i32
), V1Cst
,
6875 DAG
.getBuildVector(IndexVT
, DL
,
6876 makeArrayRef(TBLMask
.data(), IndexLen
)));
6878 if (IndexLen
== 8) {
6879 V1Cst
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v16i8
, V1Cst
, V2Cst
);
6880 Shuffle
= DAG
.getNode(
6881 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
6882 DAG
.getConstant(Intrinsic::aarch64_neon_tbl1
, DL
, MVT::i32
), V1Cst
,
6883 DAG
.getBuildVector(IndexVT
, DL
,
6884 makeArrayRef(TBLMask
.data(), IndexLen
)));
6886 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6887 // cannot currently represent the register constraints on the input
6889 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6890 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6892 Shuffle
= DAG
.getNode(
6893 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
6894 DAG
.getConstant(Intrinsic::aarch64_neon_tbl2
, DL
, MVT::i32
), V1Cst
,
6895 V2Cst
, DAG
.getBuildVector(IndexVT
, DL
,
6896 makeArrayRef(TBLMask
.data(), IndexLen
)));
6899 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Shuffle
);
6902 static unsigned getDUPLANEOp(EVT EltType
) {
6903 if (EltType
== MVT::i8
)
6904 return AArch64ISD::DUPLANE8
;
6905 if (EltType
== MVT::i16
|| EltType
== MVT::f16
)
6906 return AArch64ISD::DUPLANE16
;
6907 if (EltType
== MVT::i32
|| EltType
== MVT::f32
)
6908 return AArch64ISD::DUPLANE32
;
6909 if (EltType
== MVT::i64
|| EltType
== MVT::f64
)
6910 return AArch64ISD::DUPLANE64
;
6912 llvm_unreachable("Invalid vector element type?");
6915 SDValue
AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
6916 SelectionDAG
&DAG
) const {
6918 EVT VT
= Op
.getValueType();
6920 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
6922 // Convert shuffles that are directly supported on NEON to target-specific
6923 // DAG nodes, instead of keeping them as shuffles and matching them again
6924 // during code selection. This is more efficient and avoids the possibility
6925 // of inconsistencies between legalization and selection.
6926 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
6928 SDValue V1
= Op
.getOperand(0);
6929 SDValue V2
= Op
.getOperand(1);
6931 if (SVN
->isSplat()) {
6932 int Lane
= SVN
->getSplatIndex();
6933 // If this is undef splat, generate it via "just" vdup, if possible.
6937 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
6938 return DAG
.getNode(AArch64ISD::DUP
, dl
, V1
.getValueType(),
6940 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6941 // constant. If so, we can just reference the lane's definition directly.
6942 if (V1
.getOpcode() == ISD::BUILD_VECTOR
&&
6943 !isa
<ConstantSDNode
>(V1
.getOperand(Lane
)))
6944 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, V1
.getOperand(Lane
));
6946 // Otherwise, duplicate from the lane of the input vector.
6947 unsigned Opcode
= getDUPLANEOp(V1
.getValueType().getVectorElementType());
6949 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6950 // to make a vector of the same size as this SHUFFLE. We can ignore the
6951 // extract entirely, and canonicalise the concat using WidenVector.
6952 if (V1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
6953 Lane
+= cast
<ConstantSDNode
>(V1
.getOperand(1))->getZExtValue();
6954 V1
= V1
.getOperand(0);
6955 } else if (V1
.getOpcode() == ISD::CONCAT_VECTORS
) {
6956 unsigned Idx
= Lane
>= (int)VT
.getVectorNumElements() / 2;
6957 Lane
-= Idx
* VT
.getVectorNumElements() / 2;
6958 V1
= WidenVector(V1
.getOperand(Idx
), DAG
);
6959 } else if (VT
.getSizeInBits() == 64)
6960 V1
= WidenVector(V1
, DAG
);
6962 return DAG
.getNode(Opcode
, dl
, VT
, V1
, DAG
.getConstant(Lane
, dl
, MVT::i64
));
6965 if (isREVMask(ShuffleMask
, VT
, 64))
6966 return DAG
.getNode(AArch64ISD::REV64
, dl
, V1
.getValueType(), V1
, V2
);
6967 if (isREVMask(ShuffleMask
, VT
, 32))
6968 return DAG
.getNode(AArch64ISD::REV32
, dl
, V1
.getValueType(), V1
, V2
);
6969 if (isREVMask(ShuffleMask
, VT
, 16))
6970 return DAG
.getNode(AArch64ISD::REV16
, dl
, V1
.getValueType(), V1
, V2
);
6972 bool ReverseEXT
= false;
6974 if (isEXTMask(ShuffleMask
, VT
, ReverseEXT
, Imm
)) {
6977 Imm
*= getExtFactor(V1
);
6978 return DAG
.getNode(AArch64ISD::EXT
, dl
, V1
.getValueType(), V1
, V2
,
6979 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6980 } else if (V2
->isUndef() && isSingletonEXTMask(ShuffleMask
, VT
, Imm
)) {
6981 Imm
*= getExtFactor(V1
);
6982 return DAG
.getNode(AArch64ISD::EXT
, dl
, V1
.getValueType(), V1
, V1
,
6983 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6986 unsigned WhichResult
;
6987 if (isZIPMask(ShuffleMask
, VT
, WhichResult
)) {
6988 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::ZIP1
: AArch64ISD::ZIP2
;
6989 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
6991 if (isUZPMask(ShuffleMask
, VT
, WhichResult
)) {
6992 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::UZP1
: AArch64ISD::UZP2
;
6993 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
6995 if (isTRNMask(ShuffleMask
, VT
, WhichResult
)) {
6996 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::TRN1
: AArch64ISD::TRN2
;
6997 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
7000 if (isZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
7001 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::ZIP1
: AArch64ISD::ZIP2
;
7002 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
7004 if (isUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
7005 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::UZP1
: AArch64ISD::UZP2
;
7006 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
7008 if (isTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
7009 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::TRN1
: AArch64ISD::TRN2
;
7010 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
7013 if (SDValue Concat
= tryFormConcatFromShuffle(Op
, DAG
))
7018 int NumInputElements
= V1
.getValueType().getVectorNumElements();
7019 if (isINSMask(ShuffleMask
, NumInputElements
, DstIsLeft
, Anomaly
)) {
7020 SDValue DstVec
= DstIsLeft
? V1
: V2
;
7021 SDValue DstLaneV
= DAG
.getConstant(Anomaly
, dl
, MVT::i64
);
7023 SDValue SrcVec
= V1
;
7024 int SrcLane
= ShuffleMask
[Anomaly
];
7025 if (SrcLane
>= NumInputElements
) {
7027 SrcLane
-= VT
.getVectorNumElements();
7029 SDValue SrcLaneV
= DAG
.getConstant(SrcLane
, dl
, MVT::i64
);
7031 EVT ScalarVT
= VT
.getVectorElementType();
7033 if (ScalarVT
.getSizeInBits() < 32 && ScalarVT
.isInteger())
7034 ScalarVT
= MVT::i32
;
7037 ISD::INSERT_VECTOR_ELT
, dl
, VT
, DstVec
,
7038 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, ScalarVT
, SrcVec
, SrcLaneV
),
7042 // If the shuffle is not directly supported and it has 4 elements, use
7043 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7044 unsigned NumElts
= VT
.getVectorNumElements();
7046 unsigned PFIndexes
[4];
7047 for (unsigned i
= 0; i
!= 4; ++i
) {
7048 if (ShuffleMask
[i
] < 0)
7051 PFIndexes
[i
] = ShuffleMask
[i
];
7054 // Compute the index in the perfect shuffle table.
7055 unsigned PFTableIndex
= PFIndexes
[0] * 9 * 9 * 9 + PFIndexes
[1] * 9 * 9 +
7056 PFIndexes
[2] * 9 + PFIndexes
[3];
7057 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7058 unsigned Cost
= (PFEntry
>> 30);
7061 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7064 return GenerateTBL(Op
, ShuffleMask
, DAG
);
7067 SDValue
AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op
,
7068 SelectionDAG
&DAG
) const {
7070 EVT VT
= Op
.getValueType();
7071 EVT ElemVT
= VT
.getScalarType();
7073 SDValue SplatVal
= Op
.getOperand(0);
7075 // Extend input splat value where needed to fit into a GPR (32b or 64b only)
7076 // FPRs don't have this restriction.
7077 switch (ElemVT
.getSimpleVT().SimpleTy
) {
7080 SplatVal
= DAG
.getAnyExtOrTrunc(SplatVal
, dl
, MVT::i32
);
7083 SplatVal
= DAG
.getAnyExtOrTrunc(SplatVal
, dl
, MVT::i64
);
7088 // TODO: we can support splats of i1s and float types, but haven't added
7095 llvm_unreachable("Unsupported SPLAT_VECTOR input operand type");
7099 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, SplatVal
);
7102 static bool resolveBuildVector(BuildVectorSDNode
*BVN
, APInt
&CnstBits
,
7104 EVT VT
= BVN
->getValueType(0);
7105 APInt SplatBits
, SplatUndef
;
7106 unsigned SplatBitSize
;
7108 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
7109 unsigned NumSplats
= VT
.getSizeInBits() / SplatBitSize
;
7111 for (unsigned i
= 0; i
< NumSplats
; ++i
) {
7112 CnstBits
<<= SplatBitSize
;
7113 UndefBits
<<= SplatBitSize
;
7114 CnstBits
|= SplatBits
.zextOrTrunc(VT
.getSizeInBits());
7115 UndefBits
|= (SplatBits
^ SplatUndef
).zextOrTrunc(VT
.getSizeInBits());
7124 // Try 64-bit splatted SIMD immediate.
7125 static SDValue
tryAdvSIMDModImm64(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7126 const APInt
&Bits
) {
7127 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7128 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7129 EVT VT
= Op
.getValueType();
7130 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v2i64
: MVT::f64
;
7132 if (AArch64_AM::isAdvSIMDModImmType10(Value
)) {
7133 Value
= AArch64_AM::encodeAdvSIMDModImmType10(Value
);
7136 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7137 DAG
.getConstant(Value
, dl
, MVT::i32
));
7138 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7145 // Try 32-bit splatted SIMD immediate.
7146 static SDValue
tryAdvSIMDModImm32(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7148 const SDValue
*LHS
= nullptr) {
7149 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7150 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7151 EVT VT
= Op
.getValueType();
7152 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v4i32
: MVT::v2i32
;
7153 bool isAdvSIMDModImm
= false;
7156 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType1(Value
))) {
7157 Value
= AArch64_AM::encodeAdvSIMDModImmType1(Value
);
7160 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType2(Value
))) {
7161 Value
= AArch64_AM::encodeAdvSIMDModImmType2(Value
);
7164 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType3(Value
))) {
7165 Value
= AArch64_AM::encodeAdvSIMDModImmType3(Value
);
7168 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType4(Value
))) {
7169 Value
= AArch64_AM::encodeAdvSIMDModImmType4(Value
);
7173 if (isAdvSIMDModImm
) {
7178 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
, *LHS
,
7179 DAG
.getConstant(Value
, dl
, MVT::i32
),
7180 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7182 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7183 DAG
.getConstant(Value
, dl
, MVT::i32
),
7184 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7186 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7193 // Try 16-bit splatted SIMD immediate.
7194 static SDValue
tryAdvSIMDModImm16(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7196 const SDValue
*LHS
= nullptr) {
7197 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7198 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7199 EVT VT
= Op
.getValueType();
7200 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v8i16
: MVT::v4i16
;
7201 bool isAdvSIMDModImm
= false;
7204 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType5(Value
))) {
7205 Value
= AArch64_AM::encodeAdvSIMDModImmType5(Value
);
7208 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType6(Value
))) {
7209 Value
= AArch64_AM::encodeAdvSIMDModImmType6(Value
);
7213 if (isAdvSIMDModImm
) {
7218 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
, *LHS
,
7219 DAG
.getConstant(Value
, dl
, MVT::i32
),
7220 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7222 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7223 DAG
.getConstant(Value
, dl
, MVT::i32
),
7224 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7226 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7233 // Try 32-bit splatted SIMD immediate with shifted ones.
7234 static SDValue
tryAdvSIMDModImm321s(unsigned NewOp
, SDValue Op
,
7235 SelectionDAG
&DAG
, const APInt
&Bits
) {
7236 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7237 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7238 EVT VT
= Op
.getValueType();
7239 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v4i32
: MVT::v2i32
;
7240 bool isAdvSIMDModImm
= false;
7243 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType7(Value
))) {
7244 Value
= AArch64_AM::encodeAdvSIMDModImmType7(Value
);
7247 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType8(Value
))) {
7248 Value
= AArch64_AM::encodeAdvSIMDModImmType8(Value
);
7252 if (isAdvSIMDModImm
) {
7254 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7255 DAG
.getConstant(Value
, dl
, MVT::i32
),
7256 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7257 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7264 // Try 8-bit splatted SIMD immediate.
7265 static SDValue
tryAdvSIMDModImm8(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7266 const APInt
&Bits
) {
7267 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7268 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7269 EVT VT
= Op
.getValueType();
7270 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v16i8
: MVT::v8i8
;
7272 if (AArch64_AM::isAdvSIMDModImmType9(Value
)) {
7273 Value
= AArch64_AM::encodeAdvSIMDModImmType9(Value
);
7276 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7277 DAG
.getConstant(Value
, dl
, MVT::i32
));
7278 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7285 // Try FP splatted SIMD immediate.
7286 static SDValue
tryAdvSIMDModImmFP(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7287 const APInt
&Bits
) {
7288 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7289 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7290 EVT VT
= Op
.getValueType();
7291 bool isWide
= (VT
.getSizeInBits() == 128);
7293 bool isAdvSIMDModImm
= false;
7295 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType11(Value
))) {
7296 Value
= AArch64_AM::encodeAdvSIMDModImmType11(Value
);
7297 MovTy
= isWide
? MVT::v4f32
: MVT::v2f32
;
7300 (isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType12(Value
))) {
7301 Value
= AArch64_AM::encodeAdvSIMDModImmType12(Value
);
7305 if (isAdvSIMDModImm
) {
7307 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7308 DAG
.getConstant(Value
, dl
, MVT::i32
));
7309 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7316 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7317 // consists of only the same constant int value, returned in reference arg
7319 static bool isAllConstantBuildVector(const SDValue
&PotentialBVec
,
7320 uint64_t &ConstVal
) {
7321 BuildVectorSDNode
*Bvec
= dyn_cast
<BuildVectorSDNode
>(PotentialBVec
);
7324 ConstantSDNode
*FirstElt
= dyn_cast
<ConstantSDNode
>(Bvec
->getOperand(0));
7327 EVT VT
= Bvec
->getValueType(0);
7328 unsigned NumElts
= VT
.getVectorNumElements();
7329 for (unsigned i
= 1; i
< NumElts
; ++i
)
7330 if (dyn_cast
<ConstantSDNode
>(Bvec
->getOperand(i
)) != FirstElt
)
7332 ConstVal
= FirstElt
->getZExtValue();
7336 static unsigned getIntrinsicID(const SDNode
*N
) {
7337 unsigned Opcode
= N
->getOpcode();
7340 return Intrinsic::not_intrinsic
;
7341 case ISD::INTRINSIC_WO_CHAIN
: {
7342 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
7343 if (IID
< Intrinsic::num_intrinsics
)
7345 return Intrinsic::not_intrinsic
;
7350 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7351 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7352 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7353 // Also, logical shift right -> sri, with the same structure.
7354 static SDValue
tryLowerToSLI(SDNode
*N
, SelectionDAG
&DAG
) {
7355 EVT VT
= N
->getValueType(0);
7362 // Is the first op an AND?
7363 const SDValue And
= N
->getOperand(0);
7364 if (And
.getOpcode() != ISD::AND
)
7367 // Is the second op an shl or lshr?
7368 SDValue Shift
= N
->getOperand(1);
7369 // This will have been turned into: AArch64ISD::VSHL vector, #shift
7370 // or AArch64ISD::VLSHR vector, #shift
7371 unsigned ShiftOpc
= Shift
.getOpcode();
7372 if ((ShiftOpc
!= AArch64ISD::VSHL
&& ShiftOpc
!= AArch64ISD::VLSHR
))
7374 bool IsShiftRight
= ShiftOpc
== AArch64ISD::VLSHR
;
7376 // Is the shift amount constant?
7377 ConstantSDNode
*C2node
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
7381 // Is the and mask vector all constant?
7383 if (!isAllConstantBuildVector(And
.getOperand(1), C1
))
7386 // Is C1 == ~C2, taking into account how much one can shift elements of a
7388 uint64_t C2
= C2node
->getZExtValue();
7389 unsigned ElemSizeInBits
= VT
.getScalarSizeInBits();
7390 if (C2
> ElemSizeInBits
)
7392 unsigned ElemMask
= (1 << ElemSizeInBits
) - 1;
7393 if ((C1
& ElemMask
) != (~C2
& ElemMask
))
7396 SDValue X
= And
.getOperand(0);
7397 SDValue Y
= Shift
.getOperand(0);
7400 IsShiftRight
? Intrinsic::aarch64_neon_vsri
: Intrinsic::aarch64_neon_vsli
;
7402 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
7403 DAG
.getConstant(Intrin
, DL
, MVT::i32
), X
, Y
,
7404 Shift
.getOperand(1));
7406 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7407 LLVM_DEBUG(N
->dump(&DAG
));
7408 LLVM_DEBUG(dbgs() << "into: \n");
7409 LLVM_DEBUG(ResultSLI
->dump(&DAG
));
7415 SDValue
AArch64TargetLowering::LowerVectorOR(SDValue Op
,
7416 SelectionDAG
&DAG
) const {
7417 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7418 if (EnableAArch64SlrGeneration
) {
7419 if (SDValue Res
= tryLowerToSLI(Op
.getNode(), DAG
))
7423 EVT VT
= Op
.getValueType();
7425 SDValue LHS
= Op
.getOperand(0);
7426 BuildVectorSDNode
*BVN
=
7427 dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(1).getNode());
7429 // OR commutes, so try swapping the operands.
7430 LHS
= Op
.getOperand(1);
7431 BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(0).getNode());
7436 APInt
DefBits(VT
.getSizeInBits(), 0);
7437 APInt
UndefBits(VT
.getSizeInBits(), 0);
7438 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
7441 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::ORRi
, Op
, DAG
,
7443 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::ORRi
, Op
, DAG
,
7447 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::ORRi
, Op
, DAG
,
7448 UndefBits
, &LHS
)) ||
7449 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::ORRi
, Op
, DAG
,
7454 // We can always fall back to a non-immediate OR.
7458 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7459 // be truncated to fit element width.
7460 static SDValue
NormalizeBuildVector(SDValue Op
,
7461 SelectionDAG
&DAG
) {
7462 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7464 EVT VT
= Op
.getValueType();
7465 EVT EltTy
= VT
.getVectorElementType();
7467 if (EltTy
.isFloatingPoint() || EltTy
.getSizeInBits() > 16)
7470 SmallVector
<SDValue
, 16> Ops
;
7471 for (SDValue Lane
: Op
->ops()) {
7472 // For integer vectors, type legalization would have promoted the
7473 // operands already. Otherwise, if Op is a floating-point splat
7474 // (with operands cast to integers), then the only possibilities
7475 // are constants and UNDEFs.
7476 if (auto *CstLane
= dyn_cast
<ConstantSDNode
>(Lane
)) {
7477 APInt
LowBits(EltTy
.getSizeInBits(),
7478 CstLane
->getZExtValue());
7479 Lane
= DAG
.getConstant(LowBits
.getZExtValue(), dl
, MVT::i32
);
7480 } else if (Lane
.getNode()->isUndef()) {
7481 Lane
= DAG
.getUNDEF(MVT::i32
);
7483 assert(Lane
.getValueType() == MVT::i32
&&
7484 "Unexpected BUILD_VECTOR operand type");
7486 Ops
.push_back(Lane
);
7488 return DAG
.getBuildVector(VT
, dl
, Ops
);
7491 static SDValue
ConstantBuildVector(SDValue Op
, SelectionDAG
&DAG
) {
7492 EVT VT
= Op
.getValueType();
7494 APInt
DefBits(VT
.getSizeInBits(), 0);
7495 APInt
UndefBits(VT
.getSizeInBits(), 0);
7496 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7497 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
7499 if ((NewOp
= tryAdvSIMDModImm64(AArch64ISD::MOVIedit
, Op
, DAG
, DefBits
)) ||
7500 (NewOp
= tryAdvSIMDModImm32(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7501 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MOVImsl
, Op
, DAG
, DefBits
)) ||
7502 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7503 (NewOp
= tryAdvSIMDModImm8(AArch64ISD::MOVI
, Op
, DAG
, DefBits
)) ||
7504 (NewOp
= tryAdvSIMDModImmFP(AArch64ISD::FMOV
, Op
, DAG
, DefBits
)))
7508 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)) ||
7509 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MVNImsl
, Op
, DAG
, DefBits
)) ||
7510 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)))
7513 DefBits
= UndefBits
;
7514 if ((NewOp
= tryAdvSIMDModImm64(AArch64ISD::MOVIedit
, Op
, DAG
, DefBits
)) ||
7515 (NewOp
= tryAdvSIMDModImm32(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7516 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MOVImsl
, Op
, DAG
, DefBits
)) ||
7517 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7518 (NewOp
= tryAdvSIMDModImm8(AArch64ISD::MOVI
, Op
, DAG
, DefBits
)) ||
7519 (NewOp
= tryAdvSIMDModImmFP(AArch64ISD::FMOV
, Op
, DAG
, DefBits
)))
7522 DefBits
= ~UndefBits
;
7523 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)) ||
7524 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MVNImsl
, Op
, DAG
, DefBits
)) ||
7525 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)))
7532 SDValue
AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op
,
7533 SelectionDAG
&DAG
) const {
7534 EVT VT
= Op
.getValueType();
7536 // Try to build a simple constant vector.
7537 Op
= NormalizeBuildVector(Op
, DAG
);
7538 if (VT
.isInteger()) {
7539 // Certain vector constants, used to express things like logical NOT and
7540 // arithmetic NEG, are passed through unmodified. This allows special
7541 // patterns for these operations to match, which will lower these constants
7542 // to whatever is proven necessary.
7543 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7544 if (BVN
->isConstant())
7545 if (ConstantSDNode
*Const
= BVN
->getConstantSplatNode()) {
7546 unsigned BitSize
= VT
.getVectorElementType().getSizeInBits();
7548 Const
->getAPIntValue().zextOrTrunc(BitSize
).getZExtValue());
7549 if (Val
.isNullValue() || Val
.isAllOnesValue())
7554 if (SDValue V
= ConstantBuildVector(Op
, DAG
))
7557 // Scan through the operands to find some interesting properties we can
7559 // 1) If only one value is used, we can use a DUP, or
7560 // 2) if only the low element is not undef, we can just insert that, or
7561 // 3) if only one constant value is used (w/ some non-constant lanes),
7562 // we can splat the constant value into the whole vector then fill
7563 // in the non-constant lanes.
7564 // 4) FIXME: If different constant values are used, but we can intelligently
7565 // select the values we'll be overwriting for the non-constant
7566 // lanes such that we can directly materialize the vector
7567 // some other way (MOVI, e.g.), we can be sneaky.
7568 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7570 unsigned NumElts
= VT
.getVectorNumElements();
7571 bool isOnlyLowElement
= true;
7572 bool usesOnlyOneValue
= true;
7573 bool usesOnlyOneConstantValue
= true;
7574 bool isConstant
= true;
7575 bool AllLanesExtractElt
= true;
7576 unsigned NumConstantLanes
= 0;
7578 SDValue ConstantValue
;
7579 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7580 SDValue V
= Op
.getOperand(i
);
7581 if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
7582 AllLanesExtractElt
= false;
7586 isOnlyLowElement
= false;
7587 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7590 if (isa
<ConstantSDNode
>(V
) || isa
<ConstantFPSDNode
>(V
)) {
7592 if (!ConstantValue
.getNode())
7594 else if (ConstantValue
!= V
)
7595 usesOnlyOneConstantValue
= false;
7598 if (!Value
.getNode())
7600 else if (V
!= Value
)
7601 usesOnlyOneValue
= false;
7604 if (!Value
.getNode()) {
7606 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7607 return DAG
.getUNDEF(VT
);
7610 // Convert BUILD_VECTOR where all elements but the lowest are undef into
7611 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7612 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7613 if (isOnlyLowElement
&& !(NumElts
== 1 && isa
<ConstantSDNode
>(Value
))) {
7614 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7615 "SCALAR_TO_VECTOR node\n");
7616 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7619 if (AllLanesExtractElt
) {
7620 SDNode
*Vector
= nullptr;
7623 // Check whether the extract elements match the Even pattern <0,2,4,...> or
7624 // the Odd pattern <1,3,5,...>.
7625 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7626 SDValue V
= Op
.getOperand(i
);
7627 const SDNode
*N
= V
.getNode();
7628 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
7630 SDValue N0
= N
->getOperand(0);
7632 // All elements are extracted from the same vector.
7634 Vector
= N0
.getNode();
7635 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7637 if (VT
.getVectorElementType() !=
7638 N0
.getValueType().getVectorElementType())
7640 } else if (Vector
!= N0
.getNode()) {
7646 // Extracted values are either at Even indices <0,2,4,...> or at Odd
7647 // indices <1,3,5,...>.
7648 uint64_t Val
= N
->getConstantOperandVal(1);
7653 if (Val
- 1 == 2 * i
) {
7658 // Something does not match: abort.
7665 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, SDValue(Vector
, 0),
7666 DAG
.getConstant(0, dl
, MVT::i64
));
7668 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, SDValue(Vector
, 0),
7669 DAG
.getConstant(NumElts
, dl
, MVT::i64
));
7672 return DAG
.getNode(AArch64ISD::UZP1
, dl
, DAG
.getVTList(VT
, VT
), LHS
,
7675 return DAG
.getNode(AArch64ISD::UZP2
, dl
, DAG
.getVTList(VT
, VT
), LHS
,
7680 // Use DUP for non-constant splats. For f32 constant splats, reduce to
7681 // i32 and try again.
7682 if (usesOnlyOneValue
) {
7684 if (Value
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
7685 Value
.getValueType() != VT
) {
7687 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7688 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, Value
);
7691 // This is actually a DUPLANExx operation, which keeps everything vectory.
7693 SDValue Lane
= Value
.getOperand(1);
7694 Value
= Value
.getOperand(0);
7695 if (Value
.getValueSizeInBits() == 64) {
7697 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7699 Value
= WidenVector(Value
, DAG
);
7702 unsigned Opcode
= getDUPLANEOp(VT
.getVectorElementType());
7703 return DAG
.getNode(Opcode
, dl
, VT
, Value
, Lane
);
7706 if (VT
.getVectorElementType().isFloatingPoint()) {
7707 SmallVector
<SDValue
, 8> Ops
;
7708 EVT EltTy
= VT
.getVectorElementType();
7709 assert ((EltTy
== MVT::f16
|| EltTy
== MVT::f32
|| EltTy
== MVT::f64
) &&
7710 "Unsupported floating-point vector type");
7712 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7713 "BITCASTS, and try again\n");
7714 MVT NewType
= MVT::getIntegerVT(EltTy
.getSizeInBits());
7715 for (unsigned i
= 0; i
< NumElts
; ++i
)
7716 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, NewType
, Op
.getOperand(i
)));
7717 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), NewType
, NumElts
);
7718 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7719 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7721 Val
= LowerBUILD_VECTOR(Val
, DAG
);
7723 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7727 // If there was only one constant value used and for more than one lane,
7728 // start by splatting that value, then replace the non-constant lanes. This
7729 // is better than the default, which will perform a separate initialization
7731 if (NumConstantLanes
> 0 && usesOnlyOneConstantValue
) {
7732 // Firstly, try to materialize the splat constant.
7733 SDValue Vec
= DAG
.getSplatBuildVector(VT
, dl
, ConstantValue
),
7734 Val
= ConstantBuildVector(Vec
, DAG
);
7736 // Otherwise, materialize the constant and splat it.
7737 Val
= DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, ConstantValue
);
7738 DAG
.ReplaceAllUsesWith(Vec
.getNode(), &Val
);
7741 // Now insert the non-constant lanes.
7742 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7743 SDValue V
= Op
.getOperand(i
);
7744 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i64
);
7745 if (!isa
<ConstantSDNode
>(V
) && !isa
<ConstantFPSDNode
>(V
))
7746 // Note that type legalization likely mucked about with the VT of the
7747 // source operand, so we may have to convert it here before inserting.
7748 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Val
, V
, LaneIdx
);
7753 // This will generate a load from the constant pool.
7756 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7761 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7763 if (SDValue shuffle
= ReconstructShuffle(Op
, DAG
))
7767 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7768 // know the default expansion would otherwise fall back on something even
7769 // worse. For a vector with one or two non-undef values, that's
7770 // scalar_to_vector for the elements followed by a shuffle (provided the
7771 // shuffle is valid for the target) and materialization element by element
7772 // on the stack followed by a load for everything else.
7773 if (!isConstant
&& !usesOnlyOneValue
) {
7775 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7776 "of INSERT_VECTOR_ELT\n");
7778 SDValue Vec
= DAG
.getUNDEF(VT
);
7779 SDValue Op0
= Op
.getOperand(0);
7782 // Use SCALAR_TO_VECTOR for lane zero to
7783 // a) Avoid a RMW dependency on the full vector register, and
7784 // b) Allow the register coalescer to fold away the copy if the
7785 // value is already in an S or D register, and we're forced to emit an
7786 // INSERT_SUBREG that we can't fold anywhere.
7788 // We also allow types like i8 and i16 which are illegal scalar but legal
7789 // vector element types. After type-legalization the inserted value is
7790 // extended (i32) and it is safe to cast them to the vector type by ignoring
7791 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7792 if (!Op0
.isUndef()) {
7793 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7794 Vec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op0
);
7797 LLVM_DEBUG(if (i
< NumElts
) dbgs()
7798 << "Creating nodes for the other vector elements:\n";);
7799 for (; i
< NumElts
; ++i
) {
7800 SDValue V
= Op
.getOperand(i
);
7803 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i64
);
7804 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7810 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7811 "better alternative\n");
7815 SDValue
AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7816 SelectionDAG
&DAG
) const {
7817 assert(Op
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& "Unknown opcode!");
7819 // Check for non-constant or out of range lane.
7820 EVT VT
= Op
.getOperand(0).getValueType();
7821 ConstantSDNode
*CI
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
7822 if (!CI
|| CI
->getZExtValue() >= VT
.getVectorNumElements())
7826 // Insertion/extraction are legal for V128 types.
7827 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
7828 VT
== MVT::v2i64
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
||
7832 if (VT
!= MVT::v8i8
&& VT
!= MVT::v4i16
&& VT
!= MVT::v2i32
&&
7833 VT
!= MVT::v1i64
&& VT
!= MVT::v2f32
&& VT
!= MVT::v4f16
)
7836 // For V64 types, we perform insertion by expanding the value
7837 // to a V128 type and perform the insertion on that.
7839 SDValue WideVec
= WidenVector(Op
.getOperand(0), DAG
);
7840 EVT WideTy
= WideVec
.getValueType();
7842 SDValue Node
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, WideTy
, WideVec
,
7843 Op
.getOperand(1), Op
.getOperand(2));
7844 // Re-narrow the resultant vector.
7845 return NarrowVector(Node
, DAG
);
7849 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
7850 SelectionDAG
&DAG
) const {
7851 assert(Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&& "Unknown opcode!");
7853 // Check for non-constant or out of range lane.
7854 EVT VT
= Op
.getOperand(0).getValueType();
7855 ConstantSDNode
*CI
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
7856 if (!CI
|| CI
->getZExtValue() >= VT
.getVectorNumElements())
7860 // Insertion/extraction are legal for V128 types.
7861 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
7862 VT
== MVT::v2i64
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
||
7866 if (VT
!= MVT::v8i8
&& VT
!= MVT::v4i16
&& VT
!= MVT::v2i32
&&
7867 VT
!= MVT::v1i64
&& VT
!= MVT::v2f32
&& VT
!= MVT::v4f16
)
7870 // For V64 types, we perform extraction by expanding the value
7871 // to a V128 type and perform the extraction on that.
7873 SDValue WideVec
= WidenVector(Op
.getOperand(0), DAG
);
7874 EVT WideTy
= WideVec
.getValueType();
7876 EVT ExtrTy
= WideTy
.getVectorElementType();
7877 if (ExtrTy
== MVT::i16
|| ExtrTy
== MVT::i8
)
7880 // For extractions, we just return the result directly.
7881 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ExtrTy
, WideVec
,
7885 SDValue
AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
7886 SelectionDAG
&DAG
) const {
7887 EVT VT
= Op
.getOperand(0).getValueType();
7893 ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
7896 unsigned Val
= Cst
->getZExtValue();
7898 unsigned Size
= Op
.getValueSizeInBits();
7900 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7904 // If this is extracting the upper 64-bits of a 128-bit vector, we match
7906 if (Size
== 64 && Val
* VT
.getScalarSizeInBits() == 64)
7912 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7913 if (VT
.getVectorNumElements() == 4 &&
7914 (VT
.is128BitVector() || VT
.is64BitVector())) {
7915 unsigned PFIndexes
[4];
7916 for (unsigned i
= 0; i
!= 4; ++i
) {
7920 PFIndexes
[i
] = M
[i
];
7923 // Compute the index in the perfect shuffle table.
7924 unsigned PFTableIndex
= PFIndexes
[0] * 9 * 9 * 9 + PFIndexes
[1] * 9 * 9 +
7925 PFIndexes
[2] * 9 + PFIndexes
[3];
7926 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7927 unsigned Cost
= (PFEntry
>> 30);
7935 unsigned DummyUnsigned
;
7937 return (ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) || isREVMask(M
, VT
, 64) ||
7938 isREVMask(M
, VT
, 32) || isREVMask(M
, VT
, 16) ||
7939 isEXTMask(M
, VT
, DummyBool
, DummyUnsigned
) ||
7940 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7941 isTRNMask(M
, VT
, DummyUnsigned
) || isUZPMask(M
, VT
, DummyUnsigned
) ||
7942 isZIPMask(M
, VT
, DummyUnsigned
) ||
7943 isTRN_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
7944 isUZP_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
7945 isZIP_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
7946 isINSMask(M
, VT
.getVectorNumElements(), DummyBool
, DummyInt
) ||
7947 isConcatMask(M
, VT
, VT
.getSizeInBits() == 128));
7950 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7951 /// operand of a vector shift operation, where all the elements of the
7952 /// build_vector must have the same constant integer value.
7953 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
7954 // Ignore bit_converts.
7955 while (Op
.getOpcode() == ISD::BITCAST
)
7956 Op
= Op
.getOperand(0);
7957 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
7958 APInt SplatBits
, SplatUndef
;
7959 unsigned SplatBitSize
;
7961 if (!BVN
|| !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
,
7962 HasAnyUndefs
, ElementBits
) ||
7963 SplatBitSize
> ElementBits
)
7965 Cnt
= SplatBits
.getSExtValue();
7969 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7970 /// operand of a vector shift left operation. That value must be in the range:
7971 /// 0 <= Value < ElementBits for a left shift; or
7972 /// 0 <= Value <= ElementBits for a long left shift.
7973 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
7974 assert(VT
.isVector() && "vector shift count is not a vector type");
7975 int64_t ElementBits
= VT
.getScalarSizeInBits();
7976 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
7978 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
7981 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7982 /// operand of a vector shift right operation. The value must be in the range:
7983 /// 1 <= Value <= ElementBits for a right shift; or
7984 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, int64_t &Cnt
) {
7985 assert(VT
.isVector() && "vector shift count is not a vector type");
7986 int64_t ElementBits
= VT
.getScalarSizeInBits();
7987 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
7989 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
7992 SDValue
AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op
,
7993 SelectionDAG
&DAG
) const {
7994 EVT VT
= Op
.getValueType();
7998 if (!Op
.getOperand(1).getValueType().isVector())
8000 unsigned EltSize
= VT
.getScalarSizeInBits();
8002 switch (Op
.getOpcode()) {
8004 llvm_unreachable("unexpected shift opcode");
8007 if (isVShiftLImm(Op
.getOperand(1), VT
, false, Cnt
) && Cnt
< EltSize
)
8008 return DAG
.getNode(AArch64ISD::VSHL
, DL
, VT
, Op
.getOperand(0),
8009 DAG
.getConstant(Cnt
, DL
, MVT::i32
));
8010 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8011 DAG
.getConstant(Intrinsic::aarch64_neon_ushl
, DL
,
8013 Op
.getOperand(0), Op
.getOperand(1));
8016 // Right shift immediate
8017 if (isVShiftRImm(Op
.getOperand(1), VT
, false, Cnt
) && Cnt
< EltSize
) {
8019 (Op
.getOpcode() == ISD::SRA
) ? AArch64ISD::VASHR
: AArch64ISD::VLSHR
;
8020 return DAG
.getNode(Opc
, DL
, VT
, Op
.getOperand(0),
8021 DAG
.getConstant(Cnt
, DL
, MVT::i32
));
8024 // Right shift register. Note, there is not a shift right register
8025 // instruction, but the shift left register instruction takes a signed
8026 // value, where negative numbers specify a right shift.
8027 unsigned Opc
= (Op
.getOpcode() == ISD::SRA
) ? Intrinsic::aarch64_neon_sshl
8028 : Intrinsic::aarch64_neon_ushl
;
8029 // negate the shift amount
8030 SDValue NegShift
= DAG
.getNode(AArch64ISD::NEG
, DL
, VT
, Op
.getOperand(1));
8031 SDValue NegShiftLeft
=
8032 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8033 DAG
.getConstant(Opc
, DL
, MVT::i32
), Op
.getOperand(0),
8035 return NegShiftLeft
;
8041 static SDValue
EmitVectorComparison(SDValue LHS
, SDValue RHS
,
8042 AArch64CC::CondCode CC
, bool NoNans
, EVT VT
,
8043 const SDLoc
&dl
, SelectionDAG
&DAG
) {
8044 EVT SrcVT
= LHS
.getValueType();
8045 assert(VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
8046 "function only supposed to emit natural comparisons");
8048 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(RHS
.getNode());
8049 APInt
CnstBits(VT
.getSizeInBits(), 0);
8050 APInt
UndefBits(VT
.getSizeInBits(), 0);
8051 bool IsCnst
= BVN
&& resolveBuildVector(BVN
, CnstBits
, UndefBits
);
8052 bool IsZero
= IsCnst
&& (CnstBits
== 0);
8054 if (SrcVT
.getVectorElementType().isFloatingPoint()) {
8058 case AArch64CC::NE
: {
8061 Fcmeq
= DAG
.getNode(AArch64ISD::FCMEQz
, dl
, VT
, LHS
);
8063 Fcmeq
= DAG
.getNode(AArch64ISD::FCMEQ
, dl
, VT
, LHS
, RHS
);
8064 return DAG
.getNode(AArch64ISD::NOT
, dl
, VT
, Fcmeq
);
8068 return DAG
.getNode(AArch64ISD::FCMEQz
, dl
, VT
, LHS
);
8069 return DAG
.getNode(AArch64ISD::FCMEQ
, dl
, VT
, LHS
, RHS
);
8072 return DAG
.getNode(AArch64ISD::FCMGEz
, dl
, VT
, LHS
);
8073 return DAG
.getNode(AArch64ISD::FCMGE
, dl
, VT
, LHS
, RHS
);
8076 return DAG
.getNode(AArch64ISD::FCMGTz
, dl
, VT
, LHS
);
8077 return DAG
.getNode(AArch64ISD::FCMGT
, dl
, VT
, LHS
, RHS
);
8080 return DAG
.getNode(AArch64ISD::FCMLEz
, dl
, VT
, LHS
);
8081 return DAG
.getNode(AArch64ISD::FCMGE
, dl
, VT
, RHS
, LHS
);
8085 // If we ignore NaNs then we can use to the MI implementation.
8089 return DAG
.getNode(AArch64ISD::FCMLTz
, dl
, VT
, LHS
);
8090 return DAG
.getNode(AArch64ISD::FCMGT
, dl
, VT
, RHS
, LHS
);
8097 case AArch64CC::NE
: {
8100 Cmeq
= DAG
.getNode(AArch64ISD::CMEQz
, dl
, VT
, LHS
);
8102 Cmeq
= DAG
.getNode(AArch64ISD::CMEQ
, dl
, VT
, LHS
, RHS
);
8103 return DAG
.getNode(AArch64ISD::NOT
, dl
, VT
, Cmeq
);
8107 return DAG
.getNode(AArch64ISD::CMEQz
, dl
, VT
, LHS
);
8108 return DAG
.getNode(AArch64ISD::CMEQ
, dl
, VT
, LHS
, RHS
);
8111 return DAG
.getNode(AArch64ISD::CMGEz
, dl
, VT
, LHS
);
8112 return DAG
.getNode(AArch64ISD::CMGE
, dl
, VT
, LHS
, RHS
);
8115 return DAG
.getNode(AArch64ISD::CMGTz
, dl
, VT
, LHS
);
8116 return DAG
.getNode(AArch64ISD::CMGT
, dl
, VT
, LHS
, RHS
);
8119 return DAG
.getNode(AArch64ISD::CMLEz
, dl
, VT
, LHS
);
8120 return DAG
.getNode(AArch64ISD::CMGE
, dl
, VT
, RHS
, LHS
);
8122 return DAG
.getNode(AArch64ISD::CMHS
, dl
, VT
, RHS
, LHS
);
8124 return DAG
.getNode(AArch64ISD::CMHI
, dl
, VT
, RHS
, LHS
);
8127 return DAG
.getNode(AArch64ISD::CMLTz
, dl
, VT
, LHS
);
8128 return DAG
.getNode(AArch64ISD::CMGT
, dl
, VT
, RHS
, LHS
);
8130 return DAG
.getNode(AArch64ISD::CMHI
, dl
, VT
, LHS
, RHS
);
8132 return DAG
.getNode(AArch64ISD::CMHS
, dl
, VT
, LHS
, RHS
);
8136 SDValue
AArch64TargetLowering::LowerVSETCC(SDValue Op
,
8137 SelectionDAG
&DAG
) const {
8138 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
8139 SDValue LHS
= Op
.getOperand(0);
8140 SDValue RHS
= Op
.getOperand(1);
8141 EVT CmpVT
= LHS
.getValueType().changeVectorElementTypeToInteger();
8144 if (LHS
.getValueType().getVectorElementType().isInteger()) {
8145 assert(LHS
.getValueType() == RHS
.getValueType());
8146 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
8148 EmitVectorComparison(LHS
, RHS
, AArch64CC
, false, CmpVT
, dl
, DAG
);
8149 return DAG
.getSExtOrTrunc(Cmp
, dl
, Op
.getValueType());
8152 const bool FullFP16
=
8153 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
8155 // Make v4f16 (only) fcmp operations utilise vector instructions
8156 // v8f16 support will be a litle more complicated
8157 if (!FullFP16
&& LHS
.getValueType().getVectorElementType() == MVT::f16
) {
8158 if (LHS
.getValueType().getVectorNumElements() == 4) {
8159 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::v4f32
, LHS
);
8160 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::v4f32
, RHS
);
8161 SDValue NewSetcc
= DAG
.getSetCC(dl
, MVT::v4i16
, LHS
, RHS
, CC
);
8162 DAG
.ReplaceAllUsesWith(Op
, NewSetcc
);
8168 assert((!FullFP16
&& LHS
.getValueType().getVectorElementType() != MVT::f16
) ||
8169 LHS
.getValueType().getVectorElementType() != MVT::f128
);
8171 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
8172 // clean. Some of them require two branches to implement.
8173 AArch64CC::CondCode CC1
, CC2
;
8175 changeVectorFPCCToAArch64CC(CC
, CC1
, CC2
, ShouldInvert
);
8177 bool NoNaNs
= getTargetMachine().Options
.NoNaNsFPMath
;
8179 EmitVectorComparison(LHS
, RHS
, CC1
, NoNaNs
, CmpVT
, dl
, DAG
);
8183 if (CC2
!= AArch64CC::AL
) {
8185 EmitVectorComparison(LHS
, RHS
, CC2
, NoNaNs
, CmpVT
, dl
, DAG
);
8186 if (!Cmp2
.getNode())
8189 Cmp
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, Cmp
, Cmp2
);
8192 Cmp
= DAG
.getSExtOrTrunc(Cmp
, dl
, Op
.getValueType());
8195 Cmp
= DAG
.getNOT(dl
, Cmp
, Cmp
.getValueType());
8200 static SDValue
getReductionSDNode(unsigned Op
, SDLoc DL
, SDValue ScalarOp
,
8201 SelectionDAG
&DAG
) {
8202 SDValue VecOp
= ScalarOp
.getOperand(0);
8203 auto Rdx
= DAG
.getNode(Op
, DL
, VecOp
.getSimpleValueType(), VecOp
);
8204 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarOp
.getValueType(), Rdx
,
8205 DAG
.getConstant(0, DL
, MVT::i64
));
8208 SDValue
AArch64TargetLowering::LowerVECREDUCE(SDValue Op
,
8209 SelectionDAG
&DAG
) const {
8211 switch (Op
.getOpcode()) {
8212 case ISD::VECREDUCE_ADD
:
8213 return getReductionSDNode(AArch64ISD::UADDV
, dl
, Op
, DAG
);
8214 case ISD::VECREDUCE_SMAX
:
8215 return getReductionSDNode(AArch64ISD::SMAXV
, dl
, Op
, DAG
);
8216 case ISD::VECREDUCE_SMIN
:
8217 return getReductionSDNode(AArch64ISD::SMINV
, dl
, Op
, DAG
);
8218 case ISD::VECREDUCE_UMAX
:
8219 return getReductionSDNode(AArch64ISD::UMAXV
, dl
, Op
, DAG
);
8220 case ISD::VECREDUCE_UMIN
:
8221 return getReductionSDNode(AArch64ISD::UMINV
, dl
, Op
, DAG
);
8222 case ISD::VECREDUCE_FMAX
: {
8223 assert(Op
->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
8225 ISD::INTRINSIC_WO_CHAIN
, dl
, Op
.getValueType(),
8226 DAG
.getConstant(Intrinsic::aarch64_neon_fmaxnmv
, dl
, MVT::i32
),
8229 case ISD::VECREDUCE_FMIN
: {
8230 assert(Op
->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
8232 ISD::INTRINSIC_WO_CHAIN
, dl
, Op
.getValueType(),
8233 DAG
.getConstant(Intrinsic::aarch64_neon_fminnmv
, dl
, MVT::i32
),
8237 llvm_unreachable("Unhandled reduction");
8241 SDValue
AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op
,
8242 SelectionDAG
&DAG
) const {
8243 auto &Subtarget
= static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget());
8244 if (!Subtarget
.hasLSE())
8247 // LSE has an atomic load-add instruction, but not a load-sub.
8249 MVT VT
= Op
.getSimpleValueType();
8250 SDValue RHS
= Op
.getOperand(2);
8251 AtomicSDNode
*AN
= cast
<AtomicSDNode
>(Op
.getNode());
8252 RHS
= DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(0, dl
, VT
), RHS
);
8253 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
, AN
->getMemoryVT(),
8254 Op
.getOperand(0), Op
.getOperand(1), RHS
,
8255 AN
->getMemOperand());
8258 SDValue
AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op
,
8259 SelectionDAG
&DAG
) const {
8260 auto &Subtarget
= static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget());
8261 if (!Subtarget
.hasLSE())
8264 // LSE has an atomic load-clear instruction, but not a load-and.
8266 MVT VT
= Op
.getSimpleValueType();
8267 SDValue RHS
= Op
.getOperand(2);
8268 AtomicSDNode
*AN
= cast
<AtomicSDNode
>(Op
.getNode());
8269 RHS
= DAG
.getNode(ISD::XOR
, dl
, VT
, DAG
.getConstant(-1ULL, dl
, VT
), RHS
);
8270 return DAG
.getAtomic(ISD::ATOMIC_LOAD_CLR
, dl
, AN
->getMemoryVT(),
8271 Op
.getOperand(0), Op
.getOperand(1), RHS
,
8272 AN
->getMemOperand());
8275 SDValue
AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
8276 SDValue Op
, SDValue Chain
, SDValue
&Size
, SelectionDAG
&DAG
) const {
8278 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
8279 SDValue Callee
= DAG
.getTargetExternalSymbol("__chkstk", PtrVT
, 0);
8281 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
8282 const uint32_t *Mask
= TRI
->getWindowsStackProbePreservedMask();
8283 if (Subtarget
->hasCustomCallingConv())
8284 TRI
->UpdateCustomCallPreservedMask(DAG
.getMachineFunction(), &Mask
);
8286 Size
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Size
,
8287 DAG
.getConstant(4, dl
, MVT::i64
));
8288 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::X15
, Size
, SDValue());
8290 DAG
.getNode(AArch64ISD::CALL
, dl
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
8291 Chain
, Callee
, DAG
.getRegister(AArch64::X15
, MVT::i64
),
8292 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
8293 // To match the actual intent better, we should read the output from X15 here
8294 // again (instead of potentially spilling it to the stack), but rereading Size
8295 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
8298 Size
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, Size
,
8299 DAG
.getConstant(4, dl
, MVT::i64
));
8304 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
8305 SelectionDAG
&DAG
) const {
8306 assert(Subtarget
->isTargetWindows() &&
8307 "Only Windows alloca probing supported");
8310 SDNode
*Node
= Op
.getNode();
8311 SDValue Chain
= Op
.getOperand(0);
8312 SDValue Size
= Op
.getOperand(1);
8313 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
8314 EVT VT
= Node
->getValueType(0);
8316 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
8317 "no-stack-arg-probe")) {
8318 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, AArch64::SP
, MVT::i64
);
8319 Chain
= SP
.getValue(1);
8320 SP
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, SP
, Size
);
8322 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
.getValue(0),
8323 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
8324 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::SP
, SP
);
8325 SDValue Ops
[2] = {SP
, Chain
};
8326 return DAG
.getMergeValues(Ops
, dl
);
8329 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, dl
);
8331 Chain
= LowerWindowsDYNAMIC_STACKALLOC(Op
, Chain
, Size
, DAG
);
8333 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, AArch64::SP
, MVT::i64
);
8334 Chain
= SP
.getValue(1);
8335 SP
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, SP
, Size
);
8337 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
.getValue(0),
8338 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
8339 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::SP
, SP
);
8341 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, dl
, true),
8342 DAG
.getIntPtrConstant(0, dl
, true), SDValue(), dl
);
8344 SDValue Ops
[2] = {SP
, Chain
};
8345 return DAG
.getMergeValues(Ops
, dl
);
8348 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8349 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
8350 /// specified in the intrinsic calls.
8351 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
8353 MachineFunction
&MF
,
8354 unsigned Intrinsic
) const {
8355 auto &DL
= I
.getModule()->getDataLayout();
8356 switch (Intrinsic
) {
8357 case Intrinsic::aarch64_neon_ld2
:
8358 case Intrinsic::aarch64_neon_ld3
:
8359 case Intrinsic::aarch64_neon_ld4
:
8360 case Intrinsic::aarch64_neon_ld1x2
:
8361 case Intrinsic::aarch64_neon_ld1x3
:
8362 case Intrinsic::aarch64_neon_ld1x4
:
8363 case Intrinsic::aarch64_neon_ld2lane
:
8364 case Intrinsic::aarch64_neon_ld3lane
:
8365 case Intrinsic::aarch64_neon_ld4lane
:
8366 case Intrinsic::aarch64_neon_ld2r
:
8367 case Intrinsic::aarch64_neon_ld3r
:
8368 case Intrinsic::aarch64_neon_ld4r
: {
8369 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8370 // Conservatively set memVT to the entire set of vectors loaded.
8371 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
8372 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
8373 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
8376 // volatile loads with NEON intrinsics not supported
8377 Info
.flags
= MachineMemOperand::MOLoad
;
8380 case Intrinsic::aarch64_neon_st2
:
8381 case Intrinsic::aarch64_neon_st3
:
8382 case Intrinsic::aarch64_neon_st4
:
8383 case Intrinsic::aarch64_neon_st1x2
:
8384 case Intrinsic::aarch64_neon_st1x3
:
8385 case Intrinsic::aarch64_neon_st1x4
:
8386 case Intrinsic::aarch64_neon_st2lane
:
8387 case Intrinsic::aarch64_neon_st3lane
:
8388 case Intrinsic::aarch64_neon_st4lane
: {
8389 Info
.opc
= ISD::INTRINSIC_VOID
;
8390 // Conservatively set memVT to the entire set of vectors stored.
8391 unsigned NumElts
= 0;
8392 for (unsigned ArgI
= 0, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
8393 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
8394 if (!ArgTy
->isVectorTy())
8396 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
8398 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
8399 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
8402 // volatile stores with NEON intrinsics not supported
8403 Info
.flags
= MachineMemOperand::MOStore
;
8406 case Intrinsic::aarch64_ldaxr
:
8407 case Intrinsic::aarch64_ldxr
: {
8408 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
8409 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8410 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8411 Info
.ptrVal
= I
.getArgOperand(0);
8413 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8414 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
8417 case Intrinsic::aarch64_stlxr
:
8418 case Intrinsic::aarch64_stxr
: {
8419 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
8420 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8421 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8422 Info
.ptrVal
= I
.getArgOperand(1);
8424 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8425 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
8428 case Intrinsic::aarch64_ldaxp
:
8429 case Intrinsic::aarch64_ldxp
:
8430 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8431 Info
.memVT
= MVT::i128
;
8432 Info
.ptrVal
= I
.getArgOperand(0);
8434 Info
.align
= Align(16);
8435 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
8437 case Intrinsic::aarch64_stlxp
:
8438 case Intrinsic::aarch64_stxp
:
8439 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8440 Info
.memVT
= MVT::i128
;
8441 Info
.ptrVal
= I
.getArgOperand(2);
8443 Info
.align
= Align(16);
8444 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
8453 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode
*Load
,
8454 ISD::LoadExtType ExtTy
,
8456 // TODO: This may be worth removing. Check regression tests for diffs.
8457 if (!TargetLoweringBase::shouldReduceLoadWidth(Load
, ExtTy
, NewVT
))
8460 // If we're reducing the load width in order to avoid having to use an extra
8461 // instruction to do extension then it's probably a good idea.
8462 if (ExtTy
!= ISD::NON_EXTLOAD
)
8464 // Don't reduce load width if it would prevent us from combining a shift into
8466 MemSDNode
*Mem
= dyn_cast
<MemSDNode
>(Load
);
8468 const SDValue
&Base
= Mem
->getBasePtr();
8469 if (Base
.getOpcode() == ISD::ADD
&&
8470 Base
.getOperand(1).getOpcode() == ISD::SHL
&&
8471 Base
.getOperand(1).hasOneUse() &&
8472 Base
.getOperand(1).getOperand(1).getOpcode() == ISD::Constant
) {
8473 // The shift can be combined if it matches the size of the value being
8474 // loaded (and so reducing the width would make it not match).
8475 uint64_t ShiftAmount
= Base
.getOperand(1).getConstantOperandVal(1);
8476 uint64_t LoadBytes
= Mem
->getMemoryVT().getSizeInBits()/8;
8477 if (ShiftAmount
== Log2_32(LoadBytes
))
8480 // We have no reason to disallow reducing the load width, so allow it.
8484 // Truncations from 64-bit GPR to 32-bit GPR is free.
8485 bool AArch64TargetLowering::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
8486 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8488 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8489 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8490 return NumBits1
> NumBits2
;
8492 bool AArch64TargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
8493 if (VT1
.isVector() || VT2
.isVector() || !VT1
.isInteger() || !VT2
.isInteger())
8495 unsigned NumBits1
= VT1
.getSizeInBits();
8496 unsigned NumBits2
= VT2
.getSizeInBits();
8497 return NumBits1
> NumBits2
;
8500 /// Check if it is profitable to hoist instruction in then/else to if.
8501 /// Not profitable if I and it's user can form a FMA instruction
8502 /// because we prefer FMSUB/FMADD.
8503 bool AArch64TargetLowering::isProfitableToHoist(Instruction
*I
) const {
8504 if (I
->getOpcode() != Instruction::FMul
)
8507 if (!I
->hasOneUse())
8510 Instruction
*User
= I
->user_back();
8513 !(User
->getOpcode() == Instruction::FSub
||
8514 User
->getOpcode() == Instruction::FAdd
))
8517 const TargetOptions
&Options
= getTargetMachine().Options
;
8518 const DataLayout
&DL
= I
->getModule()->getDataLayout();
8519 EVT VT
= getValueType(DL
, User
->getOperand(0)->getType());
8521 return !(isFMAFasterThanFMulAndFAdd(VT
) &&
8522 isOperationLegalOrCustom(ISD::FMA
, VT
) &&
8523 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
8524 Options
.UnsafeFPMath
));
8527 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8529 bool AArch64TargetLowering::isZExtFree(Type
*Ty1
, Type
*Ty2
) const {
8530 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8532 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8533 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8534 return NumBits1
== 32 && NumBits2
== 64;
8536 bool AArch64TargetLowering::isZExtFree(EVT VT1
, EVT VT2
) const {
8537 if (VT1
.isVector() || VT2
.isVector() || !VT1
.isInteger() || !VT2
.isInteger())
8539 unsigned NumBits1
= VT1
.getSizeInBits();
8540 unsigned NumBits2
= VT2
.getSizeInBits();
8541 return NumBits1
== 32 && NumBits2
== 64;
8544 bool AArch64TargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
8545 EVT VT1
= Val
.getValueType();
8546 if (isZExtFree(VT1
, VT2
)) {
8550 if (Val
.getOpcode() != ISD::LOAD
)
8553 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8554 return (VT1
.isSimple() && !VT1
.isVector() && VT1
.isInteger() &&
8555 VT2
.isSimple() && !VT2
.isVector() && VT2
.isInteger() &&
8556 VT1
.getSizeInBits() <= 32);
8559 bool AArch64TargetLowering::isExtFreeImpl(const Instruction
*Ext
) const {
8560 if (isa
<FPExtInst
>(Ext
))
8563 // Vector types are not free.
8564 if (Ext
->getType()->isVectorTy())
8567 for (const Use
&U
: Ext
->uses()) {
8568 // The extension is free if we can fold it with a left shift in an
8569 // addressing mode or an arithmetic operation: add, sub, and cmp.
8571 // Is there a shift?
8572 const Instruction
*Instr
= cast
<Instruction
>(U
.getUser());
8574 // Is this a constant shift?
8575 switch (Instr
->getOpcode()) {
8576 case Instruction::Shl
:
8577 if (!isa
<ConstantInt
>(Instr
->getOperand(1)))
8580 case Instruction::GetElementPtr
: {
8581 gep_type_iterator GTI
= gep_type_begin(Instr
);
8582 auto &DL
= Ext
->getModule()->getDataLayout();
8583 std::advance(GTI
, U
.getOperandNo()-1);
8584 Type
*IdxTy
= GTI
.getIndexedType();
8585 // This extension will end up with a shift because of the scaling factor.
8586 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8587 // Get the shift amount based on the scaling factor:
8588 // log2(sizeof(IdxTy)) - log2(8).
8590 countTrailingZeros(DL
.getTypeStoreSizeInBits(IdxTy
).getFixedSize()) - 3;
8591 // Is the constant foldable in the shift of the addressing mode?
8592 // I.e., shift amount is between 1 and 4 inclusive.
8593 if (ShiftAmt
== 0 || ShiftAmt
> 4)
8597 case Instruction::Trunc
:
8598 // Check if this is a noop.
8599 // trunc(sext ty1 to ty2) to ty1.
8600 if (Instr
->getType() == Ext
->getOperand(0)->getType())
8607 // At this point we can use the bfm family, so this extension is free
8613 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8614 /// or upper half of the vector elements.
8615 static bool areExtractShuffleVectors(Value
*Op1
, Value
*Op2
) {
8616 auto areTypesHalfed
= [](Value
*FullV
, Value
*HalfV
) {
8617 auto *FullVT
= cast
<VectorType
>(FullV
->getType());
8618 auto *HalfVT
= cast
<VectorType
>(HalfV
->getType());
8619 return FullVT
->getBitWidth() == 2 * HalfVT
->getBitWidth();
8622 auto extractHalf
= [](Value
*FullV
, Value
*HalfV
) {
8623 auto *FullVT
= cast
<VectorType
>(FullV
->getType());
8624 auto *HalfVT
= cast
<VectorType
>(HalfV
->getType());
8625 return FullVT
->getNumElements() == 2 * HalfVT
->getNumElements();
8629 Value
*S1Op1
, *S2Op1
;
8630 if (!match(Op1
, m_ShuffleVector(m_Value(S1Op1
), m_Undef(), m_Constant(M1
))) ||
8631 !match(Op2
, m_ShuffleVector(m_Value(S2Op1
), m_Undef(), m_Constant(M2
))))
8634 // Check that the operands are half as wide as the result and we extract
8635 // half of the elements of the input vectors.
8636 if (!areTypesHalfed(S1Op1
, Op1
) || !areTypesHalfed(S2Op1
, Op2
) ||
8637 !extractHalf(S1Op1
, Op1
) || !extractHalf(S2Op1
, Op2
))
8640 // Check the mask extracts either the lower or upper half of vector
8644 int NumElements
= cast
<VectorType
>(Op1
->getType())->getNumElements() * 2;
8645 if (!ShuffleVectorInst::isExtractSubvectorMask(M1
, NumElements
, M1Start
) ||
8646 !ShuffleVectorInst::isExtractSubvectorMask(M2
, NumElements
, M2Start
) ||
8647 M1Start
!= M2Start
|| (M1Start
!= 0 && M2Start
!= (NumElements
/ 2)))
8653 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
8654 /// of the vector elements.
8655 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
8656 auto areExtDoubled
= [](Instruction
*Ext
) {
8657 return Ext
->getType()->getScalarSizeInBits() ==
8658 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
8661 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
8662 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
8663 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
8664 !areExtDoubled(cast
<Instruction
>(Ext2
)))
8670 /// Check if sinking \p I's operands to I's basic block is profitable, because
8671 /// the operands can be folded into a target instruction, e.g.
8672 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
8673 bool AArch64TargetLowering::shouldSinkOperands(
8674 Instruction
*I
, SmallVectorImpl
<Use
*> &Ops
) const {
8675 if (!I
->getType()->isVectorTy())
8678 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
8679 switch (II
->getIntrinsicID()) {
8680 case Intrinsic::aarch64_neon_umull
:
8681 if (!areExtractShuffleVectors(II
->getOperand(0), II
->getOperand(1)))
8683 Ops
.push_back(&II
->getOperandUse(0));
8684 Ops
.push_back(&II
->getOperandUse(1));
8691 switch (I
->getOpcode()) {
8692 case Instruction::Sub
:
8693 case Instruction::Add
: {
8694 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
8697 // If the exts' operands extract either the lower or upper elements, we
8698 // can sink them too.
8699 auto Ext1
= cast
<Instruction
>(I
->getOperand(0));
8700 auto Ext2
= cast
<Instruction
>(I
->getOperand(1));
8701 if (areExtractShuffleVectors(Ext1
, Ext2
)) {
8702 Ops
.push_back(&Ext1
->getOperandUse(0));
8703 Ops
.push_back(&Ext2
->getOperandUse(0));
8706 Ops
.push_back(&I
->getOperandUse(0));
8707 Ops
.push_back(&I
->getOperandUse(1));
8717 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType
,
8718 unsigned &RequiredAligment
) const {
8719 if (!LoadedType
.isSimple() ||
8720 (!LoadedType
.isInteger() && !LoadedType
.isFloatingPoint()))
8722 // Cyclone supports unaligned accesses.
8723 RequiredAligment
= 0;
8724 unsigned NumBits
= LoadedType
.getSizeInBits();
8725 return NumBits
== 32 || NumBits
== 64;
8728 /// A helper function for determining the number of interleaved accesses we
8729 /// will generate when lowering accesses of the given type.
8731 AArch64TargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
8732 const DataLayout
&DL
) const {
8733 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
8736 MachineMemOperand::Flags
8737 AArch64TargetLowering::getMMOFlags(const Instruction
&I
) const {
8738 if (Subtarget
->getProcFamily() == AArch64Subtarget::Falkor
&&
8739 I
.getMetadata(FALKOR_STRIDED_ACCESS_MD
) != nullptr)
8740 return MOStridedAccess
;
8741 return MachineMemOperand::MONone
;
8744 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8745 VectorType
*VecTy
, const DataLayout
&DL
) const {
8747 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
8748 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
8750 // Ensure the number of vector elements is greater than 1.
8751 if (VecTy
->getNumElements() < 2)
8754 // Ensure the element type is legal.
8755 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32 && ElSize
!= 64)
8758 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8759 // 128 will be split into multiple interleaved accesses.
8760 return VecSize
== 64 || VecSize
% 128 == 0;
8763 /// Lower an interleaved load into a ldN intrinsic.
8765 /// E.g. Lower an interleaved load (Factor = 2):
8766 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8767 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
8768 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
8771 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8772 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8773 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
8774 bool AArch64TargetLowering::lowerInterleavedLoad(
8775 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
8776 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
8777 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
8778 "Invalid interleave factor");
8779 assert(!Shuffles
.empty() && "Empty shufflevector input");
8780 assert(Shuffles
.size() == Indices
.size() &&
8781 "Unmatched number of shufflevectors and indices");
8783 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
8785 VectorType
*VecTy
= Shuffles
[0]->getType();
8787 // Skip if we do not have NEON and skip illegal vector types. We can
8788 // "legalize" wide vector types into multiple interleaved accesses as long as
8789 // the vector types are divisible by 128.
8790 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
8793 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
8795 // A pointer vector can not be the return type of the ldN intrinsics. Need to
8796 // load integer vectors first and then convert to pointer vectors.
8797 Type
*EltTy
= VecTy
->getVectorElementType();
8798 if (EltTy
->isPointerTy())
8800 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
8802 IRBuilder
<> Builder(LI
);
8804 // The base address of the load.
8805 Value
*BaseAddr
= LI
->getPointerOperand();
8808 // If we're going to generate more than one load, reset the sub-vector type
8809 // to something legal.
8810 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
8811 VecTy
->getVectorNumElements() / NumLoads
);
8813 // We will compute the pointer operand of each load from the original base
8814 // address using GEPs. Cast the base address to a pointer to the scalar
8816 BaseAddr
= Builder
.CreateBitCast(
8817 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
8818 LI
->getPointerAddressSpace()));
8821 Type
*PtrTy
= VecTy
->getPointerTo(LI
->getPointerAddressSpace());
8822 Type
*Tys
[2] = {VecTy
, PtrTy
};
8823 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::aarch64_neon_ld2
,
8824 Intrinsic::aarch64_neon_ld3
,
8825 Intrinsic::aarch64_neon_ld4
};
8827 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
8829 // Holds sub-vectors extracted from the load intrinsic return values. The
8830 // sub-vectors are associated with the shufflevector instructions they will
8832 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
8834 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
8836 // If we're generating more than one load, compute the base address of
8837 // subsequent loads as an offset from the previous.
8840 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
8841 VecTy
->getVectorNumElements() * Factor
);
8843 CallInst
*LdN
= Builder
.CreateCall(
8844 LdNFunc
, Builder
.CreateBitCast(BaseAddr
, PtrTy
), "ldN");
8846 // Extract and store the sub-vectors returned by the load intrinsic.
8847 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
8848 ShuffleVectorInst
*SVI
= Shuffles
[i
];
8849 unsigned Index
= Indices
[i
];
8851 Value
*SubVec
= Builder
.CreateExtractValue(LdN
, Index
);
8853 // Convert the integer vector to pointer vector if the element is pointer.
8854 if (EltTy
->isPointerTy())
8855 SubVec
= Builder
.CreateIntToPtr(
8856 SubVec
, VectorType::get(SVI
->getType()->getVectorElementType(),
8857 VecTy
->getVectorNumElements()));
8858 SubVecs
[SVI
].push_back(SubVec
);
8862 // Replace uses of the shufflevector instructions with the sub-vectors
8863 // returned by the load intrinsic. If a shufflevector instruction is
8864 // associated with more than one sub-vector, those sub-vectors will be
8865 // concatenated into a single wide vector.
8866 for (ShuffleVectorInst
*SVI
: Shuffles
) {
8867 auto &SubVec
= SubVecs
[SVI
];
8869 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
8870 SVI
->replaceAllUsesWith(WideVec
);
8876 /// Lower an interleaved store into a stN intrinsic.
8878 /// E.g. Lower an interleaved store (Factor = 3):
8879 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8880 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8881 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8884 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8885 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8886 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8887 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8889 /// Note that the new shufflevectors will be removed and we'll only generate one
8890 /// st3 instruction in CodeGen.
8892 /// Example for a more general valid mask (Factor 3). Lower:
8893 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8894 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8895 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8898 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8899 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8900 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8901 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8902 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst
*SI
,
8903 ShuffleVectorInst
*SVI
,
8904 unsigned Factor
) const {
8905 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
8906 "Invalid interleave factor");
8908 VectorType
*VecTy
= SVI
->getType();
8909 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
8910 "Invalid interleaved store");
8912 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
8913 Type
*EltTy
= VecTy
->getVectorElementType();
8914 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
8916 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
8918 // Skip if we do not have NEON and skip illegal vector types. We can
8919 // "legalize" wide vector types into multiple interleaved accesses as long as
8920 // the vector types are divisible by 128.
8921 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
8924 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
8926 Value
*Op0
= SVI
->getOperand(0);
8927 Value
*Op1
= SVI
->getOperand(1);
8928 IRBuilder
<> Builder(SI
);
8930 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8931 // vectors to integer vectors.
8932 if (EltTy
->isPointerTy()) {
8933 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
8934 unsigned NumOpElts
= Op0
->getType()->getVectorNumElements();
8936 // Convert to the corresponding integer vector.
8937 Type
*IntVecTy
= VectorType::get(IntTy
, NumOpElts
);
8938 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
8939 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
8941 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
8944 // The base address of the store.
8945 Value
*BaseAddr
= SI
->getPointerOperand();
8947 if (NumStores
> 1) {
8948 // If we're going to generate more than one store, reset the lane length
8949 // and sub-vector type to something legal.
8950 LaneLen
/= NumStores
;
8951 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
8953 // We will compute the pointer operand of each store from the original base
8954 // address using GEPs. Cast the base address to a pointer to the scalar
8956 BaseAddr
= Builder
.CreateBitCast(
8957 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
8958 SI
->getPointerAddressSpace()));
8961 auto Mask
= SVI
->getShuffleMask();
8963 Type
*PtrTy
= SubVecTy
->getPointerTo(SI
->getPointerAddressSpace());
8964 Type
*Tys
[2] = {SubVecTy
, PtrTy
};
8965 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::aarch64_neon_st2
,
8966 Intrinsic::aarch64_neon_st3
,
8967 Intrinsic::aarch64_neon_st4
};
8969 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
8971 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
8973 SmallVector
<Value
*, 5> Ops
;
8975 // Split the shufflevector operands into sub vectors for the new stN call.
8976 for (unsigned i
= 0; i
< Factor
; i
++) {
8977 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
8978 if (Mask
[IdxI
] >= 0) {
8979 Ops
.push_back(Builder
.CreateShuffleVector(
8980 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
8982 unsigned StartMask
= 0;
8983 for (unsigned j
= 1; j
< LaneLen
; j
++) {
8984 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
8985 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
8986 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
8990 // Note: Filling undef gaps with random elements is ok, since
8991 // those elements were being written anyway (with undefs).
8992 // In the case of all undefs we're defaulting to using elems from 0
8993 // Note: StartMask cannot be negative, it's checked in
8994 // isReInterleaveMask
8995 Ops
.push_back(Builder
.CreateShuffleVector(
8996 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
9000 // If we generating more than one store, we compute the base address of
9001 // subsequent stores as an offset from the previous.
9003 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
9004 BaseAddr
, LaneLen
* Factor
);
9006 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, PtrTy
));
9007 Builder
.CreateCall(StNFunc
, Ops
);
9012 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
9013 unsigned AlignCheck
) {
9014 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
9015 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
9018 EVT
AArch64TargetLowering::getOptimalMemOpType(
9019 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
9020 bool ZeroMemset
, bool MemcpyStrSrc
,
9021 const AttributeList
&FuncAttributes
) const {
9022 bool CanImplicitFloat
=
9023 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
);
9024 bool CanUseNEON
= Subtarget
->hasNEON() && CanImplicitFloat
;
9025 bool CanUseFP
= Subtarget
->hasFPARMv8() && CanImplicitFloat
;
9026 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9027 // taken one instruction to materialize the v2i64 zero and one store (with
9028 // restrictive addressing mode). Just do i64 stores.
9029 bool IsSmallMemset
= IsMemset
&& Size
< 32;
9030 auto AlignmentIsAcceptable
= [&](EVT VT
, unsigned AlignCheck
) {
9031 if (memOpAlign(SrcAlign
, DstAlign
, AlignCheck
))
9034 return allowsMisalignedMemoryAccesses(VT
, 0, 1, MachineMemOperand::MONone
,
9039 if (CanUseNEON
&& IsMemset
&& !IsSmallMemset
&&
9040 AlignmentIsAcceptable(MVT::v2i64
, 16))
9042 if (CanUseFP
&& !IsSmallMemset
&& AlignmentIsAcceptable(MVT::f128
, 16))
9044 if (Size
>= 8 && AlignmentIsAcceptable(MVT::i64
, 8))
9046 if (Size
>= 4 && AlignmentIsAcceptable(MVT::i32
, 4))
9051 LLT
AArch64TargetLowering::getOptimalMemOpLLT(
9052 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
9053 bool ZeroMemset
, bool MemcpyStrSrc
,
9054 const AttributeList
&FuncAttributes
) const {
9055 bool CanImplicitFloat
=
9056 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
);
9057 bool CanUseNEON
= Subtarget
->hasNEON() && CanImplicitFloat
;
9058 bool CanUseFP
= Subtarget
->hasFPARMv8() && CanImplicitFloat
;
9059 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9060 // taken one instruction to materialize the v2i64 zero and one store (with
9061 // restrictive addressing mode). Just do i64 stores.
9062 bool IsSmallMemset
= IsMemset
&& Size
< 32;
9063 auto AlignmentIsAcceptable
= [&](EVT VT
, unsigned AlignCheck
) {
9064 if (memOpAlign(SrcAlign
, DstAlign
, AlignCheck
))
9067 return allowsMisalignedMemoryAccesses(VT
, 0, 1, MachineMemOperand::MONone
,
9072 if (CanUseNEON
&& IsMemset
&& !IsSmallMemset
&&
9073 AlignmentIsAcceptable(MVT::v2i64
, 16))
9074 return LLT::vector(2, 64);
9075 if (CanUseFP
&& !IsSmallMemset
&& AlignmentIsAcceptable(MVT::f128
, 16))
9076 return LLT::scalar(128);
9077 if (Size
>= 8 && AlignmentIsAcceptable(MVT::i64
, 8))
9078 return LLT::scalar(64);
9079 if (Size
>= 4 && AlignmentIsAcceptable(MVT::i32
, 4))
9080 return LLT::scalar(32);
9084 // 12-bit optionally shifted immediates are legal for adds.
9085 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed
) const {
9086 if (Immed
== std::numeric_limits
<int64_t>::min()) {
9087 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
9088 << ": avoid UB for INT64_MIN\n");
9091 // Same encoding for add/sub, just flip the sign.
9092 Immed
= std::abs(Immed
);
9093 bool IsLegal
= ((Immed
>> 12) == 0 ||
9094 ((Immed
& 0xfff) == 0 && Immed
>> 24 == 0));
9095 LLVM_DEBUG(dbgs() << "Is " << Immed
9096 << " legal add imm: " << (IsLegal
? "yes" : "no") << "\n");
9100 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
9101 // immediates is the same as for an add or a sub.
9102 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed
) const {
9103 return isLegalAddImmediate(Immed
);
9106 /// isLegalAddressingMode - Return true if the addressing mode represented
9107 /// by AM is legal for this target, for a load/store of the specified type.
9108 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
9109 const AddrMode
&AM
, Type
*Ty
,
9110 unsigned AS
, Instruction
*I
) const {
9111 // AArch64 has five basic addressing modes:
9113 // reg + 9-bit signed offset
9114 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
9116 // reg + SIZE_IN_BYTES * reg
9118 // No global is ever allowed as a base.
9122 // No reg+reg+imm addressing.
9123 if (AM
.HasBaseReg
&& AM
.BaseOffs
&& AM
.Scale
)
9126 // check reg + imm case:
9127 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
9128 uint64_t NumBytes
= 0;
9129 if (Ty
->isSized()) {
9130 uint64_t NumBits
= DL
.getTypeSizeInBits(Ty
);
9131 NumBytes
= NumBits
/ 8;
9132 if (!isPowerOf2_64(NumBits
))
9137 int64_t Offset
= AM
.BaseOffs
;
9139 // 9-bit signed offset
9140 if (isInt
<9>(Offset
))
9143 // 12-bit unsigned offset
9144 unsigned shift
= Log2_64(NumBytes
);
9145 if (NumBytes
&& Offset
> 0 && (Offset
/ NumBytes
) <= (1LL << 12) - 1 &&
9146 // Must be a multiple of NumBytes (NumBytes is a power of 2)
9147 (Offset
>> shift
) << shift
== Offset
)
9152 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
9154 return AM
.Scale
== 1 || (AM
.Scale
> 0 && (uint64_t)AM
.Scale
== NumBytes
);
9157 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
9158 // Consider splitting large offset of struct or array.
9162 int AArch64TargetLowering::getScalingFactorCost(const DataLayout
&DL
,
9163 const AddrMode
&AM
, Type
*Ty
,
9164 unsigned AS
) const {
9165 // Scaling factors are not free at all.
9166 // Operands | Rt Latency
9167 // -------------------------------------------
9169 // -------------------------------------------
9170 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
9171 // Rt, [Xn, Wm, <extend> #imm] |
9172 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
))
9173 // Scale represents reg2 * scale, thus account for 1 if
9174 // it is not equal to 0 or 1.
9175 return AM
.Scale
!= 0 && AM
.Scale
!= 1;
9179 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT
) const {
9180 VT
= VT
.getScalarType();
9185 switch (VT
.getSimpleVT().SimpleTy
) {
9197 AArch64TargetLowering::getScratchRegisters(CallingConv::ID
) const {
9198 // LR is a callee-save register, but we must treat it as clobbered by any call
9199 // site. Hence we include LR in the scratch registers, which are in turn added
9200 // as implicit-defs for stackmaps and patchpoints.
9201 static const MCPhysReg ScratchRegs
[] = {
9202 AArch64::X16
, AArch64::X17
, AArch64::LR
, 0
9208 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
9209 CombineLevel Level
) const {
9210 N
= N
->getOperand(0).getNode();
9211 EVT VT
= N
->getValueType(0);
9212 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
9213 // it with shift to let it be lowered to UBFX.
9214 if (N
->getOpcode() == ISD::AND
&& (VT
== MVT::i32
|| VT
== MVT::i64
) &&
9215 isa
<ConstantSDNode
>(N
->getOperand(1))) {
9216 uint64_t TruncMask
= N
->getConstantOperandVal(1);
9217 if (isMask_64(TruncMask
) &&
9218 N
->getOperand(0).getOpcode() == ISD::SRL
&&
9219 isa
<ConstantSDNode
>(N
->getOperand(0)->getOperand(1)))
9225 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
9227 assert(Ty
->isIntegerTy());
9229 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
9233 int64_t Val
= Imm
.getSExtValue();
9234 if (Val
== 0 || AArch64_AM::isLogicalImmediate(Val
, BitSize
))
9237 if ((int64_t)Val
< 0)
9240 Val
&= (1LL << 32) - 1;
9242 unsigned LZ
= countLeadingZeros((uint64_t)Val
);
9243 unsigned Shift
= (63 - LZ
) / 16;
9244 // MOVZ is free so return true for one or fewer MOVK.
9248 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
9249 unsigned Index
) const {
9250 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
9253 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
9256 /// Turn vector tests of the signbit in the form of:
9257 /// xor (sra X, elt_size(X)-1), -1
9260 static SDValue
foldVectorXorShiftIntoCmp(SDNode
*N
, SelectionDAG
&DAG
,
9261 const AArch64Subtarget
*Subtarget
) {
9262 EVT VT
= N
->getValueType(0);
9263 if (!Subtarget
->hasNEON() || !VT
.isVector())
9266 // There must be a shift right algebraic before the xor, and the xor must be a
9268 SDValue Shift
= N
->getOperand(0);
9269 SDValue Ones
= N
->getOperand(1);
9270 if (Shift
.getOpcode() != AArch64ISD::VASHR
|| !Shift
.hasOneUse() ||
9271 !ISD::isBuildVectorAllOnes(Ones
.getNode()))
9274 // The shift should be smearing the sign bit across each vector element.
9275 auto *ShiftAmt
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
9276 EVT ShiftEltTy
= Shift
.getValueType().getVectorElementType();
9277 if (!ShiftAmt
|| ShiftAmt
->getZExtValue() != ShiftEltTy
.getSizeInBits() - 1)
9280 return DAG
.getNode(AArch64ISD::CMGEz
, SDLoc(N
), VT
, Shift
.getOperand(0));
9283 // Generate SUBS and CSEL for integer abs.
9284 static SDValue
performIntegerAbsCombine(SDNode
*N
, SelectionDAG
&DAG
) {
9285 EVT VT
= N
->getValueType(0);
9287 SDValue N0
= N
->getOperand(0);
9288 SDValue N1
= N
->getOperand(1);
9291 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
9292 // and change it to SUB and CSEL.
9293 if (VT
.isInteger() && N
->getOpcode() == ISD::XOR
&&
9294 N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
&&
9295 N1
.getOpcode() == ISD::SRA
&& N1
.getOperand(0) == N0
.getOperand(0))
9296 if (ConstantSDNode
*Y1C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1)))
9297 if (Y1C
->getAPIntValue() == VT
.getSizeInBits() - 1) {
9298 SDValue Neg
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
9300 // Generate SUBS & CSEL.
9302 DAG
.getNode(AArch64ISD::SUBS
, DL
, DAG
.getVTList(VT
, MVT::i32
),
9303 N0
.getOperand(0), DAG
.getConstant(0, DL
, VT
));
9304 return DAG
.getNode(AArch64ISD::CSEL
, DL
, VT
, N0
.getOperand(0), Neg
,
9305 DAG
.getConstant(AArch64CC::PL
, DL
, MVT::i32
),
9306 SDValue(Cmp
.getNode(), 1));
9311 static SDValue
performXorCombine(SDNode
*N
, SelectionDAG
&DAG
,
9312 TargetLowering::DAGCombinerInfo
&DCI
,
9313 const AArch64Subtarget
*Subtarget
) {
9314 if (DCI
.isBeforeLegalizeOps())
9317 if (SDValue Cmp
= foldVectorXorShiftIntoCmp(N
, DAG
, Subtarget
))
9320 return performIntegerAbsCombine(N
, DAG
);
9324 AArch64TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
9326 SmallVectorImpl
<SDNode
*> &Created
) const {
9327 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
9328 if (isIntDivCheap(N
->getValueType(0), Attr
))
9329 return SDValue(N
,0); // Lower SDIV as SDIV
9331 // fold (sdiv X, pow2)
9332 EVT VT
= N
->getValueType(0);
9333 if ((VT
!= MVT::i32
&& VT
!= MVT::i64
) ||
9334 !(Divisor
.isPowerOf2() || (-Divisor
).isPowerOf2()))
9338 SDValue N0
= N
->getOperand(0);
9339 unsigned Lg2
= Divisor
.countTrailingZeros();
9340 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
9341 SDValue Pow2MinusOne
= DAG
.getConstant((1ULL << Lg2
) - 1, DL
, VT
);
9343 // Add (N0 < 0) ? Pow2 - 1 : 0;
9345 SDValue Cmp
= getAArch64Cmp(N0
, Zero
, ISD::SETLT
, CCVal
, DAG
, DL
);
9346 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Pow2MinusOne
);
9347 SDValue CSel
= DAG
.getNode(AArch64ISD::CSEL
, DL
, VT
, Add
, N0
, CCVal
, Cmp
);
9349 Created
.push_back(Cmp
.getNode());
9350 Created
.push_back(Add
.getNode());
9351 Created
.push_back(CSel
.getNode());
9355 DAG
.getNode(ISD::SRA
, DL
, VT
, CSel
, DAG
.getConstant(Lg2
, DL
, MVT::i64
));
9357 // If we're dividing by a positive value, we're done. Otherwise, we must
9358 // negate the result.
9359 if (Divisor
.isNonNegative())
9362 Created
.push_back(SRA
.getNode());
9363 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), SRA
);
9366 static SDValue
performMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
9367 TargetLowering::DAGCombinerInfo
&DCI
,
9368 const AArch64Subtarget
*Subtarget
) {
9369 if (DCI
.isBeforeLegalizeOps())
9372 // The below optimizations require a constant RHS.
9373 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
9376 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(1));
9377 const APInt
&ConstValue
= C
->getAPIntValue();
9379 // Multiplication of a power of two plus/minus one can be done more
9380 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9381 // future CPUs have a cheaper MADD instruction, this may need to be
9382 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9383 // 64-bit is 5 cycles, so this is always a win.
9384 // More aggressively, some multiplications N0 * C can be lowered to
9385 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9386 // e.g. 6=3*2=(2+1)*2.
9387 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9388 // which equals to (1+2)*16-(1+2).
9389 SDValue N0
= N
->getOperand(0);
9390 // TrailingZeroes is used to test if the mul can be lowered to
9392 unsigned TrailingZeroes
= ConstValue
.countTrailingZeros();
9393 if (TrailingZeroes
) {
9394 // Conservatively do not lower to shift+add+shift if the mul might be
9395 // folded into smul or umul.
9396 if (N0
->hasOneUse() && (isSignExtended(N0
.getNode(), DAG
) ||
9397 isZeroExtended(N0
.getNode(), DAG
)))
9399 // Conservatively do not lower to shift+add+shift if the mul might be
9400 // folded into madd or msub.
9401 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ADD
||
9402 N
->use_begin()->getOpcode() == ISD::SUB
))
9405 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9406 // and shift+add+shift.
9407 APInt ShiftedConstValue
= ConstValue
.ashr(TrailingZeroes
);
9409 unsigned ShiftAmt
, AddSubOpc
;
9410 // Is the shifted value the LHS operand of the add/sub?
9411 bool ShiftValUseIsN0
= true;
9412 // Do we need to negate the result?
9413 bool NegateResult
= false;
9415 if (ConstValue
.isNonNegative()) {
9416 // (mul x, 2^N + 1) => (add (shl x, N), x)
9417 // (mul x, 2^N - 1) => (sub (shl x, N), x)
9418 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9419 APInt SCVMinus1
= ShiftedConstValue
- 1;
9420 APInt CVPlus1
= ConstValue
+ 1;
9421 if (SCVMinus1
.isPowerOf2()) {
9422 ShiftAmt
= SCVMinus1
.logBase2();
9423 AddSubOpc
= ISD::ADD
;
9424 } else if (CVPlus1
.isPowerOf2()) {
9425 ShiftAmt
= CVPlus1
.logBase2();
9426 AddSubOpc
= ISD::SUB
;
9430 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9431 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9432 APInt CVNegPlus1
= -ConstValue
+ 1;
9433 APInt CVNegMinus1
= -ConstValue
- 1;
9434 if (CVNegPlus1
.isPowerOf2()) {
9435 ShiftAmt
= CVNegPlus1
.logBase2();
9436 AddSubOpc
= ISD::SUB
;
9437 ShiftValUseIsN0
= false;
9438 } else if (CVNegMinus1
.isPowerOf2()) {
9439 ShiftAmt
= CVNegMinus1
.logBase2();
9440 AddSubOpc
= ISD::ADD
;
9441 NegateResult
= true;
9447 EVT VT
= N
->getValueType(0);
9448 SDValue ShiftedVal
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
9449 DAG
.getConstant(ShiftAmt
, DL
, MVT::i64
));
9451 SDValue AddSubN0
= ShiftValUseIsN0
? ShiftedVal
: N0
;
9452 SDValue AddSubN1
= ShiftValUseIsN0
? N0
: ShiftedVal
;
9453 SDValue Res
= DAG
.getNode(AddSubOpc
, DL
, VT
, AddSubN0
, AddSubN1
);
9454 assert(!(NegateResult
&& TrailingZeroes
) &&
9455 "NegateResult and TrailingZeroes cannot both be true for now.");
9456 // Negate the result.
9458 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Res
);
9459 // Shift the result.
9461 return DAG
.getNode(ISD::SHL
, DL
, VT
, Res
,
9462 DAG
.getConstant(TrailingZeroes
, DL
, MVT::i64
));
9466 static SDValue
performVectorCompareAndMaskUnaryOpCombine(SDNode
*N
,
9467 SelectionDAG
&DAG
) {
9468 // Take advantage of vector comparisons producing 0 or -1 in each lane to
9469 // optimize away operation when it's from a constant.
9471 // The general transformation is:
9472 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9473 // AND(VECTOR_CMP(x,y), constant2)
9474 // constant2 = UNARYOP(constant)
9476 // Early exit if this isn't a vector operation, the operand of the
9477 // unary operation isn't a bitwise AND, or if the sizes of the operations
9479 EVT VT
= N
->getValueType(0);
9480 if (!VT
.isVector() || N
->getOperand(0)->getOpcode() != ISD::AND
||
9481 N
->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC
||
9482 VT
.getSizeInBits() != N
->getOperand(0)->getValueType(0).getSizeInBits())
9485 // Now check that the other operand of the AND is a constant. We could
9486 // make the transformation for non-constant splats as well, but it's unclear
9487 // that would be a benefit as it would not eliminate any operations, just
9488 // perform one more step in scalar code before moving to the vector unit.
9489 if (BuildVectorSDNode
*BV
=
9490 dyn_cast
<BuildVectorSDNode
>(N
->getOperand(0)->getOperand(1))) {
9491 // Bail out if the vector isn't a constant.
9492 if (!BV
->isConstant())
9495 // Everything checks out. Build up the new and improved node.
9497 EVT IntVT
= BV
->getValueType(0);
9498 // Create a new constant of the appropriate type for the transformed
9500 SDValue SourceConst
= DAG
.getNode(N
->getOpcode(), DL
, VT
, SDValue(BV
, 0));
9501 // The AND node needs bitcasts to/from an integer vector type around it.
9502 SDValue MaskConst
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, SourceConst
);
9503 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, IntVT
,
9504 N
->getOperand(0)->getOperand(0), MaskConst
);
9505 SDValue Res
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, NewAnd
);
9512 static SDValue
performIntToFpCombine(SDNode
*N
, SelectionDAG
&DAG
,
9513 const AArch64Subtarget
*Subtarget
) {
9514 // First try to optimize away the conversion when it's conditionally from
9515 // a constant. Vectors only.
9516 if (SDValue Res
= performVectorCompareAndMaskUnaryOpCombine(N
, DAG
))
9519 EVT VT
= N
->getValueType(0);
9520 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
9523 // Only optimize when the source and destination types have the same width.
9524 if (VT
.getSizeInBits() != N
->getOperand(0).getValueSizeInBits())
9527 // If the result of an integer load is only used by an integer-to-float
9528 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9529 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9530 SDValue N0
= N
->getOperand(0);
9531 if (Subtarget
->hasNEON() && ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
9532 // Do not change the width of a volatile load.
9533 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
9534 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9535 SDValue Load
= DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
9536 LN0
->getPointerInfo(), LN0
->getAlignment(),
9537 LN0
->getMemOperand()->getFlags());
9539 // Make sure successors of the original load stay after it by updating them
9540 // to use the new Chain.
9541 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), Load
.getValue(1));
9544 (N
->getOpcode() == ISD::SINT_TO_FP
) ? AArch64ISD::SITOF
: AArch64ISD::UITOF
;
9545 return DAG
.getNode(Opcode
, SDLoc(N
), VT
, Load
);
9551 /// Fold a floating-point multiply by power of two into floating-point to
9552 /// fixed-point conversion.
9553 static SDValue
performFpToIntCombine(SDNode
*N
, SelectionDAG
&DAG
,
9554 TargetLowering::DAGCombinerInfo
&DCI
,
9555 const AArch64Subtarget
*Subtarget
) {
9556 if (!Subtarget
->hasNEON())
9559 if (!N
->getValueType(0).isSimple())
9562 SDValue Op
= N
->getOperand(0);
9563 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
9564 Op
.getOpcode() != ISD::FMUL
)
9567 SDValue ConstVec
= Op
->getOperand(1);
9568 if (!isa
<BuildVectorSDNode
>(ConstVec
))
9571 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
9572 uint32_t FloatBits
= FloatTy
.getSizeInBits();
9573 if (FloatBits
!= 32 && FloatBits
!= 64)
9576 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
9577 uint32_t IntBits
= IntTy
.getSizeInBits();
9578 if (IntBits
!= 16 && IntBits
!= 32 && IntBits
!= 64)
9581 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9582 if (IntBits
> FloatBits
)
9585 BitVector UndefElements
;
9586 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
9587 int32_t Bits
= IntBits
== 64 ? 64 : 32;
9588 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, Bits
+ 1);
9589 if (C
== -1 || C
== 0 || C
> Bits
)
9593 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
9598 ResTy
= FloatBits
== 32 ? MVT::v2i32
: MVT::v2i64
;
9601 ResTy
= FloatBits
== 32 ? MVT::v4i32
: MVT::v4i64
;
9605 if (ResTy
== MVT::v4i64
&& DCI
.isBeforeLegalizeOps())
9608 assert((ResTy
!= MVT::v4i64
|| DCI
.isBeforeLegalizeOps()) &&
9609 "Illegal vector type after legalization");
9612 bool IsSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
9613 unsigned IntrinsicOpcode
= IsSigned
? Intrinsic::aarch64_neon_vcvtfp2fxs
9614 : Intrinsic::aarch64_neon_vcvtfp2fxu
;
9616 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, ResTy
,
9617 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
),
9618 Op
->getOperand(0), DAG
.getConstant(C
, DL
, MVT::i32
));
9619 // We can handle smaller integers by generating an extra trunc.
9620 if (IntBits
< FloatBits
)
9621 FixConv
= DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), FixConv
);
9626 /// Fold a floating-point divide by power of two into fixed-point to
9627 /// floating-point conversion.
9628 static SDValue
performFDivCombine(SDNode
*N
, SelectionDAG
&DAG
,
9629 TargetLowering::DAGCombinerInfo
&DCI
,
9630 const AArch64Subtarget
*Subtarget
) {
9631 if (!Subtarget
->hasNEON())
9634 SDValue Op
= N
->getOperand(0);
9635 unsigned Opc
= Op
->getOpcode();
9636 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
9637 !Op
.getOperand(0).getValueType().isSimple() ||
9638 (Opc
!= ISD::SINT_TO_FP
&& Opc
!= ISD::UINT_TO_FP
))
9641 SDValue ConstVec
= N
->getOperand(1);
9642 if (!isa
<BuildVectorSDNode
>(ConstVec
))
9645 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
9646 int32_t IntBits
= IntTy
.getSizeInBits();
9647 if (IntBits
!= 16 && IntBits
!= 32 && IntBits
!= 64)
9650 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
9651 int32_t FloatBits
= FloatTy
.getSizeInBits();
9652 if (FloatBits
!= 32 && FloatBits
!= 64)
9655 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
9656 if (IntBits
> FloatBits
)
9659 BitVector UndefElements
;
9660 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
9661 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, FloatBits
+ 1);
9662 if (C
== -1 || C
== 0 || C
> FloatBits
)
9666 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
9671 ResTy
= FloatBits
== 32 ? MVT::v2i32
: MVT::v2i64
;
9674 ResTy
= FloatBits
== 32 ? MVT::v4i32
: MVT::v4i64
;
9678 if (ResTy
== MVT::v4i64
&& DCI
.isBeforeLegalizeOps())
9682 SDValue ConvInput
= Op
.getOperand(0);
9683 bool IsSigned
= Opc
== ISD::SINT_TO_FP
;
9684 if (IntBits
< FloatBits
)
9685 ConvInput
= DAG
.getNode(IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
, DL
,
9688 unsigned IntrinsicOpcode
= IsSigned
? Intrinsic::aarch64_neon_vcvtfxs2fp
9689 : Intrinsic::aarch64_neon_vcvtfxu2fp
;
9690 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, Op
.getValueType(),
9691 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
), ConvInput
,
9692 DAG
.getConstant(C
, DL
, MVT::i32
));
9695 /// An EXTR instruction is made up of two shifts, ORed together. This helper
9696 /// searches for and classifies those shifts.
9697 static bool findEXTRHalf(SDValue N
, SDValue
&Src
, uint32_t &ShiftAmount
,
9699 if (N
.getOpcode() == ISD::SHL
)
9701 else if (N
.getOpcode() == ISD::SRL
)
9706 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
9709 ShiftAmount
= N
->getConstantOperandVal(1);
9710 Src
= N
->getOperand(0);
9714 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9715 /// registers viewed as a high/low pair. This function looks for the pattern:
9716 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9717 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9718 /// aren't independent.
9719 static SDValue
tryCombineToEXTR(SDNode
*N
,
9720 TargetLowering::DAGCombinerInfo
&DCI
) {
9721 SelectionDAG
&DAG
= DCI
.DAG
;
9723 EVT VT
= N
->getValueType(0);
9725 assert(N
->getOpcode() == ISD::OR
&& "Unexpected root");
9727 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
9731 uint32_t ShiftLHS
= 0;
9732 bool LHSFromHi
= false;
9733 if (!findEXTRHalf(N
->getOperand(0), LHS
, ShiftLHS
, LHSFromHi
))
9737 uint32_t ShiftRHS
= 0;
9738 bool RHSFromHi
= false;
9739 if (!findEXTRHalf(N
->getOperand(1), RHS
, ShiftRHS
, RHSFromHi
))
9742 // If they're both trying to come from the high part of the register, they're
9743 // not really an EXTR.
9744 if (LHSFromHi
== RHSFromHi
)
9747 if (ShiftLHS
+ ShiftRHS
!= VT
.getSizeInBits())
9751 std::swap(LHS
, RHS
);
9752 std::swap(ShiftLHS
, ShiftRHS
);
9755 return DAG
.getNode(AArch64ISD::EXTR
, DL
, VT
, LHS
, RHS
,
9756 DAG
.getConstant(ShiftRHS
, DL
, MVT::i64
));
9759 static SDValue
tryCombineToBSL(SDNode
*N
,
9760 TargetLowering::DAGCombinerInfo
&DCI
) {
9761 EVT VT
= N
->getValueType(0);
9762 SelectionDAG
&DAG
= DCI
.DAG
;
9768 SDValue N0
= N
->getOperand(0);
9769 if (N0
.getOpcode() != ISD::AND
)
9772 SDValue N1
= N
->getOperand(1);
9773 if (N1
.getOpcode() != ISD::AND
)
9776 // We only have to look for constant vectors here since the general, variable
9777 // case can be handled in TableGen.
9778 unsigned Bits
= VT
.getScalarSizeInBits();
9779 uint64_t BitMask
= Bits
== 64 ? -1ULL : ((1ULL << Bits
) - 1);
9780 for (int i
= 1; i
>= 0; --i
)
9781 for (int j
= 1; j
>= 0; --j
) {
9782 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(i
));
9783 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(j
));
9787 bool FoundMatch
= true;
9788 for (unsigned k
= 0; k
< VT
.getVectorNumElements(); ++k
) {
9789 ConstantSDNode
*CN0
= dyn_cast
<ConstantSDNode
>(BVN0
->getOperand(k
));
9790 ConstantSDNode
*CN1
= dyn_cast
<ConstantSDNode
>(BVN1
->getOperand(k
));
9792 CN0
->getZExtValue() != (BitMask
& ~CN1
->getZExtValue())) {
9799 return DAG
.getNode(AArch64ISD::BSL
, DL
, VT
, SDValue(BVN0
, 0),
9800 N0
->getOperand(1 - i
), N1
->getOperand(1 - j
));
9806 static SDValue
performORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
9807 const AArch64Subtarget
*Subtarget
) {
9808 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9809 SelectionDAG
&DAG
= DCI
.DAG
;
9810 EVT VT
= N
->getValueType(0);
9812 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
9815 if (SDValue Res
= tryCombineToEXTR(N
, DCI
))
9818 if (SDValue Res
= tryCombineToBSL(N
, DCI
))
9824 static SDValue
performANDCombine(SDNode
*N
,
9825 TargetLowering::DAGCombinerInfo
&DCI
) {
9826 SelectionDAG
&DAG
= DCI
.DAG
;
9827 SDValue LHS
= N
->getOperand(0);
9828 EVT VT
= N
->getValueType(0);
9829 if (!VT
.isVector() || !DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
9832 BuildVectorSDNode
*BVN
=
9833 dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1).getNode());
9837 // AND does not accept an immediate, so check if we can use a BIC immediate
9838 // instruction instead. We do this here instead of using a (and x, (mvni imm))
9839 // pattern in isel, because some immediates may be lowered to the preferred
9840 // (and x, (movi imm)) form, even though an mvni representation also exists.
9841 APInt
DefBits(VT
.getSizeInBits(), 0);
9842 APInt
UndefBits(VT
.getSizeInBits(), 0);
9843 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
9847 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9849 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9853 UndefBits
= ~UndefBits
;
9854 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9855 UndefBits
, &LHS
)) ||
9856 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9864 static SDValue
performSRLCombine(SDNode
*N
,
9865 TargetLowering::DAGCombinerInfo
&DCI
) {
9866 SelectionDAG
&DAG
= DCI
.DAG
;
9867 EVT VT
= N
->getValueType(0);
9868 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
9871 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9872 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9873 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9874 SDValue N0
= N
->getOperand(0);
9875 if (N0
.getOpcode() == ISD::BSWAP
) {
9877 SDValue N1
= N
->getOperand(1);
9878 SDValue N00
= N0
.getOperand(0);
9879 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
9880 uint64_t ShiftAmt
= C
->getZExtValue();
9881 if (VT
== MVT::i32
&& ShiftAmt
== 16 &&
9882 DAG
.MaskedValueIsZero(N00
, APInt::getHighBitsSet(32, 16)))
9883 return DAG
.getNode(ISD::ROTR
, DL
, VT
, N0
, N1
);
9884 if (VT
== MVT::i64
&& ShiftAmt
== 32 &&
9885 DAG
.MaskedValueIsZero(N00
, APInt::getHighBitsSet(64, 32)))
9886 return DAG
.getNode(ISD::ROTR
, DL
, VT
, N0
, N1
);
9892 static SDValue
performBitcastCombine(SDNode
*N
,
9893 TargetLowering::DAGCombinerInfo
&DCI
,
9894 SelectionDAG
&DAG
) {
9895 // Wait 'til after everything is legalized to try this. That way we have
9896 // legal vector types and such.
9897 if (DCI
.isBeforeLegalizeOps())
9900 // Remove extraneous bitcasts around an extract_subvector.
9902 // (v4i16 (bitconvert
9903 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9905 // (extract_subvector ((v8i16 ...), (i64 4)))
9907 // Only interested in 64-bit vectors as the ultimate result.
9908 EVT VT
= N
->getValueType(0);
9911 if (VT
.getSimpleVT().getSizeInBits() != 64)
9913 // Is the operand an extract_subvector starting at the beginning or halfway
9914 // point of the vector? A low half may also come through as an
9915 // EXTRACT_SUBREG, so look for that, too.
9916 SDValue Op0
= N
->getOperand(0);
9917 if (Op0
->getOpcode() != ISD::EXTRACT_SUBVECTOR
&&
9918 !(Op0
->isMachineOpcode() &&
9919 Op0
->getMachineOpcode() == AArch64::EXTRACT_SUBREG
))
9921 uint64_t idx
= cast
<ConstantSDNode
>(Op0
->getOperand(1))->getZExtValue();
9922 if (Op0
->getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
9923 if (Op0
->getValueType(0).getVectorNumElements() != idx
&& idx
!= 0)
9925 } else if (Op0
->getMachineOpcode() == AArch64::EXTRACT_SUBREG
) {
9926 if (idx
!= AArch64::dsub
)
9928 // The dsub reference is equivalent to a lane zero subvector reference.
9931 // Look through the bitcast of the input to the extract.
9932 if (Op0
->getOperand(0)->getOpcode() != ISD::BITCAST
)
9934 SDValue Source
= Op0
->getOperand(0)->getOperand(0);
9935 // If the source type has twice the number of elements as our destination
9936 // type, we know this is an extract of the high or low half of the vector.
9937 EVT SVT
= Source
->getValueType(0);
9938 if (!SVT
.isVector() ||
9939 SVT
.getVectorNumElements() != VT
.getVectorNumElements() * 2)
9943 dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9945 // Create the simplified form to just extract the low or high half of the
9946 // vector directly rather than bothering with the bitcasts.
9948 unsigned NumElements
= VT
.getVectorNumElements();
9950 SDValue HalfIdx
= DAG
.getConstant(NumElements
, dl
, MVT::i64
);
9951 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, Source
, HalfIdx
);
9953 SDValue SubReg
= DAG
.getTargetConstant(AArch64::dsub
, dl
, MVT::i32
);
9954 return SDValue(DAG
.getMachineNode(TargetOpcode::EXTRACT_SUBREG
, dl
, VT
,
9960 static SDValue
performConcatVectorsCombine(SDNode
*N
,
9961 TargetLowering::DAGCombinerInfo
&DCI
,
9962 SelectionDAG
&DAG
) {
9964 EVT VT
= N
->getValueType(0);
9965 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
9967 // Optimize concat_vectors of truncated vectors, where the intermediate
9968 // type is illegal, to avoid said illegality, e.g.,
9969 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9970 // (v2i16 (truncate (v2i64)))))
9972 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9973 // (v4i32 (bitcast (v2i64))),
9975 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9976 // on both input and result type, so we might generate worse code.
9977 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9978 if (N
->getNumOperands() == 2 &&
9979 N0
->getOpcode() == ISD::TRUNCATE
&&
9980 N1
->getOpcode() == ISD::TRUNCATE
) {
9981 SDValue N00
= N0
->getOperand(0);
9982 SDValue N10
= N1
->getOperand(0);
9983 EVT N00VT
= N00
.getValueType();
9985 if (N00VT
== N10
.getValueType() &&
9986 (N00VT
== MVT::v2i64
|| N00VT
== MVT::v4i32
) &&
9987 N00VT
.getScalarSizeInBits() == 4 * VT
.getScalarSizeInBits()) {
9988 MVT MidVT
= (N00VT
== MVT::v2i64
? MVT::v4i32
: MVT::v8i16
);
9989 SmallVector
<int, 8> Mask(MidVT
.getVectorNumElements());
9990 for (size_t i
= 0; i
< Mask
.size(); ++i
)
9992 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
9993 DAG
.getVectorShuffle(
9995 DAG
.getNode(ISD::BITCAST
, dl
, MidVT
, N00
),
9996 DAG
.getNode(ISD::BITCAST
, dl
, MidVT
, N10
), Mask
));
10000 // Wait 'til after everything is legalized to try this. That way we have
10001 // legal vector types and such.
10002 if (DCI
.isBeforeLegalizeOps())
10005 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
10006 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
10007 // canonicalise to that.
10008 if (N0
== N1
&& VT
.getVectorNumElements() == 2) {
10009 assert(VT
.getScalarSizeInBits() == 64);
10010 return DAG
.getNode(AArch64ISD::DUPLANE64
, dl
, VT
, WidenVector(N0
, DAG
),
10011 DAG
.getConstant(0, dl
, MVT::i64
));
10014 // Canonicalise concat_vectors so that the right-hand vector has as few
10015 // bit-casts as possible before its real operation. The primary matching
10016 // destination for these operations will be the narrowing "2" instructions,
10017 // which depend on the operation being performed on this right-hand vector.
10019 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
10021 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
10023 if (N1
->getOpcode() != ISD::BITCAST
)
10025 SDValue RHS
= N1
->getOperand(0);
10026 MVT RHSTy
= RHS
.getValueType().getSimpleVT();
10027 // If the RHS is not a vector, this is not the pattern we're looking for.
10028 if (!RHSTy
.isVector())
10032 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
10034 MVT ConcatTy
= MVT::getVectorVT(RHSTy
.getVectorElementType(),
10035 RHSTy
.getVectorNumElements() * 2);
10036 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
10037 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, ConcatTy
,
10038 DAG
.getNode(ISD::BITCAST
, dl
, RHSTy
, N0
),
10042 static SDValue
tryCombineFixedPointConvert(SDNode
*N
,
10043 TargetLowering::DAGCombinerInfo
&DCI
,
10044 SelectionDAG
&DAG
) {
10045 // Wait until after everything is legalized to try this. That way we have
10046 // legal vector types and such.
10047 if (DCI
.isBeforeLegalizeOps())
10049 // Transform a scalar conversion of a value from a lane extract into a
10050 // lane extract of a vector conversion. E.g., from foo1 to foo2:
10051 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
10052 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
10054 // The second form interacts better with instruction selection and the
10055 // register allocator to avoid cross-class register copies that aren't
10056 // coalescable due to a lane reference.
10058 // Check the operand and see if it originates from a lane extract.
10059 SDValue Op1
= N
->getOperand(1);
10060 if (Op1
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10061 // Yep, no additional predication needed. Perform the transform.
10062 SDValue IID
= N
->getOperand(0);
10063 SDValue Shift
= N
->getOperand(2);
10064 SDValue Vec
= Op1
.getOperand(0);
10065 SDValue Lane
= Op1
.getOperand(1);
10066 EVT ResTy
= N
->getValueType(0);
10070 // The vector width should be 128 bits by the time we get here, even
10071 // if it started as 64 bits (the extract_vector handling will have
10073 assert(Vec
.getValueSizeInBits() == 128 &&
10074 "unexpected vector size on extract_vector_elt!");
10075 if (Vec
.getValueType() == MVT::v4i32
)
10076 VecResTy
= MVT::v4f32
;
10077 else if (Vec
.getValueType() == MVT::v2i64
)
10078 VecResTy
= MVT::v2f64
;
10080 llvm_unreachable("unexpected vector type!");
10083 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VecResTy
, IID
, Vec
, Shift
);
10084 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ResTy
, Convert
, Lane
);
10089 // AArch64 high-vector "long" operations are formed by performing the non-high
10090 // version on an extract_subvector of each operand which gets the high half:
10092 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
10094 // However, there are cases which don't have an extract_high explicitly, but
10095 // have another operation that can be made compatible with one for free. For
10098 // (dupv64 scalar) --> (extract_high (dup128 scalar))
10100 // This routine does the actual conversion of such DUPs, once outer routines
10101 // have determined that everything else is in order.
10102 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
10104 static SDValue
tryExtendDUPToExtractHigh(SDValue N
, SelectionDAG
&DAG
) {
10105 switch (N
.getOpcode()) {
10106 case AArch64ISD::DUP
:
10107 case AArch64ISD::DUPLANE8
:
10108 case AArch64ISD::DUPLANE16
:
10109 case AArch64ISD::DUPLANE32
:
10110 case AArch64ISD::DUPLANE64
:
10111 case AArch64ISD::MOVI
:
10112 case AArch64ISD::MOVIshift
:
10113 case AArch64ISD::MOVIedit
:
10114 case AArch64ISD::MOVImsl
:
10115 case AArch64ISD::MVNIshift
:
10116 case AArch64ISD::MVNImsl
:
10119 // FMOV could be supported, but isn't very useful, as it would only occur
10120 // if you passed a bitcast' floating point immediate to an eligible long
10121 // integer op (addl, smull, ...).
10125 MVT NarrowTy
= N
.getSimpleValueType();
10126 if (!NarrowTy
.is64BitVector())
10129 MVT ElementTy
= NarrowTy
.getVectorElementType();
10130 unsigned NumElems
= NarrowTy
.getVectorNumElements();
10131 MVT NewVT
= MVT::getVectorVT(ElementTy
, NumElems
* 2);
10134 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NarrowTy
,
10135 DAG
.getNode(N
->getOpcode(), dl
, NewVT
, N
->ops()),
10136 DAG
.getConstant(NumElems
, dl
, MVT::i64
));
10139 static bool isEssentiallyExtractHighSubvector(SDValue N
) {
10140 if (N
.getOpcode() == ISD::BITCAST
)
10141 N
= N
.getOperand(0);
10142 if (N
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
10144 return cast
<ConstantSDNode
>(N
.getOperand(1))->getAPIntValue() ==
10145 N
.getOperand(0).getValueType().getVectorNumElements() / 2;
10148 /// Helper structure to keep track of ISD::SET_CC operands.
10149 struct GenericSetCCInfo
{
10150 const SDValue
*Opnd0
;
10151 const SDValue
*Opnd1
;
10155 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
10156 struct AArch64SetCCInfo
{
10157 const SDValue
*Cmp
;
10158 AArch64CC::CondCode CC
;
10161 /// Helper structure to keep track of SetCC information.
10163 GenericSetCCInfo Generic
;
10164 AArch64SetCCInfo AArch64
;
10167 /// Helper structure to be able to read SetCC information. If set to
10168 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
10169 /// GenericSetCCInfo.
10170 struct SetCCInfoAndKind
{
10175 /// Check whether or not \p Op is a SET_CC operation, either a generic or
10177 /// AArch64 lowered one.
10178 /// \p SetCCInfo is filled accordingly.
10179 /// \post SetCCInfo is meanginfull only when this function returns true.
10180 /// \return True when Op is a kind of SET_CC operation.
10181 static bool isSetCC(SDValue Op
, SetCCInfoAndKind
&SetCCInfo
) {
10182 // If this is a setcc, this is straight forward.
10183 if (Op
.getOpcode() == ISD::SETCC
) {
10184 SetCCInfo
.Info
.Generic
.Opnd0
= &Op
.getOperand(0);
10185 SetCCInfo
.Info
.Generic
.Opnd1
= &Op
.getOperand(1);
10186 SetCCInfo
.Info
.Generic
.CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
10187 SetCCInfo
.IsAArch64
= false;
10190 // Otherwise, check if this is a matching csel instruction.
10193 // - csel 0, 1, !cc
10194 if (Op
.getOpcode() != AArch64ISD::CSEL
)
10196 // Set the information about the operands.
10197 // TODO: we want the operands of the Cmp not the csel
10198 SetCCInfo
.Info
.AArch64
.Cmp
= &Op
.getOperand(3);
10199 SetCCInfo
.IsAArch64
= true;
10200 SetCCInfo
.Info
.AArch64
.CC
= static_cast<AArch64CC::CondCode
>(
10201 cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue());
10203 // Check that the operands matches the constraints:
10204 // (1) Both operands must be constants.
10205 // (2) One must be 1 and the other must be 0.
10206 ConstantSDNode
*TValue
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
10207 ConstantSDNode
*FValue
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
10210 if (!TValue
|| !FValue
)
10214 if (!TValue
->isOne()) {
10215 // Update the comparison when we are interested in !cc.
10216 std::swap(TValue
, FValue
);
10217 SetCCInfo
.Info
.AArch64
.CC
=
10218 AArch64CC::getInvertedCondCode(SetCCInfo
.Info
.AArch64
.CC
);
10220 return TValue
->isOne() && FValue
->isNullValue();
10223 // Returns true if Op is setcc or zext of setcc.
10224 static bool isSetCCOrZExtSetCC(const SDValue
& Op
, SetCCInfoAndKind
&Info
) {
10225 if (isSetCC(Op
, Info
))
10227 return ((Op
.getOpcode() == ISD::ZERO_EXTEND
) &&
10228 isSetCC(Op
->getOperand(0), Info
));
10231 // The folding we want to perform is:
10232 // (add x, [zext] (setcc cc ...) )
10234 // (csel x, (add x, 1), !cc ...)
10236 // The latter will get matched to a CSINC instruction.
10237 static SDValue
performSetccAddFolding(SDNode
*Op
, SelectionDAG
&DAG
) {
10238 assert(Op
&& Op
->getOpcode() == ISD::ADD
&& "Unexpected operation!");
10239 SDValue LHS
= Op
->getOperand(0);
10240 SDValue RHS
= Op
->getOperand(1);
10241 SetCCInfoAndKind InfoAndKind
;
10243 // If neither operand is a SET_CC, give up.
10244 if (!isSetCCOrZExtSetCC(LHS
, InfoAndKind
)) {
10245 std::swap(LHS
, RHS
);
10246 if (!isSetCCOrZExtSetCC(LHS
, InfoAndKind
))
10250 // FIXME: This could be generatized to work for FP comparisons.
10251 EVT CmpVT
= InfoAndKind
.IsAArch64
10252 ? InfoAndKind
.Info
.AArch64
.Cmp
->getOperand(0).getValueType()
10253 : InfoAndKind
.Info
.Generic
.Opnd0
->getValueType();
10254 if (CmpVT
!= MVT::i32
&& CmpVT
!= MVT::i64
)
10260 if (InfoAndKind
.IsAArch64
) {
10261 CCVal
= DAG
.getConstant(
10262 AArch64CC::getInvertedCondCode(InfoAndKind
.Info
.AArch64
.CC
), dl
,
10264 Cmp
= *InfoAndKind
.Info
.AArch64
.Cmp
;
10266 Cmp
= getAArch64Cmp(*InfoAndKind
.Info
.Generic
.Opnd0
,
10267 *InfoAndKind
.Info
.Generic
.Opnd1
,
10268 ISD::getSetCCInverse(InfoAndKind
.Info
.Generic
.CC
, true),
10271 EVT VT
= Op
->getValueType(0);
10272 LHS
= DAG
.getNode(ISD::ADD
, dl
, VT
, RHS
, DAG
.getConstant(1, dl
, VT
));
10273 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, RHS
, LHS
, CCVal
, Cmp
);
10276 // The basic add/sub long vector instructions have variants with "2" on the end
10277 // which act on the high-half of their inputs. They are normally matched by
10280 // (add (zeroext (extract_high LHS)),
10281 // (zeroext (extract_high RHS)))
10282 // -> uaddl2 vD, vN, vM
10284 // However, if one of the extracts is something like a duplicate, this
10285 // instruction can still be used profitably. This function puts the DAG into a
10286 // more appropriate form for those patterns to trigger.
10287 static SDValue
performAddSubLongCombine(SDNode
*N
,
10288 TargetLowering::DAGCombinerInfo
&DCI
,
10289 SelectionDAG
&DAG
) {
10290 if (DCI
.isBeforeLegalizeOps())
10293 MVT VT
= N
->getSimpleValueType(0);
10294 if (!VT
.is128BitVector()) {
10295 if (N
->getOpcode() == ISD::ADD
)
10296 return performSetccAddFolding(N
, DAG
);
10300 // Make sure both branches are extended in the same way.
10301 SDValue LHS
= N
->getOperand(0);
10302 SDValue RHS
= N
->getOperand(1);
10303 if ((LHS
.getOpcode() != ISD::ZERO_EXTEND
&&
10304 LHS
.getOpcode() != ISD::SIGN_EXTEND
) ||
10305 LHS
.getOpcode() != RHS
.getOpcode())
10308 unsigned ExtType
= LHS
.getOpcode();
10310 // It's not worth doing if at least one of the inputs isn't already an
10311 // extract, but we don't know which it'll be so we have to try both.
10312 if (isEssentiallyExtractHighSubvector(LHS
.getOperand(0))) {
10313 RHS
= tryExtendDUPToExtractHigh(RHS
.getOperand(0), DAG
);
10314 if (!RHS
.getNode())
10317 RHS
= DAG
.getNode(ExtType
, SDLoc(N
), VT
, RHS
);
10318 } else if (isEssentiallyExtractHighSubvector(RHS
.getOperand(0))) {
10319 LHS
= tryExtendDUPToExtractHigh(LHS
.getOperand(0), DAG
);
10320 if (!LHS
.getNode())
10323 LHS
= DAG
.getNode(ExtType
, SDLoc(N
), VT
, LHS
);
10326 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, LHS
, RHS
);
10329 // Massage DAGs which we can use the high-half "long" operations on into
10330 // something isel will recognize better. E.g.
10332 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10333 // (aarch64_neon_umull (extract_high (v2i64 vec)))
10334 // (extract_high (v2i64 (dup128 scalar)))))
10336 static SDValue
tryCombineLongOpWithDup(unsigned IID
, SDNode
*N
,
10337 TargetLowering::DAGCombinerInfo
&DCI
,
10338 SelectionDAG
&DAG
) {
10339 if (DCI
.isBeforeLegalizeOps())
10342 SDValue LHS
= N
->getOperand(1);
10343 SDValue RHS
= N
->getOperand(2);
10344 assert(LHS
.getValueType().is64BitVector() &&
10345 RHS
.getValueType().is64BitVector() &&
10346 "unexpected shape for long operation");
10348 // Either node could be a DUP, but it's not worth doing both of them (you'd
10349 // just as well use the non-high version) so look for a corresponding extract
10350 // operation on the other "wing".
10351 if (isEssentiallyExtractHighSubvector(LHS
)) {
10352 RHS
= tryExtendDUPToExtractHigh(RHS
, DAG
);
10353 if (!RHS
.getNode())
10355 } else if (isEssentiallyExtractHighSubvector(RHS
)) {
10356 LHS
= tryExtendDUPToExtractHigh(LHS
, DAG
);
10357 if (!LHS
.getNode())
10361 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, SDLoc(N
), N
->getValueType(0),
10362 N
->getOperand(0), LHS
, RHS
);
10365 static SDValue
tryCombineShiftImm(unsigned IID
, SDNode
*N
, SelectionDAG
&DAG
) {
10366 MVT ElemTy
= N
->getSimpleValueType(0).getScalarType();
10367 unsigned ElemBits
= ElemTy
.getSizeInBits();
10369 int64_t ShiftAmount
;
10370 if (BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(2))) {
10371 APInt SplatValue
, SplatUndef
;
10372 unsigned SplatBitSize
;
10374 if (!BVN
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
,
10375 HasAnyUndefs
, ElemBits
) ||
10376 SplatBitSize
!= ElemBits
)
10379 ShiftAmount
= SplatValue
.getSExtValue();
10380 } else if (ConstantSDNode
*CVN
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2))) {
10381 ShiftAmount
= CVN
->getSExtValue();
10389 llvm_unreachable("Unknown shift intrinsic");
10390 case Intrinsic::aarch64_neon_sqshl
:
10391 Opcode
= AArch64ISD::SQSHL_I
;
10392 IsRightShift
= false;
10394 case Intrinsic::aarch64_neon_uqshl
:
10395 Opcode
= AArch64ISD::UQSHL_I
;
10396 IsRightShift
= false;
10398 case Intrinsic::aarch64_neon_srshl
:
10399 Opcode
= AArch64ISD::SRSHR_I
;
10400 IsRightShift
= true;
10402 case Intrinsic::aarch64_neon_urshl
:
10403 Opcode
= AArch64ISD::URSHR_I
;
10404 IsRightShift
= true;
10406 case Intrinsic::aarch64_neon_sqshlu
:
10407 Opcode
= AArch64ISD::SQSHLU_I
;
10408 IsRightShift
= false;
10410 case Intrinsic::aarch64_neon_sshl
:
10411 case Intrinsic::aarch64_neon_ushl
:
10412 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
10413 // left shift for positive shift amounts. Below, we only replace the current
10414 // node with VSHL, if this condition is met.
10415 Opcode
= AArch64ISD::VSHL
;
10416 IsRightShift
= false;
10420 if (IsRightShift
&& ShiftAmount
<= -1 && ShiftAmount
>= -(int)ElemBits
) {
10422 return DAG
.getNode(Opcode
, dl
, N
->getValueType(0), N
->getOperand(1),
10423 DAG
.getConstant(-ShiftAmount
, dl
, MVT::i32
));
10424 } else if (!IsRightShift
&& ShiftAmount
>= 0 && ShiftAmount
< ElemBits
) {
10426 return DAG
.getNode(Opcode
, dl
, N
->getValueType(0), N
->getOperand(1),
10427 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
10433 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10434 // the intrinsics must be legal and take an i32, this means there's almost
10435 // certainly going to be a zext in the DAG which we can eliminate.
10436 static SDValue
tryCombineCRC32(unsigned Mask
, SDNode
*N
, SelectionDAG
&DAG
) {
10437 SDValue AndN
= N
->getOperand(2);
10438 if (AndN
.getOpcode() != ISD::AND
)
10441 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(AndN
.getOperand(1));
10442 if (!CMask
|| CMask
->getZExtValue() != Mask
)
10445 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, SDLoc(N
), MVT::i32
,
10446 N
->getOperand(0), N
->getOperand(1), AndN
.getOperand(0));
10449 static SDValue
combineAcrossLanesIntrinsic(unsigned Opc
, SDNode
*N
,
10450 SelectionDAG
&DAG
) {
10452 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, N
->getValueType(0),
10453 DAG
.getNode(Opc
, dl
,
10454 N
->getOperand(1).getSimpleValueType(),
10456 DAG
.getConstant(0, dl
, MVT::i64
));
10459 static SDValue
performIntrinsicCombine(SDNode
*N
,
10460 TargetLowering::DAGCombinerInfo
&DCI
,
10461 const AArch64Subtarget
*Subtarget
) {
10462 SelectionDAG
&DAG
= DCI
.DAG
;
10463 unsigned IID
= getIntrinsicID(N
);
10467 case Intrinsic::aarch64_neon_vcvtfxs2fp
:
10468 case Intrinsic::aarch64_neon_vcvtfxu2fp
:
10469 return tryCombineFixedPointConvert(N
, DCI
, DAG
);
10470 case Intrinsic::aarch64_neon_saddv
:
10471 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV
, N
, DAG
);
10472 case Intrinsic::aarch64_neon_uaddv
:
10473 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV
, N
, DAG
);
10474 case Intrinsic::aarch64_neon_sminv
:
10475 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV
, N
, DAG
);
10476 case Intrinsic::aarch64_neon_uminv
:
10477 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV
, N
, DAG
);
10478 case Intrinsic::aarch64_neon_smaxv
:
10479 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV
, N
, DAG
);
10480 case Intrinsic::aarch64_neon_umaxv
:
10481 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV
, N
, DAG
);
10482 case Intrinsic::aarch64_neon_fmax
:
10483 return DAG
.getNode(ISD::FMAXIMUM
, SDLoc(N
), N
->getValueType(0),
10484 N
->getOperand(1), N
->getOperand(2));
10485 case Intrinsic::aarch64_neon_fmin
:
10486 return DAG
.getNode(ISD::FMINIMUM
, SDLoc(N
), N
->getValueType(0),
10487 N
->getOperand(1), N
->getOperand(2));
10488 case Intrinsic::aarch64_neon_fmaxnm
:
10489 return DAG
.getNode(ISD::FMAXNUM
, SDLoc(N
), N
->getValueType(0),
10490 N
->getOperand(1), N
->getOperand(2));
10491 case Intrinsic::aarch64_neon_fminnm
:
10492 return DAG
.getNode(ISD::FMINNUM
, SDLoc(N
), N
->getValueType(0),
10493 N
->getOperand(1), N
->getOperand(2));
10494 case Intrinsic::aarch64_neon_smull
:
10495 case Intrinsic::aarch64_neon_umull
:
10496 case Intrinsic::aarch64_neon_pmull
:
10497 case Intrinsic::aarch64_neon_sqdmull
:
10498 return tryCombineLongOpWithDup(IID
, N
, DCI
, DAG
);
10499 case Intrinsic::aarch64_neon_sqshl
:
10500 case Intrinsic::aarch64_neon_uqshl
:
10501 case Intrinsic::aarch64_neon_sqshlu
:
10502 case Intrinsic::aarch64_neon_srshl
:
10503 case Intrinsic::aarch64_neon_urshl
:
10504 case Intrinsic::aarch64_neon_sshl
:
10505 case Intrinsic::aarch64_neon_ushl
:
10506 return tryCombineShiftImm(IID
, N
, DAG
);
10507 case Intrinsic::aarch64_crc32b
:
10508 case Intrinsic::aarch64_crc32cb
:
10509 return tryCombineCRC32(0xff, N
, DAG
);
10510 case Intrinsic::aarch64_crc32h
:
10511 case Intrinsic::aarch64_crc32ch
:
10512 return tryCombineCRC32(0xffff, N
, DAG
);
10517 static SDValue
performExtendCombine(SDNode
*N
,
10518 TargetLowering::DAGCombinerInfo
&DCI
,
10519 SelectionDAG
&DAG
) {
10520 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
10521 // we can convert that DUP into another extract_high (of a bigger DUP), which
10522 // helps the backend to decide that an sabdl2 would be useful, saving a real
10523 // extract_high operation.
10524 if (!DCI
.isBeforeLegalizeOps() && N
->getOpcode() == ISD::ZERO_EXTEND
&&
10525 N
->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN
) {
10526 SDNode
*ABDNode
= N
->getOperand(0).getNode();
10527 unsigned IID
= getIntrinsicID(ABDNode
);
10528 if (IID
== Intrinsic::aarch64_neon_sabd
||
10529 IID
== Intrinsic::aarch64_neon_uabd
) {
10530 SDValue NewABD
= tryCombineLongOpWithDup(IID
, ABDNode
, DCI
, DAG
);
10531 if (!NewABD
.getNode())
10534 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), N
->getValueType(0),
10539 // This is effectively a custom type legalization for AArch64.
10541 // Type legalization will split an extend of a small, legal, type to a larger
10542 // illegal type by first splitting the destination type, often creating
10543 // illegal source types, which then get legalized in isel-confusing ways,
10544 // leading to really terrible codegen. E.g.,
10545 // %result = v8i32 sext v8i8 %value
10547 // %losrc = extract_subreg %value, ...
10548 // %hisrc = extract_subreg %value, ...
10549 // %lo = v4i32 sext v4i8 %losrc
10550 // %hi = v4i32 sext v4i8 %hisrc
10551 // Things go rapidly downhill from there.
10553 // For AArch64, the [sz]ext vector instructions can only go up one element
10554 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
10555 // take two instructions.
10557 // This implies that the most efficient way to do the extend from v8i8
10558 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
10559 // the normal splitting to happen for the v8i16->v8i32.
10561 // This is pre-legalization to catch some cases where the default
10562 // type legalization will create ill-tempered code.
10563 if (!DCI
.isBeforeLegalizeOps())
10566 // We're only interested in cleaning things up for non-legal vector types
10567 // here. If both the source and destination are legal, things will just
10568 // work naturally without any fiddling.
10569 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10570 EVT ResVT
= N
->getValueType(0);
10571 if (!ResVT
.isVector() || TLI
.isTypeLegal(ResVT
))
10573 // If the vector type isn't a simple VT, it's beyond the scope of what
10574 // we're worried about here. Let legalization do its thing and hope for
10576 SDValue Src
= N
->getOperand(0);
10577 EVT SrcVT
= Src
->getValueType(0);
10578 if (!ResVT
.isSimple() || !SrcVT
.isSimple())
10581 // If the source VT is a 64-bit vector, we can play games and get the
10582 // better results we want.
10583 if (SrcVT
.getSizeInBits() != 64)
10586 unsigned SrcEltSize
= SrcVT
.getScalarSizeInBits();
10587 unsigned ElementCount
= SrcVT
.getVectorNumElements();
10588 SrcVT
= MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize
* 2), ElementCount
);
10590 Src
= DAG
.getNode(N
->getOpcode(), DL
, SrcVT
, Src
);
10592 // Now split the rest of the operation into two halves, each with a 64
10596 unsigned NumElements
= ResVT
.getVectorNumElements();
10597 assert(!(NumElements
& 1) && "Splitting vector, but not in half!");
10598 LoVT
= HiVT
= EVT::getVectorVT(*DAG
.getContext(),
10599 ResVT
.getVectorElementType(), NumElements
/ 2);
10601 EVT InNVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getVectorElementType(),
10602 LoVT
.getVectorNumElements());
10603 Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InNVT
, Src
,
10604 DAG
.getConstant(0, DL
, MVT::i64
));
10605 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InNVT
, Src
,
10606 DAG
.getConstant(InNVT
.getVectorNumElements(), DL
, MVT::i64
));
10607 Lo
= DAG
.getNode(N
->getOpcode(), DL
, LoVT
, Lo
);
10608 Hi
= DAG
.getNode(N
->getOpcode(), DL
, HiVT
, Hi
);
10610 // Now combine the parts back together so we still have a single result
10611 // like the combiner expects.
10612 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ResVT
, Lo
, Hi
);
10615 static SDValue
splitStoreSplat(SelectionDAG
&DAG
, StoreSDNode
&St
,
10616 SDValue SplatVal
, unsigned NumVecElts
) {
10617 assert(!St
.isTruncatingStore() && "cannot split truncating vector store");
10618 unsigned OrigAlignment
= St
.getAlignment();
10619 unsigned EltOffset
= SplatVal
.getValueType().getSizeInBits() / 8;
10621 // Create scalar stores. This is at least as good as the code sequence for a
10622 // split unaligned store which is a dup.s, ext.b, and two stores.
10623 // Most of the time the three stores should be replaced by store pair
10624 // instructions (stp).
10626 SDValue BasePtr
= St
.getBasePtr();
10627 uint64_t BaseOffset
= 0;
10629 const MachinePointerInfo
&PtrInfo
= St
.getPointerInfo();
10631 DAG
.getStore(St
.getChain(), DL
, SplatVal
, BasePtr
, PtrInfo
,
10632 OrigAlignment
, St
.getMemOperand()->getFlags());
10634 // As this in ISel, we will not merge this add which may degrade results.
10635 if (BasePtr
->getOpcode() == ISD::ADD
&&
10636 isa
<ConstantSDNode
>(BasePtr
->getOperand(1))) {
10637 BaseOffset
= cast
<ConstantSDNode
>(BasePtr
->getOperand(1))->getSExtValue();
10638 BasePtr
= BasePtr
->getOperand(0);
10641 unsigned Offset
= EltOffset
;
10642 while (--NumVecElts
) {
10643 unsigned Alignment
= MinAlign(OrigAlignment
, Offset
);
10644 SDValue OffsetPtr
=
10645 DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, BasePtr
,
10646 DAG
.getConstant(BaseOffset
+ Offset
, DL
, MVT::i64
));
10647 NewST1
= DAG
.getStore(NewST1
.getValue(0), DL
, SplatVal
, OffsetPtr
,
10648 PtrInfo
.getWithOffset(Offset
), Alignment
,
10649 St
.getMemOperand()->getFlags());
10650 Offset
+= EltOffset
;
10655 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
10656 /// load store optimizer pass will merge them to store pair stores. This should
10657 /// be better than a movi to create the vector zero followed by a vector store
10658 /// if the zero constant is not re-used, since one instructions and one register
10659 /// live range will be removed.
10661 /// For example, the final generated code should be:
10663 /// stp xzr, xzr, [x0]
10670 static SDValue
replaceZeroVectorStore(SelectionDAG
&DAG
, StoreSDNode
&St
) {
10671 SDValue StVal
= St
.getValue();
10672 EVT VT
= StVal
.getValueType();
10674 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
10675 // 2, 3 or 4 i32 elements.
10676 int NumVecElts
= VT
.getVectorNumElements();
10677 if (!(((NumVecElts
== 2 || NumVecElts
== 3) &&
10678 VT
.getVectorElementType().getSizeInBits() == 64) ||
10679 ((NumVecElts
== 2 || NumVecElts
== 3 || NumVecElts
== 4) &&
10680 VT
.getVectorElementType().getSizeInBits() == 32)))
10683 if (StVal
.getOpcode() != ISD::BUILD_VECTOR
)
10686 // If the zero constant has more than one use then the vector store could be
10687 // better since the constant mov will be amortized and stp q instructions
10688 // should be able to be formed.
10689 if (!StVal
.hasOneUse())
10692 // If the store is truncating then it's going down to i16 or smaller, which
10693 // means it can be implemented in a single store anyway.
10694 if (St
.isTruncatingStore())
10697 // If the immediate offset of the address operand is too large for the stp
10698 // instruction, then bail out.
10699 if (DAG
.isBaseWithConstantOffset(St
.getBasePtr())) {
10700 int64_t Offset
= St
.getBasePtr()->getConstantOperandVal(1);
10701 if (Offset
< -512 || Offset
> 504)
10705 for (int I
= 0; I
< NumVecElts
; ++I
) {
10706 SDValue EltVal
= StVal
.getOperand(I
);
10707 if (!isNullConstant(EltVal
) && !isNullFPConstant(EltVal
))
10711 // Use a CopyFromReg WZR/XZR here to prevent
10712 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
10716 if (VT
.getVectorElementType().getSizeInBits() == 32) {
10717 ZeroReg
= AArch64::WZR
;
10720 ZeroReg
= AArch64::XZR
;
10724 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, ZeroReg
, ZeroVT
);
10725 return splitStoreSplat(DAG
, St
, SplatVal
, NumVecElts
);
10728 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
10729 /// value. The load store optimizer pass will merge them to store pair stores.
10730 /// This has better performance than a splat of the scalar followed by a split
10731 /// vector store. Even if the stores are not merged it is four stores vs a dup,
10732 /// followed by an ext.b and two stores.
10733 static SDValue
replaceSplatVectorStore(SelectionDAG
&DAG
, StoreSDNode
&St
) {
10734 SDValue StVal
= St
.getValue();
10735 EVT VT
= StVal
.getValueType();
10737 // Don't replace floating point stores, they possibly won't be transformed to
10738 // stp because of the store pair suppress pass.
10739 if (VT
.isFloatingPoint())
10742 // We can express a splat as store pair(s) for 2 or 4 elements.
10743 unsigned NumVecElts
= VT
.getVectorNumElements();
10744 if (NumVecElts
!= 4 && NumVecElts
!= 2)
10747 // If the store is truncating then it's going down to i16 or smaller, which
10748 // means it can be implemented in a single store anyway.
10749 if (St
.isTruncatingStore())
10752 // Check that this is a splat.
10753 // Make sure that each of the relevant vector element locations are inserted
10754 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
10755 std::bitset
<4> IndexNotInserted((1 << NumVecElts
) - 1);
10757 for (unsigned I
= 0; I
< NumVecElts
; ++I
) {
10758 // Check for insert vector elements.
10759 if (StVal
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
10762 // Check that same value is inserted at each vector element.
10764 SplatVal
= StVal
.getOperand(1);
10765 else if (StVal
.getOperand(1) != SplatVal
)
10768 // Check insert element index.
10769 ConstantSDNode
*CIndex
= dyn_cast
<ConstantSDNode
>(StVal
.getOperand(2));
10772 uint64_t IndexVal
= CIndex
->getZExtValue();
10773 if (IndexVal
>= NumVecElts
)
10775 IndexNotInserted
.reset(IndexVal
);
10777 StVal
= StVal
.getOperand(0);
10779 // Check that all vector element locations were inserted to.
10780 if (IndexNotInserted
.any())
10783 return splitStoreSplat(DAG
, St
, SplatVal
, NumVecElts
);
10786 static SDValue
splitStores(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
10788 const AArch64Subtarget
*Subtarget
) {
10790 StoreSDNode
*S
= cast
<StoreSDNode
>(N
);
10791 if (S
->isVolatile() || S
->isIndexed())
10794 SDValue StVal
= S
->getValue();
10795 EVT VT
= StVal
.getValueType();
10796 if (!VT
.isVector())
10799 // If we get a splat of zeros, convert this vector store to a store of
10800 // scalars. They will be merged into store pairs of xzr thereby removing one
10801 // instruction and one register.
10802 if (SDValue ReplacedZeroSplat
= replaceZeroVectorStore(DAG
, *S
))
10803 return ReplacedZeroSplat
;
10805 // FIXME: The logic for deciding if an unaligned store should be split should
10806 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10807 // a call to that function here.
10809 if (!Subtarget
->isMisaligned128StoreSlow())
10812 // Don't split at -Oz.
10813 if (DAG
.getMachineFunction().getFunction().hasMinSize())
10816 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10817 // those up regresses performance on micro-benchmarks and olden/bh.
10818 if (VT
.getVectorNumElements() < 2 || VT
== MVT::v2i64
)
10821 // Split unaligned 16B stores. They are terrible for performance.
10822 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10823 // extensions can use this to mark that it does not want splitting to happen
10824 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10825 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10826 if (VT
.getSizeInBits() != 128 || S
->getAlignment() >= 16 ||
10827 S
->getAlignment() <= 2)
10830 // If we get a splat of a scalar convert this vector store to a store of
10831 // scalars. They will be merged into store pairs thereby removing two
10833 if (SDValue ReplacedSplat
= replaceSplatVectorStore(DAG
, *S
))
10834 return ReplacedSplat
;
10838 // Split VT into two.
10839 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
10840 unsigned NumElts
= HalfVT
.getVectorNumElements();
10841 SDValue SubVector0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HalfVT
, StVal
,
10842 DAG
.getConstant(0, DL
, MVT::i64
));
10843 SDValue SubVector1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HalfVT
, StVal
,
10844 DAG
.getConstant(NumElts
, DL
, MVT::i64
));
10845 SDValue BasePtr
= S
->getBasePtr();
10847 DAG
.getStore(S
->getChain(), DL
, SubVector0
, BasePtr
, S
->getPointerInfo(),
10848 S
->getAlignment(), S
->getMemOperand()->getFlags());
10849 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, BasePtr
,
10850 DAG
.getConstant(8, DL
, MVT::i64
));
10851 return DAG
.getStore(NewST1
.getValue(0), DL
, SubVector1
, OffsetPtr
,
10852 S
->getPointerInfo(), S
->getAlignment(),
10853 S
->getMemOperand()->getFlags());
10856 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10857 /// post-increment LD1R.
10858 static SDValue
performPostLD1Combine(SDNode
*N
,
10859 TargetLowering::DAGCombinerInfo
&DCI
,
10861 if (DCI
.isBeforeLegalizeOps())
10864 SelectionDAG
&DAG
= DCI
.DAG
;
10865 EVT VT
= N
->getValueType(0);
10867 unsigned LoadIdx
= IsLaneOp
? 1 : 0;
10868 SDNode
*LD
= N
->getOperand(LoadIdx
).getNode();
10869 // If it is not LOAD, can not do such combine.
10870 if (LD
->getOpcode() != ISD::LOAD
)
10873 // The vector lane must be a constant in the LD1LANE opcode.
10876 Lane
= N
->getOperand(2);
10877 auto *LaneC
= dyn_cast
<ConstantSDNode
>(Lane
);
10878 if (!LaneC
|| LaneC
->getZExtValue() >= VT
.getVectorNumElements())
10882 LoadSDNode
*LoadSDN
= cast
<LoadSDNode
>(LD
);
10883 EVT MemVT
= LoadSDN
->getMemoryVT();
10884 // Check if memory operand is the same type as the vector element.
10885 if (MemVT
!= VT
.getVectorElementType())
10888 // Check if there are other uses. If so, do not combine as it will introduce
10890 for (SDNode::use_iterator UI
= LD
->use_begin(), UE
= LD
->use_end(); UI
!= UE
;
10892 if (UI
.getUse().getResNo() == 1) // Ignore uses of the chain result.
10898 SDValue Addr
= LD
->getOperand(1);
10899 SDValue Vector
= N
->getOperand(0);
10900 // Search for a use of the address operand that is an increment.
10901 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(), UE
=
10902 Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
10903 SDNode
*User
= *UI
;
10904 if (User
->getOpcode() != ISD::ADD
10905 || UI
.getUse().getResNo() != Addr
.getResNo())
10908 // If the increment is a constant, it must match the memory ref size.
10909 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
10910 if (ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode())) {
10911 uint32_t IncVal
= CInc
->getZExtValue();
10912 unsigned NumBytes
= VT
.getScalarSizeInBits() / 8;
10913 if (IncVal
!= NumBytes
)
10915 Inc
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
10918 // To avoid cycle construction make sure that neither the load nor the add
10919 // are predecessors to each other or the Vector.
10920 SmallPtrSet
<const SDNode
*, 32> Visited
;
10921 SmallVector
<const SDNode
*, 16> Worklist
;
10922 Visited
.insert(Addr
.getNode());
10923 Worklist
.push_back(User
);
10924 Worklist
.push_back(LD
);
10925 Worklist
.push_back(Vector
.getNode());
10926 if (SDNode::hasPredecessorHelper(LD
, Visited
, Worklist
) ||
10927 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
10930 SmallVector
<SDValue
, 8> Ops
;
10931 Ops
.push_back(LD
->getOperand(0)); // Chain
10933 Ops
.push_back(Vector
); // The vector to be inserted
10934 Ops
.push_back(Lane
); // The lane to be inserted in the vector
10936 Ops
.push_back(Addr
);
10937 Ops
.push_back(Inc
);
10939 EVT Tys
[3] = { VT
, MVT::i64
, MVT::Other
};
10940 SDVTList SDTys
= DAG
.getVTList(Tys
);
10941 unsigned NewOp
= IsLaneOp
? AArch64ISD::LD1LANEpost
: AArch64ISD::LD1DUPpost
;
10942 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOp
, SDLoc(N
), SDTys
, Ops
,
10944 LoadSDN
->getMemOperand());
10946 // Update the uses.
10947 SDValue NewResults
[] = {
10948 SDValue(LD
, 0), // The result of load
10949 SDValue(UpdN
.getNode(), 2) // Chain
10951 DCI
.CombineTo(LD
, NewResults
);
10952 DCI
.CombineTo(N
, SDValue(UpdN
.getNode(), 0)); // Dup/Inserted Result
10953 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), 1)); // Write back register
10960 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10961 /// address translation.
10962 static bool performTBISimplification(SDValue Addr
,
10963 TargetLowering::DAGCombinerInfo
&DCI
,
10964 SelectionDAG
&DAG
) {
10965 APInt DemandedMask
= APInt::getLowBitsSet(64, 56);
10967 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
10968 !DCI
.isBeforeLegalizeOps());
10969 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10970 if (TLI
.SimplifyDemandedBits(Addr
, DemandedMask
, Known
, TLO
)) {
10971 DCI
.CommitTargetLoweringOpt(TLO
);
10977 static SDValue
performSTORECombine(SDNode
*N
,
10978 TargetLowering::DAGCombinerInfo
&DCI
,
10980 const AArch64Subtarget
*Subtarget
) {
10981 if (SDValue Split
= splitStores(N
, DCI
, DAG
, Subtarget
))
10984 if (Subtarget
->supportsAddressTopByteIgnored() &&
10985 performTBISimplification(N
->getOperand(2), DCI
, DAG
))
10986 return SDValue(N
, 0);
10992 /// Target-specific DAG combine function for NEON load/store intrinsics
10993 /// to merge base address updates.
10994 static SDValue
performNEONPostLDSTCombine(SDNode
*N
,
10995 TargetLowering::DAGCombinerInfo
&DCI
,
10996 SelectionDAG
&DAG
) {
10997 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11000 unsigned AddrOpIdx
= N
->getNumOperands() - 1;
11001 SDValue Addr
= N
->getOperand(AddrOpIdx
);
11003 // Search for a use of the address operand that is an increment.
11004 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
11005 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
11006 SDNode
*User
= *UI
;
11007 if (User
->getOpcode() != ISD::ADD
||
11008 UI
.getUse().getResNo() != Addr
.getResNo())
11011 // Check that the add is independent of the load/store. Otherwise, folding
11012 // it would create a cycle.
11013 SmallPtrSet
<const SDNode
*, 32> Visited
;
11014 SmallVector
<const SDNode
*, 16> Worklist
;
11015 Visited
.insert(Addr
.getNode());
11016 Worklist
.push_back(N
);
11017 Worklist
.push_back(User
);
11018 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
11019 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
11022 // Find the new opcode for the updating load/store.
11023 bool IsStore
= false;
11024 bool IsLaneOp
= false;
11025 bool IsDupOp
= false;
11026 unsigned NewOpc
= 0;
11027 unsigned NumVecs
= 0;
11028 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
11030 default: llvm_unreachable("unexpected intrinsic for Neon base update");
11031 case Intrinsic::aarch64_neon_ld2
: NewOpc
= AArch64ISD::LD2post
;
11032 NumVecs
= 2; break;
11033 case Intrinsic::aarch64_neon_ld3
: NewOpc
= AArch64ISD::LD3post
;
11034 NumVecs
= 3; break;
11035 case Intrinsic::aarch64_neon_ld4
: NewOpc
= AArch64ISD::LD4post
;
11036 NumVecs
= 4; break;
11037 case Intrinsic::aarch64_neon_st2
: NewOpc
= AArch64ISD::ST2post
;
11038 NumVecs
= 2; IsStore
= true; break;
11039 case Intrinsic::aarch64_neon_st3
: NewOpc
= AArch64ISD::ST3post
;
11040 NumVecs
= 3; IsStore
= true; break;
11041 case Intrinsic::aarch64_neon_st4
: NewOpc
= AArch64ISD::ST4post
;
11042 NumVecs
= 4; IsStore
= true; break;
11043 case Intrinsic::aarch64_neon_ld1x2
: NewOpc
= AArch64ISD::LD1x2post
;
11044 NumVecs
= 2; break;
11045 case Intrinsic::aarch64_neon_ld1x3
: NewOpc
= AArch64ISD::LD1x3post
;
11046 NumVecs
= 3; break;
11047 case Intrinsic::aarch64_neon_ld1x4
: NewOpc
= AArch64ISD::LD1x4post
;
11048 NumVecs
= 4; break;
11049 case Intrinsic::aarch64_neon_st1x2
: NewOpc
= AArch64ISD::ST1x2post
;
11050 NumVecs
= 2; IsStore
= true; break;
11051 case Intrinsic::aarch64_neon_st1x3
: NewOpc
= AArch64ISD::ST1x3post
;
11052 NumVecs
= 3; IsStore
= true; break;
11053 case Intrinsic::aarch64_neon_st1x4
: NewOpc
= AArch64ISD::ST1x4post
;
11054 NumVecs
= 4; IsStore
= true; break;
11055 case Intrinsic::aarch64_neon_ld2r
: NewOpc
= AArch64ISD::LD2DUPpost
;
11056 NumVecs
= 2; IsDupOp
= true; break;
11057 case Intrinsic::aarch64_neon_ld3r
: NewOpc
= AArch64ISD::LD3DUPpost
;
11058 NumVecs
= 3; IsDupOp
= true; break;
11059 case Intrinsic::aarch64_neon_ld4r
: NewOpc
= AArch64ISD::LD4DUPpost
;
11060 NumVecs
= 4; IsDupOp
= true; break;
11061 case Intrinsic::aarch64_neon_ld2lane
: NewOpc
= AArch64ISD::LD2LANEpost
;
11062 NumVecs
= 2; IsLaneOp
= true; break;
11063 case Intrinsic::aarch64_neon_ld3lane
: NewOpc
= AArch64ISD::LD3LANEpost
;
11064 NumVecs
= 3; IsLaneOp
= true; break;
11065 case Intrinsic::aarch64_neon_ld4lane
: NewOpc
= AArch64ISD::LD4LANEpost
;
11066 NumVecs
= 4; IsLaneOp
= true; break;
11067 case Intrinsic::aarch64_neon_st2lane
: NewOpc
= AArch64ISD::ST2LANEpost
;
11068 NumVecs
= 2; IsStore
= true; IsLaneOp
= true; break;
11069 case Intrinsic::aarch64_neon_st3lane
: NewOpc
= AArch64ISD::ST3LANEpost
;
11070 NumVecs
= 3; IsStore
= true; IsLaneOp
= true; break;
11071 case Intrinsic::aarch64_neon_st4lane
: NewOpc
= AArch64ISD::ST4LANEpost
;
11072 NumVecs
= 4; IsStore
= true; IsLaneOp
= true; break;
11077 VecTy
= N
->getOperand(2).getValueType();
11079 VecTy
= N
->getValueType(0);
11081 // If the increment is a constant, it must match the memory ref size.
11082 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
11083 if (ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode())) {
11084 uint32_t IncVal
= CInc
->getZExtValue();
11085 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
11086 if (IsLaneOp
|| IsDupOp
)
11087 NumBytes
/= VecTy
.getVectorNumElements();
11088 if (IncVal
!= NumBytes
)
11090 Inc
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
11092 SmallVector
<SDValue
, 8> Ops
;
11093 Ops
.push_back(N
->getOperand(0)); // Incoming chain
11094 // Load lane and store have vector list as input.
11095 if (IsLaneOp
|| IsStore
)
11096 for (unsigned i
= 2; i
< AddrOpIdx
; ++i
)
11097 Ops
.push_back(N
->getOperand(i
));
11098 Ops
.push_back(Addr
); // Base register
11099 Ops
.push_back(Inc
);
11103 unsigned NumResultVecs
= (IsStore
? 0 : NumVecs
);
11105 for (n
= 0; n
< NumResultVecs
; ++n
)
11107 Tys
[n
++] = MVT::i64
; // Type of write back register
11108 Tys
[n
] = MVT::Other
; // Type of the chain
11109 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+ 2));
11111 MemIntrinsicSDNode
*MemInt
= cast
<MemIntrinsicSDNode
>(N
);
11112 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(N
), SDTys
, Ops
,
11113 MemInt
->getMemoryVT(),
11114 MemInt
->getMemOperand());
11116 // Update the uses.
11117 std::vector
<SDValue
> NewResults
;
11118 for (unsigned i
= 0; i
< NumResultVecs
; ++i
) {
11119 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
11121 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+ 1));
11122 DCI
.CombineTo(N
, NewResults
);
11123 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
11130 // Checks to see if the value is the prescribed width and returns information
11131 // about its extension mode.
11133 bool checkValueWidth(SDValue V
, unsigned width
, ISD::LoadExtType
&ExtType
) {
11134 ExtType
= ISD::NON_EXTLOAD
;
11135 switch(V
.getNode()->getOpcode()) {
11139 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(V
.getNode());
11140 if ((LoadNode
->getMemoryVT() == MVT::i8
&& width
== 8)
11141 || (LoadNode
->getMemoryVT() == MVT::i16
&& width
== 16)) {
11142 ExtType
= LoadNode
->getExtensionType();
11147 case ISD::AssertSext
: {
11148 VTSDNode
*TypeNode
= cast
<VTSDNode
>(V
.getNode()->getOperand(1));
11149 if ((TypeNode
->getVT() == MVT::i8
&& width
== 8)
11150 || (TypeNode
->getVT() == MVT::i16
&& width
== 16)) {
11151 ExtType
= ISD::SEXTLOAD
;
11156 case ISD::AssertZext
: {
11157 VTSDNode
*TypeNode
= cast
<VTSDNode
>(V
.getNode()->getOperand(1));
11158 if ((TypeNode
->getVT() == MVT::i8
&& width
== 8)
11159 || (TypeNode
->getVT() == MVT::i16
&& width
== 16)) {
11160 ExtType
= ISD::ZEXTLOAD
;
11165 case ISD::Constant
:
11166 case ISD::TargetConstant
: {
11167 return std::abs(cast
<ConstantSDNode
>(V
.getNode())->getSExtValue()) <
11168 1LL << (width
- 1);
11175 // This function does a whole lot of voodoo to determine if the tests are
11176 // equivalent without and with a mask. Essentially what happens is that given a
11179 // +-------------+ +-------------+ +-------------+ +-------------+
11180 // | Input | | AddConstant | | CompConstant| | CC |
11181 // +-------------+ +-------------+ +-------------+ +-------------+
11183 // V V | +----------+
11184 // +-------------+ +----+ | |
11185 // | ADD | |0xff| | |
11186 // +-------------+ +----+ | |
11189 // +-------------+ | |
11191 // +-------------+ | |
11200 // The AND node may be safely removed for some combinations of inputs. In
11201 // particular we need to take into account the extension type of the Input,
11202 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
11203 // width of the input (this can work for any width inputs, the above graph is
11204 // specific to 8 bits.
11206 // The specific equations were worked out by generating output tables for each
11207 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
11208 // problem was simplified by working with 4 bit inputs, which means we only
11209 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
11210 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
11211 // patterns present in both extensions (0,7). For every distinct set of
11212 // AddConstant and CompConstants bit patterns we can consider the masked and
11213 // unmasked versions to be equivalent if the result of this function is true for
11214 // all 16 distinct bit patterns of for the current extension type of Input (w0).
11217 // and w10, w8, #0x0f
11219 // cset w9, AArch64CC
11221 // cset w11, AArch64CC
11226 // Since the above function shows when the outputs are equivalent it defines
11227 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
11228 // would be expensive to run during compiles. The equations below were written
11229 // in a test harness that confirmed they gave equivalent outputs to the above
11230 // for all inputs function, so they can be used determine if the removal is
11233 // isEquivalentMaskless() is the code for testing if the AND can be removed
11234 // factored out of the DAG recognition as the DAG can take several forms.
11236 static bool isEquivalentMaskless(unsigned CC
, unsigned width
,
11237 ISD::LoadExtType ExtType
, int AddConstant
,
11238 int CompConstant
) {
11239 // By being careful about our equations and only writing the in term
11240 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
11241 // make them generally applicable to all bit widths.
11242 int MaxUInt
= (1 << width
);
11244 // For the purposes of these comparisons sign extending the type is
11245 // equivalent to zero extending the add and displacing it by half the integer
11246 // width. Provided we are careful and make sure our equations are valid over
11247 // the whole range we can just adjust the input and avoid writing equations
11248 // for sign extended inputs.
11249 if (ExtType
== ISD::SEXTLOAD
)
11250 AddConstant
-= (1 << (width
-1));
11253 case AArch64CC::LE
:
11254 case AArch64CC::GT
:
11255 if ((AddConstant
== 0) ||
11256 (CompConstant
== MaxUInt
- 1 && AddConstant
< 0) ||
11257 (AddConstant
>= 0 && CompConstant
< 0) ||
11258 (AddConstant
<= 0 && CompConstant
<= 0 && CompConstant
< AddConstant
))
11261 case AArch64CC::LT
:
11262 case AArch64CC::GE
:
11263 if ((AddConstant
== 0) ||
11264 (AddConstant
>= 0 && CompConstant
<= 0) ||
11265 (AddConstant
<= 0 && CompConstant
<= 0 && CompConstant
<= AddConstant
))
11268 case AArch64CC::HI
:
11269 case AArch64CC::LS
:
11270 if ((AddConstant
>= 0 && CompConstant
< 0) ||
11271 (AddConstant
<= 0 && CompConstant
>= -1 &&
11272 CompConstant
< AddConstant
+ MaxUInt
))
11275 case AArch64CC::PL
:
11276 case AArch64CC::MI
:
11277 if ((AddConstant
== 0) ||
11278 (AddConstant
> 0 && CompConstant
<= 0) ||
11279 (AddConstant
< 0 && CompConstant
<= AddConstant
))
11282 case AArch64CC::LO
:
11283 case AArch64CC::HS
:
11284 if ((AddConstant
>= 0 && CompConstant
<= 0) ||
11285 (AddConstant
<= 0 && CompConstant
>= 0 &&
11286 CompConstant
<= AddConstant
+ MaxUInt
))
11289 case AArch64CC::EQ
:
11290 case AArch64CC::NE
:
11291 if ((AddConstant
> 0 && CompConstant
< 0) ||
11292 (AddConstant
< 0 && CompConstant
>= 0 &&
11293 CompConstant
< AddConstant
+ MaxUInt
) ||
11294 (AddConstant
>= 0 && CompConstant
>= 0 &&
11295 CompConstant
>= AddConstant
) ||
11296 (AddConstant
<= 0 && CompConstant
< 0 && CompConstant
< AddConstant
))
11299 case AArch64CC::VS
:
11300 case AArch64CC::VC
:
11301 case AArch64CC::AL
:
11302 case AArch64CC::NV
:
11304 case AArch64CC::Invalid
:
11312 SDValue
performCONDCombine(SDNode
*N
,
11313 TargetLowering::DAGCombinerInfo
&DCI
,
11314 SelectionDAG
&DAG
, unsigned CCIndex
,
11315 unsigned CmpIndex
) {
11316 unsigned CC
= cast
<ConstantSDNode
>(N
->getOperand(CCIndex
))->getSExtValue();
11317 SDNode
*SubsNode
= N
->getOperand(CmpIndex
).getNode();
11318 unsigned CondOpcode
= SubsNode
->getOpcode();
11320 if (CondOpcode
!= AArch64ISD::SUBS
)
11323 // There is a SUBS feeding this condition. Is it fed by a mask we can
11326 SDNode
*AndNode
= SubsNode
->getOperand(0).getNode();
11327 unsigned MaskBits
= 0;
11329 if (AndNode
->getOpcode() != ISD::AND
)
11332 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(AndNode
->getOperand(1))) {
11333 uint32_t CNV
= CN
->getZExtValue();
11336 else if (CNV
== 65535)
11343 SDValue AddValue
= AndNode
->getOperand(0);
11345 if (AddValue
.getOpcode() != ISD::ADD
)
11348 // The basic dag structure is correct, grab the inputs and validate them.
11350 SDValue AddInputValue1
= AddValue
.getNode()->getOperand(0);
11351 SDValue AddInputValue2
= AddValue
.getNode()->getOperand(1);
11352 SDValue SubsInputValue
= SubsNode
->getOperand(1);
11354 // The mask is present and the provenance of all the values is a smaller type,
11355 // lets see if the mask is superfluous.
11357 if (!isa
<ConstantSDNode
>(AddInputValue2
.getNode()) ||
11358 !isa
<ConstantSDNode
>(SubsInputValue
.getNode()))
11361 ISD::LoadExtType ExtType
;
11363 if (!checkValueWidth(SubsInputValue
, MaskBits
, ExtType
) ||
11364 !checkValueWidth(AddInputValue2
, MaskBits
, ExtType
) ||
11365 !checkValueWidth(AddInputValue1
, MaskBits
, ExtType
) )
11368 if(!isEquivalentMaskless(CC
, MaskBits
, ExtType
,
11369 cast
<ConstantSDNode
>(AddInputValue2
.getNode())->getSExtValue(),
11370 cast
<ConstantSDNode
>(SubsInputValue
.getNode())->getSExtValue()))
11373 // The AND is not necessary, remove it.
11375 SDVTList VTs
= DAG
.getVTList(SubsNode
->getValueType(0),
11376 SubsNode
->getValueType(1));
11377 SDValue Ops
[] = { AddValue
, SubsNode
->getOperand(1) };
11379 SDValue NewValue
= DAG
.getNode(CondOpcode
, SDLoc(SubsNode
), VTs
, Ops
);
11380 DAG
.ReplaceAllUsesWith(SubsNode
, NewValue
.getNode());
11382 return SDValue(N
, 0);
11385 // Optimize compare with zero and branch.
11386 static SDValue
performBRCONDCombine(SDNode
*N
,
11387 TargetLowering::DAGCombinerInfo
&DCI
,
11388 SelectionDAG
&DAG
) {
11389 MachineFunction
&MF
= DAG
.getMachineFunction();
11390 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
11391 // will not be produced, as they are conditional branch instructions that do
11393 if (MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
))
11396 if (SDValue NV
= performCONDCombine(N
, DCI
, DAG
, 2, 3))
11398 SDValue Chain
= N
->getOperand(0);
11399 SDValue Dest
= N
->getOperand(1);
11400 SDValue CCVal
= N
->getOperand(2);
11401 SDValue Cmp
= N
->getOperand(3);
11403 assert(isa
<ConstantSDNode
>(CCVal
) && "Expected a ConstantSDNode here!");
11404 unsigned CC
= cast
<ConstantSDNode
>(CCVal
)->getZExtValue();
11405 if (CC
!= AArch64CC::EQ
&& CC
!= AArch64CC::NE
)
11408 unsigned CmpOpc
= Cmp
.getOpcode();
11409 if (CmpOpc
!= AArch64ISD::ADDS
&& CmpOpc
!= AArch64ISD::SUBS
)
11412 // Only attempt folding if there is only one use of the flag and no use of the
11414 if (!Cmp
->hasNUsesOfValue(0, 0) || !Cmp
->hasNUsesOfValue(1, 1))
11417 SDValue LHS
= Cmp
.getOperand(0);
11418 SDValue RHS
= Cmp
.getOperand(1);
11420 assert(LHS
.getValueType() == RHS
.getValueType() &&
11421 "Expected the value type to be the same for both operands!");
11422 if (LHS
.getValueType() != MVT::i32
&& LHS
.getValueType() != MVT::i64
)
11425 if (isNullConstant(LHS
))
11426 std::swap(LHS
, RHS
);
11428 if (!isNullConstant(RHS
))
11431 if (LHS
.getOpcode() == ISD::SHL
|| LHS
.getOpcode() == ISD::SRA
||
11432 LHS
.getOpcode() == ISD::SRL
)
11435 // Fold the compare into the branch instruction.
11437 if (CC
== AArch64CC::EQ
)
11438 BR
= DAG
.getNode(AArch64ISD::CBZ
, SDLoc(N
), MVT::Other
, Chain
, LHS
, Dest
);
11440 BR
= DAG
.getNode(AArch64ISD::CBNZ
, SDLoc(N
), MVT::Other
, Chain
, LHS
, Dest
);
11442 // Do not add new nodes to DAG combiner worklist.
11443 DCI
.CombineTo(N
, BR
, false);
11448 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
11449 // as well as whether the test should be inverted. This code is required to
11450 // catch these cases (as opposed to standard dag combines) because
11451 // AArch64ISD::TBZ is matched during legalization.
11452 static SDValue
getTestBitOperand(SDValue Op
, unsigned &Bit
, bool &Invert
,
11453 SelectionDAG
&DAG
) {
11455 if (!Op
->hasOneUse())
11458 // We don't handle undef/constant-fold cases below, as they should have
11459 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
11462 // (tbz (trunc x), b) -> (tbz x, b)
11463 // This case is just here to enable more of the below cases to be caught.
11464 if (Op
->getOpcode() == ISD::TRUNCATE
&&
11465 Bit
< Op
->getValueType(0).getSizeInBits()) {
11466 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11469 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
11470 if (Op
->getOpcode() == ISD::ANY_EXTEND
&&
11471 Bit
< Op
->getOperand(0).getValueSizeInBits()) {
11472 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11475 if (Op
->getNumOperands() != 2)
11478 auto *C
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
11482 switch (Op
->getOpcode()) {
11486 // (tbz (and x, m), b) -> (tbz x, b)
11488 if ((C
->getZExtValue() >> Bit
) & 1)
11489 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11492 // (tbz (shl x, c), b) -> (tbz x, b-c)
11494 if (C
->getZExtValue() <= Bit
&&
11495 (Bit
- C
->getZExtValue()) < Op
->getValueType(0).getSizeInBits()) {
11496 Bit
= Bit
- C
->getZExtValue();
11497 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11501 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
11503 Bit
= Bit
+ C
->getZExtValue();
11504 if (Bit
>= Op
->getValueType(0).getSizeInBits())
11505 Bit
= Op
->getValueType(0).getSizeInBits() - 1;
11506 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11508 // (tbz (srl x, c), b) -> (tbz x, b+c)
11510 if ((Bit
+ C
->getZExtValue()) < Op
->getValueType(0).getSizeInBits()) {
11511 Bit
= Bit
+ C
->getZExtValue();
11512 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11516 // (tbz (xor x, -1), b) -> (tbnz x, b)
11518 if ((C
->getZExtValue() >> Bit
) & 1)
11520 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11524 // Optimize test single bit zero/non-zero and branch.
11525 static SDValue
performTBZCombine(SDNode
*N
,
11526 TargetLowering::DAGCombinerInfo
&DCI
,
11527 SelectionDAG
&DAG
) {
11528 unsigned Bit
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
11529 bool Invert
= false;
11530 SDValue TestSrc
= N
->getOperand(1);
11531 SDValue NewTestSrc
= getTestBitOperand(TestSrc
, Bit
, Invert
, DAG
);
11533 if (TestSrc
== NewTestSrc
)
11536 unsigned NewOpc
= N
->getOpcode();
11538 if (NewOpc
== AArch64ISD::TBZ
)
11539 NewOpc
= AArch64ISD::TBNZ
;
11541 assert(NewOpc
== AArch64ISD::TBNZ
);
11542 NewOpc
= AArch64ISD::TBZ
;
11547 return DAG
.getNode(NewOpc
, DL
, MVT::Other
, N
->getOperand(0), NewTestSrc
,
11548 DAG
.getConstant(Bit
, DL
, MVT::i64
), N
->getOperand(3));
11551 // vselect (v1i1 setcc) ->
11552 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
11553 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
11554 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
11556 static SDValue
performVSelectCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11557 SDValue N0
= N
->getOperand(0);
11558 EVT CCVT
= N0
.getValueType();
11560 if (N0
.getOpcode() != ISD::SETCC
|| CCVT
.getVectorNumElements() != 1 ||
11561 CCVT
.getVectorElementType() != MVT::i1
)
11564 EVT ResVT
= N
->getValueType(0);
11565 EVT CmpVT
= N0
.getOperand(0).getValueType();
11566 // Only combine when the result type is of the same size as the compared
11568 if (ResVT
.getSizeInBits() != CmpVT
.getSizeInBits())
11571 SDValue IfTrue
= N
->getOperand(1);
11572 SDValue IfFalse
= N
->getOperand(2);
11574 DAG
.getSetCC(SDLoc(N
), CmpVT
.changeVectorElementTypeToInteger(),
11575 N0
.getOperand(0), N0
.getOperand(1),
11576 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11577 return DAG
.getNode(ISD::VSELECT
, SDLoc(N
), ResVT
, SetCC
,
11581 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
11582 /// the compare-mask instructions rather than going via NZCV, even if LHS and
11583 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
11584 /// with a vector one followed by a DUP shuffle on the result.
11585 static SDValue
performSelectCombine(SDNode
*N
,
11586 TargetLowering::DAGCombinerInfo
&DCI
) {
11587 SelectionDAG
&DAG
= DCI
.DAG
;
11588 SDValue N0
= N
->getOperand(0);
11589 EVT ResVT
= N
->getValueType(0);
11591 if (N0
.getOpcode() != ISD::SETCC
)
11594 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
11595 // scalar SetCCResultType. We also don't expect vectors, because we assume
11596 // that selects fed by vector SETCCs are canonicalized to VSELECT.
11597 assert((N0
.getValueType() == MVT::i1
|| N0
.getValueType() == MVT::i32
) &&
11598 "Scalar-SETCC feeding SELECT has unexpected result type!");
11600 // If NumMaskElts == 0, the comparison is larger than select result. The
11601 // largest real NEON comparison is 64-bits per lane, which means the result is
11602 // at most 32-bits and an illegal vector. Just bail out for now.
11603 EVT SrcVT
= N0
.getOperand(0).getValueType();
11605 // Don't try to do this optimization when the setcc itself has i1 operands.
11606 // There are no legal vectors of i1, so this would be pointless.
11607 if (SrcVT
== MVT::i1
)
11610 int NumMaskElts
= ResVT
.getSizeInBits() / SrcVT
.getSizeInBits();
11611 if (!ResVT
.isVector() || NumMaskElts
== 0)
11614 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
, NumMaskElts
);
11615 EVT CCVT
= SrcVT
.changeVectorElementTypeToInteger();
11617 // Also bail out if the vector CCVT isn't the same size as ResVT.
11618 // This can happen if the SETCC operand size doesn't divide the ResVT size
11619 // (e.g., f64 vs v3f32).
11620 if (CCVT
.getSizeInBits() != ResVT
.getSizeInBits())
11623 // Make sure we didn't create illegal types, if we're not supposed to.
11624 assert(DCI
.isBeforeLegalize() ||
11625 DAG
.getTargetLoweringInfo().isTypeLegal(SrcVT
));
11627 // First perform a vector comparison, where lane 0 is the one we're interested
11631 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, SrcVT
, N0
.getOperand(0));
11633 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, SrcVT
, N0
.getOperand(1));
11634 SDValue SetCC
= DAG
.getNode(ISD::SETCC
, DL
, CCVT
, LHS
, RHS
, N0
.getOperand(2));
11636 // Now duplicate the comparison mask we want across all other lanes.
11637 SmallVector
<int, 8> DUPMask(CCVT
.getVectorNumElements(), 0);
11638 SDValue Mask
= DAG
.getVectorShuffle(CCVT
, DL
, SetCC
, SetCC
, DUPMask
);
11639 Mask
= DAG
.getNode(ISD::BITCAST
, DL
,
11640 ResVT
.changeVectorElementTypeToInteger(), Mask
);
11642 return DAG
.getSelect(DL
, ResVT
, Mask
, N
->getOperand(1), N
->getOperand(2));
11645 /// Get rid of unnecessary NVCASTs (that don't change the type).
11646 static SDValue
performNVCASTCombine(SDNode
*N
) {
11647 if (N
->getValueType(0) == N
->getOperand(0).getValueType())
11648 return N
->getOperand(0);
11653 // If all users of the globaladdr are of the form (globaladdr + constant), find
11654 // the smallest constant, fold it into the globaladdr's offset and rewrite the
11655 // globaladdr as (globaladdr + constant) - constant.
11656 static SDValue
performGlobalAddressCombine(SDNode
*N
, SelectionDAG
&DAG
,
11657 const AArch64Subtarget
*Subtarget
,
11658 const TargetMachine
&TM
) {
11659 auto *GN
= cast
<GlobalAddressSDNode
>(N
);
11660 if (Subtarget
->ClassifyGlobalReference(GN
->getGlobal(), TM
) !=
11661 AArch64II::MO_NO_FLAG
)
11664 uint64_t MinOffset
= -1ull;
11665 for (SDNode
*N
: GN
->uses()) {
11666 if (N
->getOpcode() != ISD::ADD
)
11668 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0));
11670 C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11673 MinOffset
= std::min(MinOffset
, C
->getZExtValue());
11675 uint64_t Offset
= MinOffset
+ GN
->getOffset();
11677 // Require that the new offset is larger than the existing one. Otherwise, we
11678 // can end up oscillating between two possible DAGs, for example,
11679 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
11680 if (Offset
<= uint64_t(GN
->getOffset()))
11683 // Check whether folding this offset is legal. It must not go out of bounds of
11684 // the referenced object to avoid violating the code model, and must be
11685 // smaller than 2^21 because this is the largest offset expressible in all
11688 // This check also prevents us from folding negative offsets, which will end
11689 // up being treated in the same way as large positive ones. They could also
11690 // cause code model violations, and aren't really common enough to matter.
11691 if (Offset
>= (1 << 21))
11694 const GlobalValue
*GV
= GN
->getGlobal();
11695 Type
*T
= GV
->getValueType();
11696 if (!T
->isSized() ||
11697 Offset
> GV
->getParent()->getDataLayout().getTypeAllocSize(T
))
11701 SDValue Result
= DAG
.getGlobalAddress(GV
, DL
, MVT::i64
, Offset
);
11702 return DAG
.getNode(ISD::SUB
, DL
, MVT::i64
, Result
,
11703 DAG
.getConstant(MinOffset
, DL
, MVT::i64
));
11706 SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode
*N
,
11707 DAGCombinerInfo
&DCI
) const {
11708 SelectionDAG
&DAG
= DCI
.DAG
;
11709 switch (N
->getOpcode()) {
11711 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
11715 return performAddSubLongCombine(N
, DCI
, DAG
);
11717 return performXorCombine(N
, DAG
, DCI
, Subtarget
);
11719 return performMulCombine(N
, DAG
, DCI
, Subtarget
);
11720 case ISD::SINT_TO_FP
:
11721 case ISD::UINT_TO_FP
:
11722 return performIntToFpCombine(N
, DAG
, Subtarget
);
11723 case ISD::FP_TO_SINT
:
11724 case ISD::FP_TO_UINT
:
11725 return performFpToIntCombine(N
, DAG
, DCI
, Subtarget
);
11727 return performFDivCombine(N
, DAG
, DCI
, Subtarget
);
11729 return performORCombine(N
, DCI
, Subtarget
);
11731 return performANDCombine(N
, DCI
);
11733 return performSRLCombine(N
, DCI
);
11734 case ISD::INTRINSIC_WO_CHAIN
:
11735 return performIntrinsicCombine(N
, DCI
, Subtarget
);
11736 case ISD::ANY_EXTEND
:
11737 case ISD::ZERO_EXTEND
:
11738 case ISD::SIGN_EXTEND
:
11739 return performExtendCombine(N
, DCI
, DAG
);
11741 return performBitcastCombine(N
, DCI
, DAG
);
11742 case ISD::CONCAT_VECTORS
:
11743 return performConcatVectorsCombine(N
, DCI
, DAG
);
11745 return performSelectCombine(N
, DCI
);
11747 return performVSelectCombine(N
, DCI
.DAG
);
11749 if (performTBISimplification(N
->getOperand(1), DCI
, DAG
))
11750 return SDValue(N
, 0);
11753 return performSTORECombine(N
, DCI
, DAG
, Subtarget
);
11754 case AArch64ISD::BRCOND
:
11755 return performBRCONDCombine(N
, DCI
, DAG
);
11756 case AArch64ISD::TBNZ
:
11757 case AArch64ISD::TBZ
:
11758 return performTBZCombine(N
, DCI
, DAG
);
11759 case AArch64ISD::CSEL
:
11760 return performCONDCombine(N
, DCI
, DAG
, 2, 3);
11761 case AArch64ISD::DUP
:
11762 return performPostLD1Combine(N
, DCI
, false);
11763 case AArch64ISD::NVCAST
:
11764 return performNVCASTCombine(N
);
11765 case ISD::INSERT_VECTOR_ELT
:
11766 return performPostLD1Combine(N
, DCI
, true);
11767 case ISD::INTRINSIC_VOID
:
11768 case ISD::INTRINSIC_W_CHAIN
:
11769 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
11770 case Intrinsic::aarch64_neon_ld2
:
11771 case Intrinsic::aarch64_neon_ld3
:
11772 case Intrinsic::aarch64_neon_ld4
:
11773 case Intrinsic::aarch64_neon_ld1x2
:
11774 case Intrinsic::aarch64_neon_ld1x3
:
11775 case Intrinsic::aarch64_neon_ld1x4
:
11776 case Intrinsic::aarch64_neon_ld2lane
:
11777 case Intrinsic::aarch64_neon_ld3lane
:
11778 case Intrinsic::aarch64_neon_ld4lane
:
11779 case Intrinsic::aarch64_neon_ld2r
:
11780 case Intrinsic::aarch64_neon_ld3r
:
11781 case Intrinsic::aarch64_neon_ld4r
:
11782 case Intrinsic::aarch64_neon_st2
:
11783 case Intrinsic::aarch64_neon_st3
:
11784 case Intrinsic::aarch64_neon_st4
:
11785 case Intrinsic::aarch64_neon_st1x2
:
11786 case Intrinsic::aarch64_neon_st1x3
:
11787 case Intrinsic::aarch64_neon_st1x4
:
11788 case Intrinsic::aarch64_neon_st2lane
:
11789 case Intrinsic::aarch64_neon_st3lane
:
11790 case Intrinsic::aarch64_neon_st4lane
:
11791 return performNEONPostLDSTCombine(N
, DCI
, DAG
);
11796 case ISD::GlobalAddress
:
11797 return performGlobalAddressCombine(N
, DAG
, Subtarget
, getTargetMachine());
11802 // Check if the return value is used as only a return value, as otherwise
11803 // we can't perform a tail-call. In particular, we need to check for
11804 // target ISD nodes that are returns and any other "odd" constructs
11805 // that the generic analysis code won't necessarily catch.
11806 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode
*N
,
11807 SDValue
&Chain
) const {
11808 if (N
->getNumValues() != 1)
11810 if (!N
->hasNUsesOfValue(1, 0))
11813 SDValue TCChain
= Chain
;
11814 SDNode
*Copy
= *N
->use_begin();
11815 if (Copy
->getOpcode() == ISD::CopyToReg
) {
11816 // If the copy has a glue operand, we conservatively assume it isn't safe to
11817 // perform a tail call.
11818 if (Copy
->getOperand(Copy
->getNumOperands() - 1).getValueType() ==
11821 TCChain
= Copy
->getOperand(0);
11822 } else if (Copy
->getOpcode() != ISD::FP_EXTEND
)
11825 bool HasRet
= false;
11826 for (SDNode
*Node
: Copy
->uses()) {
11827 if (Node
->getOpcode() != AArch64ISD::RET_FLAG
)
11839 // Return whether the an instruction can potentially be optimized to a tail
11840 // call. This will cause the optimizers to attempt to move, or duplicate,
11841 // return instructions to help enable tail call optimizations for this
11843 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
11844 return CI
->isTailCall();
11847 bool AArch64TargetLowering::getIndexedAddressParts(SDNode
*Op
, SDValue
&Base
,
11849 ISD::MemIndexedMode
&AM
,
11851 SelectionDAG
&DAG
) const {
11852 if (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
)
11855 Base
= Op
->getOperand(0);
11856 // All of the indexed addressing mode instructions take a signed
11857 // 9 bit immediate offset.
11858 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1))) {
11859 int64_t RHSC
= RHS
->getSExtValue();
11860 if (Op
->getOpcode() == ISD::SUB
)
11861 RHSC
= -(uint64_t)RHSC
;
11862 if (!isInt
<9>(RHSC
))
11864 IsInc
= (Op
->getOpcode() == ISD::ADD
);
11865 Offset
= Op
->getOperand(1);
11871 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
11873 ISD::MemIndexedMode
&AM
,
11874 SelectionDAG
&DAG
) const {
11877 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
11878 VT
= LD
->getMemoryVT();
11879 Ptr
= LD
->getBasePtr();
11880 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
11881 VT
= ST
->getMemoryVT();
11882 Ptr
= ST
->getBasePtr();
11887 if (!getIndexedAddressParts(Ptr
.getNode(), Base
, Offset
, AM
, IsInc
, DAG
))
11889 AM
= IsInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
11893 bool AArch64TargetLowering::getPostIndexedAddressParts(
11894 SDNode
*N
, SDNode
*Op
, SDValue
&Base
, SDValue
&Offset
,
11895 ISD::MemIndexedMode
&AM
, SelectionDAG
&DAG
) const {
11898 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
11899 VT
= LD
->getMemoryVT();
11900 Ptr
= LD
->getBasePtr();
11901 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
11902 VT
= ST
->getMemoryVT();
11903 Ptr
= ST
->getBasePtr();
11908 if (!getIndexedAddressParts(Op
, Base
, Offset
, AM
, IsInc
, DAG
))
11910 // Post-indexing updates the base, so it's not a valid transform
11911 // if that's not the same as the load's pointer.
11914 AM
= IsInc
? ISD::POST_INC
: ISD::POST_DEC
;
11918 static void ReplaceBITCASTResults(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
11919 SelectionDAG
&DAG
) {
11921 SDValue Op
= N
->getOperand(0);
11923 if (N
->getValueType(0) != MVT::i16
|| Op
.getValueType() != MVT::f16
)
11927 DAG
.getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
, MVT::f32
,
11928 DAG
.getUNDEF(MVT::i32
), Op
,
11929 DAG
.getTargetConstant(AArch64::hsub
, DL
, MVT::i32
)),
11931 Op
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
);
11932 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i16
, Op
));
11935 static void ReplaceReductionResults(SDNode
*N
,
11936 SmallVectorImpl
<SDValue
> &Results
,
11937 SelectionDAG
&DAG
, unsigned InterOp
,
11938 unsigned AcrossOp
) {
11942 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(N
->getValueType(0));
11943 std::tie(Lo
, Hi
) = DAG
.SplitVectorOperand(N
, 0);
11944 SDValue InterVal
= DAG
.getNode(InterOp
, dl
, LoVT
, Lo
, Hi
);
11945 SDValue SplitVal
= DAG
.getNode(AcrossOp
, dl
, LoVT
, InterVal
);
11946 Results
.push_back(SplitVal
);
11949 static std::pair
<SDValue
, SDValue
> splitInt128(SDValue N
, SelectionDAG
&DAG
) {
11951 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i64
, N
);
11952 SDValue Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i64
,
11953 DAG
.getNode(ISD::SRL
, DL
, MVT::i128
, N
,
11954 DAG
.getConstant(64, DL
, MVT::i64
)));
11955 return std::make_pair(Lo
, Hi
);
11958 // Create an even/odd pair of X registers holding integer value V.
11959 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
11960 SDLoc
dl(V
.getNode());
11961 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i64
);
11962 SDValue VHi
= DAG
.getAnyExtOrTrunc(
11963 DAG
.getNode(ISD::SRL
, dl
, MVT::i128
, V
, DAG
.getConstant(64, dl
, MVT::i64
)),
11965 if (DAG
.getDataLayout().isBigEndian())
11966 std::swap (VLo
, VHi
);
11968 DAG
.getTargetConstant(AArch64::XSeqPairsClassRegClassID
, dl
, MVT::i32
);
11969 SDValue SubReg0
= DAG
.getTargetConstant(AArch64::sube64
, dl
, MVT::i32
);
11970 SDValue SubReg1
= DAG
.getTargetConstant(AArch64::subo64
, dl
, MVT::i32
);
11971 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
11973 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
11976 static void ReplaceCMP_SWAP_128Results(SDNode
*N
,
11977 SmallVectorImpl
<SDValue
> &Results
,
11979 const AArch64Subtarget
*Subtarget
) {
11980 assert(N
->getValueType(0) == MVT::i128
&&
11981 "AtomicCmpSwap on types less than 128 should be legal");
11983 if (Subtarget
->hasLSE()) {
11984 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11985 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11987 createGPRPairNode(DAG
, N
->getOperand(2)), // Compare value
11988 createGPRPairNode(DAG
, N
->getOperand(3)), // Store value
11989 N
->getOperand(1), // Ptr
11990 N
->getOperand(0), // Chain in
11993 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
11996 switch (MemOp
->getOrdering()) {
11997 case AtomicOrdering::Monotonic
:
11998 Opcode
= AArch64::CASPX
;
12000 case AtomicOrdering::Acquire
:
12001 Opcode
= AArch64::CASPAX
;
12003 case AtomicOrdering::Release
:
12004 Opcode
= AArch64::CASPLX
;
12006 case AtomicOrdering::AcquireRelease
:
12007 case AtomicOrdering::SequentiallyConsistent
:
12008 Opcode
= AArch64::CASPALX
;
12011 llvm_unreachable("Unexpected ordering!");
12014 MachineSDNode
*CmpSwap
= DAG
.getMachineNode(
12015 Opcode
, SDLoc(N
), DAG
.getVTList(MVT::Untyped
, MVT::Other
), Ops
);
12016 DAG
.setNodeMemRefs(CmpSwap
, {MemOp
});
12018 unsigned SubReg1
= AArch64::sube64
, SubReg2
= AArch64::subo64
;
12019 if (DAG
.getDataLayout().isBigEndian())
12020 std::swap(SubReg1
, SubReg2
);
12021 Results
.push_back(DAG
.getTargetExtractSubreg(SubReg1
, SDLoc(N
), MVT::i64
,
12022 SDValue(CmpSwap
, 0)));
12023 Results
.push_back(DAG
.getTargetExtractSubreg(SubReg2
, SDLoc(N
), MVT::i64
,
12024 SDValue(CmpSwap
, 0)));
12025 Results
.push_back(SDValue(CmpSwap
, 1)); // Chain out
12029 auto Desired
= splitInt128(N
->getOperand(2), DAG
);
12030 auto New
= splitInt128(N
->getOperand(3), DAG
);
12031 SDValue Ops
[] = {N
->getOperand(1), Desired
.first
, Desired
.second
,
12032 New
.first
, New
.second
, N
->getOperand(0)};
12033 SDNode
*CmpSwap
= DAG
.getMachineNode(
12034 AArch64::CMP_SWAP_128
, SDLoc(N
),
12035 DAG
.getVTList(MVT::i64
, MVT::i64
, MVT::i32
, MVT::Other
), Ops
);
12037 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
12038 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
12040 Results
.push_back(SDValue(CmpSwap
, 0));
12041 Results
.push_back(SDValue(CmpSwap
, 1));
12042 Results
.push_back(SDValue(CmpSwap
, 3));
12045 void AArch64TargetLowering::ReplaceNodeResults(
12046 SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
, SelectionDAG
&DAG
) const {
12047 switch (N
->getOpcode()) {
12049 llvm_unreachable("Don't know how to custom expand this");
12051 ReplaceBITCASTResults(N
, Results
, DAG
);
12053 case ISD::VECREDUCE_ADD
:
12054 case ISD::VECREDUCE_SMAX
:
12055 case ISD::VECREDUCE_SMIN
:
12056 case ISD::VECREDUCE_UMAX
:
12057 case ISD::VECREDUCE_UMIN
:
12058 Results
.push_back(LowerVECREDUCE(SDValue(N
, 0), DAG
));
12061 case AArch64ISD::SADDV
:
12062 ReplaceReductionResults(N
, Results
, DAG
, ISD::ADD
, AArch64ISD::SADDV
);
12064 case AArch64ISD::UADDV
:
12065 ReplaceReductionResults(N
, Results
, DAG
, ISD::ADD
, AArch64ISD::UADDV
);
12067 case AArch64ISD::SMINV
:
12068 ReplaceReductionResults(N
, Results
, DAG
, ISD::SMIN
, AArch64ISD::SMINV
);
12070 case AArch64ISD::UMINV
:
12071 ReplaceReductionResults(N
, Results
, DAG
, ISD::UMIN
, AArch64ISD::UMINV
);
12073 case AArch64ISD::SMAXV
:
12074 ReplaceReductionResults(N
, Results
, DAG
, ISD::SMAX
, AArch64ISD::SMAXV
);
12076 case AArch64ISD::UMAXV
:
12077 ReplaceReductionResults(N
, Results
, DAG
, ISD::UMAX
, AArch64ISD::UMAXV
);
12079 case ISD::FP_TO_UINT
:
12080 case ISD::FP_TO_SINT
:
12081 assert(N
->getValueType(0) == MVT::i128
&& "unexpected illegal conversion");
12082 // Let normal code take care of it by not adding anything to Results.
12084 case ISD::ATOMIC_CMP_SWAP
:
12085 ReplaceCMP_SWAP_128Results(N
, Results
, DAG
, Subtarget
);
12090 bool AArch64TargetLowering::useLoadStackGuardNode() const {
12091 if (Subtarget
->isTargetAndroid() || Subtarget
->isTargetFuchsia())
12092 return TargetLowering::useLoadStackGuardNode();
12096 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
12097 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12098 // reciprocal if there are three or more FDIVs.
12102 TargetLoweringBase::LegalizeTypeAction
12103 AArch64TargetLowering::getPreferredVectorAction(MVT VT
) const {
12104 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
12105 // v4i16, v2i32 instead of to promote.
12106 if (VT
== MVT::v1i8
|| VT
== MVT::v1i16
|| VT
== MVT::v1i32
||
12108 return TypeWidenVector
;
12110 return TargetLoweringBase::getPreferredVectorAction(VT
);
12113 // Loads and stores less than 128-bits are already atomic; ones above that
12114 // are doomed anyway, so defer to the default libcall and blame the OS when
12115 // things go wrong.
12116 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
12117 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
12118 return Size
== 128;
12121 // Loads and stores less than 128-bits are already atomic; ones above that
12122 // are doomed anyway, so defer to the default libcall and blame the OS when
12123 // things go wrong.
12124 TargetLowering::AtomicExpansionKind
12125 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
12126 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
12127 return Size
== 128 ? AtomicExpansionKind::LLSC
: AtomicExpansionKind::None
;
12130 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
12131 TargetLowering::AtomicExpansionKind
12132 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
12133 if (AI
->isFloatingPointOperation())
12134 return AtomicExpansionKind::CmpXChg
;
12136 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
12137 if (Size
> 128) return AtomicExpansionKind::None
;
12138 // Nand not supported in LSE.
12139 if (AI
->getOperation() == AtomicRMWInst::Nand
) return AtomicExpansionKind::LLSC
;
12140 // Leave 128 bits to LLSC.
12141 return (Subtarget
->hasLSE() && Size
< 128) ? AtomicExpansionKind::None
: AtomicExpansionKind::LLSC
;
12144 TargetLowering::AtomicExpansionKind
12145 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
12146 AtomicCmpXchgInst
*AI
) const {
12147 // If subtarget has LSE, leave cmpxchg intact for codegen.
12148 if (Subtarget
->hasLSE())
12149 return AtomicExpansionKind::None
;
12150 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12151 // implement cmpxchg without spilling. If the address being exchanged is also
12152 // on the stack and close enough to the spill slot, this can lead to a
12153 // situation where the monitor always gets cleared and the atomic operation
12154 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12155 if (getTargetMachine().getOptLevel() == 0)
12156 return AtomicExpansionKind::None
;
12157 return AtomicExpansionKind::LLSC
;
12160 Value
*AArch64TargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
12161 AtomicOrdering Ord
) const {
12162 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
12163 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
12164 bool IsAcquire
= isAcquireOrStronger(Ord
);
12166 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
12167 // intrinsic must return {i64, i64} and we have to recombine them into a
12168 // single i128 here.
12169 if (ValTy
->getPrimitiveSizeInBits() == 128) {
12170 Intrinsic::ID Int
=
12171 IsAcquire
? Intrinsic::aarch64_ldaxp
: Intrinsic::aarch64_ldxp
;
12172 Function
*Ldxr
= Intrinsic::getDeclaration(M
, Int
);
12174 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
12175 Value
*LoHi
= Builder
.CreateCall(Ldxr
, Addr
, "lohi");
12177 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
12178 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
12179 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
12180 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
12181 return Builder
.CreateOr(
12182 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 64)), "val64");
12185 Type
*Tys
[] = { Addr
->getType() };
12186 Intrinsic::ID Int
=
12187 IsAcquire
? Intrinsic::aarch64_ldaxr
: Intrinsic::aarch64_ldxr
;
12188 Function
*Ldxr
= Intrinsic::getDeclaration(M
, Int
, Tys
);
12190 Type
*EltTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
12192 const DataLayout
&DL
= M
->getDataLayout();
12193 IntegerType
*IntEltTy
= Builder
.getIntNTy(DL
.getTypeSizeInBits(EltTy
));
12194 Value
*Trunc
= Builder
.CreateTrunc(Builder
.CreateCall(Ldxr
, Addr
), IntEltTy
);
12196 return Builder
.CreateBitCast(Trunc
, EltTy
);
12199 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12200 IRBuilder
<> &Builder
) const {
12201 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
12202 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::aarch64_clrex
));
12205 Value
*AArch64TargetLowering::emitStoreConditional(IRBuilder
<> &Builder
,
12206 Value
*Val
, Value
*Addr
,
12207 AtomicOrdering Ord
) const {
12208 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
12209 bool IsRelease
= isReleaseOrStronger(Ord
);
12211 // Since the intrinsics must have legal type, the i128 intrinsics take two
12212 // parameters: "i64, i64". We must marshal Val into the appropriate form
12213 // before the call.
12214 if (Val
->getType()->getPrimitiveSizeInBits() == 128) {
12215 Intrinsic::ID Int
=
12216 IsRelease
? Intrinsic::aarch64_stlxp
: Intrinsic::aarch64_stxp
;
12217 Function
*Stxr
= Intrinsic::getDeclaration(M
, Int
);
12218 Type
*Int64Ty
= Type::getInt64Ty(M
->getContext());
12220 Value
*Lo
= Builder
.CreateTrunc(Val
, Int64Ty
, "lo");
12221 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 64), Int64Ty
, "hi");
12222 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
12223 return Builder
.CreateCall(Stxr
, {Lo
, Hi
, Addr
});
12226 Intrinsic::ID Int
=
12227 IsRelease
? Intrinsic::aarch64_stlxr
: Intrinsic::aarch64_stxr
;
12228 Type
*Tys
[] = { Addr
->getType() };
12229 Function
*Stxr
= Intrinsic::getDeclaration(M
, Int
, Tys
);
12231 const DataLayout
&DL
= M
->getDataLayout();
12232 IntegerType
*IntValTy
= Builder
.getIntNTy(DL
.getTypeSizeInBits(Val
->getType()));
12233 Val
= Builder
.CreateBitCast(Val
, IntValTy
);
12235 return Builder
.CreateCall(Stxr
,
12236 {Builder
.CreateZExtOrBitCast(
12237 Val
, Stxr
->getFunctionType()->getParamType(0)),
12241 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
12242 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
12243 return Ty
->isArrayTy();
12246 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext
&,
12251 static Value
*UseTlsOffset(IRBuilder
<> &IRB
, unsigned Offset
) {
12252 Module
*M
= IRB
.GetInsertBlock()->getParent()->getParent();
12253 Function
*ThreadPointerFunc
=
12254 Intrinsic::getDeclaration(M
, Intrinsic::thread_pointer
);
12255 return IRB
.CreatePointerCast(
12256 IRB
.CreateConstGEP1_32(IRB
.getInt8Ty(), IRB
.CreateCall(ThreadPointerFunc
),
12258 IRB
.getInt8PtrTy()->getPointerTo(0));
12261 Value
*AArch64TargetLowering::getIRStackGuard(IRBuilder
<> &IRB
) const {
12262 // Android provides a fixed TLS slot for the stack cookie. See the definition
12263 // of TLS_SLOT_STACK_GUARD in
12264 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12265 if (Subtarget
->isTargetAndroid())
12266 return UseTlsOffset(IRB
, 0x28);
12268 // Fuchsia is similar.
12269 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
12270 if (Subtarget
->isTargetFuchsia())
12271 return UseTlsOffset(IRB
, -0x10);
12273 return TargetLowering::getIRStackGuard(IRB
);
12276 void AArch64TargetLowering::insertSSPDeclarations(Module
&M
) const {
12277 // MSVC CRT provides functionalities for stack protection.
12278 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment()) {
12279 // MSVC CRT has a global variable holding security cookie.
12280 M
.getOrInsertGlobal("__security_cookie",
12281 Type::getInt8PtrTy(M
.getContext()));
12283 // MSVC CRT has a function to validate security cookie.
12284 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
12285 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
12286 Type::getInt8PtrTy(M
.getContext()));
12287 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee())) {
12288 F
->setCallingConv(CallingConv::Win64
);
12289 F
->addAttribute(1, Attribute::AttrKind::InReg
);
12293 TargetLowering::insertSSPDeclarations(M
);
12296 Value
*AArch64TargetLowering::getSDagStackGuard(const Module
&M
) const {
12297 // MSVC CRT has a global variable holding security cookie.
12298 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
12299 return M
.getGlobalVariable("__security_cookie");
12300 return TargetLowering::getSDagStackGuard(M
);
12303 Function
*AArch64TargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
12304 // MSVC CRT has a function to validate security cookie.
12305 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
12306 return M
.getFunction("__security_check_cookie");
12307 return TargetLowering::getSSPStackGuardCheck(M
);
12310 Value
*AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder
<> &IRB
) const {
12311 // Android provides a fixed TLS slot for the SafeStack pointer. See the
12312 // definition of TLS_SLOT_SAFESTACK in
12313 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12314 if (Subtarget
->isTargetAndroid())
12315 return UseTlsOffset(IRB
, 0x48);
12317 // Fuchsia is similar.
12318 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
12319 if (Subtarget
->isTargetFuchsia())
12320 return UseTlsOffset(IRB
, -0x8);
12322 return TargetLowering::getSafeStackPointerLocation(IRB
);
12325 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
12326 const Instruction
&AndI
) const {
12327 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
12328 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
12329 // may be beneficial to sink in other cases, but we would have to check that
12330 // the cmp would not get folded into the br to form a cbz for these to be
12332 ConstantInt
* Mask
= dyn_cast
<ConstantInt
>(AndI
.getOperand(1));
12335 return Mask
->getValue().isPowerOf2();
12338 bool AArch64TargetLowering::
12339 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12340 SDValue X
, ConstantSDNode
*XC
, ConstantSDNode
*CC
, SDValue Y
,
12341 unsigned OldShiftOpcode
, unsigned NewShiftOpcode
,
12342 SelectionDAG
&DAG
) const {
12343 // Does baseline recommend not to perform the fold by default?
12344 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12345 X
, XC
, CC
, Y
, OldShiftOpcode
, NewShiftOpcode
, DAG
))
12347 // Else, if this is a vector shift, prefer 'shl'.
12348 return X
.getValueType().isScalarInteger() || NewShiftOpcode
== ISD::SHL
;
12351 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG
&DAG
,
12353 if (DAG
.getMachineFunction().getFunction().hasMinSize() &&
12354 !Subtarget
->isTargetWindows())
12359 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
12360 // Update IsSplitCSR in AArch64unctionInfo.
12361 AArch64FunctionInfo
*AFI
= Entry
->getParent()->getInfo
<AArch64FunctionInfo
>();
12362 AFI
->setIsSplitCSR(true);
12365 void AArch64TargetLowering::insertCopiesSplitCSR(
12366 MachineBasicBlock
*Entry
,
12367 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
12368 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
12369 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
12373 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
12374 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
12375 MachineBasicBlock::iterator MBBI
= Entry
->begin();
12376 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
12377 const TargetRegisterClass
*RC
= nullptr;
12378 if (AArch64::GPR64RegClass
.contains(*I
))
12379 RC
= &AArch64::GPR64RegClass
;
12380 else if (AArch64::FPR64RegClass
.contains(*I
))
12381 RC
= &AArch64::FPR64RegClass
;
12383 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12385 Register NewVR
= MRI
->createVirtualRegister(RC
);
12386 // Create copy from CSR to a virtual register.
12387 // FIXME: this currently does not emit CFI pseudo-instructions, it works
12388 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12389 // nounwind. If we want to generalize this later, we may need to emit
12390 // CFI pseudo-instructions.
12391 assert(Entry
->getParent()->getFunction().hasFnAttribute(
12392 Attribute::NoUnwind
) &&
12393 "Function should be nounwind in insertCopiesSplitCSR!");
12394 Entry
->addLiveIn(*I
);
12395 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
12398 // Insert the copy-back instructions right before the terminator.
12399 for (auto *Exit
: Exits
)
12400 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
12401 TII
->get(TargetOpcode::COPY
), *I
)
12406 bool AArch64TargetLowering::isIntDivCheap(EVT VT
, AttributeList Attr
) const {
12407 // Integer division on AArch64 is expensive. However, when aggressively
12408 // optimizing for code size, we prefer to use a div instruction, as it is
12409 // usually smaller than the alternative sequence.
12410 // The exception to this is vector division. Since AArch64 doesn't have vector
12411 // integer division, leaving the division as-is is a loss even in terms of
12412 // size, because it will have to be scalarized, while the alternative code
12413 // sequence can be performed in vector form.
12415 Attr
.hasAttribute(AttributeList::FunctionIndex
, Attribute::MinSize
);
12416 return OptSize
&& !VT
.isVector();
12419 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
12420 // We want inc-of-add for scalars and sub-of-not for vectors.
12421 return VT
.isScalarInteger();
12424 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT
) const {
12425 return Subtarget
->hasAggressiveFMA() && VT
.isFloatingPoint();
12429 AArch64TargetLowering::getVaListSizeInBits(const DataLayout
&DL
) const {
12430 if (Subtarget
->isTargetDarwin() || Subtarget
->isTargetWindows())
12431 return getPointerTy(DL
).getSizeInBits();
12433 return 3 * getPointerTy(DL
).getSizeInBits() + 2 * 32;
12436 void AArch64TargetLowering::finalizeLowering(MachineFunction
&MF
) const {
12437 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
12438 TargetLoweringBase::finalizeLowering(MF
);
12441 // Unlike X86, we let frame lowering assign offsets to all catch objects.
12442 bool AArch64TargetLowering::needsFixedCatchObjects() const {