[X86][BMI] Pull out schedule classes from bmi_andn<> and bmi_bls<>
[llvm-core.git] / lib / Target / Hexagon / HexagonSplitDouble.cpp
blob55f31c628854b661f90397f6c1a7cc3745586c6d
1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #define DEBUG_TYPE "hsdr"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <limits>
40 #include <map>
41 #include <set>
42 #include <utility>
43 #include <vector>
45 using namespace llvm;
47 namespace llvm {
49 FunctionPass *createHexagonSplitDoubleRegs();
50 void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
52 } // end namespace llvm
54 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
55 cl::desc("Maximum number of split partitions"));
56 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
57 cl::desc("Do not split loads or stores"));
58 static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
59 cl::desc("Split all partitions"));
61 namespace {
63 class HexagonSplitDoubleRegs : public MachineFunctionPass {
64 public:
65 static char ID;
67 HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
69 StringRef getPassName() const override {
70 return "Hexagon Split Double Registers";
73 void getAnalysisUsage(AnalysisUsage &AU) const override {
74 AU.addRequired<MachineLoopInfo>();
75 AU.addPreserved<MachineLoopInfo>();
76 MachineFunctionPass::getAnalysisUsage(AU);
79 bool runOnMachineFunction(MachineFunction &MF) override;
81 private:
82 static const TargetRegisterClass *const DoubleRC;
84 const HexagonRegisterInfo *TRI = nullptr;
85 const HexagonInstrInfo *TII = nullptr;
86 const MachineLoopInfo *MLI;
87 MachineRegisterInfo *MRI;
89 using USet = std::set<unsigned>;
90 using UUSetMap = std::map<unsigned, USet>;
91 using UUPair = std::pair<unsigned, unsigned>;
92 using UUPairMap = std::map<unsigned, UUPair>;
93 using LoopRegMap = std::map<const MachineLoop *, USet>;
95 bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
96 bool isVolatileInstr(const MachineInstr *MI) const;
97 bool isFixedInstr(const MachineInstr *MI) const;
98 void partitionRegisters(UUSetMap &P2Rs);
99 int32_t profit(const MachineInstr *MI) const;
100 int32_t profit(unsigned Reg) const;
101 bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
103 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
104 void collectIndRegs(LoopRegMap &IRM);
106 void createHalfInstr(unsigned Opc, MachineInstr *MI,
107 const UUPairMap &PairMap, unsigned SubR);
108 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
109 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
110 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
111 void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
112 void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
113 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
114 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
115 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
116 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
117 bool splitPartition(const USet &Part);
119 static int Counter;
121 static void dump_partition(raw_ostream&, const USet&,
122 const TargetRegisterInfo&);
125 } // end anonymous namespace
127 char HexagonSplitDoubleRegs::ID;
128 int HexagonSplitDoubleRegs::Counter = 0;
129 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
130 &Hexagon::DoubleRegsRegClass;
132 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
133 "Hexagon Split Double Registers", false, false)
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
137 const USet &Part, const TargetRegisterInfo &TRI) {
138 dbgs() << '{';
139 for (auto I : Part)
140 dbgs() << ' ' << printReg(I, &TRI);
141 dbgs() << " }";
143 #endif
145 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
146 for (auto I : IRM) {
147 const USet &Rs = I.second;
148 if (Rs.find(Reg) != Rs.end())
149 return true;
151 return false;
154 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
155 for (auto &MO : MI->memoperands())
156 if (MO->isVolatile() || MO->isAtomic())
157 return true;
158 return false;
161 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
162 if (MI->mayLoad() || MI->mayStore())
163 if (MemRefsFixed || isVolatileInstr(MI))
164 return true;
165 if (MI->isDebugInstr())
166 return false;
168 unsigned Opc = MI->getOpcode();
169 switch (Opc) {
170 default:
171 return true;
173 case TargetOpcode::PHI:
174 case TargetOpcode::COPY:
175 break;
177 case Hexagon::L2_loadrd_io:
178 // Not handling stack stores (only reg-based addresses).
179 if (MI->getOperand(1).isReg())
180 break;
181 return true;
182 case Hexagon::S2_storerd_io:
183 // Not handling stack stores (only reg-based addresses).
184 if (MI->getOperand(0).isReg())
185 break;
186 return true;
187 case Hexagon::L2_loadrd_pi:
188 case Hexagon::S2_storerd_pi:
190 case Hexagon::A2_tfrpi:
191 case Hexagon::A2_combineii:
192 case Hexagon::A4_combineir:
193 case Hexagon::A4_combineii:
194 case Hexagon::A4_combineri:
195 case Hexagon::A2_combinew:
196 case Hexagon::CONST64:
198 case Hexagon::A2_sxtw:
200 case Hexagon::A2_andp:
201 case Hexagon::A2_orp:
202 case Hexagon::A2_xorp:
203 case Hexagon::S2_asl_i_p_or:
204 case Hexagon::S2_asl_i_p:
205 case Hexagon::S2_asr_i_p:
206 case Hexagon::S2_lsr_i_p:
207 break;
210 for (auto &Op : MI->operands()) {
211 if (!Op.isReg())
212 continue;
213 Register R = Op.getReg();
214 if (!Register::isVirtualRegister(R))
215 return true;
217 return false;
220 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
221 using UUMap = std::map<unsigned, unsigned>;
222 using UVect = std::vector<unsigned>;
224 unsigned NumRegs = MRI->getNumVirtRegs();
225 BitVector DoubleRegs(NumRegs);
226 for (unsigned i = 0; i < NumRegs; ++i) {
227 unsigned R = Register::index2VirtReg(i);
228 if (MRI->getRegClass(R) == DoubleRC)
229 DoubleRegs.set(i);
232 BitVector FixedRegs(NumRegs);
233 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
234 unsigned R = Register::index2VirtReg(x);
235 MachineInstr *DefI = MRI->getVRegDef(R);
236 // In some cases a register may exist, but never be defined or used.
237 // It should never appear anywhere, but mark it as "fixed", just to be
238 // safe.
239 if (!DefI || isFixedInstr(DefI))
240 FixedRegs.set(x);
243 UUSetMap AssocMap;
244 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
245 if (FixedRegs[x])
246 continue;
247 unsigned R = Register::index2VirtReg(x);
248 LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
249 USet &Asc = AssocMap[R];
250 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
251 U != Z; ++U) {
252 MachineOperand &Op = *U;
253 MachineInstr *UseI = Op.getParent();
254 if (isFixedInstr(UseI))
255 continue;
256 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
257 MachineOperand &MO = UseI->getOperand(i);
258 // Skip non-registers or registers with subregisters.
259 if (&MO == &Op || !MO.isReg() || MO.getSubReg())
260 continue;
261 Register T = MO.getReg();
262 if (!Register::isVirtualRegister(T)) {
263 FixedRegs.set(x);
264 continue;
266 if (MRI->getRegClass(T) != DoubleRC)
267 continue;
268 unsigned u = Register::virtReg2Index(T);
269 if (FixedRegs[u])
270 continue;
271 LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
272 Asc.insert(T);
273 // Make it symmetric.
274 AssocMap[T].insert(R);
277 LLVM_DEBUG(dbgs() << '\n');
280 UUMap R2P;
281 unsigned NextP = 1;
282 USet Visited;
283 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
284 unsigned R = Register::index2VirtReg(x);
285 if (Visited.count(R))
286 continue;
287 // Create a new partition for R.
288 unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
289 UVect WorkQ;
290 WorkQ.push_back(R);
291 for (unsigned i = 0; i < WorkQ.size(); ++i) {
292 unsigned T = WorkQ[i];
293 if (Visited.count(T))
294 continue;
295 R2P[T] = ThisP;
296 Visited.insert(T);
297 // Add all registers associated with T.
298 USet &Asc = AssocMap[T];
299 for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
300 WorkQ.push_back(*J);
304 for (auto I : R2P)
305 P2Rs[I.second].insert(I.first);
308 static inline int32_t profitImm(unsigned Imm) {
309 int32_t P = 0;
310 if (Imm == 0 || Imm == 0xFFFFFFFF)
311 P += 10;
312 return P;
315 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
316 unsigned ImmX = 0;
317 unsigned Opc = MI->getOpcode();
318 switch (Opc) {
319 case TargetOpcode::PHI:
320 for (const auto &Op : MI->operands())
321 if (!Op.getSubReg())
322 return 0;
323 return 10;
324 case TargetOpcode::COPY:
325 if (MI->getOperand(1).getSubReg() != 0)
326 return 10;
327 return 0;
329 case Hexagon::L2_loadrd_io:
330 case Hexagon::S2_storerd_io:
331 return -1;
332 case Hexagon::L2_loadrd_pi:
333 case Hexagon::S2_storerd_pi:
334 return 2;
336 case Hexagon::A2_tfrpi:
337 case Hexagon::CONST64: {
338 uint64_t D = MI->getOperand(1).getImm();
339 unsigned Lo = D & 0xFFFFFFFFULL;
340 unsigned Hi = D >> 32;
341 return profitImm(Lo) + profitImm(Hi);
343 case Hexagon::A2_combineii:
344 case Hexagon::A4_combineii: {
345 const MachineOperand &Op1 = MI->getOperand(1);
346 const MachineOperand &Op2 = MI->getOperand(2);
347 int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
348 int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
349 return Prof1 + Prof2;
351 case Hexagon::A4_combineri:
352 ImmX++;
353 // Fall through into A4_combineir.
354 LLVM_FALLTHROUGH;
355 case Hexagon::A4_combineir: {
356 ImmX++;
357 const MachineOperand &OpX = MI->getOperand(ImmX);
358 if (OpX.isImm()) {
359 int64_t V = OpX.getImm();
360 if (V == 0 || V == -1)
361 return 10;
363 // Fall through into A2_combinew.
364 LLVM_FALLTHROUGH;
366 case Hexagon::A2_combinew:
367 return 2;
369 case Hexagon::A2_sxtw:
370 return 3;
372 case Hexagon::A2_andp:
373 case Hexagon::A2_orp:
374 case Hexagon::A2_xorp: {
375 Register Rs = MI->getOperand(1).getReg();
376 Register Rt = MI->getOperand(2).getReg();
377 return profit(Rs) + profit(Rt);
380 case Hexagon::S2_asl_i_p_or: {
381 unsigned S = MI->getOperand(3).getImm();
382 if (S == 0 || S == 32)
383 return 10;
384 return -1;
386 case Hexagon::S2_asl_i_p:
387 case Hexagon::S2_asr_i_p:
388 case Hexagon::S2_lsr_i_p:
389 unsigned S = MI->getOperand(2).getImm();
390 if (S == 0 || S == 32)
391 return 10;
392 if (S == 16)
393 return 5;
394 if (S == 48)
395 return 7;
396 return -10;
399 return 0;
402 int32_t HexagonSplitDoubleRegs::profit(unsigned Reg) const {
403 assert(Register::isVirtualRegister(Reg));
405 const MachineInstr *DefI = MRI->getVRegDef(Reg);
406 switch (DefI->getOpcode()) {
407 case Hexagon::A2_tfrpi:
408 case Hexagon::CONST64:
409 case Hexagon::A2_combineii:
410 case Hexagon::A4_combineii:
411 case Hexagon::A4_combineri:
412 case Hexagon::A4_combineir:
413 case Hexagon::A2_combinew:
414 return profit(DefI);
415 default:
416 break;
418 return 0;
421 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
422 const {
423 unsigned FixedNum = 0, LoopPhiNum = 0;
424 int32_t TotalP = 0;
426 for (unsigned DR : Part) {
427 MachineInstr *DefI = MRI->getVRegDef(DR);
428 int32_t P = profit(DefI);
429 if (P == std::numeric_limits<int>::min())
430 return false;
431 TotalP += P;
432 // Reduce the profitability of splitting induction registers.
433 if (isInduction(DR, IRM))
434 TotalP -= 30;
436 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
437 U != W; ++U) {
438 MachineInstr *UseI = U->getParent();
439 if (isFixedInstr(UseI)) {
440 FixedNum++;
441 // Calculate the cost of generating REG_SEQUENCE instructions.
442 for (auto &Op : UseI->operands()) {
443 if (Op.isReg() && Part.count(Op.getReg()))
444 if (Op.getSubReg())
445 TotalP -= 2;
447 continue;
449 // If a register from this partition is used in a fixed instruction,
450 // and there is also a register in this partition that is used in
451 // a loop phi node, then decrease the splitting profit as this can
452 // confuse the modulo scheduler.
453 if (UseI->isPHI()) {
454 const MachineBasicBlock *PB = UseI->getParent();
455 const MachineLoop *L = MLI->getLoopFor(PB);
456 if (L && L->getHeader() == PB)
457 LoopPhiNum++;
459 // Splittable instruction.
460 int32_t P = profit(UseI);
461 if (P == std::numeric_limits<int>::min())
462 return false;
463 TotalP += P;
467 if (FixedNum > 0 && LoopPhiNum > 0)
468 TotalP -= 20*LoopPhiNum;
470 LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
471 if (SplitAll)
472 return true;
473 return TotalP > 0;
476 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
477 USet &Rs) {
478 const MachineBasicBlock *HB = L->getHeader();
479 const MachineBasicBlock *LB = L->getLoopLatch();
480 if (!HB || !LB)
481 return;
483 // Examine the latch branch. Expect it to be a conditional branch to
484 // the header (either "br-cond header" or "br-cond exit; br header").
485 MachineBasicBlock *TB = nullptr, *FB = nullptr;
486 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
487 SmallVector<MachineOperand,2> Cond;
488 bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
489 // Only analyzable conditional branches. HII::analyzeBranch will put
490 // the branch opcode as the first element of Cond, and the predicate
491 // operand as the second.
492 if (BadLB || Cond.size() != 2)
493 return;
494 // Only simple jump-conditional (with or without negation).
495 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
496 return;
497 // Must go to the header.
498 if (TB != HB && FB != HB)
499 return;
500 assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
501 // Expect a predicate register.
502 Register PR = Cond[1].getReg();
503 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
505 // Get the registers on which the loop controlling compare instruction
506 // depends.
507 unsigned CmpR1 = 0, CmpR2 = 0;
508 const MachineInstr *CmpI = MRI->getVRegDef(PR);
509 while (CmpI->getOpcode() == Hexagon::C2_not)
510 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
512 int Mask = 0, Val = 0;
513 bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
514 if (!OkCI)
515 return;
516 // Eliminate non-double input registers.
517 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
518 CmpR1 = 0;
519 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
520 CmpR2 = 0;
521 if (!CmpR1 && !CmpR2)
522 return;
524 // Now examine the top of the loop: the phi nodes that could poten-
525 // tially define loop induction registers. The registers defined by
526 // such a phi node would be used in a 64-bit add, which then would
527 // be used in the loop compare instruction.
529 // Get the set of all double registers defined by phi nodes in the
530 // loop header.
531 using UVect = std::vector<unsigned>;
533 UVect DP;
534 for (auto &MI : *HB) {
535 if (!MI.isPHI())
536 break;
537 const MachineOperand &MD = MI.getOperand(0);
538 Register R = MD.getReg();
539 if (MRI->getRegClass(R) == DoubleRC)
540 DP.push_back(R);
542 if (DP.empty())
543 return;
545 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
546 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
547 I != E; ++I) {
548 const MachineInstr *UseI = I->getParent();
549 if (UseI->getOpcode() != Hexagon::A2_addp)
550 continue;
551 // Get the output from the add. If it is one of the inputs to the
552 // loop-controlling compare instruction, then R is likely an induc-
553 // tion register.
554 Register T = UseI->getOperand(0).getReg();
555 if (T == CmpR1 || T == CmpR2)
556 return false;
558 return true;
560 UVect::iterator End = llvm::remove_if(DP, NoIndOp);
561 Rs.insert(DP.begin(), End);
562 Rs.insert(CmpR1);
563 Rs.insert(CmpR2);
565 LLVM_DEBUG({
566 dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
567 dump_partition(dbgs(), Rs, *TRI);
568 dbgs() << '\n';
572 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
573 using LoopVector = std::vector<MachineLoop *>;
575 LoopVector WorkQ;
577 for (auto I : *MLI)
578 WorkQ.push_back(I);
579 for (unsigned i = 0; i < WorkQ.size(); ++i) {
580 for (auto I : *WorkQ[i])
581 WorkQ.push_back(I);
584 USet Rs;
585 for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
586 MachineLoop *L = WorkQ[i];
587 Rs.clear();
588 collectIndRegsForLoop(L, Rs);
589 if (!Rs.empty())
590 IRM.insert(std::make_pair(L, Rs));
594 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
595 const UUPairMap &PairMap, unsigned SubR) {
596 MachineBasicBlock &B = *MI->getParent();
597 DebugLoc DL = MI->getDebugLoc();
598 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
600 for (auto &Op : MI->operands()) {
601 if (!Op.isReg()) {
602 NewI->addOperand(Op);
603 continue;
605 // For register operands, set the subregister.
606 Register R = Op.getReg();
607 unsigned SR = Op.getSubReg();
608 bool isVirtReg = Register::isVirtualRegister(R);
609 bool isKill = Op.isKill();
610 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
611 isKill = false;
612 UUPairMap::const_iterator F = PairMap.find(R);
613 if (F == PairMap.end()) {
614 SR = SubR;
615 } else {
616 const UUPair &P = F->second;
617 R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
618 SR = 0;
621 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
622 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
623 Op.isInternalRead());
624 NewI->addOperand(CO);
628 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
629 const UUPairMap &PairMap) {
630 bool Load = MI->mayLoad();
631 unsigned OrigOpc = MI->getOpcode();
632 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
633 OrigOpc == Hexagon::S2_storerd_pi);
634 MachineInstr *LowI, *HighI;
635 MachineBasicBlock &B = *MI->getParent();
636 DebugLoc DL = MI->getDebugLoc();
638 // Index of the base-address-register operand.
639 unsigned AdrX = PostInc ? (Load ? 2 : 1)
640 : (Load ? 1 : 0);
641 MachineOperand &AdrOp = MI->getOperand(AdrX);
642 unsigned RSA = getRegState(AdrOp);
643 MachineOperand &ValOp = Load ? MI->getOperand(0)
644 : (PostInc ? MI->getOperand(3)
645 : MI->getOperand(2));
646 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
647 assert(F != PairMap.end());
649 if (Load) {
650 const UUPair &P = F->second;
651 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
652 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
653 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
654 .addImm(Off);
655 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
656 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
657 .addImm(Off+4);
658 } else {
659 const UUPair &P = F->second;
660 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
661 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
662 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
663 .addImm(Off)
664 .addReg(P.first);
665 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
666 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
667 .addImm(Off+4)
668 .addReg(P.second);
671 if (PostInc) {
672 // Create the increment of the address register.
673 int64_t Inc = Load ? MI->getOperand(3).getImm()
674 : MI->getOperand(2).getImm();
675 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
676 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
677 Register NewR = MRI->createVirtualRegister(RC);
678 assert(!UpdOp.getSubReg() && "Def operand with subreg");
679 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
680 .addReg(AdrOp.getReg(), RSA)
681 .addImm(Inc);
682 MRI->replaceRegWith(UpdOp.getReg(), NewR);
683 // The original instruction will be deleted later.
686 // Generate a new pair of memory-operands.
687 MachineFunction &MF = *B.getParent();
688 for (auto &MO : MI->memoperands()) {
689 const MachinePointerInfo &Ptr = MO->getPointerInfo();
690 MachineMemOperand::Flags F = MO->getFlags();
691 int A = MO->getAlignment();
693 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
694 LowI->addMemOperand(MF, Tmp1);
695 auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
696 HighI->addMemOperand(MF, Tmp2);
700 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
701 const UUPairMap &PairMap) {
702 MachineOperand &Op0 = MI->getOperand(0);
703 MachineOperand &Op1 = MI->getOperand(1);
704 assert(Op0.isReg() && Op1.isImm());
705 uint64_t V = Op1.getImm();
707 MachineBasicBlock &B = *MI->getParent();
708 DebugLoc DL = MI->getDebugLoc();
709 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
710 assert(F != PairMap.end());
711 const UUPair &P = F->second;
713 // The operand to A2_tfrsi can only have 32 significant bits. Immediate
714 // values in MachineOperand are stored as 64-bit integers, and so the
715 // value -1 may be represented either as 64-bit -1, or 4294967295. Both
716 // will have the 32 higher bits truncated in the end, but -1 will remain
717 // as -1, while the latter may appear to be a large unsigned value
718 // requiring a constant extender. The casting to int32_t will select the
719 // former representation. (The same reasoning applies to all 32-bit
720 // values.)
721 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
722 .addImm(int32_t(V & 0xFFFFFFFFULL));
723 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
724 .addImm(int32_t(V >> 32));
727 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
728 const UUPairMap &PairMap) {
729 MachineOperand &Op0 = MI->getOperand(0);
730 MachineOperand &Op1 = MI->getOperand(1);
731 MachineOperand &Op2 = MI->getOperand(2);
732 assert(Op0.isReg());
734 MachineBasicBlock &B = *MI->getParent();
735 DebugLoc DL = MI->getDebugLoc();
736 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
737 assert(F != PairMap.end());
738 const UUPair &P = F->second;
740 if (!Op1.isReg()) {
741 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
742 .add(Op1);
743 } else {
744 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
745 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
748 if (!Op2.isReg()) {
749 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
750 .add(Op2);
751 } else {
752 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
753 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
757 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
758 const UUPairMap &PairMap) {
759 MachineOperand &Op0 = MI->getOperand(0);
760 MachineOperand &Op1 = MI->getOperand(1);
761 assert(Op0.isReg() && Op1.isReg());
763 MachineBasicBlock &B = *MI->getParent();
764 DebugLoc DL = MI->getDebugLoc();
765 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
766 assert(F != PairMap.end());
767 const UUPair &P = F->second;
768 unsigned RS = getRegState(Op1);
770 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
771 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
772 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
773 .addReg(Op1.getReg(), RS, Op1.getSubReg())
774 .addImm(31);
777 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
778 const UUPairMap &PairMap) {
779 using namespace Hexagon;
781 MachineOperand &Op0 = MI->getOperand(0);
782 MachineOperand &Op1 = MI->getOperand(1);
783 MachineOperand &Op2 = MI->getOperand(2);
784 assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
785 int64_t Sh64 = Op2.getImm();
786 assert(Sh64 >= 0 && Sh64 < 64);
787 unsigned S = Sh64;
789 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
790 assert(F != PairMap.end());
791 const UUPair &P = F->second;
792 Register LoR = P.first;
793 Register HiR = P.second;
795 unsigned Opc = MI->getOpcode();
796 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
797 bool Left = !Right;
798 bool Signed = (Opc == S2_asr_i_p);
800 MachineBasicBlock &B = *MI->getParent();
801 DebugLoc DL = MI->getDebugLoc();
802 unsigned RS = getRegState(Op1);
803 unsigned ShiftOpc = Left ? S2_asl_i_r
804 : (Signed ? S2_asr_i_r : S2_lsr_i_r);
805 unsigned LoSR = isub_lo;
806 unsigned HiSR = isub_hi;
808 if (S == 0) {
809 // No shift, subregister copy.
810 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
811 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
812 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
813 .addReg(Op1.getReg(), RS, HiSR);
814 } else if (S < 32) {
815 const TargetRegisterClass *IntRC = &IntRegsRegClass;
816 Register TmpR = MRI->createVirtualRegister(IntRC);
817 // Expansion:
818 // Shift left: DR = shl R, #s
819 // LoR = shl R.lo, #s
820 // TmpR = extractu R.lo, #s, #32-s
821 // HiR = or (TmpR, asl(R.hi, #s))
822 // Shift right: DR = shr R, #s
823 // HiR = shr R.hi, #s
824 // TmpR = shr R.lo, #s
825 // LoR = insert TmpR, R.hi, #s, #32-s
827 // Shift left:
828 // LoR = shl R.lo, #s
829 // Shift right:
830 // TmpR = shr R.lo, #s
832 // Make a special case for A2_aslh and A2_asrh (they are predicable as
833 // opposed to S2_asl_i_r/S2_asr_i_r).
834 if (S == 16 && Left)
835 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
836 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
837 else if (S == 16 && Signed)
838 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
839 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
840 else
841 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
842 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
843 .addImm(S);
845 if (Left) {
846 // TmpR = extractu R.lo, #s, #32-s
847 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
848 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
849 .addImm(S)
850 .addImm(32-S);
851 // HiR = or (TmpR, asl(R.hi, #s))
852 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
853 .addReg(TmpR)
854 .addReg(Op1.getReg(), RS, HiSR)
855 .addImm(S);
856 } else {
857 // HiR = shr R.hi, #s
858 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
859 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
860 .addImm(S);
861 // LoR = insert TmpR, R.hi, #s, #32-s
862 BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
863 .addReg(TmpR)
864 .addReg(Op1.getReg(), RS, HiSR)
865 .addImm(S)
866 .addImm(32-S);
868 } else if (S == 32) {
869 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
870 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
871 if (!Signed)
872 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
873 .addImm(0);
874 else // Must be right shift.
875 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
876 .addReg(Op1.getReg(), RS, HiSR)
877 .addImm(31);
878 } else if (S < 64) {
879 S -= 32;
880 if (S == 16 && Left)
881 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
882 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
883 else if (S == 16 && Signed)
884 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
885 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
886 else
887 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
888 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
889 .addImm(S);
891 if (Signed)
892 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
893 .addReg(Op1.getReg(), RS, HiSR)
894 .addImm(31);
895 else
896 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
897 .addImm(0);
901 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
902 const UUPairMap &PairMap) {
903 using namespace Hexagon;
905 MachineOperand &Op0 = MI->getOperand(0);
906 MachineOperand &Op1 = MI->getOperand(1);
907 MachineOperand &Op2 = MI->getOperand(2);
908 MachineOperand &Op3 = MI->getOperand(3);
909 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
910 int64_t Sh64 = Op3.getImm();
911 assert(Sh64 >= 0 && Sh64 < 64);
912 unsigned S = Sh64;
914 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
915 assert(F != PairMap.end());
916 const UUPair &P = F->second;
917 unsigned LoR = P.first;
918 unsigned HiR = P.second;
920 MachineBasicBlock &B = *MI->getParent();
921 DebugLoc DL = MI->getDebugLoc();
922 unsigned RS1 = getRegState(Op1);
923 unsigned RS2 = getRegState(Op2);
924 const TargetRegisterClass *IntRC = &IntRegsRegClass;
926 unsigned LoSR = isub_lo;
927 unsigned HiSR = isub_hi;
929 // Op0 = S2_asl_i_p_or Op1, Op2, Op3
930 // means: Op0 = or (Op1, asl(Op2, Op3))
932 // Expansion of
933 // DR = or (R1, asl(R2, #s))
935 // LoR = or (R1.lo, asl(R2.lo, #s))
936 // Tmp1 = extractu R2.lo, #s, #32-s
937 // Tmp2 = or R1.hi, Tmp1
938 // HiR = or (Tmp2, asl(R2.hi, #s))
940 if (S == 0) {
941 // DR = or (R1, asl(R2, #0))
942 // -> or (R1, R2)
943 // i.e. LoR = or R1.lo, R2.lo
944 // HiR = or R1.hi, R2.hi
945 BuildMI(B, MI, DL, TII->get(A2_or), LoR)
946 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
947 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
948 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
949 .addReg(Op1.getReg(), RS1, HiSR)
950 .addReg(Op2.getReg(), RS2, HiSR);
951 } else if (S < 32) {
952 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
953 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
954 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
955 .addImm(S);
956 Register TmpR1 = MRI->createVirtualRegister(IntRC);
957 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
958 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
959 .addImm(S)
960 .addImm(32-S);
961 Register TmpR2 = MRI->createVirtualRegister(IntRC);
962 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
963 .addReg(Op1.getReg(), RS1, HiSR)
964 .addReg(TmpR1);
965 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
966 .addReg(TmpR2)
967 .addReg(Op2.getReg(), RS2, HiSR)
968 .addImm(S);
969 } else if (S == 32) {
970 // DR = or (R1, asl(R2, #32))
971 // -> or R1, R2.lo
972 // LoR = R1.lo
973 // HiR = or R1.hi, R2.lo
974 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
975 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
976 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
977 .addReg(Op1.getReg(), RS1, HiSR)
978 .addReg(Op2.getReg(), RS2, LoSR);
979 } else if (S < 64) {
980 // DR = or (R1, asl(R2, #s))
982 // LoR = R1:lo
983 // HiR = or (R1:hi, asl(R2:lo, #s-32))
984 S -= 32;
985 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
986 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
987 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
988 .addReg(Op1.getReg(), RS1, HiSR)
989 .addReg(Op2.getReg(), RS2, LoSR)
990 .addImm(S);
994 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
995 const UUPairMap &PairMap) {
996 using namespace Hexagon;
998 LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
999 bool Split = false;
1000 unsigned Opc = MI->getOpcode();
1002 switch (Opc) {
1003 case TargetOpcode::PHI:
1004 case TargetOpcode::COPY: {
1005 Register DstR = MI->getOperand(0).getReg();
1006 if (MRI->getRegClass(DstR) == DoubleRC) {
1007 createHalfInstr(Opc, MI, PairMap, isub_lo);
1008 createHalfInstr(Opc, MI, PairMap, isub_hi);
1009 Split = true;
1011 break;
1013 case A2_andp:
1014 createHalfInstr(A2_and, MI, PairMap, isub_lo);
1015 createHalfInstr(A2_and, MI, PairMap, isub_hi);
1016 Split = true;
1017 break;
1018 case A2_orp:
1019 createHalfInstr(A2_or, MI, PairMap, isub_lo);
1020 createHalfInstr(A2_or, MI, PairMap, isub_hi);
1021 Split = true;
1022 break;
1023 case A2_xorp:
1024 createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1025 createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1026 Split = true;
1027 break;
1029 case L2_loadrd_io:
1030 case L2_loadrd_pi:
1031 case S2_storerd_io:
1032 case S2_storerd_pi:
1033 splitMemRef(MI, PairMap);
1034 Split = true;
1035 break;
1037 case A2_tfrpi:
1038 case CONST64:
1039 splitImmediate(MI, PairMap);
1040 Split = true;
1041 break;
1043 case A2_combineii:
1044 case A4_combineir:
1045 case A4_combineii:
1046 case A4_combineri:
1047 case A2_combinew:
1048 splitCombine(MI, PairMap);
1049 Split = true;
1050 break;
1052 case A2_sxtw:
1053 splitExt(MI, PairMap);
1054 Split = true;
1055 break;
1057 case S2_asl_i_p:
1058 case S2_asr_i_p:
1059 case S2_lsr_i_p:
1060 splitShift(MI, PairMap);
1061 Split = true;
1062 break;
1064 case S2_asl_i_p_or:
1065 splitAslOr(MI, PairMap);
1066 Split = true;
1067 break;
1069 default:
1070 llvm_unreachable("Instruction not splitable");
1071 return false;
1074 return Split;
1077 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1078 const UUPairMap &PairMap) {
1079 for (auto &Op : MI->operands()) {
1080 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1081 continue;
1082 Register R = Op.getReg();
1083 UUPairMap::const_iterator F = PairMap.find(R);
1084 if (F == PairMap.end())
1085 continue;
1086 const UUPair &P = F->second;
1087 switch (Op.getSubReg()) {
1088 case Hexagon::isub_lo:
1089 Op.setReg(P.first);
1090 break;
1091 case Hexagon::isub_hi:
1092 Op.setReg(P.second);
1093 break;
1095 Op.setSubReg(0);
1099 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1100 const UUPairMap &PairMap) {
1101 MachineBasicBlock &B = *MI->getParent();
1102 DebugLoc DL = MI->getDebugLoc();
1104 for (auto &Op : MI->operands()) {
1105 if (!Op.isReg() || !Op.isUse())
1106 continue;
1107 Register R = Op.getReg();
1108 if (!Register::isVirtualRegister(R))
1109 continue;
1110 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1111 continue;
1112 UUPairMap::const_iterator F = PairMap.find(R);
1113 if (F == PairMap.end())
1114 continue;
1115 const UUPair &Pr = F->second;
1116 Register NewDR = MRI->createVirtualRegister(DoubleRC);
1117 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1118 .addReg(Pr.first)
1119 .addImm(Hexagon::isub_lo)
1120 .addReg(Pr.second)
1121 .addImm(Hexagon::isub_hi);
1122 Op.setReg(NewDR);
1126 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1127 using MISet = std::set<MachineInstr *>;
1129 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1130 bool Changed = false;
1132 LLVM_DEBUG(dbgs() << "Splitting partition: ";
1133 dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1135 UUPairMap PairMap;
1137 MISet SplitIns;
1138 for (unsigned DR : Part) {
1139 MachineInstr *DefI = MRI->getVRegDef(DR);
1140 SplitIns.insert(DefI);
1142 // Collect all instructions, including fixed ones. We won't split them,
1143 // but we need to visit them again to insert the REG_SEQUENCE instructions.
1144 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1145 U != W; ++U)
1146 SplitIns.insert(U->getParent());
1148 Register LoR = MRI->createVirtualRegister(IntRC);
1149 Register HiR = MRI->createVirtualRegister(IntRC);
1150 LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1151 << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1152 << '\n');
1153 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1156 MISet Erase;
1157 for (auto MI : SplitIns) {
1158 if (isFixedInstr(MI)) {
1159 collapseRegPairs(MI, PairMap);
1160 } else {
1161 bool Done = splitInstr(MI, PairMap);
1162 if (Done)
1163 Erase.insert(MI);
1164 Changed |= Done;
1168 for (unsigned DR : Part) {
1169 // Before erasing "double" instructions, revisit all uses of the double
1170 // registers in this partition, and replace all uses of them with subre-
1171 // gisters, with the corresponding single registers.
1172 MISet Uses;
1173 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1174 U != W; ++U)
1175 Uses.insert(U->getParent());
1176 for (auto M : Uses)
1177 replaceSubregUses(M, PairMap);
1180 for (auto MI : Erase) {
1181 MachineBasicBlock *B = MI->getParent();
1182 B->erase(MI);
1185 return Changed;
1188 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1189 if (skipFunction(MF.getFunction()))
1190 return false;
1192 LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1193 << MF.getName() << '\n');
1195 auto &ST = MF.getSubtarget<HexagonSubtarget>();
1196 TRI = ST.getRegisterInfo();
1197 TII = ST.getInstrInfo();
1198 MRI = &MF.getRegInfo();
1199 MLI = &getAnalysis<MachineLoopInfo>();
1201 UUSetMap P2Rs;
1202 LoopRegMap IRM;
1204 collectIndRegs(IRM);
1205 partitionRegisters(P2Rs);
1207 LLVM_DEBUG({
1208 dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1209 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1210 dbgs() << '#' << I->first << " -> ";
1211 dump_partition(dbgs(), I->second, *TRI);
1212 dbgs() << '\n';
1216 bool Changed = false;
1217 int Limit = MaxHSDR;
1219 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1220 if (I->first == 0)
1221 continue;
1222 if (Limit >= 0 && Counter >= Limit)
1223 break;
1224 USet &Part = I->second;
1225 LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1226 << '\n');
1227 if (!isProfitable(Part, IRM))
1228 continue;
1229 Counter++;
1230 Changed |= splitPartition(Part);
1233 return Changed;
1236 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1237 return new HexagonSplitDoubleRegs();