1 //===- HexagonStoreWidening.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // Replace sequences of "narrow" stores to adjacent memory locations with
9 // a fewer "wide" stores that have the same effect.
10 // For example, replace:
11 // S4_storeirb_io %100, 0, 0 ; store-immediate-byte
12 // S4_storeirb_io %100, 1, 0 ; store-immediate-byte
14 // S4_storeirh_io %100, 0, 0 ; store-immediate-halfword
15 // The above is the general idea. The actual cases handled by the code
16 // may be a bit more complex.
17 // The purpose of this pass is to reduce the number of outstanding stores,
18 // or as one could say, "reduce store queue pressure". Also, wide stores
19 // mean fewer stores, and since there are only two memory instructions allowed
20 // per packet, it also means fewer packets, and ultimately fewer cycles.
21 //===---------------------------------------------------------------------===//
23 #define DEBUG_TYPE "hexagon-widen-stores"
25 #include "HexagonInstrInfo.h"
26 #include "HexagonRegisterInfo.h"
27 #include "HexagonSubtarget.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
56 FunctionPass
*createHexagonStoreWidening();
57 void initializeHexagonStoreWideningPass(PassRegistry
&);
59 } // end namespace llvm
63 struct HexagonStoreWidening
: public MachineFunctionPass
{
64 const HexagonInstrInfo
*TII
;
65 const HexagonRegisterInfo
*TRI
;
66 const MachineRegisterInfo
*MRI
;
73 HexagonStoreWidening() : MachineFunctionPass(ID
) {
74 initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
77 bool runOnMachineFunction(MachineFunction
&MF
) override
;
79 StringRef
getPassName() const override
{ return "Hexagon Store Widening"; }
81 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
82 AU
.addRequired
<AAResultsWrapperPass
>();
83 AU
.addPreserved
<AAResultsWrapperPass
>();
84 MachineFunctionPass::getAnalysisUsage(AU
);
87 static bool handledStoreType(const MachineInstr
*MI
);
90 static const int MaxWideSize
= 4;
92 using InstrGroup
= std::vector
<MachineInstr
*>;
93 using InstrGroupList
= std::vector
<InstrGroup
>;
95 bool instrAliased(InstrGroup
&Stores
, const MachineMemOperand
&MMO
);
96 bool instrAliased(InstrGroup
&Stores
, const MachineInstr
*MI
);
97 void createStoreGroup(MachineInstr
*BaseStore
, InstrGroup::iterator Begin
,
98 InstrGroup::iterator End
, InstrGroup
&Group
);
99 void createStoreGroups(MachineBasicBlock
&MBB
,
100 InstrGroupList
&StoreGroups
);
101 bool processBasicBlock(MachineBasicBlock
&MBB
);
102 bool processStoreGroup(InstrGroup
&Group
);
103 bool selectStores(InstrGroup::iterator Begin
, InstrGroup::iterator End
,
104 InstrGroup
&OG
, unsigned &TotalSize
, unsigned MaxSize
);
105 bool createWideStores(InstrGroup
&OG
, InstrGroup
&NG
, unsigned TotalSize
);
106 bool replaceStores(InstrGroup
&OG
, InstrGroup
&NG
);
107 bool storesAreAdjacent(const MachineInstr
*S1
, const MachineInstr
*S2
);
110 } // end anonymous namespace
112 char HexagonStoreWidening::ID
= 0;
114 INITIALIZE_PASS_BEGIN(HexagonStoreWidening
, "hexagon-widen-stores",
115 "Hexason Store Widening", false, false)
116 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
117 INITIALIZE_PASS_END(HexagonStoreWidening
, "hexagon-widen-stores",
118 "Hexagon Store Widening", false, false)
120 // Some local helper functions...
121 static unsigned getBaseAddressRegister(const MachineInstr
*MI
) {
122 const MachineOperand
&MO
= MI
->getOperand(0);
123 assert(MO
.isReg() && "Expecting register operand");
127 static int64_t getStoreOffset(const MachineInstr
*MI
) {
128 unsigned OpC
= MI
->getOpcode();
129 assert(HexagonStoreWidening::handledStoreType(MI
) && "Unhandled opcode");
132 case Hexagon::S4_storeirb_io
:
133 case Hexagon::S4_storeirh_io
:
134 case Hexagon::S4_storeiri_io
: {
135 const MachineOperand
&MO
= MI
->getOperand(1);
136 assert(MO
.isImm() && "Expecting immediate offset");
141 llvm_unreachable("Store offset calculation missing for a handled opcode");
145 static const MachineMemOperand
&getStoreTarget(const MachineInstr
*MI
) {
146 assert(!MI
->memoperands_empty() && "Expecting memory operands");
147 return **MI
->memoperands_begin();
150 // Filtering function: any stores whose opcodes are not "approved" of by
151 // this function will not be subjected to widening.
152 inline bool HexagonStoreWidening::handledStoreType(const MachineInstr
*MI
) {
153 // For now, only handle stores of immediate values.
154 // Also, reject stores to stack slots.
155 unsigned Opc
= MI
->getOpcode();
157 case Hexagon::S4_storeirb_io
:
158 case Hexagon::S4_storeirh_io
:
159 case Hexagon::S4_storeiri_io
:
160 // Base address must be a register. (Implement FI later.)
161 return MI
->getOperand(0).isReg();
167 // Check if the machine memory operand MMO is aliased with any of the
168 // stores in the store group Stores.
169 bool HexagonStoreWidening::instrAliased(InstrGroup
&Stores
,
170 const MachineMemOperand
&MMO
) {
174 MemoryLocation
L(MMO
.getValue(), MMO
.getSize(), MMO
.getAAInfo());
176 for (auto SI
: Stores
) {
177 const MachineMemOperand
&SMO
= getStoreTarget(SI
);
181 MemoryLocation
SL(SMO
.getValue(), SMO
.getSize(), SMO
.getAAInfo());
182 if (AA
->alias(L
, SL
))
189 // Check if the machine instruction MI accesses any storage aliased with
190 // any store in the group Stores.
191 bool HexagonStoreWidening::instrAliased(InstrGroup
&Stores
,
192 const MachineInstr
*MI
) {
193 for (auto &I
: MI
->memoperands())
194 if (instrAliased(Stores
, *I
))
199 // Inspect a machine basic block, and generate store groups out of stores
200 // encountered in the block.
202 // A store group is a group of stores that use the same base register,
203 // and which can be reordered within that group without altering the
204 // semantics of the program. A single store group could be widened as
205 // a whole, if there existed a single store instruction with the same
206 // semantics as the entire group. In many cases, a single store group
207 // may need more than one wide store.
208 void HexagonStoreWidening::createStoreGroups(MachineBasicBlock
&MBB
,
209 InstrGroupList
&StoreGroups
) {
212 // Copy all instruction pointers from the basic block to a temporary
213 // list. This will allow operating on the list, and modifying its
214 // elements without affecting the basic block.
216 AllInsns
.push_back(&I
);
218 // Traverse all instructions in the AllInsns list, and if we encounter
219 // a store, then try to create a store group starting at that instruction
220 // i.e. a sequence of independent stores that can be widened.
221 for (auto I
= AllInsns
.begin(), E
= AllInsns
.end(); I
!= E
; ++I
) {
222 MachineInstr
*MI
= *I
;
223 // Skip null pointers (processed instructions).
224 if (!MI
|| !handledStoreType(MI
))
227 // Found a store. Try to create a store group.
229 createStoreGroup(MI
, I
+1, E
, G
);
231 StoreGroups
.push_back(G
);
235 // Create a single store group. The stores need to be independent between
236 // themselves, and also there cannot be other instructions between them
237 // that could read or modify storage being stored into.
238 void HexagonStoreWidening::createStoreGroup(MachineInstr
*BaseStore
,
239 InstrGroup::iterator Begin
, InstrGroup::iterator End
, InstrGroup
&Group
) {
240 assert(handledStoreType(BaseStore
) && "Unexpected instruction");
241 unsigned BaseReg
= getBaseAddressRegister(BaseStore
);
244 Group
.push_back(BaseStore
);
246 for (auto I
= Begin
; I
!= End
; ++I
) {
247 MachineInstr
*MI
= *I
;
251 if (handledStoreType(MI
)) {
252 // If this store instruction is aliased with anything already in the
253 // group, terminate the group now.
254 if (instrAliased(Group
, getStoreTarget(MI
)))
256 // If this store is aliased to any of the memory instructions we have
257 // seen so far (that are not a part of this group), terminate the group.
258 if (instrAliased(Other
, getStoreTarget(MI
)))
261 unsigned BR
= getBaseAddressRegister(MI
);
269 // Assume calls are aliased to everything.
270 if (MI
->isCall() || MI
->hasUnmodeledSideEffects())
273 if (MI
->mayLoad() || MI
->mayStore()) {
274 if (MI
->hasOrderedMemoryRef() || instrAliased(Group
, MI
))
281 // Check if store instructions S1 and S2 are adjacent. More precisely,
282 // S2 has to access memory immediately following that accessed by S1.
283 bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr
*S1
,
284 const MachineInstr
*S2
) {
285 if (!handledStoreType(S1
) || !handledStoreType(S2
))
288 const MachineMemOperand
&S1MO
= getStoreTarget(S1
);
290 // Currently only handling immediate stores.
291 int Off1
= S1
->getOperand(1).getImm();
292 int Off2
= S2
->getOperand(1).getImm();
294 return (Off1
>= 0) ? Off1
+S1MO
.getSize() == unsigned(Off2
)
295 : int(Off1
+S1MO
.getSize()) == Off2
;
298 /// Given a sequence of adjacent stores, and a maximum size of a single wide
299 /// store, pick a group of stores that can be replaced by a single store
300 /// of size not exceeding MaxSize. The selected sequence will be recorded
301 /// in OG ("old group" of instructions).
302 /// OG should be empty on entry, and should be left empty if the function
304 bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin
,
305 InstrGroup::iterator End
, InstrGroup
&OG
, unsigned &TotalSize
,
307 assert(Begin
!= End
&& "No instructions to analyze");
308 assert(OG
.empty() && "Old group not empty on entry");
310 if (std::distance(Begin
, End
) <= 1)
313 MachineInstr
*FirstMI
= *Begin
;
314 assert(!FirstMI
->memoperands_empty() && "Expecting some memory operands");
315 const MachineMemOperand
&FirstMMO
= getStoreTarget(FirstMI
);
316 unsigned Alignment
= FirstMMO
.getAlignment();
317 unsigned SizeAccum
= FirstMMO
.getSize();
318 unsigned FirstOffset
= getStoreOffset(FirstMI
);
320 // The initial value of SizeAccum should always be a power of 2.
321 assert(isPowerOf2_32(SizeAccum
) && "First store size not a power of 2");
323 // If the size of the first store equals to or exceeds the limit, do nothing.
324 if (SizeAccum
>= MaxSize
)
327 // If the size of the first store is greater than or equal to the address
328 // stored to, then the store cannot be made any wider.
329 if (SizeAccum
>= Alignment
)
332 // The offset of a store will put restrictions on how wide the store can be.
333 // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
334 // If the first store already exhausts the offset limits, quit. Test this
335 // by checking if the next wider size would exceed the limit.
336 if ((2*SizeAccum
-1) & FirstOffset
)
339 OG
.push_back(FirstMI
);
340 MachineInstr
*S1
= FirstMI
;
342 // Pow2Num will be the largest number of elements in OG such that the sum
343 // of sizes of stores 0...Pow2Num-1 will be a power of 2.
344 unsigned Pow2Num
= 1;
345 unsigned Pow2Size
= SizeAccum
;
347 // Be greedy: keep accumulating stores as long as they are to adjacent
348 // memory locations, and as long as the total number of bytes stored
349 // does not exceed the limit (MaxSize).
350 // Keep track of when the total size covered is a power of 2, since
351 // this is a size a single store can cover.
352 for (InstrGroup::iterator I
= Begin
+ 1; I
!= End
; ++I
) {
353 MachineInstr
*S2
= *I
;
354 // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
355 // any other store to fill the "hole".
356 if (!storesAreAdjacent(S1
, S2
))
359 unsigned S2Size
= getStoreTarget(S2
).getSize();
360 if (SizeAccum
+ S2Size
> std::min(MaxSize
, Alignment
))
365 if (isPowerOf2_32(SizeAccum
)) {
367 Pow2Size
= SizeAccum
;
369 if ((2*Pow2Size
-1) & FirstOffset
)
375 // The stores don't add up to anything that can be widened. Clean up.
381 // Only leave the stored being widened.
383 TotalSize
= Pow2Size
;
387 /// Given an "old group" OG of stores, create a "new group" NG of instructions
388 /// to replace them. Ideally, NG would only have a single instruction in it,
389 /// but that may only be possible for store-immediate.
390 bool HexagonStoreWidening::createWideStores(InstrGroup
&OG
, InstrGroup
&NG
,
391 unsigned TotalSize
) {
392 // XXX Current limitations:
393 // - only expect stores of immediate values in OG,
394 // - only handle a TotalSize of up to 4.
399 unsigned Acc
= 0; // Value accumulator.
402 for (InstrGroup::iterator I
= OG
.begin(), E
= OG
.end(); I
!= E
; ++I
) {
403 MachineInstr
*MI
= *I
;
404 const MachineMemOperand
&MMO
= getStoreTarget(MI
);
405 MachineOperand
&SO
= MI
->getOperand(2); // Source.
406 assert(SO
.isImm() && "Expecting an immediate operand");
408 unsigned NBits
= MMO
.getSize()*8;
409 unsigned Mask
= (0xFFFFFFFFU
>> (32-NBits
));
410 unsigned Val
= (SO
.getImm() & Mask
) << Shift
;
415 MachineInstr
*FirstSt
= OG
.front();
416 DebugLoc DL
= OG
.back()->getDebugLoc();
417 const MachineMemOperand
&OldM
= getStoreTarget(FirstSt
);
418 MachineMemOperand
*NewM
=
419 MF
->getMachineMemOperand(OldM
.getPointerInfo(), OldM
.getFlags(),
420 TotalSize
, OldM
.getAlignment(),
424 // Create mem[hw] = #Acc
425 unsigned WOpc
= (TotalSize
== 2) ? Hexagon::S4_storeirh_io
:
426 (TotalSize
== 4) ? Hexagon::S4_storeiri_io
: 0;
427 assert(WOpc
&& "Unexpected size");
429 int Val
= (TotalSize
== 2) ? int16_t(Acc
) : int(Acc
);
430 const MCInstrDesc
&StD
= TII
->get(WOpc
);
431 MachineOperand
&MR
= FirstSt
->getOperand(0);
432 int64_t Off
= FirstSt
->getOperand(1).getImm();
434 BuildMI(*MF
, DL
, StD
)
435 .addReg(MR
.getReg(), getKillRegState(MR
.isKill()), MR
.getSubReg())
438 StI
->addMemOperand(*MF
, NewM
);
441 // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
442 const MCInstrDesc
&TfrD
= TII
->get(Hexagon::A2_tfrsi
);
443 const TargetRegisterClass
*RC
= TII
->getRegClass(TfrD
, 0, TRI
, *MF
);
444 Register VReg
= MF
->getRegInfo().createVirtualRegister(RC
);
445 MachineInstr
*TfrI
= BuildMI(*MF
, DL
, TfrD
, VReg
)
449 unsigned WOpc
= (TotalSize
== 2) ? Hexagon::S2_storerh_io
:
450 (TotalSize
== 4) ? Hexagon::S2_storeri_io
: 0;
451 assert(WOpc
&& "Unexpected size");
453 const MCInstrDesc
&StD
= TII
->get(WOpc
);
454 MachineOperand
&MR
= FirstSt
->getOperand(0);
455 int64_t Off
= FirstSt
->getOperand(1).getImm();
457 BuildMI(*MF
, DL
, StD
)
458 .addReg(MR
.getReg(), getKillRegState(MR
.isKill()), MR
.getSubReg())
460 .addReg(VReg
, RegState::Kill
);
461 StI
->addMemOperand(*MF
, NewM
);
468 // Replace instructions from the old group OG with instructions from the
469 // new group NG. Conceptually, remove all instructions in OG, and then
470 // insert all instructions in NG, starting at where the first instruction
471 // from OG was (in the order in which they appeared in the basic block).
472 // (The ordering in OG does not have to match the order in the basic block.)
473 bool HexagonStoreWidening::replaceStores(InstrGroup
&OG
, InstrGroup
&NG
) {
475 dbgs() << "Replacing:\n";
483 MachineBasicBlock
*MBB
= OG
.back()->getParent();
484 MachineBasicBlock::iterator InsertAt
= MBB
->end();
486 // Need to establish the insertion point. The best one is right before
487 // the first store in the OG, but in the order in which the stores occur
488 // in the program list. Since the ordering in OG does not correspond
489 // to the order in the program list, we need to do some work to find
490 // the insertion point.
492 // Create a set of all instructions in OG (for quick lookup).
493 SmallPtrSet
<MachineInstr
*, 4> InstrSet
;
497 // Traverse the block, until we hit an instruction from OG.
498 for (auto &I
: *MBB
) {
499 if (InstrSet
.count(&I
)) {
505 assert((InsertAt
!= MBB
->end()) && "Cannot locate any store from the group");
507 bool AtBBStart
= false;
509 // InsertAt points at the first instruction that will be removed. We need
510 // to move it out of the way, so it remains valid after removing all the
511 // old stores, and so we are able to recover it back to the proper insertion
513 if (InsertAt
!= MBB
->begin())
519 I
->eraseFromParent();
524 InsertAt
= MBB
->begin();
527 MBB
->insert(InsertAt
, I
);
532 // Break up the group into smaller groups, each of which can be replaced by
533 // a single wide store. Widen each such smaller group and replace the old
534 // instructions with the widened ones.
535 bool HexagonStoreWidening::processStoreGroup(InstrGroup
&Group
) {
536 bool Changed
= false;
537 InstrGroup::iterator I
= Group
.begin(), E
= Group
.end();
538 InstrGroup OG
, NG
; // Old and new groups.
539 unsigned CollectedSize
;
545 bool Succ
= selectStores(I
++, E
, OG
, CollectedSize
, MaxWideSize
) &&
546 createWideStores(OG
, NG
, CollectedSize
) &&
547 replaceStores(OG
, NG
);
551 assert(OG
.size() > 1 && "Created invalid group");
552 assert(distance(I
, E
)+1 >= int(OG
.size()) && "Too many elements");
561 // Process a single basic block: create the store groups, and replace them
562 // with the widened stores, if possible. Processing of each basic block
563 // is independent from processing of any other basic block. This transfor-
564 // mation could be stopped after having processed any basic block without
565 // any ill effects (other than not having performed widening in the unpro-
566 // cessed blocks). Also, the basic blocks can be processed in any order.
567 bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock
&MBB
) {
569 bool Changed
= false;
571 createStoreGroups(MBB
, SGs
);
573 auto Less
= [] (const MachineInstr
*A
, const MachineInstr
*B
) -> bool {
574 return getStoreOffset(A
) < getStoreOffset(B
);
576 for (auto &G
: SGs
) {
577 assert(G
.size() > 1 && "Store group with fewer than 2 elements");
580 Changed
|= processStoreGroup(G
);
586 bool HexagonStoreWidening::runOnMachineFunction(MachineFunction
&MFn
) {
587 if (skipFunction(MFn
.getFunction()))
591 auto &ST
= MFn
.getSubtarget
<HexagonSubtarget
>();
592 TII
= ST
.getInstrInfo();
593 TRI
= ST
.getRegisterInfo();
594 MRI
= &MFn
.getRegInfo();
595 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
597 bool Changed
= false;
600 Changed
|= processBasicBlock(B
);
605 FunctionPass
*llvm::createHexagonStoreWidening() {
606 return new HexagonStoreWidening();