1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file builds on the ADT/GraphTraits.h file to build a generic graph
10 // post order iterator. This should work over any graph type that has a
11 // GraphTraits specialization.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_ADT_POSTORDERITERATOR_H
16 #define LLVM_ADT_POSTORDERITERATOR_H
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/iterator_range.h"
29 // The po_iterator_storage template provides access to the set of already
30 // visited nodes during the po_iterator's depth-first traversal.
32 // The default implementation simply contains a set of visited nodes, while
33 // the External=true version uses a reference to an external set.
35 // It is possible to prune the depth-first traversal in several ways:
37 // - When providing an external set that already contains some graph nodes,
38 // those nodes won't be visited again. This is useful for restarting a
39 // post-order traversal on a graph with nodes that aren't dominated by a
42 // - By providing a custom SetType class, unwanted graph nodes can be excluded
43 // by having the insert() function return false. This could for example
44 // confine a CFG traversal to blocks in a specific loop.
46 // - Finally, by specializing the po_iterator_storage template itself, graph
47 // edges can be pruned by returning false in the insertEdge() function. This
48 // could be used to remove loop back-edges from the CFG seen by po_iterator.
50 // A specialized po_iterator_storage class can observe both the pre-order and
51 // the post-order. The insertEdge() function is called in a pre-order, while
52 // the finishPostorder() function is called just before the po_iterator moves
53 // on to the next node.
55 /// Default po_iterator_storage implementation with an internal set object.
56 template<class SetType
, bool External
>
57 class po_iterator_storage
{
61 // Return true if edge destination should be visited.
62 template <typename NodeRef
>
63 bool insertEdge(Optional
<NodeRef
> From
, NodeRef To
) {
64 return Visited
.insert(To
).second
;
67 // Called after all children of BB have been visited.
68 template <typename NodeRef
> void finishPostorder(NodeRef BB
) {}
71 /// Specialization of po_iterator_storage that references an external set.
72 template<class SetType
>
73 class po_iterator_storage
<SetType
, true> {
77 po_iterator_storage(SetType
&VSet
) : Visited(VSet
) {}
78 po_iterator_storage(const po_iterator_storage
&S
) : Visited(S
.Visited
) {}
80 // Return true if edge destination should be visited, called with From = 0 for
82 // Graph edges can be pruned by specializing this function.
83 template <class NodeRef
> bool insertEdge(Optional
<NodeRef
> From
, NodeRef To
) {
84 return Visited
.insert(To
).second
;
87 // Called after all children of BB have been visited.
88 template <class NodeRef
> void finishPostorder(NodeRef BB
) {}
91 template <class GraphT
,
93 SmallPtrSet
<typename GraphTraits
<GraphT
>::NodeRef
, 8>,
94 bool ExtStorage
= false, class GT
= GraphTraits
<GraphT
>>
96 : public std::iterator
<std::forward_iterator_tag
, typename
GT::NodeRef
>,
97 public po_iterator_storage
<SetType
, ExtStorage
> {
98 using super
= std::iterator
<std::forward_iterator_tag
, typename
GT::NodeRef
>;
99 using NodeRef
= typename
GT::NodeRef
;
100 using ChildItTy
= typename
GT::ChildIteratorType
;
102 // VisitStack - Used to maintain the ordering. Top = current block
103 // First element is basic block pointer, second is the 'next child' to visit
104 std::vector
<std::pair
<NodeRef
, ChildItTy
>> VisitStack
;
106 po_iterator(NodeRef BB
) {
107 this->insertEdge(Optional
<NodeRef
>(), BB
);
108 VisitStack
.push_back(std::make_pair(BB
, GT::child_begin(BB
)));
112 po_iterator() = default; // End is when stack is empty.
114 po_iterator(NodeRef BB
, SetType
&S
)
115 : po_iterator_storage
<SetType
, ExtStorage
>(S
) {
116 if (this->insertEdge(Optional
<NodeRef
>(), BB
)) {
117 VisitStack
.push_back(std::make_pair(BB
, GT::child_begin(BB
)));
122 po_iterator(SetType
&S
)
123 : po_iterator_storage
<SetType
, ExtStorage
>(S
) {
124 } // End is when stack is empty.
126 void traverseChild() {
127 while (VisitStack
.back().second
!= GT::child_end(VisitStack
.back().first
)) {
128 NodeRef BB
= *VisitStack
.back().second
++;
129 if (this->insertEdge(Optional
<NodeRef
>(VisitStack
.back().first
), BB
)) {
130 // If the block is not visited...
131 VisitStack
.push_back(std::make_pair(BB
, GT::child_begin(BB
)));
137 using pointer
= typename
super::pointer
;
139 // Provide static "constructors"...
140 static po_iterator
begin(GraphT G
) {
141 return po_iterator(GT::getEntryNode(G
));
143 static po_iterator
end(GraphT G
) { return po_iterator(); }
145 static po_iterator
begin(GraphT G
, SetType
&S
) {
146 return po_iterator(GT::getEntryNode(G
), S
);
148 static po_iterator
end(GraphT G
, SetType
&S
) { return po_iterator(S
); }
150 bool operator==(const po_iterator
&x
) const {
151 return VisitStack
== x
.VisitStack
;
153 bool operator!=(const po_iterator
&x
) const { return !(*this == x
); }
155 const NodeRef
&operator*() const { return VisitStack
.back().first
; }
157 // This is a nonstandard operator-> that dereferences the pointer an extra
158 // time... so that you can actually call methods ON the BasicBlock, because
159 // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
161 NodeRef
operator->() const { return **this; }
163 po_iterator
&operator++() { // Preincrement
164 this->finishPostorder(VisitStack
.back().first
);
165 VisitStack
.pop_back();
166 if (!VisitStack
.empty())
171 po_iterator
operator++(int) { // Postincrement
172 po_iterator tmp
= *this;
178 // Provide global constructors that automatically figure out correct types...
181 po_iterator
<T
> po_begin(const T
&G
) { return po_iterator
<T
>::begin(G
); }
183 po_iterator
<T
> po_end (const T
&G
) { return po_iterator
<T
>::end(G
); }
185 template <class T
> iterator_range
<po_iterator
<T
>> post_order(const T
&G
) {
186 return make_range(po_begin(G
), po_end(G
));
189 // Provide global definitions of external postorder iterators...
190 template <class T
, class SetType
= std::set
<typename GraphTraits
<T
>::NodeRef
>>
191 struct po_ext_iterator
: public po_iterator
<T
, SetType
, true> {
192 po_ext_iterator(const po_iterator
<T
, SetType
, true> &V
) :
193 po_iterator
<T
, SetType
, true>(V
) {}
196 template<class T
, class SetType
>
197 po_ext_iterator
<T
, SetType
> po_ext_begin(T G
, SetType
&S
) {
198 return po_ext_iterator
<T
, SetType
>::begin(G
, S
);
201 template<class T
, class SetType
>
202 po_ext_iterator
<T
, SetType
> po_ext_end(T G
, SetType
&S
) {
203 return po_ext_iterator
<T
, SetType
>::end(G
, S
);
206 template <class T
, class SetType
>
207 iterator_range
<po_ext_iterator
<T
, SetType
>> post_order_ext(const T
&G
, SetType
&S
) {
208 return make_range(po_ext_begin(G
, S
), po_ext_end(G
, S
));
211 // Provide global definitions of inverse post order iterators...
212 template <class T
, class SetType
= std::set
<typename GraphTraits
<T
>::NodeRef
>,
213 bool External
= false>
214 struct ipo_iterator
: public po_iterator
<Inverse
<T
>, SetType
, External
> {
215 ipo_iterator(const po_iterator
<Inverse
<T
>, SetType
, External
> &V
) :
216 po_iterator
<Inverse
<T
>, SetType
, External
> (V
) {}
220 ipo_iterator
<T
> ipo_begin(const T
&G
) {
221 return ipo_iterator
<T
>::begin(G
);
225 ipo_iterator
<T
> ipo_end(const T
&G
){
226 return ipo_iterator
<T
>::end(G
);
230 iterator_range
<ipo_iterator
<T
>> inverse_post_order(const T
&G
) {
231 return make_range(ipo_begin(G
), ipo_end(G
));
234 // Provide global definitions of external inverse postorder iterators...
235 template <class T
, class SetType
= std::set
<typename GraphTraits
<T
>::NodeRef
>>
236 struct ipo_ext_iterator
: public ipo_iterator
<T
, SetType
, true> {
237 ipo_ext_iterator(const ipo_iterator
<T
, SetType
, true> &V
) :
238 ipo_iterator
<T
, SetType
, true>(V
) {}
239 ipo_ext_iterator(const po_iterator
<Inverse
<T
>, SetType
, true> &V
) :
240 ipo_iterator
<T
, SetType
, true>(V
) {}
243 template <class T
, class SetType
>
244 ipo_ext_iterator
<T
, SetType
> ipo_ext_begin(const T
&G
, SetType
&S
) {
245 return ipo_ext_iterator
<T
, SetType
>::begin(G
, S
);
248 template <class T
, class SetType
>
249 ipo_ext_iterator
<T
, SetType
> ipo_ext_end(const T
&G
, SetType
&S
) {
250 return ipo_ext_iterator
<T
, SetType
>::end(G
, S
);
253 template <class T
, class SetType
>
254 iterator_range
<ipo_ext_iterator
<T
, SetType
>>
255 inverse_post_order_ext(const T
&G
, SetType
&S
) {
256 return make_range(ipo_ext_begin(G
, S
), ipo_ext_end(G
, S
));
259 //===--------------------------------------------------------------------===//
260 // Reverse Post Order CFG iterator code
261 //===--------------------------------------------------------------------===//
263 // This is used to visit basic blocks in a method in reverse post order. This
264 // class is awkward to use because I don't know a good incremental algorithm to
265 // computer RPO from a graph. Because of this, the construction of the
266 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
267 // with a postorder iterator to build the data structures). The moral of this
268 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
270 // Because it does the traversal in its constructor, it won't invalidate when
271 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
272 // rely on this behavior (i.e. GVN).
274 // This class should be used like this:
276 // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
277 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
280 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
286 template<class GraphT
, class GT
= GraphTraits
<GraphT
>>
287 class ReversePostOrderTraversal
{
288 using NodeRef
= typename
GT::NodeRef
;
290 std::vector
<NodeRef
> Blocks
; // Block list in normal PO order
292 void Initialize(NodeRef BB
) {
293 std::copy(po_begin(BB
), po_end(BB
), std::back_inserter(Blocks
));
297 using rpo_iterator
= typename
std::vector
<NodeRef
>::reverse_iterator
;
298 using const_rpo_iterator
= typename
std::vector
<NodeRef
>::const_reverse_iterator
;
300 ReversePostOrderTraversal(GraphT G
) { Initialize(GT::getEntryNode(G
)); }
302 // Because we want a reverse post order, use reverse iterators from the vector
303 rpo_iterator
begin() { return Blocks
.rbegin(); }
304 const_rpo_iterator
begin() const { return Blocks
.crbegin(); }
305 rpo_iterator
end() { return Blocks
.rend(); }
306 const_rpo_iterator
end() const { return Blocks
.crend(); }
309 } // end namespace llvm
311 #endif // LLVM_ADT_POSTORDERITERATOR_H