1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class. This is meant to be an easy way to get access to all
11 // instruction subclasses.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/OperandTraits.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/AtomicOrdering.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
54 //===----------------------------------------------------------------------===//
56 //===----------------------------------------------------------------------===//
58 /// an instruction to allocate memory on the stack
59 class AllocaInst
: public UnaryInstruction
{
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction
;
66 AllocaInst
*cloneImpl() const;
69 explicit AllocaInst(Type
*Ty
, unsigned AddrSpace
,
70 Value
*ArraySize
= nullptr,
71 const Twine
&Name
= "",
72 Instruction
*InsertBefore
= nullptr);
73 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
74 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
76 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
77 const Twine
&Name
, Instruction
*InsertBefore
= nullptr);
78 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
79 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
81 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
82 const Twine
&Name
= "", Instruction
*InsertBefore
= nullptr);
83 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
84 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value
*getArraySize() const { return getOperand(0); }
93 Value
*getArraySize() { return getOperand(0); }
95 /// Overload to return most specific pointer type.
96 PointerType
*getType() const {
97 return cast
<PointerType
>(Instruction::getType());
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional
<uint64_t> getAllocationSizeInBits(const DataLayout
&DL
) const;
104 /// Return the type that is being allocated by the instruction.
105 Type
*getAllocatedType() const { return AllocatedType
; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type
*Ty
) { AllocatedType
= Ty
; }
110 /// Return the alignment of the memory that is being allocated by the
112 unsigned getAlignment() const {
113 if (const auto MA
= decodeMaybeAlign(getSubclassDataFromInstruction() & 31))
117 void setAlignment(MaybeAlign Align
);
119 /// Return true if this alloca is in the entry block of the function and is a
120 /// constant size. If so, the code generator will fold it into the
121 /// prolog/epilog code, so it is basically free.
122 bool isStaticAlloca() const;
124 /// Return true if this alloca is used as an inalloca argument to a call. Such
125 /// allocas are never considered static even if they are in the entry block.
126 bool isUsedWithInAlloca() const {
127 return getSubclassDataFromInstruction() & 32;
130 /// Specify whether this alloca is used to represent the arguments to a call.
131 void setUsedWithInAlloca(bool V
) {
132 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
136 /// Return true if this alloca is used as a swifterror argument to a call.
137 bool isSwiftError() const {
138 return getSubclassDataFromInstruction() & 64;
141 /// Specify whether this alloca is used to represent a swifterror.
142 void setSwiftError(bool V
) {
143 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
147 // Methods for support type inquiry through isa, cast, and dyn_cast:
148 static bool classof(const Instruction
*I
) {
149 return (I
->getOpcode() == Instruction::Alloca
);
151 static bool classof(const Value
*V
) {
152 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
156 // Shadow Instruction::setInstructionSubclassData with a private forwarding
157 // method so that subclasses cannot accidentally use it.
158 void setInstructionSubclassData(unsigned short D
) {
159 Instruction::setInstructionSubclassData(D
);
163 //===----------------------------------------------------------------------===//
165 //===----------------------------------------------------------------------===//
167 /// An instruction for reading from memory. This uses the SubclassData field in
168 /// Value to store whether or not the load is volatile.
169 class LoadInst
: public UnaryInstruction
{
173 // Note: Instruction needs to be a friend here to call cloneImpl.
174 friend class Instruction
;
176 LoadInst
*cloneImpl() const;
179 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
= "",
180 Instruction
*InsertBefore
= nullptr);
181 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
182 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
183 Instruction
*InsertBefore
= nullptr);
184 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
185 BasicBlock
*InsertAtEnd
);
186 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
187 MaybeAlign Align
, Instruction
*InsertBefore
= nullptr);
188 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
189 MaybeAlign Align
, BasicBlock
*InsertAtEnd
);
190 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
191 MaybeAlign Align
, AtomicOrdering Order
,
192 SyncScope::ID SSID
= SyncScope::System
,
193 Instruction
*InsertBefore
= nullptr);
194 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
195 MaybeAlign Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
196 BasicBlock
*InsertAtEnd
);
198 // Deprecated [opaque pointer types]
199 explicit LoadInst(Value
*Ptr
, const Twine
&NameStr
= "",
200 Instruction
*InsertBefore
= nullptr)
201 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
203 LoadInst(Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
204 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
206 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
207 Instruction
*InsertBefore
= nullptr)
208 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
209 isVolatile
, InsertBefore
) {}
210 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
211 BasicBlock
*InsertAtEnd
)
212 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
213 isVolatile
, InsertAtEnd
) {}
214 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, MaybeAlign Align
,
215 Instruction
*InsertBefore
= nullptr)
216 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
217 isVolatile
, Align
, InsertBefore
) {}
218 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, MaybeAlign Align
,
219 BasicBlock
*InsertAtEnd
)
220 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
221 isVolatile
, Align
, InsertAtEnd
) {}
222 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, MaybeAlign Align
,
223 AtomicOrdering Order
, SyncScope::ID SSID
= SyncScope::System
,
224 Instruction
*InsertBefore
= nullptr)
225 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
226 isVolatile
, Align
, Order
, SSID
, InsertBefore
) {}
227 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, MaybeAlign Align
,
228 AtomicOrdering Order
, SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
)
229 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
230 isVolatile
, Align
, Order
, SSID
, InsertAtEnd
) {}
232 /// Return true if this is a load from a volatile memory location.
233 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
235 /// Specify whether this is a volatile load or not.
236 void setVolatile(bool V
) {
237 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
241 /// Return the alignment of the access that is being performed.
242 unsigned getAlignment() const {
244 decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31))
249 void setAlignment(MaybeAlign Align
);
251 /// Returns the ordering constraint of this load instruction.
252 AtomicOrdering
getOrdering() const {
253 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
256 /// Sets the ordering constraint of this load instruction. May not be Release
257 /// or AcquireRelease.
258 void setOrdering(AtomicOrdering Ordering
) {
259 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
260 ((unsigned)Ordering
<< 7));
263 /// Returns the synchronization scope ID of this load instruction.
264 SyncScope::ID
getSyncScopeID() const {
268 /// Sets the synchronization scope ID of this load instruction.
269 void setSyncScopeID(SyncScope::ID SSID
) {
273 /// Sets the ordering constraint and the synchronization scope ID of this load
275 void setAtomic(AtomicOrdering Ordering
,
276 SyncScope::ID SSID
= SyncScope::System
) {
277 setOrdering(Ordering
);
278 setSyncScopeID(SSID
);
281 bool isSimple() const { return !isAtomic() && !isVolatile(); }
283 bool isUnordered() const {
284 return (getOrdering() == AtomicOrdering::NotAtomic
||
285 getOrdering() == AtomicOrdering::Unordered
) &&
289 Value
*getPointerOperand() { return getOperand(0); }
290 const Value
*getPointerOperand() const { return getOperand(0); }
291 static unsigned getPointerOperandIndex() { return 0U; }
292 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
294 /// Returns the address space of the pointer operand.
295 unsigned getPointerAddressSpace() const {
296 return getPointerOperandType()->getPointerAddressSpace();
299 // Methods for support type inquiry through isa, cast, and dyn_cast:
300 static bool classof(const Instruction
*I
) {
301 return I
->getOpcode() == Instruction::Load
;
303 static bool classof(const Value
*V
) {
304 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
308 // Shadow Instruction::setInstructionSubclassData with a private forwarding
309 // method so that subclasses cannot accidentally use it.
310 void setInstructionSubclassData(unsigned short D
) {
311 Instruction::setInstructionSubclassData(D
);
314 /// The synchronization scope ID of this load instruction. Not quite enough
315 /// room in SubClassData for everything, so synchronization scope ID gets its
320 //===----------------------------------------------------------------------===//
322 //===----------------------------------------------------------------------===//
324 /// An instruction for storing to memory.
325 class StoreInst
: public Instruction
{
329 // Note: Instruction needs to be a friend here to call cloneImpl.
330 friend class Instruction
;
332 StoreInst
*cloneImpl() const;
335 StoreInst(Value
*Val
, Value
*Ptr
, Instruction
*InsertBefore
);
336 StoreInst(Value
*Val
, Value
*Ptr
, BasicBlock
*InsertAtEnd
);
337 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
= false,
338 Instruction
*InsertBefore
= nullptr);
339 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, BasicBlock
*InsertAtEnd
);
340 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, MaybeAlign Align
,
341 Instruction
*InsertBefore
= nullptr);
342 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, MaybeAlign Align
,
343 BasicBlock
*InsertAtEnd
);
344 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, MaybeAlign Align
,
345 AtomicOrdering Order
, SyncScope::ID SSID
= SyncScope::System
,
346 Instruction
*InsertBefore
= nullptr);
347 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, MaybeAlign Align
,
348 AtomicOrdering Order
, SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
);
350 // allocate space for exactly two operands
351 void *operator new(size_t s
) {
352 return User::operator new(s
, 2);
355 /// Return true if this is a store to a volatile memory location.
356 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
358 /// Specify whether this is a volatile store or not.
359 void setVolatile(bool V
) {
360 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
364 /// Transparently provide more efficient getOperand methods.
365 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
367 /// Return the alignment of the access that is being performed
368 unsigned getAlignment() const {
370 decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31))
375 void setAlignment(MaybeAlign Align
);
377 /// Returns the ordering constraint of this store instruction.
378 AtomicOrdering
getOrdering() const {
379 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
382 /// Sets the ordering constraint of this store instruction. May not be
383 /// Acquire or AcquireRelease.
384 void setOrdering(AtomicOrdering Ordering
) {
385 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
386 ((unsigned)Ordering
<< 7));
389 /// Returns the synchronization scope ID of this store instruction.
390 SyncScope::ID
getSyncScopeID() const {
394 /// Sets the synchronization scope ID of this store instruction.
395 void setSyncScopeID(SyncScope::ID SSID
) {
399 /// Sets the ordering constraint and the synchronization scope ID of this
400 /// store instruction.
401 void setAtomic(AtomicOrdering Ordering
,
402 SyncScope::ID SSID
= SyncScope::System
) {
403 setOrdering(Ordering
);
404 setSyncScopeID(SSID
);
407 bool isSimple() const { return !isAtomic() && !isVolatile(); }
409 bool isUnordered() const {
410 return (getOrdering() == AtomicOrdering::NotAtomic
||
411 getOrdering() == AtomicOrdering::Unordered
) &&
415 Value
*getValueOperand() { return getOperand(0); }
416 const Value
*getValueOperand() const { return getOperand(0); }
418 Value
*getPointerOperand() { return getOperand(1); }
419 const Value
*getPointerOperand() const { return getOperand(1); }
420 static unsigned getPointerOperandIndex() { return 1U; }
421 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
423 /// Returns the address space of the pointer operand.
424 unsigned getPointerAddressSpace() const {
425 return getPointerOperandType()->getPointerAddressSpace();
428 // Methods for support type inquiry through isa, cast, and dyn_cast:
429 static bool classof(const Instruction
*I
) {
430 return I
->getOpcode() == Instruction::Store
;
432 static bool classof(const Value
*V
) {
433 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
437 // Shadow Instruction::setInstructionSubclassData with a private forwarding
438 // method so that subclasses cannot accidentally use it.
439 void setInstructionSubclassData(unsigned short D
) {
440 Instruction::setInstructionSubclassData(D
);
443 /// The synchronization scope ID of this store instruction. Not quite enough
444 /// room in SubClassData for everything, so synchronization scope ID gets its
450 struct OperandTraits
<StoreInst
> : public FixedNumOperandTraits
<StoreInst
, 2> {
453 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst
, Value
)
455 //===----------------------------------------------------------------------===//
457 //===----------------------------------------------------------------------===//
459 /// An instruction for ordering other memory operations.
460 class FenceInst
: public Instruction
{
461 void Init(AtomicOrdering Ordering
, SyncScope::ID SSID
);
464 // Note: Instruction needs to be a friend here to call cloneImpl.
465 friend class Instruction
;
467 FenceInst
*cloneImpl() const;
470 // Ordering may only be Acquire, Release, AcquireRelease, or
471 // SequentiallyConsistent.
472 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
473 SyncScope::ID SSID
= SyncScope::System
,
474 Instruction
*InsertBefore
= nullptr);
475 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
, SyncScope::ID SSID
,
476 BasicBlock
*InsertAtEnd
);
478 // allocate space for exactly zero operands
479 void *operator new(size_t s
) {
480 return User::operator new(s
, 0);
483 /// Returns the ordering constraint of this fence instruction.
484 AtomicOrdering
getOrdering() const {
485 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
488 /// Sets the ordering constraint of this fence instruction. May only be
489 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
490 void setOrdering(AtomicOrdering Ordering
) {
491 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
492 ((unsigned)Ordering
<< 1));
495 /// Returns the synchronization scope ID of this fence instruction.
496 SyncScope::ID
getSyncScopeID() const {
500 /// Sets the synchronization scope ID of this fence instruction.
501 void setSyncScopeID(SyncScope::ID SSID
) {
505 // Methods for support type inquiry through isa, cast, and dyn_cast:
506 static bool classof(const Instruction
*I
) {
507 return I
->getOpcode() == Instruction::Fence
;
509 static bool classof(const Value
*V
) {
510 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
514 // Shadow Instruction::setInstructionSubclassData with a private forwarding
515 // method so that subclasses cannot accidentally use it.
516 void setInstructionSubclassData(unsigned short D
) {
517 Instruction::setInstructionSubclassData(D
);
520 /// The synchronization scope ID of this fence instruction. Not quite enough
521 /// room in SubClassData for everything, so synchronization scope ID gets its
526 //===----------------------------------------------------------------------===//
527 // AtomicCmpXchgInst Class
528 //===----------------------------------------------------------------------===//
530 /// An instruction that atomically checks whether a
531 /// specified value is in a memory location, and, if it is, stores a new value
532 /// there. The value returned by this instruction is a pair containing the
533 /// original value as first element, and an i1 indicating success (true) or
534 /// failure (false) as second element.
536 class AtomicCmpXchgInst
: public Instruction
{
537 void Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
538 AtomicOrdering SuccessOrdering
, AtomicOrdering FailureOrdering
,
542 // Note: Instruction needs to be a friend here to call cloneImpl.
543 friend class Instruction
;
545 AtomicCmpXchgInst
*cloneImpl() const;
548 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
549 AtomicOrdering SuccessOrdering
,
550 AtomicOrdering FailureOrdering
,
551 SyncScope::ID SSID
, Instruction
*InsertBefore
= nullptr);
552 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
553 AtomicOrdering SuccessOrdering
,
554 AtomicOrdering FailureOrdering
,
555 SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
);
557 // allocate space for exactly three operands
558 void *operator new(size_t s
) {
559 return User::operator new(s
, 3);
562 /// Return true if this is a cmpxchg from a volatile memory
565 bool isVolatile() const {
566 return getSubclassDataFromInstruction() & 1;
569 /// Specify whether this is a volatile cmpxchg.
571 void setVolatile(bool V
) {
572 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
576 /// Return true if this cmpxchg may spuriously fail.
577 bool isWeak() const {
578 return getSubclassDataFromInstruction() & 0x100;
581 void setWeak(bool IsWeak
) {
582 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
586 /// Transparently provide more efficient getOperand methods.
587 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
589 /// Returns the success ordering constraint of this cmpxchg instruction.
590 AtomicOrdering
getSuccessOrdering() const {
591 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
594 /// Sets the success ordering constraint of this cmpxchg instruction.
595 void setSuccessOrdering(AtomicOrdering Ordering
) {
596 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
597 "CmpXchg instructions can only be atomic.");
598 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
599 ((unsigned)Ordering
<< 2));
602 /// Returns the failure ordering constraint of this cmpxchg instruction.
603 AtomicOrdering
getFailureOrdering() const {
604 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
607 /// Sets the failure ordering constraint of this cmpxchg instruction.
608 void setFailureOrdering(AtomicOrdering Ordering
) {
609 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
610 "CmpXchg instructions can only be atomic.");
611 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
612 ((unsigned)Ordering
<< 5));
615 /// Returns the synchronization scope ID of this cmpxchg instruction.
616 SyncScope::ID
getSyncScopeID() const {
620 /// Sets the synchronization scope ID of this cmpxchg instruction.
621 void setSyncScopeID(SyncScope::ID SSID
) {
625 Value
*getPointerOperand() { return getOperand(0); }
626 const Value
*getPointerOperand() const { return getOperand(0); }
627 static unsigned getPointerOperandIndex() { return 0U; }
629 Value
*getCompareOperand() { return getOperand(1); }
630 const Value
*getCompareOperand() const { return getOperand(1); }
632 Value
*getNewValOperand() { return getOperand(2); }
633 const Value
*getNewValOperand() const { return getOperand(2); }
635 /// Returns the address space of the pointer operand.
636 unsigned getPointerAddressSpace() const {
637 return getPointerOperand()->getType()->getPointerAddressSpace();
640 /// Returns the strongest permitted ordering on failure, given the
641 /// desired ordering on success.
643 /// If the comparison in a cmpxchg operation fails, there is no atomic store
644 /// so release semantics cannot be provided. So this function drops explicit
645 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
646 /// operation would remain SequentiallyConsistent.
647 static AtomicOrdering
648 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering
) {
649 switch (SuccessOrdering
) {
651 llvm_unreachable("invalid cmpxchg success ordering");
652 case AtomicOrdering::Release
:
653 case AtomicOrdering::Monotonic
:
654 return AtomicOrdering::Monotonic
;
655 case AtomicOrdering::AcquireRelease
:
656 case AtomicOrdering::Acquire
:
657 return AtomicOrdering::Acquire
;
658 case AtomicOrdering::SequentiallyConsistent
:
659 return AtomicOrdering::SequentiallyConsistent
;
663 // Methods for support type inquiry through isa, cast, and dyn_cast:
664 static bool classof(const Instruction
*I
) {
665 return I
->getOpcode() == Instruction::AtomicCmpXchg
;
667 static bool classof(const Value
*V
) {
668 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
672 // Shadow Instruction::setInstructionSubclassData with a private forwarding
673 // method so that subclasses cannot accidentally use it.
674 void setInstructionSubclassData(unsigned short D
) {
675 Instruction::setInstructionSubclassData(D
);
678 /// The synchronization scope ID of this cmpxchg instruction. Not quite
679 /// enough room in SubClassData for everything, so synchronization scope ID
680 /// gets its own field.
685 struct OperandTraits
<AtomicCmpXchgInst
> :
686 public FixedNumOperandTraits
<AtomicCmpXchgInst
, 3> {
689 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst
, Value
)
691 //===----------------------------------------------------------------------===//
692 // AtomicRMWInst Class
693 //===----------------------------------------------------------------------===//
695 /// an instruction that atomically reads a memory location,
696 /// combines it with another value, and then stores the result back. Returns
699 class AtomicRMWInst
: public Instruction
{
701 // Note: Instruction needs to be a friend here to call cloneImpl.
702 friend class Instruction
;
704 AtomicRMWInst
*cloneImpl() const;
707 /// This enumeration lists the possible modifications atomicrmw can make. In
708 /// the descriptions, 'p' is the pointer to the instruction's memory location,
709 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
710 /// instruction. These instructions always return 'old'.
726 /// *p = old >signed v ? old : v
728 /// *p = old <signed v ? old : v
730 /// *p = old >unsigned v ? old : v
732 /// *p = old <unsigned v ? old : v
746 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
747 AtomicOrdering Ordering
, SyncScope::ID SSID
,
748 Instruction
*InsertBefore
= nullptr);
749 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
750 AtomicOrdering Ordering
, SyncScope::ID SSID
,
751 BasicBlock
*InsertAtEnd
);
753 // allocate space for exactly two operands
754 void *operator new(size_t s
) {
755 return User::operator new(s
, 2);
758 BinOp
getOperation() const {
759 return static_cast<BinOp
>(getSubclassDataFromInstruction() >> 5);
762 static StringRef
getOperationName(BinOp Op
);
764 static bool isFPOperation(BinOp Op
) {
766 case AtomicRMWInst::FAdd
:
767 case AtomicRMWInst::FSub
:
774 void setOperation(BinOp Operation
) {
775 unsigned short SubclassData
= getSubclassDataFromInstruction();
776 setInstructionSubclassData((SubclassData
& 31) |
780 /// Return true if this is a RMW on a volatile memory location.
782 bool isVolatile() const {
783 return getSubclassDataFromInstruction() & 1;
786 /// Specify whether this is a volatile RMW or not.
788 void setVolatile(bool V
) {
789 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
793 /// Transparently provide more efficient getOperand methods.
794 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
796 /// Returns the ordering constraint of this rmw instruction.
797 AtomicOrdering
getOrdering() const {
798 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
801 /// Sets the ordering constraint of this rmw instruction.
802 void setOrdering(AtomicOrdering Ordering
) {
803 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
804 "atomicrmw instructions can only be atomic.");
805 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
806 ((unsigned)Ordering
<< 2));
809 /// Returns the synchronization scope ID of this rmw instruction.
810 SyncScope::ID
getSyncScopeID() const {
814 /// Sets the synchronization scope ID of this rmw instruction.
815 void setSyncScopeID(SyncScope::ID SSID
) {
819 Value
*getPointerOperand() { return getOperand(0); }
820 const Value
*getPointerOperand() const { return getOperand(0); }
821 static unsigned getPointerOperandIndex() { return 0U; }
823 Value
*getValOperand() { return getOperand(1); }
824 const Value
*getValOperand() const { return getOperand(1); }
826 /// Returns the address space of the pointer operand.
827 unsigned getPointerAddressSpace() const {
828 return getPointerOperand()->getType()->getPointerAddressSpace();
831 bool isFloatingPointOperation() const {
832 return isFPOperation(getOperation());
835 // Methods for support type inquiry through isa, cast, and dyn_cast:
836 static bool classof(const Instruction
*I
) {
837 return I
->getOpcode() == Instruction::AtomicRMW
;
839 static bool classof(const Value
*V
) {
840 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
844 void Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
845 AtomicOrdering Ordering
, SyncScope::ID SSID
);
847 // Shadow Instruction::setInstructionSubclassData with a private forwarding
848 // method so that subclasses cannot accidentally use it.
849 void setInstructionSubclassData(unsigned short D
) {
850 Instruction::setInstructionSubclassData(D
);
853 /// The synchronization scope ID of this rmw instruction. Not quite enough
854 /// room in SubClassData for everything, so synchronization scope ID gets its
860 struct OperandTraits
<AtomicRMWInst
>
861 : public FixedNumOperandTraits
<AtomicRMWInst
,2> {
864 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst
, Value
)
866 //===----------------------------------------------------------------------===//
867 // GetElementPtrInst Class
868 //===----------------------------------------------------------------------===//
870 // checkGEPType - Simple wrapper function to give a better assertion failure
871 // message on bad indexes for a gep instruction.
873 inline Type
*checkGEPType(Type
*Ty
) {
874 assert(Ty
&& "Invalid GetElementPtrInst indices for type!");
878 /// an instruction for type-safe pointer arithmetic to
879 /// access elements of arrays and structs
881 class GetElementPtrInst
: public Instruction
{
882 Type
*SourceElementType
;
883 Type
*ResultElementType
;
885 GetElementPtrInst(const GetElementPtrInst
&GEPI
);
887 /// Constructors - Create a getelementptr instruction with a base pointer an
888 /// list of indices. The first ctor can optionally insert before an existing
889 /// instruction, the second appends the new instruction to the specified
891 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
892 ArrayRef
<Value
*> IdxList
, unsigned Values
,
893 const Twine
&NameStr
, Instruction
*InsertBefore
);
894 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
895 ArrayRef
<Value
*> IdxList
, unsigned Values
,
896 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
898 void init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
, const Twine
&NameStr
);
901 // Note: Instruction needs to be a friend here to call cloneImpl.
902 friend class Instruction
;
904 GetElementPtrInst
*cloneImpl() const;
907 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
908 ArrayRef
<Value
*> IdxList
,
909 const Twine
&NameStr
= "",
910 Instruction
*InsertBefore
= nullptr) {
911 unsigned Values
= 1 + unsigned(IdxList
.size());
914 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
918 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
919 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
920 NameStr
, InsertBefore
);
923 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
924 ArrayRef
<Value
*> IdxList
,
925 const Twine
&NameStr
,
926 BasicBlock
*InsertAtEnd
) {
927 unsigned Values
= 1 + unsigned(IdxList
.size());
930 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
934 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
935 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
936 NameStr
, InsertAtEnd
);
939 /// Create an "inbounds" getelementptr. See the documentation for the
940 /// "inbounds" flag in LangRef.html for details.
941 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
942 ArrayRef
<Value
*> IdxList
,
943 const Twine
&NameStr
= "",
944 Instruction
*InsertBefore
= nullptr){
945 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertBefore
);
948 static GetElementPtrInst
*
949 CreateInBounds(Type
*PointeeType
, Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
950 const Twine
&NameStr
= "",
951 Instruction
*InsertBefore
= nullptr) {
952 GetElementPtrInst
*GEP
=
953 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertBefore
);
954 GEP
->setIsInBounds(true);
958 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
959 ArrayRef
<Value
*> IdxList
,
960 const Twine
&NameStr
,
961 BasicBlock
*InsertAtEnd
) {
962 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
965 static GetElementPtrInst
*CreateInBounds(Type
*PointeeType
, Value
*Ptr
,
966 ArrayRef
<Value
*> IdxList
,
967 const Twine
&NameStr
,
968 BasicBlock
*InsertAtEnd
) {
969 GetElementPtrInst
*GEP
=
970 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
971 GEP
->setIsInBounds(true);
975 /// Transparently provide more efficient getOperand methods.
976 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
978 Type
*getSourceElementType() const { return SourceElementType
; }
980 void setSourceElementType(Type
*Ty
) { SourceElementType
= Ty
; }
981 void setResultElementType(Type
*Ty
) { ResultElementType
= Ty
; }
983 Type
*getResultElementType() const {
984 assert(ResultElementType
==
985 cast
<PointerType
>(getType()->getScalarType())->getElementType());
986 return ResultElementType
;
989 /// Returns the address space of this instruction's pointer type.
990 unsigned getAddressSpace() const {
991 // Note that this is always the same as the pointer operand's address space
992 // and that is cheaper to compute, so cheat here.
993 return getPointerAddressSpace();
996 /// Returns the type of the element that would be loaded with
997 /// a load instruction with the specified parameters.
999 /// Null is returned if the indices are invalid for the specified
1002 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
);
1003 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Constant
*> IdxList
);
1004 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
);
1006 inline op_iterator
idx_begin() { return op_begin()+1; }
1007 inline const_op_iterator
idx_begin() const { return op_begin()+1; }
1008 inline op_iterator
idx_end() { return op_end(); }
1009 inline const_op_iterator
idx_end() const { return op_end(); }
1011 inline iterator_range
<op_iterator
> indices() {
1012 return make_range(idx_begin(), idx_end());
1015 inline iterator_range
<const_op_iterator
> indices() const {
1016 return make_range(idx_begin(), idx_end());
1019 Value
*getPointerOperand() {
1020 return getOperand(0);
1022 const Value
*getPointerOperand() const {
1023 return getOperand(0);
1025 static unsigned getPointerOperandIndex() {
1026 return 0U; // get index for modifying correct operand.
1029 /// Method to return the pointer operand as a
1031 Type
*getPointerOperandType() const {
1032 return getPointerOperand()->getType();
1035 /// Returns the address space of the pointer operand.
1036 unsigned getPointerAddressSpace() const {
1037 return getPointerOperandType()->getPointerAddressSpace();
1040 /// Returns the pointer type returned by the GEP
1041 /// instruction, which may be a vector of pointers.
1042 static Type
*getGEPReturnType(Value
*Ptr
, ArrayRef
<Value
*> IdxList
) {
1043 return getGEPReturnType(
1044 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType(),
1047 static Type
*getGEPReturnType(Type
*ElTy
, Value
*Ptr
,
1048 ArrayRef
<Value
*> IdxList
) {
1049 Type
*PtrTy
= PointerType::get(checkGEPType(getIndexedType(ElTy
, IdxList
)),
1050 Ptr
->getType()->getPointerAddressSpace());
1052 if (Ptr
->getType()->isVectorTy()) {
1053 unsigned NumElem
= Ptr
->getType()->getVectorNumElements();
1054 return VectorType::get(PtrTy
, NumElem
);
1056 for (Value
*Index
: IdxList
)
1057 if (Index
->getType()->isVectorTy()) {
1058 unsigned NumElem
= Index
->getType()->getVectorNumElements();
1059 return VectorType::get(PtrTy
, NumElem
);
1065 unsigned getNumIndices() const { // Note: always non-negative
1066 return getNumOperands() - 1;
1069 bool hasIndices() const {
1070 return getNumOperands() > 1;
1073 /// Return true if all of the indices of this GEP are
1074 /// zeros. If so, the result pointer and the first operand have the same
1075 /// value, just potentially different types.
1076 bool hasAllZeroIndices() const;
1078 /// Return true if all of the indices of this GEP are
1079 /// constant integers. If so, the result pointer and the first operand have
1080 /// a constant offset between them.
1081 bool hasAllConstantIndices() const;
1083 /// Set or clear the inbounds flag on this GEP instruction.
1084 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1085 void setIsInBounds(bool b
= true);
1087 /// Determine whether the GEP has the inbounds flag.
1088 bool isInBounds() const;
1090 /// Accumulate the constant address offset of this GEP if possible.
1092 /// This routine accepts an APInt into which it will accumulate the constant
1093 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1094 /// all-constant, it returns false and the value of the offset APInt is
1095 /// undefined (it is *not* preserved!). The APInt passed into this routine
1096 /// must be at least as wide as the IntPtr type for the address space of
1097 /// the base GEP pointer.
1098 bool accumulateConstantOffset(const DataLayout
&DL
, APInt
&Offset
) const;
1100 // Methods for support type inquiry through isa, cast, and dyn_cast:
1101 static bool classof(const Instruction
*I
) {
1102 return (I
->getOpcode() == Instruction::GetElementPtr
);
1104 static bool classof(const Value
*V
) {
1105 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1110 struct OperandTraits
<GetElementPtrInst
> :
1111 public VariadicOperandTraits
<GetElementPtrInst
, 1> {
1114 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1115 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1116 const Twine
&NameStr
,
1117 Instruction
*InsertBefore
)
1118 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1119 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1120 Values
, InsertBefore
),
1121 SourceElementType(PointeeType
),
1122 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1123 assert(ResultElementType
==
1124 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1125 init(Ptr
, IdxList
, NameStr
);
1128 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1129 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1130 const Twine
&NameStr
,
1131 BasicBlock
*InsertAtEnd
)
1132 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1133 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1134 Values
, InsertAtEnd
),
1135 SourceElementType(PointeeType
),
1136 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1137 assert(ResultElementType
==
1138 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1139 init(Ptr
, IdxList
, NameStr
);
1142 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst
, Value
)
1144 //===----------------------------------------------------------------------===//
1146 //===----------------------------------------------------------------------===//
1148 /// This instruction compares its operands according to the predicate given
1149 /// to the constructor. It only operates on integers or pointers. The operands
1150 /// must be identical types.
1151 /// Represent an integer comparison operator.
1152 class ICmpInst
: public CmpInst
{
1154 assert(isIntPredicate() &&
1155 "Invalid ICmp predicate value");
1156 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1157 "Both operands to ICmp instruction are not of the same type!");
1158 // Check that the operands are the right type
1159 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1160 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1161 "Invalid operand types for ICmp instruction");
1165 // Note: Instruction needs to be a friend here to call cloneImpl.
1166 friend class Instruction
;
1168 /// Clone an identical ICmpInst
1169 ICmpInst
*cloneImpl() const;
1172 /// Constructor with insert-before-instruction semantics.
1174 Instruction
*InsertBefore
, ///< Where to insert
1175 Predicate pred
, ///< The predicate to use for the comparison
1176 Value
*LHS
, ///< The left-hand-side of the expression
1177 Value
*RHS
, ///< The right-hand-side of the expression
1178 const Twine
&NameStr
= "" ///< Name of the instruction
1179 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1180 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1187 /// Constructor with insert-at-end semantics.
1189 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1190 Predicate pred
, ///< The predicate to use for the comparison
1191 Value
*LHS
, ///< The left-hand-side of the expression
1192 Value
*RHS
, ///< The right-hand-side of the expression
1193 const Twine
&NameStr
= "" ///< Name of the instruction
1194 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1195 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1202 /// Constructor with no-insertion semantics
1204 Predicate pred
, ///< The predicate to use for the comparison
1205 Value
*LHS
, ///< The left-hand-side of the expression
1206 Value
*RHS
, ///< The right-hand-side of the expression
1207 const Twine
&NameStr
= "" ///< Name of the instruction
1208 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1209 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
) {
1215 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1216 /// @returns the predicate that would be the result if the operand were
1217 /// regarded as signed.
1218 /// Return the signed version of the predicate
1219 Predicate
getSignedPredicate() const {
1220 return getSignedPredicate(getPredicate());
1223 /// This is a static version that you can use without an instruction.
1224 /// Return the signed version of the predicate.
1225 static Predicate
getSignedPredicate(Predicate pred
);
1227 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1228 /// @returns the predicate that would be the result if the operand were
1229 /// regarded as unsigned.
1230 /// Return the unsigned version of the predicate
1231 Predicate
getUnsignedPredicate() const {
1232 return getUnsignedPredicate(getPredicate());
1235 /// This is a static version that you can use without an instruction.
1236 /// Return the unsigned version of the predicate.
1237 static Predicate
getUnsignedPredicate(Predicate pred
);
1239 /// Return true if this predicate is either EQ or NE. This also
1240 /// tests for commutativity.
1241 static bool isEquality(Predicate P
) {
1242 return P
== ICMP_EQ
|| P
== ICMP_NE
;
1245 /// Return true if this predicate is either EQ or NE. This also
1246 /// tests for commutativity.
1247 bool isEquality() const {
1248 return isEquality(getPredicate());
1251 /// @returns true if the predicate of this ICmpInst is commutative
1252 /// Determine if this relation is commutative.
1253 bool isCommutative() const { return isEquality(); }
1255 /// Return true if the predicate is relational (not EQ or NE).
1257 bool isRelational() const {
1258 return !isEquality();
1261 /// Return true if the predicate is relational (not EQ or NE).
1263 static bool isRelational(Predicate P
) {
1264 return !isEquality(P
);
1267 /// Exchange the two operands to this instruction in such a way that it does
1268 /// not modify the semantics of the instruction. The predicate value may be
1269 /// changed to retain the same result if the predicate is order dependent
1271 /// Swap operands and adjust predicate.
1272 void swapOperands() {
1273 setPredicate(getSwappedPredicate());
1274 Op
<0>().swap(Op
<1>());
1277 // Methods for support type inquiry through isa, cast, and dyn_cast:
1278 static bool classof(const Instruction
*I
) {
1279 return I
->getOpcode() == Instruction::ICmp
;
1281 static bool classof(const Value
*V
) {
1282 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1286 //===----------------------------------------------------------------------===//
1288 //===----------------------------------------------------------------------===//
1290 /// This instruction compares its operands according to the predicate given
1291 /// to the constructor. It only operates on floating point values or packed
1292 /// vectors of floating point values. The operands must be identical types.
1293 /// Represents a floating point comparison operator.
1294 class FCmpInst
: public CmpInst
{
1296 assert(isFPPredicate() && "Invalid FCmp predicate value");
1297 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1298 "Both operands to FCmp instruction are not of the same type!");
1299 // Check that the operands are the right type
1300 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1301 "Invalid operand types for FCmp instruction");
1305 // Note: Instruction needs to be a friend here to call cloneImpl.
1306 friend class Instruction
;
1308 /// Clone an identical FCmpInst
1309 FCmpInst
*cloneImpl() const;
1312 /// Constructor with insert-before-instruction semantics.
1314 Instruction
*InsertBefore
, ///< Where to insert
1315 Predicate pred
, ///< The predicate to use for the comparison
1316 Value
*LHS
, ///< The left-hand-side of the expression
1317 Value
*RHS
, ///< The right-hand-side of the expression
1318 const Twine
&NameStr
= "" ///< Name of the instruction
1319 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1320 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1325 /// Constructor with insert-at-end semantics.
1327 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1328 Predicate pred
, ///< The predicate to use for the comparison
1329 Value
*LHS
, ///< The left-hand-side of the expression
1330 Value
*RHS
, ///< The right-hand-side of the expression
1331 const Twine
&NameStr
= "" ///< Name of the instruction
1332 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1333 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1338 /// Constructor with no-insertion semantics
1340 Predicate Pred
, ///< The predicate to use for the comparison
1341 Value
*LHS
, ///< The left-hand-side of the expression
1342 Value
*RHS
, ///< The right-hand-side of the expression
1343 const Twine
&NameStr
= "", ///< Name of the instruction
1344 Instruction
*FlagsSource
= nullptr
1345 ) : CmpInst(makeCmpResultType(LHS
->getType()), Instruction::FCmp
, Pred
, LHS
,
1346 RHS
, NameStr
, nullptr, FlagsSource
) {
1350 /// @returns true if the predicate of this instruction is EQ or NE.
1351 /// Determine if this is an equality predicate.
1352 static bool isEquality(Predicate Pred
) {
1353 return Pred
== FCMP_OEQ
|| Pred
== FCMP_ONE
|| Pred
== FCMP_UEQ
||
1357 /// @returns true if the predicate of this instruction is EQ or NE.
1358 /// Determine if this is an equality predicate.
1359 bool isEquality() const { return isEquality(getPredicate()); }
1361 /// @returns true if the predicate of this instruction is commutative.
1362 /// Determine if this is a commutative predicate.
1363 bool isCommutative() const {
1364 return isEquality() ||
1365 getPredicate() == FCMP_FALSE
||
1366 getPredicate() == FCMP_TRUE
||
1367 getPredicate() == FCMP_ORD
||
1368 getPredicate() == FCMP_UNO
;
1371 /// @returns true if the predicate is relational (not EQ or NE).
1372 /// Determine if this a relational predicate.
1373 bool isRelational() const { return !isEquality(); }
1375 /// Exchange the two operands to this instruction in such a way that it does
1376 /// not modify the semantics of the instruction. The predicate value may be
1377 /// changed to retain the same result if the predicate is order dependent
1379 /// Swap operands and adjust predicate.
1380 void swapOperands() {
1381 setPredicate(getSwappedPredicate());
1382 Op
<0>().swap(Op
<1>());
1385 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1386 static bool classof(const Instruction
*I
) {
1387 return I
->getOpcode() == Instruction::FCmp
;
1389 static bool classof(const Value
*V
) {
1390 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1394 //===----------------------------------------------------------------------===//
1395 /// This class represents a function call, abstracting a target
1396 /// machine's calling convention. This class uses low bit of the SubClassData
1397 /// field to indicate whether or not this is a tail call. The rest of the bits
1398 /// hold the calling convention of the call.
1400 class CallInst
: public CallBase
{
1401 CallInst(const CallInst
&CI
);
1403 /// Construct a CallInst given a range of arguments.
1404 /// Construct a CallInst from a range of arguments
1405 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1406 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1407 Instruction
*InsertBefore
);
1409 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1410 const Twine
&NameStr
, Instruction
*InsertBefore
)
1411 : CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
) {}
1413 /// Construct a CallInst given a range of arguments.
1414 /// Construct a CallInst from a range of arguments
1415 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1416 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1417 BasicBlock
*InsertAtEnd
);
1419 explicit CallInst(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1420 Instruction
*InsertBefore
);
1422 CallInst(FunctionType
*ty
, Value
*F
, const Twine
&NameStr
,
1423 BasicBlock
*InsertAtEnd
);
1425 void init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
1426 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
1427 void init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
);
1429 /// Compute the number of operands to allocate.
1430 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
1431 // We need one operand for the called function, plus the input operand
1433 return 1 + NumArgs
+ NumBundleInputs
;
1437 // Note: Instruction needs to be a friend here to call cloneImpl.
1438 friend class Instruction
;
1440 CallInst
*cloneImpl() const;
1443 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
= "",
1444 Instruction
*InsertBefore
= nullptr) {
1445 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertBefore
);
1448 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1449 const Twine
&NameStr
,
1450 Instruction
*InsertBefore
= nullptr) {
1451 return new (ComputeNumOperands(Args
.size()))
1452 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
);
1455 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1456 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1457 const Twine
&NameStr
= "",
1458 Instruction
*InsertBefore
= nullptr) {
1459 const int NumOperands
=
1460 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1461 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1463 return new (NumOperands
, DescriptorBytes
)
1464 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1467 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1468 BasicBlock
*InsertAtEnd
) {
1469 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertAtEnd
);
1472 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1473 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1474 return new (ComputeNumOperands(Args
.size()))
1475 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertAtEnd
);
1478 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1479 ArrayRef
<OperandBundleDef
> Bundles
,
1480 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1481 const int NumOperands
=
1482 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1483 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1485 return new (NumOperands
, DescriptorBytes
)
1486 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1489 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
= "",
1490 Instruction
*InsertBefore
= nullptr) {
1491 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1495 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1496 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1497 const Twine
&NameStr
= "",
1498 Instruction
*InsertBefore
= nullptr) {
1499 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1500 NameStr
, InsertBefore
);
1503 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1504 const Twine
&NameStr
,
1505 Instruction
*InsertBefore
= nullptr) {
1506 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1510 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
,
1511 BasicBlock
*InsertAtEnd
) {
1512 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1516 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1517 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1518 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1522 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1523 ArrayRef
<OperandBundleDef
> Bundles
,
1524 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1525 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1526 NameStr
, InsertAtEnd
);
1529 // Deprecated [opaque pointer types]
1530 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
= "",
1531 Instruction
*InsertBefore
= nullptr) {
1532 return Create(cast
<FunctionType
>(
1533 cast
<PointerType
>(Func
->getType())->getElementType()),
1534 Func
, NameStr
, InsertBefore
);
1537 // Deprecated [opaque pointer types]
1538 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1539 const Twine
&NameStr
,
1540 Instruction
*InsertBefore
= nullptr) {
1541 return Create(cast
<FunctionType
>(
1542 cast
<PointerType
>(Func
->getType())->getElementType()),
1543 Func
, Args
, NameStr
, InsertBefore
);
1546 // Deprecated [opaque pointer types]
1547 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1548 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1549 const Twine
&NameStr
= "",
1550 Instruction
*InsertBefore
= nullptr) {
1551 return Create(cast
<FunctionType
>(
1552 cast
<PointerType
>(Func
->getType())->getElementType()),
1553 Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1556 // Deprecated [opaque pointer types]
1557 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
,
1558 BasicBlock
*InsertAtEnd
) {
1559 return Create(cast
<FunctionType
>(
1560 cast
<PointerType
>(Func
->getType())->getElementType()),
1561 Func
, NameStr
, InsertAtEnd
);
1564 // Deprecated [opaque pointer types]
1565 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1566 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1567 return Create(cast
<FunctionType
>(
1568 cast
<PointerType
>(Func
->getType())->getElementType()),
1569 Func
, Args
, NameStr
, InsertAtEnd
);
1572 // Deprecated [opaque pointer types]
1573 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1574 ArrayRef
<OperandBundleDef
> Bundles
,
1575 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1576 return Create(cast
<FunctionType
>(
1577 cast
<PointerType
>(Func
->getType())->getElementType()),
1578 Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1581 /// Create a clone of \p CI with a different set of operand bundles and
1582 /// insert it before \p InsertPt.
1584 /// The returned call instruction is identical \p CI in every way except that
1585 /// the operand bundles for the new instruction are set to the operand bundles
1587 static CallInst
*Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> Bundles
,
1588 Instruction
*InsertPt
= nullptr);
1590 /// Generate the IR for a call to malloc:
1591 /// 1. Compute the malloc call's argument as the specified type's size,
1592 /// possibly multiplied by the array size if the array size is not
1594 /// 2. Call malloc with that argument.
1595 /// 3. Bitcast the result of the malloc call to the specified type.
1596 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1597 Type
*AllocTy
, Value
*AllocSize
,
1598 Value
*ArraySize
= nullptr,
1599 Function
*MallocF
= nullptr,
1600 const Twine
&Name
= "");
1601 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1602 Type
*AllocTy
, Value
*AllocSize
,
1603 Value
*ArraySize
= nullptr,
1604 Function
*MallocF
= nullptr,
1605 const Twine
&Name
= "");
1606 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1607 Type
*AllocTy
, Value
*AllocSize
,
1608 Value
*ArraySize
= nullptr,
1609 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1610 Function
*MallocF
= nullptr,
1611 const Twine
&Name
= "");
1612 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1613 Type
*AllocTy
, Value
*AllocSize
,
1614 Value
*ArraySize
= nullptr,
1615 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1616 Function
*MallocF
= nullptr,
1617 const Twine
&Name
= "");
1618 /// Generate the IR for a call to the builtin free function.
1619 static Instruction
*CreateFree(Value
*Source
, Instruction
*InsertBefore
);
1620 static Instruction
*CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
);
1621 static Instruction
*CreateFree(Value
*Source
,
1622 ArrayRef
<OperandBundleDef
> Bundles
,
1623 Instruction
*InsertBefore
);
1624 static Instruction
*CreateFree(Value
*Source
,
1625 ArrayRef
<OperandBundleDef
> Bundles
,
1626 BasicBlock
*InsertAtEnd
);
1628 // Note that 'musttail' implies 'tail'.
1635 TailCallKind
getTailCallKind() const {
1636 return TailCallKind(getSubclassDataFromInstruction() & 3);
1639 bool isTailCall() const {
1640 unsigned Kind
= getSubclassDataFromInstruction() & 3;
1641 return Kind
== TCK_Tail
|| Kind
== TCK_MustTail
;
1644 bool isMustTailCall() const {
1645 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail
;
1648 bool isNoTailCall() const {
1649 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail
;
1652 void setTailCall(bool isTC
= true) {
1653 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1654 unsigned(isTC
? TCK_Tail
: TCK_None
));
1657 void setTailCallKind(TailCallKind TCK
) {
1658 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1662 /// Return true if the call can return twice
1663 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice
); }
1664 void setCanReturnTwice() {
1665 addAttribute(AttributeList::FunctionIndex
, Attribute::ReturnsTwice
);
1668 // Methods for support type inquiry through isa, cast, and dyn_cast:
1669 static bool classof(const Instruction
*I
) {
1670 return I
->getOpcode() == Instruction::Call
;
1672 static bool classof(const Value
*V
) {
1673 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1676 /// Updates profile metadata by scaling it by \p S / \p T.
1677 void updateProfWeight(uint64_t S
, uint64_t T
);
1680 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1681 // method so that subclasses cannot accidentally use it.
1682 void setInstructionSubclassData(unsigned short D
) {
1683 Instruction::setInstructionSubclassData(D
);
1687 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1688 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1689 BasicBlock
*InsertAtEnd
)
1690 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1691 OperandTraits
<CallBase
>::op_end(this) -
1692 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1693 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1695 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1698 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1699 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1700 Instruction
*InsertBefore
)
1701 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1702 OperandTraits
<CallBase
>::op_end(this) -
1703 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1704 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1706 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1709 //===----------------------------------------------------------------------===//
1711 //===----------------------------------------------------------------------===//
1713 /// This class represents the LLVM 'select' instruction.
1715 class SelectInst
: public Instruction
{
1716 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1717 Instruction
*InsertBefore
)
1718 : Instruction(S1
->getType(), Instruction::Select
,
1719 &Op
<0>(), 3, InsertBefore
) {
1724 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1725 BasicBlock
*InsertAtEnd
)
1726 : Instruction(S1
->getType(), Instruction::Select
,
1727 &Op
<0>(), 3, InsertAtEnd
) {
1732 void init(Value
*C
, Value
*S1
, Value
*S2
) {
1733 assert(!areInvalidOperands(C
, S1
, S2
) && "Invalid operands for select");
1740 // Note: Instruction needs to be a friend here to call cloneImpl.
1741 friend class Instruction
;
1743 SelectInst
*cloneImpl() const;
1746 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1747 const Twine
&NameStr
= "",
1748 Instruction
*InsertBefore
= nullptr,
1749 Instruction
*MDFrom
= nullptr) {
1750 SelectInst
*Sel
= new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertBefore
);
1752 Sel
->copyMetadata(*MDFrom
);
1756 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1757 const Twine
&NameStr
,
1758 BasicBlock
*InsertAtEnd
) {
1759 return new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertAtEnd
);
1762 const Value
*getCondition() const { return Op
<0>(); }
1763 const Value
*getTrueValue() const { return Op
<1>(); }
1764 const Value
*getFalseValue() const { return Op
<2>(); }
1765 Value
*getCondition() { return Op
<0>(); }
1766 Value
*getTrueValue() { return Op
<1>(); }
1767 Value
*getFalseValue() { return Op
<2>(); }
1769 void setCondition(Value
*V
) { Op
<0>() = V
; }
1770 void setTrueValue(Value
*V
) { Op
<1>() = V
; }
1771 void setFalseValue(Value
*V
) { Op
<2>() = V
; }
1773 /// Swap the true and false values of the select instruction.
1774 /// This doesn't swap prof metadata.
1775 void swapValues() { Op
<1>().swap(Op
<2>()); }
1777 /// Return a string if the specified operands are invalid
1778 /// for a select operation, otherwise return null.
1779 static const char *areInvalidOperands(Value
*Cond
, Value
*True
, Value
*False
);
1781 /// Transparently provide more efficient getOperand methods.
1782 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1784 OtherOps
getOpcode() const {
1785 return static_cast<OtherOps
>(Instruction::getOpcode());
1788 // Methods for support type inquiry through isa, cast, and dyn_cast:
1789 static bool classof(const Instruction
*I
) {
1790 return I
->getOpcode() == Instruction::Select
;
1792 static bool classof(const Value
*V
) {
1793 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1798 struct OperandTraits
<SelectInst
> : public FixedNumOperandTraits
<SelectInst
, 3> {
1801 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst
, Value
)
1803 //===----------------------------------------------------------------------===//
1805 //===----------------------------------------------------------------------===//
1807 /// This class represents the va_arg llvm instruction, which returns
1808 /// an argument of the specified type given a va_list and increments that list
1810 class VAArgInst
: public UnaryInstruction
{
1812 // Note: Instruction needs to be a friend here to call cloneImpl.
1813 friend class Instruction
;
1815 VAArgInst
*cloneImpl() const;
1818 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
= "",
1819 Instruction
*InsertBefore
= nullptr)
1820 : UnaryInstruction(Ty
, VAArg
, List
, InsertBefore
) {
1824 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
,
1825 BasicBlock
*InsertAtEnd
)
1826 : UnaryInstruction(Ty
, VAArg
, List
, InsertAtEnd
) {
1830 Value
*getPointerOperand() { return getOperand(0); }
1831 const Value
*getPointerOperand() const { return getOperand(0); }
1832 static unsigned getPointerOperandIndex() { return 0U; }
1834 // Methods for support type inquiry through isa, cast, and dyn_cast:
1835 static bool classof(const Instruction
*I
) {
1836 return I
->getOpcode() == VAArg
;
1838 static bool classof(const Value
*V
) {
1839 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1843 //===----------------------------------------------------------------------===//
1844 // ExtractElementInst Class
1845 //===----------------------------------------------------------------------===//
1847 /// This instruction extracts a single (scalar)
1848 /// element from a VectorType value
1850 class ExtractElementInst
: public Instruction
{
1851 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
= "",
1852 Instruction
*InsertBefore
= nullptr);
1853 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
,
1854 BasicBlock
*InsertAtEnd
);
1857 // Note: Instruction needs to be a friend here to call cloneImpl.
1858 friend class Instruction
;
1860 ExtractElementInst
*cloneImpl() const;
1863 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1864 const Twine
&NameStr
= "",
1865 Instruction
*InsertBefore
= nullptr) {
1866 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertBefore
);
1869 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1870 const Twine
&NameStr
,
1871 BasicBlock
*InsertAtEnd
) {
1872 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertAtEnd
);
1875 /// Return true if an extractelement instruction can be
1876 /// formed with the specified operands.
1877 static bool isValidOperands(const Value
*Vec
, const Value
*Idx
);
1879 Value
*getVectorOperand() { return Op
<0>(); }
1880 Value
*getIndexOperand() { return Op
<1>(); }
1881 const Value
*getVectorOperand() const { return Op
<0>(); }
1882 const Value
*getIndexOperand() const { return Op
<1>(); }
1884 VectorType
*getVectorOperandType() const {
1885 return cast
<VectorType
>(getVectorOperand()->getType());
1888 /// Transparently provide more efficient getOperand methods.
1889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1891 // Methods for support type inquiry through isa, cast, and dyn_cast:
1892 static bool classof(const Instruction
*I
) {
1893 return I
->getOpcode() == Instruction::ExtractElement
;
1895 static bool classof(const Value
*V
) {
1896 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1901 struct OperandTraits
<ExtractElementInst
> :
1902 public FixedNumOperandTraits
<ExtractElementInst
, 2> {
1905 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst
, Value
)
1907 //===----------------------------------------------------------------------===//
1908 // InsertElementInst Class
1909 //===----------------------------------------------------------------------===//
1911 /// This instruction inserts a single (scalar)
1912 /// element into a VectorType value
1914 class InsertElementInst
: public Instruction
{
1915 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1916 const Twine
&NameStr
= "",
1917 Instruction
*InsertBefore
= nullptr);
1918 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
, const Twine
&NameStr
,
1919 BasicBlock
*InsertAtEnd
);
1922 // Note: Instruction needs to be a friend here to call cloneImpl.
1923 friend class Instruction
;
1925 InsertElementInst
*cloneImpl() const;
1928 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1929 const Twine
&NameStr
= "",
1930 Instruction
*InsertBefore
= nullptr) {
1931 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertBefore
);
1934 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1935 const Twine
&NameStr
,
1936 BasicBlock
*InsertAtEnd
) {
1937 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertAtEnd
);
1940 /// Return true if an insertelement instruction can be
1941 /// formed with the specified operands.
1942 static bool isValidOperands(const Value
*Vec
, const Value
*NewElt
,
1945 /// Overload to return most specific vector type.
1947 VectorType
*getType() const {
1948 return cast
<VectorType
>(Instruction::getType());
1951 /// Transparently provide more efficient getOperand methods.
1952 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1954 // Methods for support type inquiry through isa, cast, and dyn_cast:
1955 static bool classof(const Instruction
*I
) {
1956 return I
->getOpcode() == Instruction::InsertElement
;
1958 static bool classof(const Value
*V
) {
1959 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1964 struct OperandTraits
<InsertElementInst
> :
1965 public FixedNumOperandTraits
<InsertElementInst
, 3> {
1968 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst
, Value
)
1970 //===----------------------------------------------------------------------===//
1971 // ShuffleVectorInst Class
1972 //===----------------------------------------------------------------------===//
1974 /// This instruction constructs a fixed permutation of two
1977 class ShuffleVectorInst
: public Instruction
{
1979 // Note: Instruction needs to be a friend here to call cloneImpl.
1980 friend class Instruction
;
1982 ShuffleVectorInst
*cloneImpl() const;
1985 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1986 const Twine
&NameStr
= "",
1987 Instruction
*InsertBefor
= nullptr);
1988 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1989 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
1991 // allocate space for exactly three operands
1992 void *operator new(size_t s
) {
1993 return User::operator new(s
, 3);
1996 /// Swap the first 2 operands and adjust the mask to preserve the semantics
1997 /// of the instruction.
2000 /// Return true if a shufflevector instruction can be
2001 /// formed with the specified operands.
2002 static bool isValidOperands(const Value
*V1
, const Value
*V2
,
2005 /// Overload to return most specific vector type.
2007 VectorType
*getType() const {
2008 return cast
<VectorType
>(Instruction::getType());
2011 /// Transparently provide more efficient getOperand methods.
2012 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2014 Constant
*getMask() const {
2015 return cast
<Constant
>(getOperand(2));
2018 /// Return the shuffle mask value for the specified element of the mask.
2019 /// Return -1 if the element is undef.
2020 static int getMaskValue(const Constant
*Mask
, unsigned Elt
);
2022 /// Return the shuffle mask value of this instruction for the given element
2023 /// index. Return -1 if the element is undef.
2024 int getMaskValue(unsigned Elt
) const {
2025 return getMaskValue(getMask(), Elt
);
2028 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2029 /// elements of the mask are returned as -1.
2030 static void getShuffleMask(const Constant
*Mask
,
2031 SmallVectorImpl
<int> &Result
);
2033 /// Return the mask for this instruction as a vector of integers. Undefined
2034 /// elements of the mask are returned as -1.
2035 void getShuffleMask(SmallVectorImpl
<int> &Result
) const {
2036 return getShuffleMask(getMask(), Result
);
2039 SmallVector
<int, 16> getShuffleMask() const {
2040 SmallVector
<int, 16> Mask
;
2041 getShuffleMask(Mask
);
2045 /// Return true if this shuffle returns a vector with a different number of
2046 /// elements than its source vectors.
2047 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2048 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2049 bool changesLength() const {
2050 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2051 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2052 return NumSourceElts
!= NumMaskElts
;
2055 /// Return true if this shuffle returns a vector with a greater number of
2056 /// elements than its source vectors.
2057 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2058 bool increasesLength() const {
2059 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2060 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2061 return NumSourceElts
< NumMaskElts
;
2064 /// Return true if this shuffle mask chooses elements from exactly one source
2066 /// Example: <7,5,undef,7>
2067 /// This assumes that vector operands are the same length as the mask.
2068 static bool isSingleSourceMask(ArrayRef
<int> Mask
);
2069 static bool isSingleSourceMask(const Constant
*Mask
) {
2070 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2071 SmallVector
<int, 16> MaskAsInts
;
2072 getShuffleMask(Mask
, MaskAsInts
);
2073 return isSingleSourceMask(MaskAsInts
);
2076 /// Return true if this shuffle chooses elements from exactly one source
2077 /// vector without changing the length of that vector.
2078 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2079 /// TODO: Optionally allow length-changing shuffles.
2080 bool isSingleSource() const {
2081 return !changesLength() && isSingleSourceMask(getMask());
2084 /// Return true if this shuffle mask chooses elements from exactly one source
2085 /// vector without lane crossings. A shuffle using this mask is not
2086 /// necessarily a no-op because it may change the number of elements from its
2087 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2088 /// Example: <undef,undef,2,3>
2089 static bool isIdentityMask(ArrayRef
<int> Mask
);
2090 static bool isIdentityMask(const Constant
*Mask
) {
2091 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2092 SmallVector
<int, 16> MaskAsInts
;
2093 getShuffleMask(Mask
, MaskAsInts
);
2094 return isIdentityMask(MaskAsInts
);
2097 /// Return true if this shuffle chooses elements from exactly one source
2098 /// vector without lane crossings and does not change the number of elements
2099 /// from its input vectors.
2100 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2101 bool isIdentity() const {
2102 return !changesLength() && isIdentityMask(getShuffleMask());
2105 /// Return true if this shuffle lengthens exactly one source vector with
2106 /// undefs in the high elements.
2107 bool isIdentityWithPadding() const;
2109 /// Return true if this shuffle extracts the first N elements of exactly one
2111 bool isIdentityWithExtract() const;
2113 /// Return true if this shuffle concatenates its 2 source vectors. This
2114 /// returns false if either input is undefined. In that case, the shuffle is
2115 /// is better classified as an identity with padding operation.
2116 bool isConcat() const;
2118 /// Return true if this shuffle mask chooses elements from its source vectors
2119 /// without lane crossings. A shuffle using this mask would be
2120 /// equivalent to a vector select with a constant condition operand.
2121 /// Example: <4,1,6,undef>
2122 /// This returns false if the mask does not choose from both input vectors.
2123 /// In that case, the shuffle is better classified as an identity shuffle.
2124 /// This assumes that vector operands are the same length as the mask
2125 /// (a length-changing shuffle can never be equivalent to a vector select).
2126 static bool isSelectMask(ArrayRef
<int> Mask
);
2127 static bool isSelectMask(const Constant
*Mask
) {
2128 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2129 SmallVector
<int, 16> MaskAsInts
;
2130 getShuffleMask(Mask
, MaskAsInts
);
2131 return isSelectMask(MaskAsInts
);
2134 /// Return true if this shuffle chooses elements from its source vectors
2135 /// without lane crossings and all operands have the same number of elements.
2136 /// In other words, this shuffle is equivalent to a vector select with a
2137 /// constant condition operand.
2138 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2139 /// This returns false if the mask does not choose from both input vectors.
2140 /// In that case, the shuffle is better classified as an identity shuffle.
2141 /// TODO: Optionally allow length-changing shuffles.
2142 bool isSelect() const {
2143 return !changesLength() && isSelectMask(getMask());
2146 /// Return true if this shuffle mask swaps the order of elements from exactly
2147 /// one source vector.
2148 /// Example: <7,6,undef,4>
2149 /// This assumes that vector operands are the same length as the mask.
2150 static bool isReverseMask(ArrayRef
<int> Mask
);
2151 static bool isReverseMask(const Constant
*Mask
) {
2152 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2153 SmallVector
<int, 16> MaskAsInts
;
2154 getShuffleMask(Mask
, MaskAsInts
);
2155 return isReverseMask(MaskAsInts
);
2158 /// Return true if this shuffle swaps the order of elements from exactly
2159 /// one source vector.
2160 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2161 /// TODO: Optionally allow length-changing shuffles.
2162 bool isReverse() const {
2163 return !changesLength() && isReverseMask(getMask());
2166 /// Return true if this shuffle mask chooses all elements with the same value
2167 /// as the first element of exactly one source vector.
2168 /// Example: <4,undef,undef,4>
2169 /// This assumes that vector operands are the same length as the mask.
2170 static bool isZeroEltSplatMask(ArrayRef
<int> Mask
);
2171 static bool isZeroEltSplatMask(const Constant
*Mask
) {
2172 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2173 SmallVector
<int, 16> MaskAsInts
;
2174 getShuffleMask(Mask
, MaskAsInts
);
2175 return isZeroEltSplatMask(MaskAsInts
);
2178 /// Return true if all elements of this shuffle are the same value as the
2179 /// first element of exactly one source vector without changing the length
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2182 /// TODO: Optionally allow length-changing shuffles.
2183 /// TODO: Optionally allow splats from other elements.
2184 bool isZeroEltSplat() const {
2185 return !changesLength() && isZeroEltSplatMask(getMask());
2188 /// Return true if this shuffle mask is a transpose mask.
2189 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2190 /// even- or odd-numbered vector elements from two n-dimensional source
2191 /// vectors and write each result into consecutive elements of an
2192 /// n-dimensional destination vector. Two shuffles are necessary to complete
2193 /// the transpose, one for the even elements and another for the odd elements.
2194 /// This description closely follows how the TRN1 and TRN2 AArch64
2195 /// instructions operate.
2197 /// For example, a simple 2x2 matrix can be transposed with:
2199 /// ; Original matrix
2203 /// ; Transposed matrix
2204 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2205 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2207 /// For matrices having greater than n columns, the resulting nx2 transposed
2208 /// matrix is stored in two result vectors such that one vector contains
2209 /// interleaved elements from all the even-numbered rows and the other vector
2210 /// contains interleaved elements from all the odd-numbered rows. For example,
2211 /// a 2x4 matrix can be transposed with:
2213 /// ; Original matrix
2214 /// m0 = < a, b, c, d >
2215 /// m1 = < e, f, g, h >
2217 /// ; Transposed matrix
2218 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2219 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2220 static bool isTransposeMask(ArrayRef
<int> Mask
);
2221 static bool isTransposeMask(const Constant
*Mask
) {
2222 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2223 SmallVector
<int, 16> MaskAsInts
;
2224 getShuffleMask(Mask
, MaskAsInts
);
2225 return isTransposeMask(MaskAsInts
);
2228 /// Return true if this shuffle transposes the elements of its inputs without
2229 /// changing the length of the vectors. This operation may also be known as a
2230 /// merge or interleave. See the description for isTransposeMask() for the
2231 /// exact specification.
2232 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2233 bool isTranspose() const {
2234 return !changesLength() && isTransposeMask(getMask());
2237 /// Return true if this shuffle mask is an extract subvector mask.
2238 /// A valid extract subvector mask returns a smaller vector from a single
2239 /// source operand. The base extraction index is returned as well.
2240 static bool isExtractSubvectorMask(ArrayRef
<int> Mask
, int NumSrcElts
,
2242 static bool isExtractSubvectorMask(const Constant
*Mask
, int NumSrcElts
,
2244 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2245 SmallVector
<int, 16> MaskAsInts
;
2246 getShuffleMask(Mask
, MaskAsInts
);
2247 return isExtractSubvectorMask(MaskAsInts
, NumSrcElts
, Index
);
2250 /// Return true if this shuffle mask is an extract subvector mask.
2251 bool isExtractSubvectorMask(int &Index
) const {
2252 int NumSrcElts
= Op
<0>()->getType()->getVectorNumElements();
2253 return isExtractSubvectorMask(getMask(), NumSrcElts
, Index
);
2256 /// Change values in a shuffle permute mask assuming the two vector operands
2257 /// of length InVecNumElts have swapped position.
2258 static void commuteShuffleMask(MutableArrayRef
<int> Mask
,
2259 unsigned InVecNumElts
) {
2260 for (int &Idx
: Mask
) {
2263 Idx
= Idx
< (int)InVecNumElts
? Idx
+ InVecNumElts
: Idx
- InVecNumElts
;
2264 assert(Idx
>= 0 && Idx
< (int)InVecNumElts
* 2 &&
2265 "shufflevector mask index out of range");
2269 // Methods for support type inquiry through isa, cast, and dyn_cast:
2270 static bool classof(const Instruction
*I
) {
2271 return I
->getOpcode() == Instruction::ShuffleVector
;
2273 static bool classof(const Value
*V
) {
2274 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2279 struct OperandTraits
<ShuffleVectorInst
> :
2280 public FixedNumOperandTraits
<ShuffleVectorInst
, 3> {
2283 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst
, Value
)
2285 //===----------------------------------------------------------------------===//
2286 // ExtractValueInst Class
2287 //===----------------------------------------------------------------------===//
2289 /// This instruction extracts a struct member or array
2290 /// element value from an aggregate value.
2292 class ExtractValueInst
: public UnaryInstruction
{
2293 SmallVector
<unsigned, 4> Indices
;
2295 ExtractValueInst(const ExtractValueInst
&EVI
);
2297 /// Constructors - Create a extractvalue instruction with a base aggregate
2298 /// value and a list of indices. The first ctor can optionally insert before
2299 /// an existing instruction, the second appends the new instruction to the
2300 /// specified BasicBlock.
2301 inline ExtractValueInst(Value
*Agg
,
2302 ArrayRef
<unsigned> Idxs
,
2303 const Twine
&NameStr
,
2304 Instruction
*InsertBefore
);
2305 inline ExtractValueInst(Value
*Agg
,
2306 ArrayRef
<unsigned> Idxs
,
2307 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2309 void init(ArrayRef
<unsigned> Idxs
, const Twine
&NameStr
);
2312 // Note: Instruction needs to be a friend here to call cloneImpl.
2313 friend class Instruction
;
2315 ExtractValueInst
*cloneImpl() const;
2318 static ExtractValueInst
*Create(Value
*Agg
,
2319 ArrayRef
<unsigned> Idxs
,
2320 const Twine
&NameStr
= "",
2321 Instruction
*InsertBefore
= nullptr) {
2323 ExtractValueInst(Agg
, Idxs
, NameStr
, InsertBefore
);
2326 static ExtractValueInst
*Create(Value
*Agg
,
2327 ArrayRef
<unsigned> Idxs
,
2328 const Twine
&NameStr
,
2329 BasicBlock
*InsertAtEnd
) {
2330 return new ExtractValueInst(Agg
, Idxs
, NameStr
, InsertAtEnd
);
2333 /// Returns the type of the element that would be extracted
2334 /// with an extractvalue instruction with the specified parameters.
2336 /// Null is returned if the indices are invalid for the specified type.
2337 static Type
*getIndexedType(Type
*Agg
, ArrayRef
<unsigned> Idxs
);
2339 using idx_iterator
= const unsigned*;
2341 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2342 inline idx_iterator
idx_end() const { return Indices
.end(); }
2343 inline iterator_range
<idx_iterator
> indices() const {
2344 return make_range(idx_begin(), idx_end());
2347 Value
*getAggregateOperand() {
2348 return getOperand(0);
2350 const Value
*getAggregateOperand() const {
2351 return getOperand(0);
2353 static unsigned getAggregateOperandIndex() {
2354 return 0U; // get index for modifying correct operand
2357 ArrayRef
<unsigned> getIndices() const {
2361 unsigned getNumIndices() const {
2362 return (unsigned)Indices
.size();
2365 bool hasIndices() const {
2369 // Methods for support type inquiry through isa, cast, and dyn_cast:
2370 static bool classof(const Instruction
*I
) {
2371 return I
->getOpcode() == Instruction::ExtractValue
;
2373 static bool classof(const Value
*V
) {
2374 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2378 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2379 ArrayRef
<unsigned> Idxs
,
2380 const Twine
&NameStr
,
2381 Instruction
*InsertBefore
)
2382 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2383 ExtractValue
, Agg
, InsertBefore
) {
2384 init(Idxs
, NameStr
);
2387 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2388 ArrayRef
<unsigned> Idxs
,
2389 const Twine
&NameStr
,
2390 BasicBlock
*InsertAtEnd
)
2391 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2392 ExtractValue
, Agg
, InsertAtEnd
) {
2393 init(Idxs
, NameStr
);
2396 //===----------------------------------------------------------------------===//
2397 // InsertValueInst Class
2398 //===----------------------------------------------------------------------===//
2400 /// This instruction inserts a struct field of array element
2401 /// value into an aggregate value.
2403 class InsertValueInst
: public Instruction
{
2404 SmallVector
<unsigned, 4> Indices
;
2406 InsertValueInst(const InsertValueInst
&IVI
);
2408 /// Constructors - Create a insertvalue instruction with a base aggregate
2409 /// value, a value to insert, and a list of indices. The first ctor can
2410 /// optionally insert before an existing instruction, the second appends
2411 /// the new instruction to the specified BasicBlock.
2412 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2413 ArrayRef
<unsigned> Idxs
,
2414 const Twine
&NameStr
,
2415 Instruction
*InsertBefore
);
2416 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2417 ArrayRef
<unsigned> Idxs
,
2418 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2420 /// Constructors - These two constructors are convenience methods because one
2421 /// and two index insertvalue instructions are so common.
2422 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
,
2423 const Twine
&NameStr
= "",
2424 Instruction
*InsertBefore
= nullptr);
2425 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
, const Twine
&NameStr
,
2426 BasicBlock
*InsertAtEnd
);
2428 void init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2429 const Twine
&NameStr
);
2432 // Note: Instruction needs to be a friend here to call cloneImpl.
2433 friend class Instruction
;
2435 InsertValueInst
*cloneImpl() const;
2438 // allocate space for exactly two operands
2439 void *operator new(size_t s
) {
2440 return User::operator new(s
, 2);
2443 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2444 ArrayRef
<unsigned> Idxs
,
2445 const Twine
&NameStr
= "",
2446 Instruction
*InsertBefore
= nullptr) {
2447 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertBefore
);
2450 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2451 ArrayRef
<unsigned> Idxs
,
2452 const Twine
&NameStr
,
2453 BasicBlock
*InsertAtEnd
) {
2454 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertAtEnd
);
2457 /// Transparently provide more efficient getOperand methods.
2458 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2460 using idx_iterator
= const unsigned*;
2462 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2463 inline idx_iterator
idx_end() const { return Indices
.end(); }
2464 inline iterator_range
<idx_iterator
> indices() const {
2465 return make_range(idx_begin(), idx_end());
2468 Value
*getAggregateOperand() {
2469 return getOperand(0);
2471 const Value
*getAggregateOperand() const {
2472 return getOperand(0);
2474 static unsigned getAggregateOperandIndex() {
2475 return 0U; // get index for modifying correct operand
2478 Value
*getInsertedValueOperand() {
2479 return getOperand(1);
2481 const Value
*getInsertedValueOperand() const {
2482 return getOperand(1);
2484 static unsigned getInsertedValueOperandIndex() {
2485 return 1U; // get index for modifying correct operand
2488 ArrayRef
<unsigned> getIndices() const {
2492 unsigned getNumIndices() const {
2493 return (unsigned)Indices
.size();
2496 bool hasIndices() const {
2500 // Methods for support type inquiry through isa, cast, and dyn_cast:
2501 static bool classof(const Instruction
*I
) {
2502 return I
->getOpcode() == Instruction::InsertValue
;
2504 static bool classof(const Value
*V
) {
2505 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2510 struct OperandTraits
<InsertValueInst
> :
2511 public FixedNumOperandTraits
<InsertValueInst
, 2> {
2514 InsertValueInst::InsertValueInst(Value
*Agg
,
2516 ArrayRef
<unsigned> Idxs
,
2517 const Twine
&NameStr
,
2518 Instruction
*InsertBefore
)
2519 : Instruction(Agg
->getType(), InsertValue
,
2520 OperandTraits
<InsertValueInst
>::op_begin(this),
2522 init(Agg
, Val
, Idxs
, NameStr
);
2525 InsertValueInst::InsertValueInst(Value
*Agg
,
2527 ArrayRef
<unsigned> Idxs
,
2528 const Twine
&NameStr
,
2529 BasicBlock
*InsertAtEnd
)
2530 : Instruction(Agg
->getType(), InsertValue
,
2531 OperandTraits
<InsertValueInst
>::op_begin(this),
2533 init(Agg
, Val
, Idxs
, NameStr
);
2536 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst
, Value
)
2538 //===----------------------------------------------------------------------===//
2540 //===----------------------------------------------------------------------===//
2542 // PHINode - The PHINode class is used to represent the magical mystical PHI
2543 // node, that can not exist in nature, but can be synthesized in a computer
2544 // scientist's overactive imagination.
2546 class PHINode
: public Instruction
{
2547 /// The number of operands actually allocated. NumOperands is
2548 /// the number actually in use.
2549 unsigned ReservedSpace
;
2551 PHINode(const PHINode
&PN
);
2553 explicit PHINode(Type
*Ty
, unsigned NumReservedValues
,
2554 const Twine
&NameStr
= "",
2555 Instruction
*InsertBefore
= nullptr)
2556 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertBefore
),
2557 ReservedSpace(NumReservedValues
) {
2559 allocHungoffUses(ReservedSpace
);
2562 PHINode(Type
*Ty
, unsigned NumReservedValues
, const Twine
&NameStr
,
2563 BasicBlock
*InsertAtEnd
)
2564 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertAtEnd
),
2565 ReservedSpace(NumReservedValues
) {
2567 allocHungoffUses(ReservedSpace
);
2571 // Note: Instruction needs to be a friend here to call cloneImpl.
2572 friend class Instruction
;
2574 PHINode
*cloneImpl() const;
2576 // allocHungoffUses - this is more complicated than the generic
2577 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2578 // values and pointers to the incoming blocks, all in one allocation.
2579 void allocHungoffUses(unsigned N
) {
2580 User::allocHungoffUses(N
, /* IsPhi */ true);
2584 /// Constructors - NumReservedValues is a hint for the number of incoming
2585 /// edges that this phi node will have (use 0 if you really have no idea).
2586 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2587 const Twine
&NameStr
= "",
2588 Instruction
*InsertBefore
= nullptr) {
2589 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertBefore
);
2592 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2593 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
2594 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertAtEnd
);
2597 /// Provide fast operand accessors
2598 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2600 // Block iterator interface. This provides access to the list of incoming
2601 // basic blocks, which parallels the list of incoming values.
2603 using block_iterator
= BasicBlock
**;
2604 using const_block_iterator
= BasicBlock
* const *;
2606 block_iterator
block_begin() {
2608 reinterpret_cast<Use::UserRef
*>(op_begin() + ReservedSpace
);
2609 return reinterpret_cast<block_iterator
>(ref
+ 1);
2612 const_block_iterator
block_begin() const {
2613 const Use::UserRef
*ref
=
2614 reinterpret_cast<const Use::UserRef
*>(op_begin() + ReservedSpace
);
2615 return reinterpret_cast<const_block_iterator
>(ref
+ 1);
2618 block_iterator
block_end() {
2619 return block_begin() + getNumOperands();
2622 const_block_iterator
block_end() const {
2623 return block_begin() + getNumOperands();
2626 iterator_range
<block_iterator
> blocks() {
2627 return make_range(block_begin(), block_end());
2630 iterator_range
<const_block_iterator
> blocks() const {
2631 return make_range(block_begin(), block_end());
2634 op_range
incoming_values() { return operands(); }
2636 const_op_range
incoming_values() const { return operands(); }
2638 /// Return the number of incoming edges
2640 unsigned getNumIncomingValues() const { return getNumOperands(); }
2642 /// Return incoming value number x
2644 Value
*getIncomingValue(unsigned i
) const {
2645 return getOperand(i
);
2647 void setIncomingValue(unsigned i
, Value
*V
) {
2648 assert(V
&& "PHI node got a null value!");
2649 assert(getType() == V
->getType() &&
2650 "All operands to PHI node must be the same type as the PHI node!");
2654 static unsigned getOperandNumForIncomingValue(unsigned i
) {
2658 static unsigned getIncomingValueNumForOperand(unsigned i
) {
2662 /// Return incoming basic block number @p i.
2664 BasicBlock
*getIncomingBlock(unsigned i
) const {
2665 return block_begin()[i
];
2668 /// Return incoming basic block corresponding
2669 /// to an operand of the PHI.
2671 BasicBlock
*getIncomingBlock(const Use
&U
) const {
2672 assert(this == U
.getUser() && "Iterator doesn't point to PHI's Uses?");
2673 return getIncomingBlock(unsigned(&U
- op_begin()));
2676 /// Return incoming basic block corresponding
2677 /// to value use iterator.
2679 BasicBlock
*getIncomingBlock(Value::const_user_iterator I
) const {
2680 return getIncomingBlock(I
.getUse());
2683 void setIncomingBlock(unsigned i
, BasicBlock
*BB
) {
2684 assert(BB
&& "PHI node got a null basic block!");
2685 block_begin()[i
] = BB
;
2688 /// Replace every incoming basic block \p Old to basic block \p New.
2689 void replaceIncomingBlockWith(const BasicBlock
*Old
, BasicBlock
*New
) {
2690 assert(New
&& Old
&& "PHI node got a null basic block!");
2691 for (unsigned Op
= 0, NumOps
= getNumOperands(); Op
!= NumOps
; ++Op
)
2692 if (getIncomingBlock(Op
) == Old
)
2693 setIncomingBlock(Op
, New
);
2696 /// Add an incoming value to the end of the PHI list
2698 void addIncoming(Value
*V
, BasicBlock
*BB
) {
2699 if (getNumOperands() == ReservedSpace
)
2700 growOperands(); // Get more space!
2701 // Initialize some new operands.
2702 setNumHungOffUseOperands(getNumOperands() + 1);
2703 setIncomingValue(getNumOperands() - 1, V
);
2704 setIncomingBlock(getNumOperands() - 1, BB
);
2707 /// Remove an incoming value. This is useful if a
2708 /// predecessor basic block is deleted. The value removed is returned.
2710 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2711 /// is true), the PHI node is destroyed and any uses of it are replaced with
2712 /// dummy values. The only time there should be zero incoming values to a PHI
2713 /// node is when the block is dead, so this strategy is sound.
2715 Value
*removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
= true);
2717 Value
*removeIncomingValue(const BasicBlock
*BB
, bool DeletePHIIfEmpty
=true) {
2718 int Idx
= getBasicBlockIndex(BB
);
2719 assert(Idx
>= 0 && "Invalid basic block argument to remove!");
2720 return removeIncomingValue(Idx
, DeletePHIIfEmpty
);
2723 /// Return the first index of the specified basic
2724 /// block in the value list for this PHI. Returns -1 if no instance.
2726 int getBasicBlockIndex(const BasicBlock
*BB
) const {
2727 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
2728 if (block_begin()[i
] == BB
)
2733 Value
*getIncomingValueForBlock(const BasicBlock
*BB
) const {
2734 int Idx
= getBasicBlockIndex(BB
);
2735 assert(Idx
>= 0 && "Invalid basic block argument!");
2736 return getIncomingValue(Idx
);
2739 /// Set every incoming value(s) for block \p BB to \p V.
2740 void setIncomingValueForBlock(const BasicBlock
*BB
, Value
*V
) {
2741 assert(BB
&& "PHI node got a null basic block!");
2743 for (unsigned Op
= 0, NumOps
= getNumOperands(); Op
!= NumOps
; ++Op
)
2744 if (getIncomingBlock(Op
) == BB
) {
2746 setIncomingValue(Op
, V
);
2749 assert(Found
&& "Invalid basic block argument to set!");
2752 /// If the specified PHI node always merges together the
2753 /// same value, return the value, otherwise return null.
2754 Value
*hasConstantValue() const;
2756 /// Whether the specified PHI node always merges
2757 /// together the same value, assuming undefs are equal to a unique
2758 /// non-undef value.
2759 bool hasConstantOrUndefValue() const;
2761 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2762 static bool classof(const Instruction
*I
) {
2763 return I
->getOpcode() == Instruction::PHI
;
2765 static bool classof(const Value
*V
) {
2766 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2770 void growOperands();
2774 struct OperandTraits
<PHINode
> : public HungoffOperandTraits
<2> {
2777 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode
, Value
)
2779 //===----------------------------------------------------------------------===//
2780 // LandingPadInst Class
2781 //===----------------------------------------------------------------------===//
2783 //===---------------------------------------------------------------------------
2784 /// The landingpad instruction holds all of the information
2785 /// necessary to generate correct exception handling. The landingpad instruction
2786 /// cannot be moved from the top of a landing pad block, which itself is
2787 /// accessible only from the 'unwind' edge of an invoke. This uses the
2788 /// SubclassData field in Value to store whether or not the landingpad is a
2791 class LandingPadInst
: public Instruction
{
2792 /// The number of operands actually allocated. NumOperands is
2793 /// the number actually in use.
2794 unsigned ReservedSpace
;
2796 LandingPadInst(const LandingPadInst
&LP
);
2799 enum ClauseType
{ Catch
, Filter
};
2802 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2803 const Twine
&NameStr
, Instruction
*InsertBefore
);
2804 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2805 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2807 // Allocate space for exactly zero operands.
2808 void *operator new(size_t s
) {
2809 return User::operator new(s
);
2812 void growOperands(unsigned Size
);
2813 void init(unsigned NumReservedValues
, const Twine
&NameStr
);
2816 // Note: Instruction needs to be a friend here to call cloneImpl.
2817 friend class Instruction
;
2819 LandingPadInst
*cloneImpl() const;
2822 /// Constructors - NumReservedClauses is a hint for the number of incoming
2823 /// clauses that this landingpad will have (use 0 if you really have no idea).
2824 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2825 const Twine
&NameStr
= "",
2826 Instruction
*InsertBefore
= nullptr);
2827 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2828 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2830 /// Provide fast operand accessors
2831 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2833 /// Return 'true' if this landingpad instruction is a
2834 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2835 /// doesn't catch the exception.
2836 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2838 /// Indicate that this landingpad instruction is a cleanup.
2839 void setCleanup(bool V
) {
2840 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2844 /// Add a catch or filter clause to the landing pad.
2845 void addClause(Constant
*ClauseVal
);
2847 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2848 /// determine what type of clause this is.
2849 Constant
*getClause(unsigned Idx
) const {
2850 return cast
<Constant
>(getOperandList()[Idx
]);
2853 /// Return 'true' if the clause and index Idx is a catch clause.
2854 bool isCatch(unsigned Idx
) const {
2855 return !isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2858 /// Return 'true' if the clause and index Idx is a filter clause.
2859 bool isFilter(unsigned Idx
) const {
2860 return isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2863 /// Get the number of clauses for this landing pad.
2864 unsigned getNumClauses() const { return getNumOperands(); }
2866 /// Grow the size of the operand list to accommodate the new
2867 /// number of clauses.
2868 void reserveClauses(unsigned Size
) { growOperands(Size
); }
2870 // Methods for support type inquiry through isa, cast, and dyn_cast:
2871 static bool classof(const Instruction
*I
) {
2872 return I
->getOpcode() == Instruction::LandingPad
;
2874 static bool classof(const Value
*V
) {
2875 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2880 struct OperandTraits
<LandingPadInst
> : public HungoffOperandTraits
<1> {
2883 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst
, Value
)
2885 //===----------------------------------------------------------------------===//
2887 //===----------------------------------------------------------------------===//
2889 //===---------------------------------------------------------------------------
2890 /// Return a value (possibly void), from a function. Execution
2891 /// does not continue in this function any longer.
2893 class ReturnInst
: public Instruction
{
2894 ReturnInst(const ReturnInst
&RI
);
2897 // ReturnInst constructors:
2898 // ReturnInst() - 'ret void' instruction
2899 // ReturnInst( null) - 'ret void' instruction
2900 // ReturnInst(Value* X) - 'ret X' instruction
2901 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2902 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2903 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2904 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2906 // NOTE: If the Value* passed is of type void then the constructor behaves as
2907 // if it was passed NULL.
2908 explicit ReturnInst(LLVMContext
&C
, Value
*retVal
= nullptr,
2909 Instruction
*InsertBefore
= nullptr);
2910 ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
);
2911 explicit ReturnInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
2914 // Note: Instruction needs to be a friend here to call cloneImpl.
2915 friend class Instruction
;
2917 ReturnInst
*cloneImpl() const;
2920 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
= nullptr,
2921 Instruction
*InsertBefore
= nullptr) {
2922 return new(!!retVal
) ReturnInst(C
, retVal
, InsertBefore
);
2925 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
,
2926 BasicBlock
*InsertAtEnd
) {
2927 return new(!!retVal
) ReturnInst(C
, retVal
, InsertAtEnd
);
2930 static ReturnInst
* Create(LLVMContext
&C
, BasicBlock
*InsertAtEnd
) {
2931 return new(0) ReturnInst(C
, InsertAtEnd
);
2934 /// Provide fast operand accessors
2935 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2937 /// Convenience accessor. Returns null if there is no return value.
2938 Value
*getReturnValue() const {
2939 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2942 unsigned getNumSuccessors() const { return 0; }
2944 // Methods for support type inquiry through isa, cast, and dyn_cast:
2945 static bool classof(const Instruction
*I
) {
2946 return (I
->getOpcode() == Instruction::Ret
);
2948 static bool classof(const Value
*V
) {
2949 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2953 BasicBlock
*getSuccessor(unsigned idx
) const {
2954 llvm_unreachable("ReturnInst has no successors!");
2957 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
2958 llvm_unreachable("ReturnInst has no successors!");
2963 struct OperandTraits
<ReturnInst
> : public VariadicOperandTraits
<ReturnInst
> {
2966 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst
, Value
)
2968 //===----------------------------------------------------------------------===//
2970 //===----------------------------------------------------------------------===//
2972 //===---------------------------------------------------------------------------
2973 /// Conditional or Unconditional Branch instruction.
2975 class BranchInst
: public Instruction
{
2976 /// Ops list - Branches are strange. The operands are ordered:
2977 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2978 /// they don't have to check for cond/uncond branchness. These are mostly
2979 /// accessed relative from op_end().
2980 BranchInst(const BranchInst
&BI
);
2981 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2982 // BranchInst(BB *B) - 'br B'
2983 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2984 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2985 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2986 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2987 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2988 explicit BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
= nullptr);
2989 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
2990 Instruction
*InsertBefore
= nullptr);
2991 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
);
2992 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
2993 BasicBlock
*InsertAtEnd
);
2998 // Note: Instruction needs to be a friend here to call cloneImpl.
2999 friend class Instruction
;
3001 BranchInst
*cloneImpl() const;
3004 /// Iterator type that casts an operand to a basic block.
3006 /// This only makes sense because the successors are stored as adjacent
3007 /// operands for branch instructions.
3008 struct succ_op_iterator
3009 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3010 std::random_access_iterator_tag
, BasicBlock
*,
3011 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3012 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3014 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3015 BasicBlock
*operator->() const { return operator*(); }
3018 /// The const version of `succ_op_iterator`.
3019 struct const_succ_op_iterator
3020 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3021 std::random_access_iterator_tag
,
3022 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3023 const BasicBlock
*> {
3024 explicit const_succ_op_iterator(const_value_op_iterator I
)
3025 : iterator_adaptor_base(I
) {}
3027 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3028 const BasicBlock
*operator->() const { return operator*(); }
3031 static BranchInst
*Create(BasicBlock
*IfTrue
,
3032 Instruction
*InsertBefore
= nullptr) {
3033 return new(1) BranchInst(IfTrue
, InsertBefore
);
3036 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3037 Value
*Cond
, Instruction
*InsertBefore
= nullptr) {
3038 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertBefore
);
3041 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
) {
3042 return new(1) BranchInst(IfTrue
, InsertAtEnd
);
3045 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3046 Value
*Cond
, BasicBlock
*InsertAtEnd
) {
3047 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertAtEnd
);
3050 /// Transparently provide more efficient getOperand methods.
3051 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3053 bool isUnconditional() const { return getNumOperands() == 1; }
3054 bool isConditional() const { return getNumOperands() == 3; }
3056 Value
*getCondition() const {
3057 assert(isConditional() && "Cannot get condition of an uncond branch!");
3061 void setCondition(Value
*V
) {
3062 assert(isConditional() && "Cannot set condition of unconditional branch!");
3066 unsigned getNumSuccessors() const { return 1+isConditional(); }
3068 BasicBlock
*getSuccessor(unsigned i
) const {
3069 assert(i
< getNumSuccessors() && "Successor # out of range for Branch!");
3070 return cast_or_null
<BasicBlock
>((&Op
<-1>() - i
)->get());
3073 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3074 assert(idx
< getNumSuccessors() && "Successor # out of range for Branch!");
3075 *(&Op
<-1>() - idx
) = NewSucc
;
3078 /// Swap the successors of this branch instruction.
3080 /// Swaps the successors of the branch instruction. This also swaps any
3081 /// branch weight metadata associated with the instruction so that it
3082 /// continues to map correctly to each operand.
3083 void swapSuccessors();
3085 iterator_range
<succ_op_iterator
> successors() {
3087 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3088 succ_op_iterator(value_op_end()));
3091 iterator_range
<const_succ_op_iterator
> successors() const {
3092 return make_range(const_succ_op_iterator(
3093 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3094 const_succ_op_iterator(value_op_end()));
3097 // Methods for support type inquiry through isa, cast, and dyn_cast:
3098 static bool classof(const Instruction
*I
) {
3099 return (I
->getOpcode() == Instruction::Br
);
3101 static bool classof(const Value
*V
) {
3102 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3107 struct OperandTraits
<BranchInst
> : public VariadicOperandTraits
<BranchInst
, 1> {
3110 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst
, Value
)
3112 //===----------------------------------------------------------------------===//
3114 //===----------------------------------------------------------------------===//
3116 //===---------------------------------------------------------------------------
3119 class SwitchInst
: public Instruction
{
3120 unsigned ReservedSpace
;
3122 // Operand[0] = Value to switch on
3123 // Operand[1] = Default basic block destination
3124 // Operand[2n ] = Value to match
3125 // Operand[2n+1] = BasicBlock to go to on match
3126 SwitchInst(const SwitchInst
&SI
);
3128 /// Create a new switch instruction, specifying a value to switch on and a
3129 /// default destination. The number of additional cases can be specified here
3130 /// to make memory allocation more efficient. This constructor can also
3131 /// auto-insert before another instruction.
3132 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3133 Instruction
*InsertBefore
);
3135 /// Create a new switch instruction, specifying a value to switch on and a
3136 /// default destination. The number of additional cases can be specified here
3137 /// to make memory allocation more efficient. This constructor also
3138 /// auto-inserts at the end of the specified BasicBlock.
3139 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3140 BasicBlock
*InsertAtEnd
);
3142 // allocate space for exactly zero operands
3143 void *operator new(size_t s
) {
3144 return User::operator new(s
);
3147 void init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
);
3148 void growOperands();
3151 // Note: Instruction needs to be a friend here to call cloneImpl.
3152 friend class Instruction
;
3154 SwitchInst
*cloneImpl() const;
3158 static const unsigned DefaultPseudoIndex
= static_cast<unsigned>(~0L-1);
3160 template <typename CaseHandleT
> class CaseIteratorImpl
;
3162 /// A handle to a particular switch case. It exposes a convenient interface
3163 /// to both the case value and the successor block.
3165 /// We define this as a template and instantiate it to form both a const and
3166 /// non-const handle.
3167 template <typename SwitchInstT
, typename ConstantIntT
, typename BasicBlockT
>
3168 class CaseHandleImpl
{
3169 // Directly befriend both const and non-const iterators.
3170 friend class SwitchInst::CaseIteratorImpl
<
3171 CaseHandleImpl
<SwitchInstT
, ConstantIntT
, BasicBlockT
>>;
3174 // Expose the switch type we're parameterized with to the iterator.
3175 using SwitchInstType
= SwitchInstT
;
3180 CaseHandleImpl() = default;
3181 CaseHandleImpl(SwitchInstT
*SI
, ptrdiff_t Index
) : SI(SI
), Index(Index
) {}
3184 /// Resolves case value for current case.
3185 ConstantIntT
*getCaseValue() const {
3186 assert((unsigned)Index
< SI
->getNumCases() &&
3187 "Index out the number of cases.");
3188 return reinterpret_cast<ConstantIntT
*>(SI
->getOperand(2 + Index
* 2));
3191 /// Resolves successor for current case.
3192 BasicBlockT
*getCaseSuccessor() const {
3193 assert(((unsigned)Index
< SI
->getNumCases() ||
3194 (unsigned)Index
== DefaultPseudoIndex
) &&
3195 "Index out the number of cases.");
3196 return SI
->getSuccessor(getSuccessorIndex());
3199 /// Returns number of current case.
3200 unsigned getCaseIndex() const { return Index
; }
3202 /// Returns successor index for current case successor.
3203 unsigned getSuccessorIndex() const {
3204 assert(((unsigned)Index
== DefaultPseudoIndex
||
3205 (unsigned)Index
< SI
->getNumCases()) &&
3206 "Index out the number of cases.");
3207 return (unsigned)Index
!= DefaultPseudoIndex
? Index
+ 1 : 0;
3210 bool operator==(const CaseHandleImpl
&RHS
) const {
3211 assert(SI
== RHS
.SI
&& "Incompatible operators.");
3212 return Index
== RHS
.Index
;
3216 using ConstCaseHandle
=
3217 CaseHandleImpl
<const SwitchInst
, const ConstantInt
, const BasicBlock
>;
3220 : public CaseHandleImpl
<SwitchInst
, ConstantInt
, BasicBlock
> {
3221 friend class SwitchInst::CaseIteratorImpl
<CaseHandle
>;
3224 CaseHandle(SwitchInst
*SI
, ptrdiff_t Index
) : CaseHandleImpl(SI
, Index
) {}
3226 /// Sets the new value for current case.
3227 void setValue(ConstantInt
*V
) {
3228 assert((unsigned)Index
< SI
->getNumCases() &&
3229 "Index out the number of cases.");
3230 SI
->setOperand(2 + Index
*2, reinterpret_cast<Value
*>(V
));
3233 /// Sets the new successor for current case.
3234 void setSuccessor(BasicBlock
*S
) {
3235 SI
->setSuccessor(getSuccessorIndex(), S
);
3239 template <typename CaseHandleT
>
3240 class CaseIteratorImpl
3241 : public iterator_facade_base
<CaseIteratorImpl
<CaseHandleT
>,
3242 std::random_access_iterator_tag
,
3244 using SwitchInstT
= typename
CaseHandleT::SwitchInstType
;
3249 /// Default constructed iterator is in an invalid state until assigned to
3250 /// a case for a particular switch.
3251 CaseIteratorImpl() = default;
3253 /// Initializes case iterator for given SwitchInst and for given
3255 CaseIteratorImpl(SwitchInstT
*SI
, unsigned CaseNum
) : Case(SI
, CaseNum
) {}
3257 /// Initializes case iterator for given SwitchInst and for given
3258 /// successor index.
3259 static CaseIteratorImpl
fromSuccessorIndex(SwitchInstT
*SI
,
3260 unsigned SuccessorIndex
) {
3261 assert(SuccessorIndex
< SI
->getNumSuccessors() &&
3262 "Successor index # out of range!");
3263 return SuccessorIndex
!= 0 ? CaseIteratorImpl(SI
, SuccessorIndex
- 1)
3264 : CaseIteratorImpl(SI
, DefaultPseudoIndex
);
3267 /// Support converting to the const variant. This will be a no-op for const
3269 operator CaseIteratorImpl
<ConstCaseHandle
>() const {
3270 return CaseIteratorImpl
<ConstCaseHandle
>(Case
.SI
, Case
.Index
);
3273 CaseIteratorImpl
&operator+=(ptrdiff_t N
) {
3274 // Check index correctness after addition.
3275 // Note: Index == getNumCases() means end().
3276 assert(Case
.Index
+ N
>= 0 &&
3277 (unsigned)(Case
.Index
+ N
) <= Case
.SI
->getNumCases() &&
3278 "Case.Index out the number of cases.");
3282 CaseIteratorImpl
&operator-=(ptrdiff_t N
) {
3283 // Check index correctness after subtraction.
3284 // Note: Case.Index == getNumCases() means end().
3285 assert(Case
.Index
- N
>= 0 &&
3286 (unsigned)(Case
.Index
- N
) <= Case
.SI
->getNumCases() &&
3287 "Case.Index out the number of cases.");
3291 ptrdiff_t operator-(const CaseIteratorImpl
&RHS
) const {
3292 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3293 return Case
.Index
- RHS
.Case
.Index
;
3295 bool operator==(const CaseIteratorImpl
&RHS
) const {
3296 return Case
== RHS
.Case
;
3298 bool operator<(const CaseIteratorImpl
&RHS
) const {
3299 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3300 return Case
.Index
< RHS
.Case
.Index
;
3302 CaseHandleT
&operator*() { return Case
; }
3303 const CaseHandleT
&operator*() const { return Case
; }
3306 using CaseIt
= CaseIteratorImpl
<CaseHandle
>;
3307 using ConstCaseIt
= CaseIteratorImpl
<ConstCaseHandle
>;
3309 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3311 Instruction
*InsertBefore
= nullptr) {
3312 return new SwitchInst(Value
, Default
, NumCases
, InsertBefore
);
3315 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3316 unsigned NumCases
, BasicBlock
*InsertAtEnd
) {
3317 return new SwitchInst(Value
, Default
, NumCases
, InsertAtEnd
);
3320 /// Provide fast operand accessors
3321 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3323 // Accessor Methods for Switch stmt
3324 Value
*getCondition() const { return getOperand(0); }
3325 void setCondition(Value
*V
) { setOperand(0, V
); }
3327 BasicBlock
*getDefaultDest() const {
3328 return cast
<BasicBlock
>(getOperand(1));
3331 void setDefaultDest(BasicBlock
*DefaultCase
) {
3332 setOperand(1, reinterpret_cast<Value
*>(DefaultCase
));
3335 /// Return the number of 'cases' in this switch instruction, excluding the
3337 unsigned getNumCases() const {
3338 return getNumOperands()/2 - 1;
3341 /// Returns a read/write iterator that points to the first case in the
3343 CaseIt
case_begin() {
3344 return CaseIt(this, 0);
3347 /// Returns a read-only iterator that points to the first case in the
3349 ConstCaseIt
case_begin() const {
3350 return ConstCaseIt(this, 0);
3353 /// Returns a read/write iterator that points one past the last in the
3356 return CaseIt(this, getNumCases());
3359 /// Returns a read-only iterator that points one past the last in the
3361 ConstCaseIt
case_end() const {
3362 return ConstCaseIt(this, getNumCases());
3365 /// Iteration adapter for range-for loops.
3366 iterator_range
<CaseIt
> cases() {
3367 return make_range(case_begin(), case_end());
3370 /// Constant iteration adapter for range-for loops.
3371 iterator_range
<ConstCaseIt
> cases() const {
3372 return make_range(case_begin(), case_end());
3375 /// Returns an iterator that points to the default case.
3376 /// Note: this iterator allows to resolve successor only. Attempt
3377 /// to resolve case value causes an assertion.
3378 /// Also note, that increment and decrement also causes an assertion and
3379 /// makes iterator invalid.
3380 CaseIt
case_default() {
3381 return CaseIt(this, DefaultPseudoIndex
);
3383 ConstCaseIt
case_default() const {
3384 return ConstCaseIt(this, DefaultPseudoIndex
);
3387 /// Search all of the case values for the specified constant. If it is
3388 /// explicitly handled, return the case iterator of it, otherwise return
3389 /// default case iterator to indicate that it is handled by the default
3391 CaseIt
findCaseValue(const ConstantInt
*C
) {
3392 CaseIt I
= llvm::find_if(
3393 cases(), [C
](CaseHandle
&Case
) { return Case
.getCaseValue() == C
; });
3394 if (I
!= case_end())
3397 return case_default();
3399 ConstCaseIt
findCaseValue(const ConstantInt
*C
) const {
3400 ConstCaseIt I
= llvm::find_if(cases(), [C
](ConstCaseHandle
&Case
) {
3401 return Case
.getCaseValue() == C
;
3403 if (I
!= case_end())
3406 return case_default();
3409 /// Finds the unique case value for a given successor. Returns null if the
3410 /// successor is not found, not unique, or is the default case.
3411 ConstantInt
*findCaseDest(BasicBlock
*BB
) {
3412 if (BB
== getDefaultDest())
3415 ConstantInt
*CI
= nullptr;
3416 for (auto Case
: cases()) {
3417 if (Case
.getCaseSuccessor() != BB
)
3421 return nullptr; // Multiple cases lead to BB.
3423 CI
= Case
.getCaseValue();
3429 /// Add an entry to the switch instruction.
3431 /// This action invalidates case_end(). Old case_end() iterator will
3432 /// point to the added case.
3433 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
);
3435 /// This method removes the specified case and its successor from the switch
3436 /// instruction. Note that this operation may reorder the remaining cases at
3437 /// index idx and above.
3439 /// This action invalidates iterators for all cases following the one removed,
3440 /// including the case_end() iterator. It returns an iterator for the next
3442 CaseIt
removeCase(CaseIt I
);
3444 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3445 BasicBlock
*getSuccessor(unsigned idx
) const {
3446 assert(idx
< getNumSuccessors() &&"Successor idx out of range for switch!");
3447 return cast
<BasicBlock
>(getOperand(idx
*2+1));
3449 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3450 assert(idx
< getNumSuccessors() && "Successor # out of range for switch!");
3451 setOperand(idx
* 2 + 1, NewSucc
);
3454 // Methods for support type inquiry through isa, cast, and dyn_cast:
3455 static bool classof(const Instruction
*I
) {
3456 return I
->getOpcode() == Instruction::Switch
;
3458 static bool classof(const Value
*V
) {
3459 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3463 /// A wrapper class to simplify modification of SwitchInst cases along with
3464 /// their prof branch_weights metadata.
3465 class SwitchInstProfUpdateWrapper
{
3467 Optional
<SmallVector
<uint32_t, 8> > Weights
= None
;
3468 bool Changed
= false;
3471 static MDNode
*getProfBranchWeightsMD(const SwitchInst
&SI
);
3473 MDNode
*buildProfBranchWeightsMD();
3478 using CaseWeightOpt
= Optional
<uint32_t>;
3479 SwitchInst
*operator->() { return &SI
; }
3480 SwitchInst
&operator*() { return SI
; }
3481 operator SwitchInst
*() { return &SI
; }
3483 SwitchInstProfUpdateWrapper(SwitchInst
&SI
) : SI(SI
) { init(); }
3485 ~SwitchInstProfUpdateWrapper() {
3487 SI
.setMetadata(LLVMContext::MD_prof
, buildProfBranchWeightsMD());
3490 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3491 /// correspondent branch weight.
3492 SwitchInst::CaseIt
removeCase(SwitchInst::CaseIt I
);
3494 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3495 /// specified branch weight for the added case.
3496 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
, CaseWeightOpt W
);
3498 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3499 /// this object to not touch the underlying SwitchInst in destructor.
3500 SymbolTableList
<Instruction
>::iterator
eraseFromParent();
3502 void setSuccessorWeight(unsigned idx
, CaseWeightOpt W
);
3503 CaseWeightOpt
getSuccessorWeight(unsigned idx
);
3505 static CaseWeightOpt
getSuccessorWeight(const SwitchInst
&SI
, unsigned idx
);
3509 struct OperandTraits
<SwitchInst
> : public HungoffOperandTraits
<2> {
3512 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst
, Value
)
3514 //===----------------------------------------------------------------------===//
3515 // IndirectBrInst Class
3516 //===----------------------------------------------------------------------===//
3518 //===---------------------------------------------------------------------------
3519 /// Indirect Branch Instruction.
3521 class IndirectBrInst
: public Instruction
{
3522 unsigned ReservedSpace
;
3524 // Operand[0] = Address to jump to
3525 // Operand[n+1] = n-th destination
3526 IndirectBrInst(const IndirectBrInst
&IBI
);
3528 /// Create a new indirectbr instruction, specifying an
3529 /// Address to jump to. The number of expected destinations can be specified
3530 /// here to make memory allocation more efficient. This constructor can also
3531 /// autoinsert before another instruction.
3532 IndirectBrInst(Value
*Address
, unsigned NumDests
, Instruction
*InsertBefore
);
3534 /// Create a new indirectbr instruction, specifying an
3535 /// Address to jump to. The number of expected destinations can be specified
3536 /// here to make memory allocation more efficient. This constructor also
3537 /// autoinserts at the end of the specified BasicBlock.
3538 IndirectBrInst(Value
*Address
, unsigned NumDests
, BasicBlock
*InsertAtEnd
);
3540 // allocate space for exactly zero operands
3541 void *operator new(size_t s
) {
3542 return User::operator new(s
);
3545 void init(Value
*Address
, unsigned NumDests
);
3546 void growOperands();
3549 // Note: Instruction needs to be a friend here to call cloneImpl.
3550 friend class Instruction
;
3552 IndirectBrInst
*cloneImpl() const;
3555 /// Iterator type that casts an operand to a basic block.
3557 /// This only makes sense because the successors are stored as adjacent
3558 /// operands for indirectbr instructions.
3559 struct succ_op_iterator
3560 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3561 std::random_access_iterator_tag
, BasicBlock
*,
3562 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3563 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3565 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3566 BasicBlock
*operator->() const { return operator*(); }
3569 /// The const version of `succ_op_iterator`.
3570 struct const_succ_op_iterator
3571 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3572 std::random_access_iterator_tag
,
3573 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3574 const BasicBlock
*> {
3575 explicit const_succ_op_iterator(const_value_op_iterator I
)
3576 : iterator_adaptor_base(I
) {}
3578 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3579 const BasicBlock
*operator->() const { return operator*(); }
3582 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3583 Instruction
*InsertBefore
= nullptr) {
3584 return new IndirectBrInst(Address
, NumDests
, InsertBefore
);
3587 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3588 BasicBlock
*InsertAtEnd
) {
3589 return new IndirectBrInst(Address
, NumDests
, InsertAtEnd
);
3592 /// Provide fast operand accessors.
3593 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3595 // Accessor Methods for IndirectBrInst instruction.
3596 Value
*getAddress() { return getOperand(0); }
3597 const Value
*getAddress() const { return getOperand(0); }
3598 void setAddress(Value
*V
) { setOperand(0, V
); }
3600 /// return the number of possible destinations in this
3601 /// indirectbr instruction.
3602 unsigned getNumDestinations() const { return getNumOperands()-1; }
3604 /// Return the specified destination.
3605 BasicBlock
*getDestination(unsigned i
) { return getSuccessor(i
); }
3606 const BasicBlock
*getDestination(unsigned i
) const { return getSuccessor(i
); }
3608 /// Add a destination.
3610 void addDestination(BasicBlock
*Dest
);
3612 /// This method removes the specified successor from the
3613 /// indirectbr instruction.
3614 void removeDestination(unsigned i
);
3616 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3617 BasicBlock
*getSuccessor(unsigned i
) const {
3618 return cast
<BasicBlock
>(getOperand(i
+1));
3620 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3621 setOperand(i
+ 1, NewSucc
);
3624 iterator_range
<succ_op_iterator
> successors() {
3625 return make_range(succ_op_iterator(std::next(value_op_begin())),
3626 succ_op_iterator(value_op_end()));
3629 iterator_range
<const_succ_op_iterator
> successors() const {
3630 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3631 const_succ_op_iterator(value_op_end()));
3634 // Methods for support type inquiry through isa, cast, and dyn_cast:
3635 static bool classof(const Instruction
*I
) {
3636 return I
->getOpcode() == Instruction::IndirectBr
;
3638 static bool classof(const Value
*V
) {
3639 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3644 struct OperandTraits
<IndirectBrInst
> : public HungoffOperandTraits
<1> {
3647 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst
, Value
)
3649 //===----------------------------------------------------------------------===//
3651 //===----------------------------------------------------------------------===//
3653 /// Invoke instruction. The SubclassData field is used to hold the
3654 /// calling convention of the call.
3656 class InvokeInst
: public CallBase
{
3657 /// The number of operands for this call beyond the called function,
3658 /// arguments, and operand bundles.
3659 static constexpr int NumExtraOperands
= 2;
3661 /// The index from the end of the operand array to the normal destination.
3662 static constexpr int NormalDestOpEndIdx
= -3;
3664 /// The index from the end of the operand array to the unwind destination.
3665 static constexpr int UnwindDestOpEndIdx
= -2;
3667 InvokeInst(const InvokeInst
&BI
);
3669 /// Construct an InvokeInst given a range of arguments.
3671 /// Construct an InvokeInst from a range of arguments
3672 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3673 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3674 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3675 const Twine
&NameStr
, Instruction
*InsertBefore
);
3677 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3678 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3679 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3680 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3682 void init(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3683 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3684 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3686 /// Compute the number of operands to allocate.
3687 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
3688 // We need one operand for the called function, plus our extra operands and
3689 // the input operand counts provided.
3690 return 1 + NumExtraOperands
+ NumArgs
+ NumBundleInputs
;
3694 // Note: Instruction needs to be a friend here to call cloneImpl.
3695 friend class Instruction
;
3697 InvokeInst
*cloneImpl() const;
3700 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3701 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3702 const Twine
&NameStr
,
3703 Instruction
*InsertBefore
= nullptr) {
3704 int NumOperands
= ComputeNumOperands(Args
.size());
3705 return new (NumOperands
)
3706 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3707 NameStr
, InsertBefore
);
3710 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3711 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3712 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3713 const Twine
&NameStr
= "",
3714 Instruction
*InsertBefore
= nullptr) {
3716 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3717 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3719 return new (NumOperands
, DescriptorBytes
)
3720 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3721 NameStr
, InsertBefore
);
3724 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3725 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3726 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3727 int NumOperands
= ComputeNumOperands(Args
.size());
3728 return new (NumOperands
)
3729 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3730 NameStr
, InsertAtEnd
);
3733 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3734 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3735 ArrayRef
<OperandBundleDef
> Bundles
,
3736 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3738 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3739 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3741 return new (NumOperands
, DescriptorBytes
)
3742 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3743 NameStr
, InsertAtEnd
);
3746 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3747 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3748 const Twine
&NameStr
,
3749 Instruction
*InsertBefore
= nullptr) {
3750 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3751 IfException
, Args
, None
, NameStr
, InsertBefore
);
3754 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3755 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3756 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3757 const Twine
&NameStr
= "",
3758 Instruction
*InsertBefore
= nullptr) {
3759 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3760 IfException
, Args
, Bundles
, NameStr
, InsertBefore
);
3763 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3764 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3765 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3766 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3767 IfException
, Args
, NameStr
, InsertAtEnd
);
3770 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3771 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3772 ArrayRef
<OperandBundleDef
> Bundles
,
3773 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3774 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3775 IfException
, Args
, Bundles
, NameStr
, InsertAtEnd
);
3778 // Deprecated [opaque pointer types]
3779 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3780 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3781 const Twine
&NameStr
,
3782 Instruction
*InsertBefore
= nullptr) {
3783 return Create(cast
<FunctionType
>(
3784 cast
<PointerType
>(Func
->getType())->getElementType()),
3785 Func
, IfNormal
, IfException
, Args
, None
, NameStr
,
3789 // Deprecated [opaque pointer types]
3790 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3791 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3792 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3793 const Twine
&NameStr
= "",
3794 Instruction
*InsertBefore
= nullptr) {
3795 return Create(cast
<FunctionType
>(
3796 cast
<PointerType
>(Func
->getType())->getElementType()),
3797 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3801 // Deprecated [opaque pointer types]
3802 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3803 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3804 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3805 return Create(cast
<FunctionType
>(
3806 cast
<PointerType
>(Func
->getType())->getElementType()),
3807 Func
, IfNormal
, IfException
, Args
, NameStr
, InsertAtEnd
);
3810 // Deprecated [opaque pointer types]
3811 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3812 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3813 ArrayRef
<OperandBundleDef
> Bundles
,
3814 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3815 return Create(cast
<FunctionType
>(
3816 cast
<PointerType
>(Func
->getType())->getElementType()),
3817 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3821 /// Create a clone of \p II with a different set of operand bundles and
3822 /// insert it before \p InsertPt.
3824 /// The returned invoke instruction is identical to \p II in every way except
3825 /// that the operand bundles for the new instruction are set to the operand
3826 /// bundles in \p Bundles.
3827 static InvokeInst
*Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> Bundles
,
3828 Instruction
*InsertPt
= nullptr);
3830 /// Determine if the call should not perform indirect branch tracking.
3831 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck
); }
3833 /// Determine if the call cannot unwind.
3834 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind
); }
3835 void setDoesNotThrow() {
3836 addAttribute(AttributeList::FunctionIndex
, Attribute::NoUnwind
);
3839 // get*Dest - Return the destination basic blocks...
3840 BasicBlock
*getNormalDest() const {
3841 return cast
<BasicBlock
>(Op
<NormalDestOpEndIdx
>());
3843 BasicBlock
*getUnwindDest() const {
3844 return cast
<BasicBlock
>(Op
<UnwindDestOpEndIdx
>());
3846 void setNormalDest(BasicBlock
*B
) {
3847 Op
<NormalDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3849 void setUnwindDest(BasicBlock
*B
) {
3850 Op
<UnwindDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3853 /// Get the landingpad instruction from the landing pad
3854 /// block (the unwind destination).
3855 LandingPadInst
*getLandingPadInst() const;
3857 BasicBlock
*getSuccessor(unsigned i
) const {
3858 assert(i
< 2 && "Successor # out of range for invoke!");
3859 return i
== 0 ? getNormalDest() : getUnwindDest();
3862 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3863 assert(i
< 2 && "Successor # out of range for invoke!");
3865 setNormalDest(NewSucc
);
3867 setUnwindDest(NewSucc
);
3870 unsigned getNumSuccessors() const { return 2; }
3872 // Methods for support type inquiry through isa, cast, and dyn_cast:
3873 static bool classof(const Instruction
*I
) {
3874 return (I
->getOpcode() == Instruction::Invoke
);
3876 static bool classof(const Value
*V
) {
3877 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3882 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3883 // method so that subclasses cannot accidentally use it.
3884 void setInstructionSubclassData(unsigned short D
) {
3885 Instruction::setInstructionSubclassData(D
);
3889 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3890 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3891 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3892 const Twine
&NameStr
, Instruction
*InsertBefore
)
3893 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3894 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3896 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3899 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3900 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3901 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3902 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
3903 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3904 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3906 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3909 //===----------------------------------------------------------------------===//
3911 //===----------------------------------------------------------------------===//
3913 /// CallBr instruction, tracking function calls that may not return control but
3914 /// instead transfer it to a third location. The SubclassData field is used to
3915 /// hold the calling convention of the call.
3917 class CallBrInst
: public CallBase
{
3919 unsigned NumIndirectDests
;
3921 CallBrInst(const CallBrInst
&BI
);
3923 /// Construct a CallBrInst given a range of arguments.
3925 /// Construct a CallBrInst from a range of arguments
3926 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3927 ArrayRef
<BasicBlock
*> IndirectDests
,
3928 ArrayRef
<Value
*> Args
,
3929 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3930 const Twine
&NameStr
, Instruction
*InsertBefore
);
3932 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3933 ArrayRef
<BasicBlock
*> IndirectDests
,
3934 ArrayRef
<Value
*> Args
,
3935 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3936 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3938 void init(FunctionType
*FTy
, Value
*Func
, BasicBlock
*DefaultDest
,
3939 ArrayRef
<BasicBlock
*> IndirectDests
, ArrayRef
<Value
*> Args
,
3940 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3942 /// Should the Indirect Destinations change, scan + update the Arg list.
3943 void updateArgBlockAddresses(unsigned i
, BasicBlock
*B
);
3945 /// Compute the number of operands to allocate.
3946 static int ComputeNumOperands(int NumArgs
, int NumIndirectDests
,
3947 int NumBundleInputs
= 0) {
3948 // We need one operand for the called function, plus our extra operands and
3949 // the input operand counts provided.
3950 return 2 + NumIndirectDests
+ NumArgs
+ NumBundleInputs
;
3954 // Note: Instruction needs to be a friend here to call cloneImpl.
3955 friend class Instruction
;
3957 CallBrInst
*cloneImpl() const;
3960 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3961 BasicBlock
*DefaultDest
,
3962 ArrayRef
<BasicBlock
*> IndirectDests
,
3963 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3964 Instruction
*InsertBefore
= nullptr) {
3965 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3966 return new (NumOperands
)
3967 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3968 NumOperands
, NameStr
, InsertBefore
);
3971 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3972 BasicBlock
*DefaultDest
,
3973 ArrayRef
<BasicBlock
*> IndirectDests
,
3974 ArrayRef
<Value
*> Args
,
3975 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3976 const Twine
&NameStr
= "",
3977 Instruction
*InsertBefore
= nullptr) {
3978 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
3979 CountBundleInputs(Bundles
));
3980 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3982 return new (NumOperands
, DescriptorBytes
)
3983 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
3984 NumOperands
, NameStr
, InsertBefore
);
3987 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3988 BasicBlock
*DefaultDest
,
3989 ArrayRef
<BasicBlock
*> IndirectDests
,
3990 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3991 BasicBlock
*InsertAtEnd
) {
3992 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3993 return new (NumOperands
)
3994 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3995 NumOperands
, NameStr
, InsertAtEnd
);
3998 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3999 BasicBlock
*DefaultDest
,
4000 ArrayRef
<BasicBlock
*> IndirectDests
,
4001 ArrayRef
<Value
*> Args
,
4002 ArrayRef
<OperandBundleDef
> Bundles
,
4003 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4004 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
4005 CountBundleInputs(Bundles
));
4006 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
4008 return new (NumOperands
, DescriptorBytes
)
4009 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
4010 NumOperands
, NameStr
, InsertAtEnd
);
4013 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4014 ArrayRef
<BasicBlock
*> IndirectDests
,
4015 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4016 Instruction
*InsertBefore
= nullptr) {
4017 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4018 IndirectDests
, Args
, NameStr
, InsertBefore
);
4021 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4022 ArrayRef
<BasicBlock
*> IndirectDests
,
4023 ArrayRef
<Value
*> Args
,
4024 ArrayRef
<OperandBundleDef
> Bundles
= None
,
4025 const Twine
&NameStr
= "",
4026 Instruction
*InsertBefore
= nullptr) {
4027 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4028 IndirectDests
, Args
, Bundles
, NameStr
, InsertBefore
);
4031 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4032 ArrayRef
<BasicBlock
*> IndirectDests
,
4033 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4034 BasicBlock
*InsertAtEnd
) {
4035 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4036 IndirectDests
, Args
, NameStr
, InsertAtEnd
);
4039 static CallBrInst
*Create(FunctionCallee Func
,
4040 BasicBlock
*DefaultDest
,
4041 ArrayRef
<BasicBlock
*> IndirectDests
,
4042 ArrayRef
<Value
*> Args
,
4043 ArrayRef
<OperandBundleDef
> Bundles
,
4044 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4045 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4046 IndirectDests
, Args
, Bundles
, NameStr
, InsertAtEnd
);
4049 /// Create a clone of \p CBI with a different set of operand bundles and
4050 /// insert it before \p InsertPt.
4052 /// The returned callbr instruction is identical to \p CBI in every way
4053 /// except that the operand bundles for the new instruction are set to the
4054 /// operand bundles in \p Bundles.
4055 static CallBrInst
*Create(CallBrInst
*CBI
,
4056 ArrayRef
<OperandBundleDef
> Bundles
,
4057 Instruction
*InsertPt
= nullptr);
4059 /// Return the number of callbr indirect dest labels.
4061 unsigned getNumIndirectDests() const { return NumIndirectDests
; }
4063 /// getIndirectDestLabel - Return the i-th indirect dest label.
4065 Value
*getIndirectDestLabel(unsigned i
) const {
4066 assert(i
< getNumIndirectDests() && "Out of bounds!");
4067 return getOperand(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4071 Value
*getIndirectDestLabelUse(unsigned i
) const {
4072 assert(i
< getNumIndirectDests() && "Out of bounds!");
4073 return getOperandUse(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4077 // Return the destination basic blocks...
4078 BasicBlock
*getDefaultDest() const {
4079 return cast
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() - 1));
4081 BasicBlock
*getIndirectDest(unsigned i
) const {
4082 return cast_or_null
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() + i
));
4084 SmallVector
<BasicBlock
*, 16> getIndirectDests() const {
4085 SmallVector
<BasicBlock
*, 16> IndirectDests
;
4086 for (unsigned i
= 0, e
= getNumIndirectDests(); i
< e
; ++i
)
4087 IndirectDests
.push_back(getIndirectDest(i
));
4088 return IndirectDests
;
4090 void setDefaultDest(BasicBlock
*B
) {
4091 *(&Op
<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value
*>(B
);
4093 void setIndirectDest(unsigned i
, BasicBlock
*B
) {
4094 updateArgBlockAddresses(i
, B
);
4095 *(&Op
<-1>() - getNumIndirectDests() + i
) = reinterpret_cast<Value
*>(B
);
4098 BasicBlock
*getSuccessor(unsigned i
) const {
4099 assert(i
< getNumSuccessors() + 1 &&
4100 "Successor # out of range for callbr!");
4101 return i
== 0 ? getDefaultDest() : getIndirectDest(i
- 1);
4104 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
4105 assert(i
< getNumIndirectDests() + 1 &&
4106 "Successor # out of range for callbr!");
4107 return i
== 0 ? setDefaultDest(NewSucc
) : setIndirectDest(i
- 1, NewSucc
);
4110 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4112 // Methods for support type inquiry through isa, cast, and dyn_cast:
4113 static bool classof(const Instruction
*I
) {
4114 return (I
->getOpcode() == Instruction::CallBr
);
4116 static bool classof(const Value
*V
) {
4117 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4122 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4123 // method so that subclasses cannot accidentally use it.
4124 void setInstructionSubclassData(unsigned short D
) {
4125 Instruction::setInstructionSubclassData(D
);
4129 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4130 ArrayRef
<BasicBlock
*> IndirectDests
,
4131 ArrayRef
<Value
*> Args
,
4132 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4133 const Twine
&NameStr
, Instruction
*InsertBefore
)
4134 : CallBase(Ty
->getReturnType(), Instruction::CallBr
,
4135 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4137 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4140 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4141 ArrayRef
<BasicBlock
*> IndirectDests
,
4142 ArrayRef
<Value
*> Args
,
4143 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4144 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
4147 cast
<PointerType
>(Func
->getType())->getElementType())
4149 Instruction::CallBr
,
4150 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4152 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4155 //===----------------------------------------------------------------------===//
4157 //===----------------------------------------------------------------------===//
4159 //===---------------------------------------------------------------------------
4160 /// Resume the propagation of an exception.
4162 class ResumeInst
: public Instruction
{
4163 ResumeInst(const ResumeInst
&RI
);
4165 explicit ResumeInst(Value
*Exn
, Instruction
*InsertBefore
=nullptr);
4166 ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
);
4169 // Note: Instruction needs to be a friend here to call cloneImpl.
4170 friend class Instruction
;
4172 ResumeInst
*cloneImpl() const;
4175 static ResumeInst
*Create(Value
*Exn
, Instruction
*InsertBefore
= nullptr) {
4176 return new(1) ResumeInst(Exn
, InsertBefore
);
4179 static ResumeInst
*Create(Value
*Exn
, BasicBlock
*InsertAtEnd
) {
4180 return new(1) ResumeInst(Exn
, InsertAtEnd
);
4183 /// Provide fast operand accessors
4184 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4186 /// Convenience accessor.
4187 Value
*getValue() const { return Op
<0>(); }
4189 unsigned getNumSuccessors() const { return 0; }
4191 // Methods for support type inquiry through isa, cast, and dyn_cast:
4192 static bool classof(const Instruction
*I
) {
4193 return I
->getOpcode() == Instruction::Resume
;
4195 static bool classof(const Value
*V
) {
4196 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4200 BasicBlock
*getSuccessor(unsigned idx
) const {
4201 llvm_unreachable("ResumeInst has no successors!");
4204 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
4205 llvm_unreachable("ResumeInst has no successors!");
4210 struct OperandTraits
<ResumeInst
> :
4211 public FixedNumOperandTraits
<ResumeInst
, 1> {
4214 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst
, Value
)
4216 //===----------------------------------------------------------------------===//
4217 // CatchSwitchInst Class
4218 //===----------------------------------------------------------------------===//
4219 class CatchSwitchInst
: public Instruction
{
4220 /// The number of operands actually allocated. NumOperands is
4221 /// the number actually in use.
4222 unsigned ReservedSpace
;
4224 // Operand[0] = Outer scope
4225 // Operand[1] = Unwind block destination
4226 // Operand[n] = BasicBlock to go to on match
4227 CatchSwitchInst(const CatchSwitchInst
&CSI
);
4229 /// Create a new switch instruction, specifying a
4230 /// default destination. The number of additional handlers can be specified
4231 /// here to make memory allocation more efficient.
4232 /// This constructor can also autoinsert before another instruction.
4233 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4234 unsigned NumHandlers
, const Twine
&NameStr
,
4235 Instruction
*InsertBefore
);
4237 /// Create a new switch instruction, specifying a
4238 /// default destination. The number of additional handlers can be specified
4239 /// here to make memory allocation more efficient.
4240 /// This constructor also autoinserts at the end of the specified BasicBlock.
4241 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4242 unsigned NumHandlers
, const Twine
&NameStr
,
4243 BasicBlock
*InsertAtEnd
);
4245 // allocate space for exactly zero operands
4246 void *operator new(size_t s
) { return User::operator new(s
); }
4248 void init(Value
*ParentPad
, BasicBlock
*UnwindDest
, unsigned NumReserved
);
4249 void growOperands(unsigned Size
);
4252 // Note: Instruction needs to be a friend here to call cloneImpl.
4253 friend class Instruction
;
4255 CatchSwitchInst
*cloneImpl() const;
4258 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4259 unsigned NumHandlers
,
4260 const Twine
&NameStr
= "",
4261 Instruction
*InsertBefore
= nullptr) {
4262 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4266 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4267 unsigned NumHandlers
, const Twine
&NameStr
,
4268 BasicBlock
*InsertAtEnd
) {
4269 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4273 /// Provide fast operand accessors
4274 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4276 // Accessor Methods for CatchSwitch stmt
4277 Value
*getParentPad() const { return getOperand(0); }
4278 void setParentPad(Value
*ParentPad
) { setOperand(0, ParentPad
); }
4280 // Accessor Methods for CatchSwitch stmt
4281 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4282 bool unwindsToCaller() const { return !hasUnwindDest(); }
4283 BasicBlock
*getUnwindDest() const {
4284 if (hasUnwindDest())
4285 return cast
<BasicBlock
>(getOperand(1));
4288 void setUnwindDest(BasicBlock
*UnwindDest
) {
4290 assert(hasUnwindDest());
4291 setOperand(1, UnwindDest
);
4294 /// return the number of 'handlers' in this catchswitch
4295 /// instruction, except the default handler
4296 unsigned getNumHandlers() const {
4297 if (hasUnwindDest())
4298 return getNumOperands() - 2;
4299 return getNumOperands() - 1;
4303 static BasicBlock
*handler_helper(Value
*V
) { return cast
<BasicBlock
>(V
); }
4304 static const BasicBlock
*handler_helper(const Value
*V
) {
4305 return cast
<BasicBlock
>(V
);
4309 using DerefFnTy
= BasicBlock
*(*)(Value
*);
4310 using handler_iterator
= mapped_iterator
<op_iterator
, DerefFnTy
>;
4311 using handler_range
= iterator_range
<handler_iterator
>;
4312 using ConstDerefFnTy
= const BasicBlock
*(*)(const Value
*);
4313 using const_handler_iterator
=
4314 mapped_iterator
<const_op_iterator
, ConstDerefFnTy
>;
4315 using const_handler_range
= iterator_range
<const_handler_iterator
>;
4317 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4318 handler_iterator
handler_begin() {
4319 op_iterator It
= op_begin() + 1;
4320 if (hasUnwindDest())
4322 return handler_iterator(It
, DerefFnTy(handler_helper
));
4325 /// Returns an iterator that points to the first handler in the
4326 /// CatchSwitchInst.
4327 const_handler_iterator
handler_begin() const {
4328 const_op_iterator It
= op_begin() + 1;
4329 if (hasUnwindDest())
4331 return const_handler_iterator(It
, ConstDerefFnTy(handler_helper
));
4334 /// Returns a read-only iterator that points one past the last
4335 /// handler in the CatchSwitchInst.
4336 handler_iterator
handler_end() {
4337 return handler_iterator(op_end(), DerefFnTy(handler_helper
));
4340 /// Returns an iterator that points one past the last handler in the
4341 /// CatchSwitchInst.
4342 const_handler_iterator
handler_end() const {
4343 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper
));
4346 /// iteration adapter for range-for loops.
4347 handler_range
handlers() {
4348 return make_range(handler_begin(), handler_end());
4351 /// iteration adapter for range-for loops.
4352 const_handler_range
handlers() const {
4353 return make_range(handler_begin(), handler_end());
4356 /// Add an entry to the switch instruction...
4358 /// This action invalidates handler_end(). Old handler_end() iterator will
4359 /// point to the added handler.
4360 void addHandler(BasicBlock
*Dest
);
4362 void removeHandler(handler_iterator HI
);
4364 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4365 BasicBlock
*getSuccessor(unsigned Idx
) const {
4366 assert(Idx
< getNumSuccessors() &&
4367 "Successor # out of range for catchswitch!");
4368 return cast
<BasicBlock
>(getOperand(Idx
+ 1));
4370 void setSuccessor(unsigned Idx
, BasicBlock
*NewSucc
) {
4371 assert(Idx
< getNumSuccessors() &&
4372 "Successor # out of range for catchswitch!");
4373 setOperand(Idx
+ 1, NewSucc
);
4376 // Methods for support type inquiry through isa, cast, and dyn_cast:
4377 static bool classof(const Instruction
*I
) {
4378 return I
->getOpcode() == Instruction::CatchSwitch
;
4380 static bool classof(const Value
*V
) {
4381 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4386 struct OperandTraits
<CatchSwitchInst
> : public HungoffOperandTraits
<2> {};
4388 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst
, Value
)
4390 //===----------------------------------------------------------------------===//
4391 // CleanupPadInst Class
4392 //===----------------------------------------------------------------------===//
4393 class CleanupPadInst
: public FuncletPadInst
{
4395 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4396 unsigned Values
, const Twine
&NameStr
,
4397 Instruction
*InsertBefore
)
4398 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4399 NameStr
, InsertBefore
) {}
4400 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4401 unsigned Values
, const Twine
&NameStr
,
4402 BasicBlock
*InsertAtEnd
)
4403 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4404 NameStr
, InsertAtEnd
) {}
4407 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
= None
,
4408 const Twine
&NameStr
= "",
4409 Instruction
*InsertBefore
= nullptr) {
4410 unsigned Values
= 1 + Args
.size();
4412 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertBefore
);
4415 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4416 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4417 unsigned Values
= 1 + Args
.size();
4419 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertAtEnd
);
4422 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4423 static bool classof(const Instruction
*I
) {
4424 return I
->getOpcode() == Instruction::CleanupPad
;
4426 static bool classof(const Value
*V
) {
4427 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4431 //===----------------------------------------------------------------------===//
4432 // CatchPadInst Class
4433 //===----------------------------------------------------------------------===//
4434 class CatchPadInst
: public FuncletPadInst
{
4436 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4437 unsigned Values
, const Twine
&NameStr
,
4438 Instruction
*InsertBefore
)
4439 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4440 NameStr
, InsertBefore
) {}
4441 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4442 unsigned Values
, const Twine
&NameStr
,
4443 BasicBlock
*InsertAtEnd
)
4444 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4445 NameStr
, InsertAtEnd
) {}
4448 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4449 const Twine
&NameStr
= "",
4450 Instruction
*InsertBefore
= nullptr) {
4451 unsigned Values
= 1 + Args
.size();
4453 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertBefore
);
4456 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4457 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4458 unsigned Values
= 1 + Args
.size();
4460 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertAtEnd
);
4463 /// Convenience accessors
4464 CatchSwitchInst
*getCatchSwitch() const {
4465 return cast
<CatchSwitchInst
>(Op
<-1>());
4467 void setCatchSwitch(Value
*CatchSwitch
) {
4468 assert(CatchSwitch
);
4469 Op
<-1>() = CatchSwitch
;
4472 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4473 static bool classof(const Instruction
*I
) {
4474 return I
->getOpcode() == Instruction::CatchPad
;
4476 static bool classof(const Value
*V
) {
4477 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4481 //===----------------------------------------------------------------------===//
4482 // CatchReturnInst Class
4483 //===----------------------------------------------------------------------===//
4485 class CatchReturnInst
: public Instruction
{
4486 CatchReturnInst(const CatchReturnInst
&RI
);
4487 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, Instruction
*InsertBefore
);
4488 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, BasicBlock
*InsertAtEnd
);
4490 void init(Value
*CatchPad
, BasicBlock
*BB
);
4493 // Note: Instruction needs to be a friend here to call cloneImpl.
4494 friend class Instruction
;
4496 CatchReturnInst
*cloneImpl() const;
4499 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4500 Instruction
*InsertBefore
= nullptr) {
4503 return new (2) CatchReturnInst(CatchPad
, BB
, InsertBefore
);
4506 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4507 BasicBlock
*InsertAtEnd
) {
4510 return new (2) CatchReturnInst(CatchPad
, BB
, InsertAtEnd
);
4513 /// Provide fast operand accessors
4514 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4516 /// Convenience accessors.
4517 CatchPadInst
*getCatchPad() const { return cast
<CatchPadInst
>(Op
<0>()); }
4518 void setCatchPad(CatchPadInst
*CatchPad
) {
4523 BasicBlock
*getSuccessor() const { return cast
<BasicBlock
>(Op
<1>()); }
4524 void setSuccessor(BasicBlock
*NewSucc
) {
4528 unsigned getNumSuccessors() const { return 1; }
4530 /// Get the parentPad of this catchret's catchpad's catchswitch.
4531 /// The successor block is implicitly a member of this funclet.
4532 Value
*getCatchSwitchParentPad() const {
4533 return getCatchPad()->getCatchSwitch()->getParentPad();
4536 // Methods for support type inquiry through isa, cast, and dyn_cast:
4537 static bool classof(const Instruction
*I
) {
4538 return (I
->getOpcode() == Instruction::CatchRet
);
4540 static bool classof(const Value
*V
) {
4541 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4545 BasicBlock
*getSuccessor(unsigned Idx
) const {
4546 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4547 return getSuccessor();
4550 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4551 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4557 struct OperandTraits
<CatchReturnInst
>
4558 : public FixedNumOperandTraits
<CatchReturnInst
, 2> {};
4560 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst
, Value
)
4562 //===----------------------------------------------------------------------===//
4563 // CleanupReturnInst Class
4564 //===----------------------------------------------------------------------===//
4566 class CleanupReturnInst
: public Instruction
{
4568 CleanupReturnInst(const CleanupReturnInst
&RI
);
4569 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4570 Instruction
*InsertBefore
= nullptr);
4571 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4572 BasicBlock
*InsertAtEnd
);
4574 void init(Value
*CleanupPad
, BasicBlock
*UnwindBB
);
4577 // Note: Instruction needs to be a friend here to call cloneImpl.
4578 friend class Instruction
;
4580 CleanupReturnInst
*cloneImpl() const;
4583 static CleanupReturnInst
*Create(Value
*CleanupPad
,
4584 BasicBlock
*UnwindBB
= nullptr,
4585 Instruction
*InsertBefore
= nullptr) {
4587 unsigned Values
= 1;
4591 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertBefore
);
4594 static CleanupReturnInst
*Create(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
4595 BasicBlock
*InsertAtEnd
) {
4597 unsigned Values
= 1;
4601 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertAtEnd
);
4604 /// Provide fast operand accessors
4605 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4607 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4608 bool unwindsToCaller() const { return !hasUnwindDest(); }
4610 /// Convenience accessor.
4611 CleanupPadInst
*getCleanupPad() const {
4612 return cast
<CleanupPadInst
>(Op
<0>());
4614 void setCleanupPad(CleanupPadInst
*CleanupPad
) {
4616 Op
<0>() = CleanupPad
;
4619 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4621 BasicBlock
*getUnwindDest() const {
4622 return hasUnwindDest() ? cast
<BasicBlock
>(Op
<1>()) : nullptr;
4624 void setUnwindDest(BasicBlock
*NewDest
) {
4626 assert(hasUnwindDest());
4630 // Methods for support type inquiry through isa, cast, and dyn_cast:
4631 static bool classof(const Instruction
*I
) {
4632 return (I
->getOpcode() == Instruction::CleanupRet
);
4634 static bool classof(const Value
*V
) {
4635 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4639 BasicBlock
*getSuccessor(unsigned Idx
) const {
4641 return getUnwindDest();
4644 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4649 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4650 // method so that subclasses cannot accidentally use it.
4651 void setInstructionSubclassData(unsigned short D
) {
4652 Instruction::setInstructionSubclassData(D
);
4657 struct OperandTraits
<CleanupReturnInst
>
4658 : public VariadicOperandTraits
<CleanupReturnInst
, /*MINARITY=*/1> {};
4660 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst
, Value
)
4662 //===----------------------------------------------------------------------===//
4663 // UnreachableInst Class
4664 //===----------------------------------------------------------------------===//
4666 //===---------------------------------------------------------------------------
4667 /// This function has undefined behavior. In particular, the
4668 /// presence of this instruction indicates some higher level knowledge that the
4669 /// end of the block cannot be reached.
4671 class UnreachableInst
: public Instruction
{
4673 // Note: Instruction needs to be a friend here to call cloneImpl.
4674 friend class Instruction
;
4676 UnreachableInst
*cloneImpl() const;
4679 explicit UnreachableInst(LLVMContext
&C
, Instruction
*InsertBefore
= nullptr);
4680 explicit UnreachableInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
4682 // allocate space for exactly zero operands
4683 void *operator new(size_t s
) {
4684 return User::operator new(s
, 0);
4687 unsigned getNumSuccessors() const { return 0; }
4689 // Methods for support type inquiry through isa, cast, and dyn_cast:
4690 static bool classof(const Instruction
*I
) {
4691 return I
->getOpcode() == Instruction::Unreachable
;
4693 static bool classof(const Value
*V
) {
4694 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4698 BasicBlock
*getSuccessor(unsigned idx
) const {
4699 llvm_unreachable("UnreachableInst has no successors!");
4702 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
4703 llvm_unreachable("UnreachableInst has no successors!");
4707 //===----------------------------------------------------------------------===//
4709 //===----------------------------------------------------------------------===//
4711 /// This class represents a truncation of integer types.
4712 class TruncInst
: public CastInst
{
4714 // Note: Instruction needs to be a friend here to call cloneImpl.
4715 friend class Instruction
;
4717 /// Clone an identical TruncInst
4718 TruncInst
*cloneImpl() const;
4721 /// Constructor with insert-before-instruction semantics
4723 Value
*S
, ///< The value to be truncated
4724 Type
*Ty
, ///< The (smaller) type to truncate to
4725 const Twine
&NameStr
= "", ///< A name for the new instruction
4726 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4729 /// Constructor with insert-at-end-of-block semantics
4731 Value
*S
, ///< The value to be truncated
4732 Type
*Ty
, ///< The (smaller) type to truncate to
4733 const Twine
&NameStr
, ///< A name for the new instruction
4734 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4737 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4738 static bool classof(const Instruction
*I
) {
4739 return I
->getOpcode() == Trunc
;
4741 static bool classof(const Value
*V
) {
4742 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4746 //===----------------------------------------------------------------------===//
4748 //===----------------------------------------------------------------------===//
4750 /// This class represents zero extension of integer types.
4751 class ZExtInst
: public CastInst
{
4753 // Note: Instruction needs to be a friend here to call cloneImpl.
4754 friend class Instruction
;
4756 /// Clone an identical ZExtInst
4757 ZExtInst
*cloneImpl() const;
4760 /// Constructor with insert-before-instruction semantics
4762 Value
*S
, ///< The value to be zero extended
4763 Type
*Ty
, ///< The type to zero extend to
4764 const Twine
&NameStr
= "", ///< A name for the new instruction
4765 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4768 /// Constructor with insert-at-end semantics.
4770 Value
*S
, ///< The value to be zero extended
4771 Type
*Ty
, ///< The type to zero extend to
4772 const Twine
&NameStr
, ///< A name for the new instruction
4773 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4776 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4777 static bool classof(const Instruction
*I
) {
4778 return I
->getOpcode() == ZExt
;
4780 static bool classof(const Value
*V
) {
4781 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4785 //===----------------------------------------------------------------------===//
4787 //===----------------------------------------------------------------------===//
4789 /// This class represents a sign extension of integer types.
4790 class SExtInst
: public CastInst
{
4792 // Note: Instruction needs to be a friend here to call cloneImpl.
4793 friend class Instruction
;
4795 /// Clone an identical SExtInst
4796 SExtInst
*cloneImpl() const;
4799 /// Constructor with insert-before-instruction semantics
4801 Value
*S
, ///< The value to be sign extended
4802 Type
*Ty
, ///< The type to sign extend to
4803 const Twine
&NameStr
= "", ///< A name for the new instruction
4804 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4807 /// Constructor with insert-at-end-of-block semantics
4809 Value
*S
, ///< The value to be sign extended
4810 Type
*Ty
, ///< The type to sign extend to
4811 const Twine
&NameStr
, ///< A name for the new instruction
4812 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4815 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4816 static bool classof(const Instruction
*I
) {
4817 return I
->getOpcode() == SExt
;
4819 static bool classof(const Value
*V
) {
4820 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4824 //===----------------------------------------------------------------------===//
4825 // FPTruncInst Class
4826 //===----------------------------------------------------------------------===//
4828 /// This class represents a truncation of floating point types.
4829 class FPTruncInst
: public CastInst
{
4831 // Note: Instruction needs to be a friend here to call cloneImpl.
4832 friend class Instruction
;
4834 /// Clone an identical FPTruncInst
4835 FPTruncInst
*cloneImpl() const;
4838 /// Constructor with insert-before-instruction semantics
4840 Value
*S
, ///< The value to be truncated
4841 Type
*Ty
, ///< The type to truncate to
4842 const Twine
&NameStr
= "", ///< A name for the new instruction
4843 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4846 /// Constructor with insert-before-instruction semantics
4848 Value
*S
, ///< The value to be truncated
4849 Type
*Ty
, ///< The type to truncate to
4850 const Twine
&NameStr
, ///< A name for the new instruction
4851 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4854 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4855 static bool classof(const Instruction
*I
) {
4856 return I
->getOpcode() == FPTrunc
;
4858 static bool classof(const Value
*V
) {
4859 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4863 //===----------------------------------------------------------------------===//
4865 //===----------------------------------------------------------------------===//
4867 /// This class represents an extension of floating point types.
4868 class FPExtInst
: public CastInst
{
4870 // Note: Instruction needs to be a friend here to call cloneImpl.
4871 friend class Instruction
;
4873 /// Clone an identical FPExtInst
4874 FPExtInst
*cloneImpl() const;
4877 /// Constructor with insert-before-instruction semantics
4879 Value
*S
, ///< The value to be extended
4880 Type
*Ty
, ///< The type to extend to
4881 const Twine
&NameStr
= "", ///< A name for the new instruction
4882 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4885 /// Constructor with insert-at-end-of-block semantics
4887 Value
*S
, ///< The value to be extended
4888 Type
*Ty
, ///< The type to extend to
4889 const Twine
&NameStr
, ///< A name for the new instruction
4890 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4893 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4894 static bool classof(const Instruction
*I
) {
4895 return I
->getOpcode() == FPExt
;
4897 static bool classof(const Value
*V
) {
4898 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4902 //===----------------------------------------------------------------------===//
4904 //===----------------------------------------------------------------------===//
4906 /// This class represents a cast unsigned integer to floating point.
4907 class UIToFPInst
: public CastInst
{
4909 // Note: Instruction needs to be a friend here to call cloneImpl.
4910 friend class Instruction
;
4912 /// Clone an identical UIToFPInst
4913 UIToFPInst
*cloneImpl() const;
4916 /// Constructor with insert-before-instruction semantics
4918 Value
*S
, ///< The value to be converted
4919 Type
*Ty
, ///< The type to convert to
4920 const Twine
&NameStr
= "", ///< A name for the new instruction
4921 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4924 /// Constructor with insert-at-end-of-block semantics
4926 Value
*S
, ///< The value to be converted
4927 Type
*Ty
, ///< The type to convert to
4928 const Twine
&NameStr
, ///< A name for the new instruction
4929 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4932 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4933 static bool classof(const Instruction
*I
) {
4934 return I
->getOpcode() == UIToFP
;
4936 static bool classof(const Value
*V
) {
4937 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4941 //===----------------------------------------------------------------------===//
4943 //===----------------------------------------------------------------------===//
4945 /// This class represents a cast from signed integer to floating point.
4946 class SIToFPInst
: public CastInst
{
4948 // Note: Instruction needs to be a friend here to call cloneImpl.
4949 friend class Instruction
;
4951 /// Clone an identical SIToFPInst
4952 SIToFPInst
*cloneImpl() const;
4955 /// Constructor with insert-before-instruction semantics
4957 Value
*S
, ///< The value to be converted
4958 Type
*Ty
, ///< The type to convert to
4959 const Twine
&NameStr
= "", ///< A name for the new instruction
4960 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4963 /// Constructor with insert-at-end-of-block semantics
4965 Value
*S
, ///< The value to be converted
4966 Type
*Ty
, ///< The type to convert to
4967 const Twine
&NameStr
, ///< A name for the new instruction
4968 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4971 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4972 static bool classof(const Instruction
*I
) {
4973 return I
->getOpcode() == SIToFP
;
4975 static bool classof(const Value
*V
) {
4976 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4980 //===----------------------------------------------------------------------===//
4982 //===----------------------------------------------------------------------===//
4984 /// This class represents a cast from floating point to unsigned integer
4985 class FPToUIInst
: public CastInst
{
4987 // Note: Instruction needs to be a friend here to call cloneImpl.
4988 friend class Instruction
;
4990 /// Clone an identical FPToUIInst
4991 FPToUIInst
*cloneImpl() const;
4994 /// Constructor with insert-before-instruction semantics
4996 Value
*S
, ///< The value to be converted
4997 Type
*Ty
, ///< The type to convert to
4998 const Twine
&NameStr
= "", ///< A name for the new instruction
4999 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5002 /// Constructor with insert-at-end-of-block semantics
5004 Value
*S
, ///< The value to be converted
5005 Type
*Ty
, ///< The type to convert to
5006 const Twine
&NameStr
, ///< A name for the new instruction
5007 BasicBlock
*InsertAtEnd
///< Where to insert the new instruction
5010 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5011 static bool classof(const Instruction
*I
) {
5012 return I
->getOpcode() == FPToUI
;
5014 static bool classof(const Value
*V
) {
5015 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5019 //===----------------------------------------------------------------------===//
5021 //===----------------------------------------------------------------------===//
5023 /// This class represents a cast from floating point to signed integer.
5024 class FPToSIInst
: public CastInst
{
5026 // Note: Instruction needs to be a friend here to call cloneImpl.
5027 friend class Instruction
;
5029 /// Clone an identical FPToSIInst
5030 FPToSIInst
*cloneImpl() const;
5033 /// Constructor with insert-before-instruction semantics
5035 Value
*S
, ///< The value to be converted
5036 Type
*Ty
, ///< The type to convert to
5037 const Twine
&NameStr
= "", ///< A name for the new instruction
5038 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5041 /// Constructor with insert-at-end-of-block semantics
5043 Value
*S
, ///< The value to be converted
5044 Type
*Ty
, ///< The type to convert to
5045 const Twine
&NameStr
, ///< A name for the new instruction
5046 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5049 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5050 static bool classof(const Instruction
*I
) {
5051 return I
->getOpcode() == FPToSI
;
5053 static bool classof(const Value
*V
) {
5054 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5058 //===----------------------------------------------------------------------===//
5059 // IntToPtrInst Class
5060 //===----------------------------------------------------------------------===//
5062 /// This class represents a cast from an integer to a pointer.
5063 class IntToPtrInst
: public CastInst
{
5065 // Note: Instruction needs to be a friend here to call cloneImpl.
5066 friend class Instruction
;
5068 /// Constructor with insert-before-instruction semantics
5070 Value
*S
, ///< The value to be converted
5071 Type
*Ty
, ///< The type to convert to
5072 const Twine
&NameStr
= "", ///< A name for the new instruction
5073 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5076 /// Constructor with insert-at-end-of-block semantics
5078 Value
*S
, ///< The value to be converted
5079 Type
*Ty
, ///< The type to convert to
5080 const Twine
&NameStr
, ///< A name for the new instruction
5081 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5084 /// Clone an identical IntToPtrInst.
5085 IntToPtrInst
*cloneImpl() const;
5087 /// Returns the address space of this instruction's pointer type.
5088 unsigned getAddressSpace() const {
5089 return getType()->getPointerAddressSpace();
5092 // Methods for support type inquiry through isa, cast, and dyn_cast:
5093 static bool classof(const Instruction
*I
) {
5094 return I
->getOpcode() == IntToPtr
;
5096 static bool classof(const Value
*V
) {
5097 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5101 //===----------------------------------------------------------------------===//
5102 // PtrToIntInst Class
5103 //===----------------------------------------------------------------------===//
5105 /// This class represents a cast from a pointer to an integer.
5106 class PtrToIntInst
: public CastInst
{
5108 // Note: Instruction needs to be a friend here to call cloneImpl.
5109 friend class Instruction
;
5111 /// Clone an identical PtrToIntInst.
5112 PtrToIntInst
*cloneImpl() const;
5115 /// Constructor with insert-before-instruction semantics
5117 Value
*S
, ///< The value to be converted
5118 Type
*Ty
, ///< The type to convert to
5119 const Twine
&NameStr
= "", ///< A name for the new instruction
5120 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5123 /// Constructor with insert-at-end-of-block semantics
5125 Value
*S
, ///< The value to be converted
5126 Type
*Ty
, ///< The type to convert to
5127 const Twine
&NameStr
, ///< A name for the new instruction
5128 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5131 /// Gets the pointer operand.
5132 Value
*getPointerOperand() { return getOperand(0); }
5133 /// Gets the pointer operand.
5134 const Value
*getPointerOperand() const { return getOperand(0); }
5135 /// Gets the operand index of the pointer operand.
5136 static unsigned getPointerOperandIndex() { return 0U; }
5138 /// Returns the address space of the pointer operand.
5139 unsigned getPointerAddressSpace() const {
5140 return getPointerOperand()->getType()->getPointerAddressSpace();
5143 // Methods for support type inquiry through isa, cast, and dyn_cast:
5144 static bool classof(const Instruction
*I
) {
5145 return I
->getOpcode() == PtrToInt
;
5147 static bool classof(const Value
*V
) {
5148 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5152 //===----------------------------------------------------------------------===//
5153 // BitCastInst Class
5154 //===----------------------------------------------------------------------===//
5156 /// This class represents a no-op cast from one type to another.
5157 class BitCastInst
: public CastInst
{
5159 // Note: Instruction needs to be a friend here to call cloneImpl.
5160 friend class Instruction
;
5162 /// Clone an identical BitCastInst.
5163 BitCastInst
*cloneImpl() const;
5166 /// Constructor with insert-before-instruction semantics
5168 Value
*S
, ///< The value to be casted
5169 Type
*Ty
, ///< The type to casted to
5170 const Twine
&NameStr
= "", ///< A name for the new instruction
5171 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5174 /// Constructor with insert-at-end-of-block semantics
5176 Value
*S
, ///< The value to be casted
5177 Type
*Ty
, ///< The type to casted to
5178 const Twine
&NameStr
, ///< A name for the new instruction
5179 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5182 // Methods for support type inquiry through isa, cast, and dyn_cast:
5183 static bool classof(const Instruction
*I
) {
5184 return I
->getOpcode() == BitCast
;
5186 static bool classof(const Value
*V
) {
5187 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5191 //===----------------------------------------------------------------------===//
5192 // AddrSpaceCastInst Class
5193 //===----------------------------------------------------------------------===//
5195 /// This class represents a conversion between pointers from one address space
5197 class AddrSpaceCastInst
: public CastInst
{
5199 // Note: Instruction needs to be a friend here to call cloneImpl.
5200 friend class Instruction
;
5202 /// Clone an identical AddrSpaceCastInst.
5203 AddrSpaceCastInst
*cloneImpl() const;
5206 /// Constructor with insert-before-instruction semantics
5208 Value
*S
, ///< The value to be casted
5209 Type
*Ty
, ///< The type to casted to
5210 const Twine
&NameStr
= "", ///< A name for the new instruction
5211 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5214 /// Constructor with insert-at-end-of-block semantics
5216 Value
*S
, ///< The value to be casted
5217 Type
*Ty
, ///< The type to casted to
5218 const Twine
&NameStr
, ///< A name for the new instruction
5219 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5222 // Methods for support type inquiry through isa, cast, and dyn_cast:
5223 static bool classof(const Instruction
*I
) {
5224 return I
->getOpcode() == AddrSpaceCast
;
5226 static bool classof(const Value
*V
) {
5227 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5230 /// Gets the pointer operand.
5231 Value
*getPointerOperand() {
5232 return getOperand(0);
5235 /// Gets the pointer operand.
5236 const Value
*getPointerOperand() const {
5237 return getOperand(0);
5240 /// Gets the operand index of the pointer operand.
5241 static unsigned getPointerOperandIndex() {
5245 /// Returns the address space of the pointer operand.
5246 unsigned getSrcAddressSpace() const {
5247 return getPointerOperand()->getType()->getPointerAddressSpace();
5250 /// Returns the address space of the result.
5251 unsigned getDestAddressSpace() const {
5252 return getType()->getPointerAddressSpace();
5256 /// A helper function that returns the pointer operand of a load or store
5257 /// instruction. Returns nullptr if not load or store.
5258 inline const Value
*getLoadStorePointerOperand(const Value
*V
) {
5259 if (auto *Load
= dyn_cast
<LoadInst
>(V
))
5260 return Load
->getPointerOperand();
5261 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
5262 return Store
->getPointerOperand();
5265 inline Value
*getLoadStorePointerOperand(Value
*V
) {
5266 return const_cast<Value
*>(
5267 getLoadStorePointerOperand(static_cast<const Value
*>(V
)));
5270 /// A helper function that returns the pointer operand of a load, store
5271 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5272 inline const Value
*getPointerOperand(const Value
*V
) {
5273 if (auto *Ptr
= getLoadStorePointerOperand(V
))
5275 if (auto *Gep
= dyn_cast
<GetElementPtrInst
>(V
))
5276 return Gep
->getPointerOperand();
5279 inline Value
*getPointerOperand(Value
*V
) {
5280 return const_cast<Value
*>(getPointerOperand(static_cast<const Value
*>(V
)));
5283 /// A helper function that returns the alignment of load or store instruction.
5284 inline MaybeAlign
getLoadStoreAlignment(Value
*I
) {
5285 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5286 "Expected Load or Store instruction");
5287 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5288 return MaybeAlign(LI
->getAlignment());
5289 return MaybeAlign(cast
<StoreInst
>(I
)->getAlignment());
5292 /// A helper function that returns the address space of the pointer operand of
5293 /// load or store instruction.
5294 inline unsigned getLoadStoreAddressSpace(Value
*I
) {
5295 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5296 "Expected Load or Store instruction");
5297 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5298 return LI
->getPointerAddressSpace();
5299 return cast
<StoreInst
>(I
)->getPointerAddressSpace();
5302 } // end namespace llvm
5304 #endif // LLVM_IR_INSTRUCTIONS_H