1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/CFG.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopIterator.h"
27 using namespace PatternMatch
;
29 #define DEBUG_TYPE "tti"
31 static cl::opt
<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33 cl::desc("Recognize reduction patterns."));
36 /// No-op implementation of the TTI interface using the utility base
39 /// This is used when no target specific information is available.
40 struct NoTTIImpl
: TargetTransformInfoImplCRTPBase
<NoTTIImpl
> {
41 explicit NoTTIImpl(const DataLayout
&DL
)
42 : TargetTransformInfoImplCRTPBase
<NoTTIImpl
>(DL
) {}
46 bool HardwareLoopInfo::canAnalyze(LoopInfo
&LI
) {
47 // If the loop has irreducible control flow, it can not be converted to
49 LoopBlocksRPO
RPOT(L
);
51 if (containsIrreducibleCFG
<const BasicBlock
*>(RPOT
, LI
))
56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution
&SE
,
57 LoopInfo
&LI
, DominatorTree
&DT
,
59 bool ForceHardwareLoopPHI
) {
60 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
61 L
->getExitingBlocks(ExitingBlocks
);
63 for (BasicBlock
*BB
: ExitingBlocks
) {
64 // If we pass the updated counter back through a phi, we need to know
65 // which latch the updated value will be coming from.
66 if (!L
->isLoopLatch(BB
)) {
67 if (ForceHardwareLoopPHI
|| CounterInReg
)
71 const SCEV
*EC
= SE
.getExitCount(L
, BB
);
72 if (isa
<SCEVCouldNotCompute
>(EC
))
74 if (const SCEVConstant
*ConstEC
= dyn_cast
<SCEVConstant
>(EC
)) {
75 if (ConstEC
->getValue()->isZero())
77 } else if (!SE
.isLoopInvariant(EC
, L
))
80 if (SE
.getTypeSizeInBits(EC
->getType()) > CountType
->getBitWidth())
83 // If this exiting block is contained in a nested loop, it is not eligible
84 // for insertion of the branch-and-decrement since the inner loop would
85 // end up messing up the value in the CTR.
86 if (!IsNestingLegal
&& LI
.getLoopFor(BB
) != L
&& !ForceNestedLoop
)
89 // We now have a loop-invariant count of loop iterations (which is not the
90 // constant zero) for which we know that this loop will not exit via this
93 // We need to make sure that this block will run on every loop iteration.
94 // For this to be true, we must dominate all blocks with backedges. Such
95 // blocks are in-loop predecessors to the header block.
96 bool NotAlways
= false;
97 for (BasicBlock
*Pred
: predecessors(L
->getHeader())) {
98 if (!L
->contains(Pred
))
101 if (!DT
.dominates(BB
, Pred
)) {
110 // Make sure this blocks ends with a conditional branch.
111 Instruction
*TI
= BB
->getTerminator();
115 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
116 if (!BI
->isConditional())
123 // Note that this block may not be the loop latch block, even if the loop
124 // has a latch block.
135 TargetTransformInfo::TargetTransformInfo(const DataLayout
&DL
)
136 : TTIImpl(new Model
<NoTTIImpl
>(NoTTIImpl(DL
))) {}
138 TargetTransformInfo::~TargetTransformInfo() {}
140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo
&&Arg
)
141 : TTIImpl(std::move(Arg
.TTIImpl
)) {}
143 TargetTransformInfo
&TargetTransformInfo::operator=(TargetTransformInfo
&&RHS
) {
144 TTIImpl
= std::move(RHS
.TTIImpl
);
148 int TargetTransformInfo::getOperationCost(unsigned Opcode
, Type
*Ty
,
150 int Cost
= TTIImpl
->getOperationCost(Opcode
, Ty
, OpTy
);
151 assert(Cost
>= 0 && "TTI should not produce negative costs!");
155 int TargetTransformInfo::getCallCost(FunctionType
*FTy
, int NumArgs
,
156 const User
*U
) const {
157 int Cost
= TTIImpl
->getCallCost(FTy
, NumArgs
, U
);
158 assert(Cost
>= 0 && "TTI should not produce negative costs!");
162 int TargetTransformInfo::getCallCost(const Function
*F
,
163 ArrayRef
<const Value
*> Arguments
,
164 const User
*U
) const {
165 int Cost
= TTIImpl
->getCallCost(F
, Arguments
, U
);
166 assert(Cost
>= 0 && "TTI should not produce negative costs!");
170 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
171 return TTIImpl
->getInliningThresholdMultiplier();
174 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
175 return TTIImpl
->getInlinerVectorBonusPercent();
178 int TargetTransformInfo::getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
179 ArrayRef
<const Value
*> Operands
) const {
180 return TTIImpl
->getGEPCost(PointeeType
, Ptr
, Operands
);
183 int TargetTransformInfo::getExtCost(const Instruction
*I
,
184 const Value
*Src
) const {
185 return TTIImpl
->getExtCost(I
, Src
);
188 int TargetTransformInfo::getIntrinsicCost(
189 Intrinsic::ID IID
, Type
*RetTy
, ArrayRef
<const Value
*> Arguments
,
190 const User
*U
) const {
191 int Cost
= TTIImpl
->getIntrinsicCost(IID
, RetTy
, Arguments
, U
);
192 assert(Cost
>= 0 && "TTI should not produce negative costs!");
197 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
198 unsigned &JTSize
) const {
199 return TTIImpl
->getEstimatedNumberOfCaseClusters(SI
, JTSize
);
202 int TargetTransformInfo::getUserCost(const User
*U
,
203 ArrayRef
<const Value
*> Operands
) const {
204 int Cost
= TTIImpl
->getUserCost(U
, Operands
);
205 assert(Cost
>= 0 && "TTI should not produce negative costs!");
209 bool TargetTransformInfo::hasBranchDivergence() const {
210 return TTIImpl
->hasBranchDivergence();
213 bool TargetTransformInfo::isSourceOfDivergence(const Value
*V
) const {
214 return TTIImpl
->isSourceOfDivergence(V
);
217 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value
*V
) const {
218 return TTIImpl
->isAlwaysUniform(V
);
221 unsigned TargetTransformInfo::getFlatAddressSpace() const {
222 return TTIImpl
->getFlatAddressSpace();
225 bool TargetTransformInfo::collectFlatAddressOperands(
226 SmallVectorImpl
<int> &OpIndexes
, Intrinsic::ID IID
) const {
227 return TTIImpl
->collectFlatAddressOperands(OpIndexes
, IID
);
230 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
231 IntrinsicInst
*II
, Value
*OldV
, Value
*NewV
) const {
232 return TTIImpl
->rewriteIntrinsicWithAddressSpace(II
, OldV
, NewV
);
235 bool TargetTransformInfo::isLoweredToCall(const Function
*F
) const {
236 return TTIImpl
->isLoweredToCall(F
);
239 bool TargetTransformInfo::isHardwareLoopProfitable(
240 Loop
*L
, ScalarEvolution
&SE
, AssumptionCache
&AC
,
241 TargetLibraryInfo
*LibInfo
, HardwareLoopInfo
&HWLoopInfo
) const {
242 return TTIImpl
->isHardwareLoopProfitable(L
, SE
, AC
, LibInfo
, HWLoopInfo
);
245 void TargetTransformInfo::getUnrollingPreferences(
246 Loop
*L
, ScalarEvolution
&SE
, UnrollingPreferences
&UP
) const {
247 return TTIImpl
->getUnrollingPreferences(L
, SE
, UP
);
250 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm
) const {
251 return TTIImpl
->isLegalAddImmediate(Imm
);
254 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm
) const {
255 return TTIImpl
->isLegalICmpImmediate(Imm
);
258 bool TargetTransformInfo::isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
,
263 Instruction
*I
) const {
264 return TTIImpl
->isLegalAddressingMode(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
265 Scale
, AddrSpace
, I
);
268 bool TargetTransformInfo::isLSRCostLess(LSRCost
&C1
, LSRCost
&C2
) const {
269 return TTIImpl
->isLSRCostLess(C1
, C2
);
272 bool TargetTransformInfo::canMacroFuseCmp() const {
273 return TTIImpl
->canMacroFuseCmp();
276 bool TargetTransformInfo::canSaveCmp(Loop
*L
, BranchInst
**BI
,
277 ScalarEvolution
*SE
, LoopInfo
*LI
,
278 DominatorTree
*DT
, AssumptionCache
*AC
,
279 TargetLibraryInfo
*LibInfo
) const {
280 return TTIImpl
->canSaveCmp(L
, BI
, SE
, LI
, DT
, AC
, LibInfo
);
283 bool TargetTransformInfo::shouldFavorPostInc() const {
284 return TTIImpl
->shouldFavorPostInc();
287 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop
*L
) const {
288 return TTIImpl
->shouldFavorBackedgeIndex(L
);
291 bool TargetTransformInfo::isLegalMaskedStore(Type
*DataType
,
292 MaybeAlign Alignment
) const {
293 return TTIImpl
->isLegalMaskedStore(DataType
, Alignment
);
296 bool TargetTransformInfo::isLegalMaskedLoad(Type
*DataType
,
297 MaybeAlign Alignment
) const {
298 return TTIImpl
->isLegalMaskedLoad(DataType
, Alignment
);
301 bool TargetTransformInfo::isLegalNTStore(Type
*DataType
,
302 Align Alignment
) const {
303 return TTIImpl
->isLegalNTStore(DataType
, Alignment
);
306 bool TargetTransformInfo::isLegalNTLoad(Type
*DataType
, Align Alignment
) const {
307 return TTIImpl
->isLegalNTLoad(DataType
, Alignment
);
310 bool TargetTransformInfo::isLegalMaskedGather(Type
*DataType
) const {
311 return TTIImpl
->isLegalMaskedGather(DataType
);
314 bool TargetTransformInfo::isLegalMaskedScatter(Type
*DataType
) const {
315 return TTIImpl
->isLegalMaskedScatter(DataType
);
318 bool TargetTransformInfo::isLegalMaskedCompressStore(Type
*DataType
) const {
319 return TTIImpl
->isLegalMaskedCompressStore(DataType
);
322 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type
*DataType
) const {
323 return TTIImpl
->isLegalMaskedExpandLoad(DataType
);
326 bool TargetTransformInfo::hasDivRemOp(Type
*DataType
, bool IsSigned
) const {
327 return TTIImpl
->hasDivRemOp(DataType
, IsSigned
);
330 bool TargetTransformInfo::hasVolatileVariant(Instruction
*I
,
331 unsigned AddrSpace
) const {
332 return TTIImpl
->hasVolatileVariant(I
, AddrSpace
);
335 bool TargetTransformInfo::prefersVectorizedAddressing() const {
336 return TTIImpl
->prefersVectorizedAddressing();
339 int TargetTransformInfo::getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
,
343 unsigned AddrSpace
) const {
344 int Cost
= TTIImpl
->getScalingFactorCost(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
346 assert(Cost
>= 0 && "TTI should not produce negative costs!");
350 bool TargetTransformInfo::LSRWithInstrQueries() const {
351 return TTIImpl
->LSRWithInstrQueries();
354 bool TargetTransformInfo::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
355 return TTIImpl
->isTruncateFree(Ty1
, Ty2
);
358 bool TargetTransformInfo::isProfitableToHoist(Instruction
*I
) const {
359 return TTIImpl
->isProfitableToHoist(I
);
362 bool TargetTransformInfo::useAA() const { return TTIImpl
->useAA(); }
364 bool TargetTransformInfo::isTypeLegal(Type
*Ty
) const {
365 return TTIImpl
->isTypeLegal(Ty
);
368 bool TargetTransformInfo::shouldBuildLookupTables() const {
369 return TTIImpl
->shouldBuildLookupTables();
371 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant
*C
) const {
372 return TTIImpl
->shouldBuildLookupTablesForConstant(C
);
375 bool TargetTransformInfo::useColdCCForColdCall(Function
&F
) const {
376 return TTIImpl
->useColdCCForColdCall(F
);
379 unsigned TargetTransformInfo::
380 getScalarizationOverhead(Type
*Ty
, bool Insert
, bool Extract
) const {
381 return TTIImpl
->getScalarizationOverhead(Ty
, Insert
, Extract
);
384 unsigned TargetTransformInfo::
385 getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
387 return TTIImpl
->getOperandsScalarizationOverhead(Args
, VF
);
390 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
391 return TTIImpl
->supportsEfficientVectorElementLoadStore();
394 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions
) const {
395 return TTIImpl
->enableAggressiveInterleaving(LoopHasReductions
);
398 TargetTransformInfo::MemCmpExpansionOptions
399 TargetTransformInfo::enableMemCmpExpansion(bool OptSize
, bool IsZeroCmp
) const {
400 return TTIImpl
->enableMemCmpExpansion(OptSize
, IsZeroCmp
);
403 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
404 return TTIImpl
->enableInterleavedAccessVectorization();
407 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
408 return TTIImpl
->enableMaskedInterleavedAccessVectorization();
411 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
412 return TTIImpl
->isFPVectorizationPotentiallyUnsafe();
415 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
417 unsigned AddressSpace
,
420 return TTIImpl
->allowsMisalignedMemoryAccesses(Context
, BitWidth
, AddressSpace
,
424 TargetTransformInfo::PopcntSupportKind
425 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit
) const {
426 return TTIImpl
->getPopcntSupport(IntTyWidthInBit
);
429 bool TargetTransformInfo::haveFastSqrt(Type
*Ty
) const {
430 return TTIImpl
->haveFastSqrt(Ty
);
433 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) const {
434 return TTIImpl
->isFCmpOrdCheaperThanFCmpZero(Ty
);
437 int TargetTransformInfo::getFPOpCost(Type
*Ty
) const {
438 int Cost
= TTIImpl
->getFPOpCost(Ty
);
439 assert(Cost
>= 0 && "TTI should not produce negative costs!");
443 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode
, unsigned Idx
,
446 int Cost
= TTIImpl
->getIntImmCodeSizeCost(Opcode
, Idx
, Imm
, Ty
);
447 assert(Cost
>= 0 && "TTI should not produce negative costs!");
451 int TargetTransformInfo::getIntImmCost(const APInt
&Imm
, Type
*Ty
) const {
452 int Cost
= TTIImpl
->getIntImmCost(Imm
, Ty
);
453 assert(Cost
>= 0 && "TTI should not produce negative costs!");
457 int TargetTransformInfo::getIntImmCost(unsigned Opcode
, unsigned Idx
,
458 const APInt
&Imm
, Type
*Ty
) const {
459 int Cost
= TTIImpl
->getIntImmCost(Opcode
, Idx
, Imm
, Ty
);
460 assert(Cost
>= 0 && "TTI should not produce negative costs!");
464 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID
, unsigned Idx
,
465 const APInt
&Imm
, Type
*Ty
) const {
466 int Cost
= TTIImpl
->getIntImmCost(IID
, Idx
, Imm
, Ty
);
467 assert(Cost
>= 0 && "TTI should not produce negative costs!");
471 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID
) const {
472 return TTIImpl
->getNumberOfRegisters(ClassID
);
475 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector
, Type
*Ty
) const {
476 return TTIImpl
->getRegisterClassForType(Vector
, Ty
);
479 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID
) const {
480 return TTIImpl
->getRegisterClassName(ClassID
);
483 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector
) const {
484 return TTIImpl
->getRegisterBitWidth(Vector
);
487 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
488 return TTIImpl
->getMinVectorRegisterBitWidth();
491 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize
) const {
492 return TTIImpl
->shouldMaximizeVectorBandwidth(OptSize
);
495 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth
) const {
496 return TTIImpl
->getMinimumVF(ElemWidth
);
499 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
500 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) const {
501 return TTIImpl
->shouldConsiderAddressTypePromotion(
502 I
, AllowPromotionWithoutCommonHeader
);
505 unsigned TargetTransformInfo::getCacheLineSize() const {
506 return TTIImpl
->getCacheLineSize();
509 llvm::Optional
<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level
)
511 return TTIImpl
->getCacheSize(Level
);
514 llvm::Optional
<unsigned> TargetTransformInfo::getCacheAssociativity(
515 CacheLevel Level
) const {
516 return TTIImpl
->getCacheAssociativity(Level
);
519 unsigned TargetTransformInfo::getPrefetchDistance() const {
520 return TTIImpl
->getPrefetchDistance();
523 unsigned TargetTransformInfo::getMinPrefetchStride() const {
524 return TTIImpl
->getMinPrefetchStride();
527 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
528 return TTIImpl
->getMaxPrefetchIterationsAhead();
531 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF
) const {
532 return TTIImpl
->getMaxInterleaveFactor(VF
);
535 TargetTransformInfo::OperandValueKind
536 TargetTransformInfo::getOperandInfo(Value
*V
, OperandValueProperties
&OpProps
) {
537 OperandValueKind OpInfo
= OK_AnyValue
;
540 if (auto *CI
= dyn_cast
<ConstantInt
>(V
)) {
541 if (CI
->getValue().isPowerOf2())
542 OpProps
= OP_PowerOf2
;
543 return OK_UniformConstantValue
;
546 // A broadcast shuffle creates a uniform value.
547 // TODO: Add support for non-zero index broadcasts.
548 // TODO: Add support for different source vector width.
549 if (auto *ShuffleInst
= dyn_cast
<ShuffleVectorInst
>(V
))
550 if (ShuffleInst
->isZeroEltSplat())
551 OpInfo
= OK_UniformValue
;
553 const Value
*Splat
= getSplatValue(V
);
555 // Check for a splat of a constant or for a non uniform vector of constants
556 // and check if the constant(s) are all powers of two.
557 if (isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) {
558 OpInfo
= OK_NonUniformConstantValue
;
560 OpInfo
= OK_UniformConstantValue
;
561 if (auto *CI
= dyn_cast
<ConstantInt
>(Splat
))
562 if (CI
->getValue().isPowerOf2())
563 OpProps
= OP_PowerOf2
;
564 } else if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(V
)) {
565 OpProps
= OP_PowerOf2
;
566 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
) {
567 if (auto *CI
= dyn_cast
<ConstantInt
>(CDS
->getElementAsConstant(I
)))
568 if (CI
->getValue().isPowerOf2())
576 // Check for a splat of a uniform value. This is not loop aware, so return
577 // true only for the obviously uniform cases (argument, globalvalue)
578 if (Splat
&& (isa
<Argument
>(Splat
) || isa
<GlobalValue
>(Splat
)))
579 OpInfo
= OK_UniformValue
;
584 int TargetTransformInfo::getArithmeticInstrCost(
585 unsigned Opcode
, Type
*Ty
, OperandValueKind Opd1Info
,
586 OperandValueKind Opd2Info
, OperandValueProperties Opd1PropInfo
,
587 OperandValueProperties Opd2PropInfo
,
588 ArrayRef
<const Value
*> Args
) const {
589 int Cost
= TTIImpl
->getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
590 Opd1PropInfo
, Opd2PropInfo
, Args
);
591 assert(Cost
>= 0 && "TTI should not produce negative costs!");
595 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind
, Type
*Ty
, int Index
,
597 int Cost
= TTIImpl
->getShuffleCost(Kind
, Ty
, Index
, SubTp
);
598 assert(Cost
>= 0 && "TTI should not produce negative costs!");
602 int TargetTransformInfo::getCastInstrCost(unsigned Opcode
, Type
*Dst
,
603 Type
*Src
, const Instruction
*I
) const {
604 assert ((I
== nullptr || I
->getOpcode() == Opcode
) &&
605 "Opcode should reflect passed instruction.");
606 int Cost
= TTIImpl
->getCastInstrCost(Opcode
, Dst
, Src
, I
);
607 assert(Cost
>= 0 && "TTI should not produce negative costs!");
611 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
613 unsigned Index
) const {
614 int Cost
= TTIImpl
->getExtractWithExtendCost(Opcode
, Dst
, VecTy
, Index
);
615 assert(Cost
>= 0 && "TTI should not produce negative costs!");
619 int TargetTransformInfo::getCFInstrCost(unsigned Opcode
) const {
620 int Cost
= TTIImpl
->getCFInstrCost(Opcode
);
621 assert(Cost
>= 0 && "TTI should not produce negative costs!");
625 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
626 Type
*CondTy
, const Instruction
*I
) const {
627 assert ((I
== nullptr || I
->getOpcode() == Opcode
) &&
628 "Opcode should reflect passed instruction.");
629 int Cost
= TTIImpl
->getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
630 assert(Cost
>= 0 && "TTI should not produce negative costs!");
634 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode
, Type
*Val
,
635 unsigned Index
) const {
636 int Cost
= TTIImpl
->getVectorInstrCost(Opcode
, Val
, Index
);
637 assert(Cost
>= 0 && "TTI should not produce negative costs!");
641 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode
, Type
*Src
,
643 unsigned AddressSpace
,
644 const Instruction
*I
) const {
645 assert ((I
== nullptr || I
->getOpcode() == Opcode
) &&
646 "Opcode should reflect passed instruction.");
647 int Cost
= TTIImpl
->getMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
, I
);
648 assert(Cost
>= 0 && "TTI should not produce negative costs!");
652 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode
, Type
*Src
,
654 unsigned AddressSpace
) const {
656 TTIImpl
->getMaskedMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
);
657 assert(Cost
>= 0 && "TTI should not produce negative costs!");
661 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode
, Type
*DataTy
,
662 Value
*Ptr
, bool VariableMask
,
663 unsigned Alignment
) const {
664 int Cost
= TTIImpl
->getGatherScatterOpCost(Opcode
, DataTy
, Ptr
, VariableMask
,
666 assert(Cost
>= 0 && "TTI should not produce negative costs!");
670 int TargetTransformInfo::getInterleavedMemoryOpCost(
671 unsigned Opcode
, Type
*VecTy
, unsigned Factor
, ArrayRef
<unsigned> Indices
,
672 unsigned Alignment
, unsigned AddressSpace
, bool UseMaskForCond
,
673 bool UseMaskForGaps
) const {
674 int Cost
= TTIImpl
->getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
675 Alignment
, AddressSpace
,
678 assert(Cost
>= 0 && "TTI should not produce negative costs!");
682 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
683 ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
684 unsigned ScalarizationCostPassed
) const {
685 int Cost
= TTIImpl
->getIntrinsicInstrCost(ID
, RetTy
, Tys
, FMF
,
686 ScalarizationCostPassed
);
687 assert(Cost
>= 0 && "TTI should not produce negative costs!");
691 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
692 ArrayRef
<Value
*> Args
, FastMathFlags FMF
, unsigned VF
) const {
693 int Cost
= TTIImpl
->getIntrinsicInstrCost(ID
, RetTy
, Args
, FMF
, VF
);
694 assert(Cost
>= 0 && "TTI should not produce negative costs!");
698 int TargetTransformInfo::getCallInstrCost(Function
*F
, Type
*RetTy
,
699 ArrayRef
<Type
*> Tys
) const {
700 int Cost
= TTIImpl
->getCallInstrCost(F
, RetTy
, Tys
);
701 assert(Cost
>= 0 && "TTI should not produce negative costs!");
705 unsigned TargetTransformInfo::getNumberOfParts(Type
*Tp
) const {
706 return TTIImpl
->getNumberOfParts(Tp
);
709 int TargetTransformInfo::getAddressComputationCost(Type
*Tp
,
711 const SCEV
*Ptr
) const {
712 int Cost
= TTIImpl
->getAddressComputationCost(Tp
, SE
, Ptr
);
713 assert(Cost
>= 0 && "TTI should not produce negative costs!");
717 int TargetTransformInfo::getMemcpyCost(const Instruction
*I
) const {
718 int Cost
= TTIImpl
->getMemcpyCost(I
);
719 assert(Cost
>= 0 && "TTI should not produce negative costs!");
723 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
724 bool IsPairwiseForm
) const {
725 int Cost
= TTIImpl
->getArithmeticReductionCost(Opcode
, Ty
, IsPairwiseForm
);
726 assert(Cost
>= 0 && "TTI should not produce negative costs!");
730 int TargetTransformInfo::getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
,
732 bool IsUnsigned
) const {
734 TTIImpl
->getMinMaxReductionCost(Ty
, CondTy
, IsPairwiseForm
, IsUnsigned
);
735 assert(Cost
>= 0 && "TTI should not produce negative costs!");
740 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) const {
741 return TTIImpl
->getCostOfKeepingLiveOverCall(Tys
);
744 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst
*Inst
,
745 MemIntrinsicInfo
&Info
) const {
746 return TTIImpl
->getTgtMemIntrinsic(Inst
, Info
);
749 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
750 return TTIImpl
->getAtomicMemIntrinsicMaxElementSize();
753 Value
*TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
754 IntrinsicInst
*Inst
, Type
*ExpectedType
) const {
755 return TTIImpl
->getOrCreateResultFromMemIntrinsic(Inst
, ExpectedType
);
758 Type
*TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext
&Context
,
761 unsigned DestAlign
) const {
762 return TTIImpl
->getMemcpyLoopLoweringType(Context
, Length
, SrcAlign
,
766 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
767 SmallVectorImpl
<Type
*> &OpsOut
, LLVMContext
&Context
,
768 unsigned RemainingBytes
, unsigned SrcAlign
, unsigned DestAlign
) const {
769 TTIImpl
->getMemcpyLoopResidualLoweringType(OpsOut
, Context
, RemainingBytes
,
770 SrcAlign
, DestAlign
);
773 bool TargetTransformInfo::areInlineCompatible(const Function
*Caller
,
774 const Function
*Callee
) const {
775 return TTIImpl
->areInlineCompatible(Caller
, Callee
);
778 bool TargetTransformInfo::areFunctionArgsABICompatible(
779 const Function
*Caller
, const Function
*Callee
,
780 SmallPtrSetImpl
<Argument
*> &Args
) const {
781 return TTIImpl
->areFunctionArgsABICompatible(Caller
, Callee
, Args
);
784 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode
,
786 return TTIImpl
->isIndexedLoadLegal(Mode
, Ty
);
789 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode
,
791 return TTIImpl
->isIndexedStoreLegal(Mode
, Ty
);
794 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS
) const {
795 return TTIImpl
->getLoadStoreVecRegBitWidth(AS
);
798 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst
*LI
) const {
799 return TTIImpl
->isLegalToVectorizeLoad(LI
);
802 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst
*SI
) const {
803 return TTIImpl
->isLegalToVectorizeStore(SI
);
806 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
807 unsigned ChainSizeInBytes
, unsigned Alignment
, unsigned AddrSpace
) const {
808 return TTIImpl
->isLegalToVectorizeLoadChain(ChainSizeInBytes
, Alignment
,
812 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
813 unsigned ChainSizeInBytes
, unsigned Alignment
, unsigned AddrSpace
) const {
814 return TTIImpl
->isLegalToVectorizeStoreChain(ChainSizeInBytes
, Alignment
,
818 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF
,
820 unsigned ChainSizeInBytes
,
821 VectorType
*VecTy
) const {
822 return TTIImpl
->getLoadVectorFactor(VF
, LoadSize
, ChainSizeInBytes
, VecTy
);
825 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF
,
827 unsigned ChainSizeInBytes
,
828 VectorType
*VecTy
) const {
829 return TTIImpl
->getStoreVectorFactor(VF
, StoreSize
, ChainSizeInBytes
, VecTy
);
832 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode
,
833 Type
*Ty
, ReductionFlags Flags
) const {
834 return TTIImpl
->useReductionIntrinsic(Opcode
, Ty
, Flags
);
837 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst
*II
) const {
838 return TTIImpl
->shouldExpandReduction(II
);
841 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
842 return TTIImpl
->getGISelRematGlobalCost();
845 int TargetTransformInfo::getInstructionLatency(const Instruction
*I
) const {
846 return TTIImpl
->getInstructionLatency(I
);
849 static bool matchPairwiseShuffleMask(ShuffleVectorInst
*SI
, bool IsLeft
,
851 // We don't need a shuffle if we just want to have element 0 in position 0 of
853 if (!SI
&& Level
== 0 && IsLeft
)
858 SmallVector
<int, 32> Mask(SI
->getType()->getVectorNumElements(), -1);
860 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
861 // we look at the left or right side.
862 for (unsigned i
= 0, e
= (1 << Level
), val
= !IsLeft
; i
!= e
; ++i
, val
+= 2)
865 SmallVector
<int, 16> ActualMask
= SI
->getShuffleMask();
866 return Mask
== ActualMask
;
870 /// Kind of the reduction data.
872 RK_None
, /// Not a reduction.
873 RK_Arithmetic
, /// Binary reduction data.
874 RK_MinMax
, /// Min/max reduction data.
875 RK_UnsignedMinMax
, /// Unsigned min/max reduction data.
877 /// Contains opcode + LHS/RHS parts of the reduction operations.
878 struct ReductionData
{
879 ReductionData() = delete;
880 ReductionData(ReductionKind Kind
, unsigned Opcode
, Value
*LHS
, Value
*RHS
)
881 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), Kind(Kind
) {
882 assert(Kind
!= RK_None
&& "expected binary or min/max reduction only.");
885 Value
*LHS
= nullptr;
886 Value
*RHS
= nullptr;
887 ReductionKind Kind
= RK_None
;
888 bool hasSameData(ReductionData
&RD
) const {
889 return Kind
== RD
.Kind
&& Opcode
== RD
.Opcode
;
894 static Optional
<ReductionData
> getReductionData(Instruction
*I
) {
896 if (m_BinOp(m_Value(L
), m_Value(R
)).match(I
))
897 return ReductionData(RK_Arithmetic
, I
->getOpcode(), L
, R
);
898 if (auto *SI
= dyn_cast
<SelectInst
>(I
)) {
899 if (m_SMin(m_Value(L
), m_Value(R
)).match(SI
) ||
900 m_SMax(m_Value(L
), m_Value(R
)).match(SI
) ||
901 m_OrdFMin(m_Value(L
), m_Value(R
)).match(SI
) ||
902 m_OrdFMax(m_Value(L
), m_Value(R
)).match(SI
) ||
903 m_UnordFMin(m_Value(L
), m_Value(R
)).match(SI
) ||
904 m_UnordFMax(m_Value(L
), m_Value(R
)).match(SI
)) {
905 auto *CI
= cast
<CmpInst
>(SI
->getCondition());
906 return ReductionData(RK_MinMax
, CI
->getOpcode(), L
, R
);
908 if (m_UMin(m_Value(L
), m_Value(R
)).match(SI
) ||
909 m_UMax(m_Value(L
), m_Value(R
)).match(SI
)) {
910 auto *CI
= cast
<CmpInst
>(SI
->getCondition());
911 return ReductionData(RK_UnsignedMinMax
, CI
->getOpcode(), L
, R
);
917 static ReductionKind
matchPairwiseReductionAtLevel(Instruction
*I
,
919 unsigned NumLevels
) {
920 // Match one level of pairwise operations.
921 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
922 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
923 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
924 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
925 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
929 assert(I
->getType()->isVectorTy() && "Expecting a vector type");
931 Optional
<ReductionData
> RD
= getReductionData(I
);
935 ShuffleVectorInst
*LS
= dyn_cast
<ShuffleVectorInst
>(RD
->LHS
);
938 ShuffleVectorInst
*RS
= dyn_cast
<ShuffleVectorInst
>(RD
->RHS
);
942 // On level 0 we can omit one shufflevector instruction.
943 if (!Level
&& !RS
&& !LS
)
946 // Shuffle inputs must match.
947 Value
*NextLevelOpL
= LS
? LS
->getOperand(0) : nullptr;
948 Value
*NextLevelOpR
= RS
? RS
->getOperand(0) : nullptr;
949 Value
*NextLevelOp
= nullptr;
950 if (NextLevelOpR
&& NextLevelOpL
) {
951 // If we have two shuffles their operands must match.
952 if (NextLevelOpL
!= NextLevelOpR
)
955 NextLevelOp
= NextLevelOpL
;
956 } else if (Level
== 0 && (NextLevelOpR
|| NextLevelOpL
)) {
957 // On the first level we can omit the shufflevector <0, undef,...>. So the
958 // input to the other shufflevector <1, undef> must match with one of the
959 // inputs to the current binary operation.
961 // %NextLevelOpL = shufflevector %R, <1, undef ...>
962 // %BinOp = fadd %NextLevelOpL, %R
963 if (NextLevelOpL
&& NextLevelOpL
!= RD
->RHS
)
965 else if (NextLevelOpR
&& NextLevelOpR
!= RD
->LHS
)
968 NextLevelOp
= NextLevelOpL
? RD
->RHS
: RD
->LHS
;
972 // Check that the next levels binary operation exists and matches with the
974 if (Level
+ 1 != NumLevels
) {
975 Optional
<ReductionData
> NextLevelRD
=
976 getReductionData(cast
<Instruction
>(NextLevelOp
));
977 if (!NextLevelRD
|| !RD
->hasSameData(*NextLevelRD
))
981 // Shuffle mask for pairwise operation must match.
982 if (matchPairwiseShuffleMask(LS
, /*IsLeft=*/true, Level
)) {
983 if (!matchPairwiseShuffleMask(RS
, /*IsLeft=*/false, Level
))
985 } else if (matchPairwiseShuffleMask(RS
, /*IsLeft=*/true, Level
)) {
986 if (!matchPairwiseShuffleMask(LS
, /*IsLeft=*/false, Level
))
992 if (++Level
== NumLevels
)
996 return matchPairwiseReductionAtLevel(cast
<Instruction
>(NextLevelOp
), Level
,
1000 static ReductionKind
matchPairwiseReduction(const ExtractElementInst
*ReduxRoot
,
1001 unsigned &Opcode
, Type
*&Ty
) {
1002 if (!EnableReduxCost
)
1005 // Need to extract the first element.
1006 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ReduxRoot
->getOperand(1));
1009 Idx
= CI
->getZExtValue();
1013 auto *RdxStart
= dyn_cast
<Instruction
>(ReduxRoot
->getOperand(0));
1016 Optional
<ReductionData
> RD
= getReductionData(RdxStart
);
1020 Type
*VecTy
= RdxStart
->getType();
1021 unsigned NumVecElems
= VecTy
->getVectorNumElements();
1022 if (!isPowerOf2_32(NumVecElems
))
1025 // We look for a sequence of shuffle,shuffle,add triples like the following
1026 // that builds a pairwise reduction tree.
1029 // (X0 + X1, X2 + X3, undef, undef)
1030 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
1032 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1033 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1034 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1035 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1036 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1037 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1038 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1039 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1040 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1041 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1042 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1043 if (matchPairwiseReductionAtLevel(RdxStart
, 0, Log2_32(NumVecElems
)) ==
1047 Opcode
= RD
->Opcode
;
1053 static std::pair
<Value
*, ShuffleVectorInst
*>
1054 getShuffleAndOtherOprd(Value
*L
, Value
*R
) {
1055 ShuffleVectorInst
*S
= nullptr;
1057 if ((S
= dyn_cast
<ShuffleVectorInst
>(L
)))
1058 return std::make_pair(R
, S
);
1060 S
= dyn_cast
<ShuffleVectorInst
>(R
);
1061 return std::make_pair(L
, S
);
1064 static ReductionKind
1065 matchVectorSplittingReduction(const ExtractElementInst
*ReduxRoot
,
1066 unsigned &Opcode
, Type
*&Ty
) {
1067 if (!EnableReduxCost
)
1070 // Need to extract the first element.
1071 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ReduxRoot
->getOperand(1));
1074 Idx
= CI
->getZExtValue();
1078 auto *RdxStart
= dyn_cast
<Instruction
>(ReduxRoot
->getOperand(0));
1081 Optional
<ReductionData
> RD
= getReductionData(RdxStart
);
1085 Type
*VecTy
= ReduxRoot
->getOperand(0)->getType();
1086 unsigned NumVecElems
= VecTy
->getVectorNumElements();
1087 if (!isPowerOf2_32(NumVecElems
))
1090 // We look for a sequence of shuffles and adds like the following matching one
1091 // fadd, shuffle vector pair at a time.
1093 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1094 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1095 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1096 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1097 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1098 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1099 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1101 unsigned MaskStart
= 1;
1102 Instruction
*RdxOp
= RdxStart
;
1103 SmallVector
<int, 32> ShuffleMask(NumVecElems
, 0);
1104 unsigned NumVecElemsRemain
= NumVecElems
;
1105 while (NumVecElemsRemain
- 1) {
1106 // Check for the right reduction operation.
1109 Optional
<ReductionData
> RDLevel
= getReductionData(RdxOp
);
1110 if (!RDLevel
|| !RDLevel
->hasSameData(*RD
))
1114 ShuffleVectorInst
*Shuffle
;
1115 std::tie(NextRdxOp
, Shuffle
) =
1116 getShuffleAndOtherOprd(RDLevel
->LHS
, RDLevel
->RHS
);
1118 // Check the current reduction operation and the shuffle use the same value.
1119 if (Shuffle
== nullptr)
1121 if (Shuffle
->getOperand(0) != NextRdxOp
)
1124 // Check that shuffle masks matches.
1125 for (unsigned j
= 0; j
!= MaskStart
; ++j
)
1126 ShuffleMask
[j
] = MaskStart
+ j
;
1127 // Fill the rest of the mask with -1 for undef.
1128 std::fill(&ShuffleMask
[MaskStart
], ShuffleMask
.end(), -1);
1130 SmallVector
<int, 16> Mask
= Shuffle
->getShuffleMask();
1131 if (ShuffleMask
!= Mask
)
1134 RdxOp
= dyn_cast
<Instruction
>(NextRdxOp
);
1135 NumVecElemsRemain
/= 2;
1139 Opcode
= RD
->Opcode
;
1144 int TargetTransformInfo::getInstructionThroughput(const Instruction
*I
) const {
1145 switch (I
->getOpcode()) {
1146 case Instruction::GetElementPtr
:
1147 return getUserCost(I
);
1149 case Instruction::Ret
:
1150 case Instruction::PHI
:
1151 case Instruction::Br
: {
1152 return getCFInstrCost(I
->getOpcode());
1154 case Instruction::Add
:
1155 case Instruction::FAdd
:
1156 case Instruction::Sub
:
1157 case Instruction::FSub
:
1158 case Instruction::Mul
:
1159 case Instruction::FMul
:
1160 case Instruction::UDiv
:
1161 case Instruction::SDiv
:
1162 case Instruction::FDiv
:
1163 case Instruction::URem
:
1164 case Instruction::SRem
:
1165 case Instruction::FRem
:
1166 case Instruction::Shl
:
1167 case Instruction::LShr
:
1168 case Instruction::AShr
:
1169 case Instruction::And
:
1170 case Instruction::Or
:
1171 case Instruction::Xor
: {
1172 TargetTransformInfo::OperandValueKind Op1VK
, Op2VK
;
1173 TargetTransformInfo::OperandValueProperties Op1VP
, Op2VP
;
1174 Op1VK
= getOperandInfo(I
->getOperand(0), Op1VP
);
1175 Op2VK
= getOperandInfo(I
->getOperand(1), Op2VP
);
1176 SmallVector
<const Value
*, 2> Operands(I
->operand_values());
1177 return getArithmeticInstrCost(I
->getOpcode(), I
->getType(), Op1VK
, Op2VK
,
1178 Op1VP
, Op2VP
, Operands
);
1180 case Instruction::FNeg
: {
1181 TargetTransformInfo::OperandValueKind Op1VK
, Op2VK
;
1182 TargetTransformInfo::OperandValueProperties Op1VP
, Op2VP
;
1183 Op1VK
= getOperandInfo(I
->getOperand(0), Op1VP
);
1184 Op2VK
= OK_AnyValue
;
1186 SmallVector
<const Value
*, 2> Operands(I
->operand_values());
1187 return getArithmeticInstrCost(I
->getOpcode(), I
->getType(), Op1VK
, Op2VK
,
1188 Op1VP
, Op2VP
, Operands
);
1190 case Instruction::Select
: {
1191 const SelectInst
*SI
= cast
<SelectInst
>(I
);
1192 Type
*CondTy
= SI
->getCondition()->getType();
1193 return getCmpSelInstrCost(I
->getOpcode(), I
->getType(), CondTy
, I
);
1195 case Instruction::ICmp
:
1196 case Instruction::FCmp
: {
1197 Type
*ValTy
= I
->getOperand(0)->getType();
1198 return getCmpSelInstrCost(I
->getOpcode(), ValTy
, I
->getType(), I
);
1200 case Instruction::Store
: {
1201 const StoreInst
*SI
= cast
<StoreInst
>(I
);
1202 Type
*ValTy
= SI
->getValueOperand()->getType();
1203 return getMemoryOpCost(I
->getOpcode(), ValTy
,
1205 SI
->getPointerAddressSpace(), I
);
1207 case Instruction::Load
: {
1208 const LoadInst
*LI
= cast
<LoadInst
>(I
);
1209 return getMemoryOpCost(I
->getOpcode(), I
->getType(),
1211 LI
->getPointerAddressSpace(), I
);
1213 case Instruction::ZExt
:
1214 case Instruction::SExt
:
1215 case Instruction::FPToUI
:
1216 case Instruction::FPToSI
:
1217 case Instruction::FPExt
:
1218 case Instruction::PtrToInt
:
1219 case Instruction::IntToPtr
:
1220 case Instruction::SIToFP
:
1221 case Instruction::UIToFP
:
1222 case Instruction::Trunc
:
1223 case Instruction::FPTrunc
:
1224 case Instruction::BitCast
:
1225 case Instruction::AddrSpaceCast
: {
1226 Type
*SrcTy
= I
->getOperand(0)->getType();
1227 return getCastInstrCost(I
->getOpcode(), I
->getType(), SrcTy
, I
);
1229 case Instruction::ExtractElement
: {
1230 const ExtractElementInst
* EEI
= cast
<ExtractElementInst
>(I
);
1231 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
1234 Idx
= CI
->getZExtValue();
1236 // Try to match a reduction sequence (series of shufflevector and vector
1237 // adds followed by a extractelement).
1238 unsigned ReduxOpCode
;
1241 switch (matchVectorSplittingReduction(EEI
, ReduxOpCode
, ReduxType
)) {
1243 return getArithmeticReductionCost(ReduxOpCode
, ReduxType
,
1244 /*IsPairwiseForm=*/false);
1246 return getMinMaxReductionCost(
1247 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1248 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1249 case RK_UnsignedMinMax
:
1250 return getMinMaxReductionCost(
1251 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1252 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1257 switch (matchPairwiseReduction(EEI
, ReduxOpCode
, ReduxType
)) {
1259 return getArithmeticReductionCost(ReduxOpCode
, ReduxType
,
1260 /*IsPairwiseForm=*/true);
1262 return getMinMaxReductionCost(
1263 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1264 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1265 case RK_UnsignedMinMax
:
1266 return getMinMaxReductionCost(
1267 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1268 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1273 return getVectorInstrCost(I
->getOpcode(),
1274 EEI
->getOperand(0)->getType(), Idx
);
1276 case Instruction::InsertElement
: {
1277 const InsertElementInst
* IE
= cast
<InsertElementInst
>(I
);
1278 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(IE
->getOperand(2));
1281 Idx
= CI
->getZExtValue();
1282 return getVectorInstrCost(I
->getOpcode(),
1283 IE
->getType(), Idx
);
1285 case Instruction::ExtractValue
:
1286 return 0; // Model all ExtractValue nodes as free.
1287 case Instruction::ShuffleVector
: {
1288 const ShuffleVectorInst
*Shuffle
= cast
<ShuffleVectorInst
>(I
);
1289 Type
*Ty
= Shuffle
->getType();
1290 Type
*SrcTy
= Shuffle
->getOperand(0)->getType();
1292 // TODO: Identify and add costs for insert subvector, etc.
1294 if (Shuffle
->isExtractSubvectorMask(SubIndex
))
1295 return TTIImpl
->getShuffleCost(SK_ExtractSubvector
, SrcTy
, SubIndex
, Ty
);
1297 if (Shuffle
->changesLength())
1300 if (Shuffle
->isIdentity())
1303 if (Shuffle
->isReverse())
1304 return TTIImpl
->getShuffleCost(SK_Reverse
, Ty
, 0, nullptr);
1306 if (Shuffle
->isSelect())
1307 return TTIImpl
->getShuffleCost(SK_Select
, Ty
, 0, nullptr);
1309 if (Shuffle
->isTranspose())
1310 return TTIImpl
->getShuffleCost(SK_Transpose
, Ty
, 0, nullptr);
1312 if (Shuffle
->isZeroEltSplat())
1313 return TTIImpl
->getShuffleCost(SK_Broadcast
, Ty
, 0, nullptr);
1315 if (Shuffle
->isSingleSource())
1316 return TTIImpl
->getShuffleCost(SK_PermuteSingleSrc
, Ty
, 0, nullptr);
1318 return TTIImpl
->getShuffleCost(SK_PermuteTwoSrc
, Ty
, 0, nullptr);
1320 case Instruction::Call
:
1321 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1322 SmallVector
<Value
*, 4> Args(II
->arg_operands());
1325 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(II
))
1326 FMF
= FPMO
->getFastMathFlags();
1328 return getIntrinsicInstrCost(II
->getIntrinsicID(), II
->getType(),
1333 // We don't have any information on this instruction.
1338 TargetTransformInfo::Concept::~Concept() {}
1340 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI
) {}
1342 TargetIRAnalysis::TargetIRAnalysis(
1343 std::function
<Result(const Function
&)> TTICallback
)
1344 : TTICallback(std::move(TTICallback
)) {}
1346 TargetIRAnalysis::Result
TargetIRAnalysis::run(const Function
&F
,
1347 FunctionAnalysisManager
&) {
1348 return TTICallback(F
);
1351 AnalysisKey
TargetIRAnalysis::Key
;
1353 TargetIRAnalysis::Result
TargetIRAnalysis::getDefaultTTI(const Function
&F
) {
1354 return Result(F
.getParent()->getDataLayout());
1357 // Register the basic pass.
1358 INITIALIZE_PASS(TargetTransformInfoWrapperPass
, "tti",
1359 "Target Transform Information", false, true)
1360 char TargetTransformInfoWrapperPass::ID
= 0;
1362 void TargetTransformInfoWrapperPass::anchor() {}
1364 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1365 : ImmutablePass(ID
) {
1366 initializeTargetTransformInfoWrapperPassPass(
1367 *PassRegistry::getPassRegistry());
1370 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1371 TargetIRAnalysis TIRA
)
1372 : ImmutablePass(ID
), TIRA(std::move(TIRA
)) {
1373 initializeTargetTransformInfoWrapperPassPass(
1374 *PassRegistry::getPassRegistry());
1377 TargetTransformInfo
&TargetTransformInfoWrapperPass::getTTI(const Function
&F
) {
1378 FunctionAnalysisManager DummyFAM
;
1379 TTI
= TIRA
.run(F
, DummyFAM
);
1384 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA
) {
1385 return new TargetTransformInfoWrapperPass(std::move(TIRA
));