[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / CodeGen / AsmPrinter / EHStreamer.cpp
blob31dfaaac836eb114a07e7a314ebeafac31655e48
1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
11 //===----------------------------------------------------------------------===//
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
37 using namespace llvm;
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
41 EHStreamer::~EHStreamer() = default;
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45 const LandingPadInfo *R) {
46 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47 unsigned LSize = LIds.size(), RSize = RIds.size();
48 unsigned MinSize = LSize < RSize ? LSize : RSize;
49 unsigned Count = 0;
51 for (; Count != MinSize; ++Count)
52 if (LIds[Count] != RIds[Count])
53 return Count;
55 return Count;
58 /// Compute the actions table and gather the first action index for each landing
59 /// pad site.
60 void EHStreamer::computeActionsTable(
61 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
62 SmallVectorImpl<ActionEntry> &Actions,
63 SmallVectorImpl<unsigned> &FirstActions) {
64 // The action table follows the call-site table in the LSDA. The individual
65 // records are of two types:
67 // * Catch clause
68 // * Exception specification
70 // The two record kinds have the same format, with only small differences.
71 // They are distinguished by the "switch value" field: Catch clauses
72 // (TypeInfos) have strictly positive switch values, and exception
73 // specifications (FilterIds) have strictly negative switch values. Value 0
74 // indicates a catch-all clause.
76 // Negative type IDs index into FilterIds. Positive type IDs index into
77 // TypeInfos. The value written for a positive type ID is just the type ID
78 // itself. For a negative type ID, however, the value written is the
79 // (negative) byte offset of the corresponding FilterIds entry. The byte
80 // offset is usually equal to the type ID (because the FilterIds entries are
81 // written using a variable width encoding, which outputs one byte per entry
82 // as long as the value written is not too large) but can differ. This kind
83 // of complication does not occur for positive type IDs because type infos are
84 // output using a fixed width encoding. FilterOffsets[i] holds the byte
85 // offset corresponding to FilterIds[i].
87 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
88 SmallVector<int, 16> FilterOffsets;
89 FilterOffsets.reserve(FilterIds.size());
90 int Offset = -1;
92 for (std::vector<unsigned>::const_iterator
93 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
94 FilterOffsets.push_back(Offset);
95 Offset -= getULEB128Size(*I);
98 FirstActions.reserve(LandingPads.size());
100 int FirstAction = 0;
101 unsigned SizeActions = 0; // Total size of all action entries for a function
102 const LandingPadInfo *PrevLPI = nullptr;
104 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
105 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
106 const LandingPadInfo *LPI = *I;
107 const std::vector<int> &TypeIds = LPI->TypeIds;
108 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
109 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
111 if (NumShared < TypeIds.size()) {
112 // Size of one action entry (typeid + next action)
113 unsigned SizeActionEntry = 0;
114 unsigned PrevAction = (unsigned)-1;
116 if (NumShared) {
117 unsigned SizePrevIds = PrevLPI->TypeIds.size();
118 assert(Actions.size());
119 PrevAction = Actions.size() - 1;
120 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
121 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
123 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
124 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
125 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
126 SizeActionEntry += -Actions[PrevAction].NextAction;
127 PrevAction = Actions[PrevAction].Previous;
131 // Compute the actions.
132 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
133 int TypeID = TypeIds[J];
134 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
135 int ValueForTypeID =
136 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
137 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
139 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
140 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
141 SizeSiteActions += SizeActionEntry;
143 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
144 Actions.push_back(Action);
145 PrevAction = Actions.size() - 1;
148 // Record the first action of the landing pad site.
149 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
150 } // else identical - re-use previous FirstAction
152 // Information used when creating the call-site table. The action record
153 // field of the call site record is the offset of the first associated
154 // action record, relative to the start of the actions table. This value is
155 // biased by 1 (1 indicating the start of the actions table), and 0
156 // indicates that there are no actions.
157 FirstActions.push_back(FirstAction);
159 // Compute this sites contribution to size.
160 SizeActions += SizeSiteActions;
162 PrevLPI = LPI;
166 /// Return `true' if this is a call to a function marked `nounwind'. Return
167 /// `false' otherwise.
168 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
169 assert(MI->isCall() && "This should be a call instruction!");
171 bool MarkedNoUnwind = false;
172 bool SawFunc = false;
174 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
175 const MachineOperand &MO = MI->getOperand(I);
177 if (!MO.isGlobal()) continue;
179 const Function *F = dyn_cast<Function>(MO.getGlobal());
180 if (!F) continue;
182 if (SawFunc) {
183 // Be conservative. If we have more than one function operand for this
184 // call, then we can't make the assumption that it's the callee and
185 // not a parameter to the call.
187 // FIXME: Determine if there's a way to say that `F' is the callee or
188 // parameter.
189 MarkedNoUnwind = false;
190 break;
193 MarkedNoUnwind = F->doesNotThrow();
194 SawFunc = true;
197 return MarkedNoUnwind;
200 void EHStreamer::computePadMap(
201 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
202 RangeMapType &PadMap) {
203 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
204 // by try-range labels when lowered). Ordinary calls do not, so appropriate
205 // try-ranges for them need be deduced so we can put them in the LSDA.
206 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
207 const LandingPadInfo *LandingPad = LandingPads[i];
208 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
209 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
210 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
211 PadRange P = { i, j };
212 PadMap[BeginLabel] = P;
217 /// Compute the call-site table. The entry for an invoke has a try-range
218 /// containing the call, a non-zero landing pad, and an appropriate action. The
219 /// entry for an ordinary call has a try-range containing the call and zero for
220 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
221 /// must not be contained in the try-range of any entry - they form gaps in the
222 /// table. Entries must be ordered by try-range address.
223 void EHStreamer::
224 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
225 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
226 const SmallVectorImpl<unsigned> &FirstActions) {
227 RangeMapType PadMap;
228 computePadMap(LandingPads, PadMap);
230 // The end label of the previous invoke or nounwind try-range.
231 MCSymbol *LastLabel = nullptr;
233 // Whether there is a potentially throwing instruction (currently this means
234 // an ordinary call) between the end of the previous try-range and now.
235 bool SawPotentiallyThrowing = false;
237 // Whether the last CallSite entry was for an invoke.
238 bool PreviousIsInvoke = false;
240 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
242 // Visit all instructions in order of address.
243 for (const auto &MBB : *Asm->MF) {
244 for (const auto &MI : MBB) {
245 if (!MI.isEHLabel()) {
246 if (MI.isCall())
247 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
248 continue;
251 // End of the previous try-range?
252 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
253 if (BeginLabel == LastLabel)
254 SawPotentiallyThrowing = false;
256 // Beginning of a new try-range?
257 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258 if (L == PadMap.end())
259 // Nope, it was just some random label.
260 continue;
262 const PadRange &P = L->second;
263 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265 "Inconsistent landing pad map!");
267 // For Dwarf exception handling (SjLj handling doesn't use this). If some
268 // instruction between the previous try-range and this one may throw,
269 // create a call-site entry with no landing pad for the region between the
270 // try-ranges.
271 if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
272 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
273 CallSites.push_back(Site);
274 PreviousIsInvoke = false;
277 LastLabel = LandingPad->EndLabels[P.RangeIndex];
278 assert(BeginLabel && LastLabel && "Invalid landing pad!");
280 if (!LandingPad->LandingPadLabel) {
281 // Create a gap.
282 PreviousIsInvoke = false;
283 } else {
284 // This try-range is for an invoke.
285 CallSiteEntry Site = {
286 BeginLabel,
287 LastLabel,
288 LandingPad,
289 FirstActions[P.PadIndex]
292 // Try to merge with the previous call-site. SJLJ doesn't do this
293 if (PreviousIsInvoke && !IsSJLJ) {
294 CallSiteEntry &Prev = CallSites.back();
295 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
296 // Extend the range of the previous entry.
297 Prev.EndLabel = Site.EndLabel;
298 continue;
302 // Otherwise, create a new call-site.
303 if (!IsSJLJ)
304 CallSites.push_back(Site);
305 else {
306 // SjLj EH must maintain the call sites in the order assigned
307 // to them by the SjLjPrepare pass.
308 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
309 if (CallSites.size() < SiteNo)
310 CallSites.resize(SiteNo);
311 CallSites[SiteNo - 1] = Site;
313 PreviousIsInvoke = true;
318 // If some instruction between the previous try-range and the end of the
319 // function may throw, create a call-site entry with no landing pad for the
320 // region following the try-range.
321 if (SawPotentiallyThrowing && !IsSJLJ) {
322 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
323 CallSites.push_back(Site);
327 /// Emit landing pads and actions.
329 /// The general organization of the table is complex, but the basic concepts are
330 /// easy. First there is a header which describes the location and organization
331 /// of the three components that follow.
333 /// 1. The landing pad site information describes the range of code covered by
334 /// the try. In our case it's an accumulation of the ranges covered by the
335 /// invokes in the try. There is also a reference to the landing pad that
336 /// handles the exception once processed. Finally an index into the actions
337 /// table.
338 /// 2. The action table, in our case, is composed of pairs of type IDs and next
339 /// action offset. Starting with the action index from the landing pad
340 /// site, each type ID is checked for a match to the current exception. If
341 /// it matches then the exception and type id are passed on to the landing
342 /// pad. Otherwise the next action is looked up. This chain is terminated
343 /// with a next action of zero. If no type id is found then the frame is
344 /// unwound and handling continues.
345 /// 3. Type ID table contains references to all the C++ typeinfo for all
346 /// catches in the function. This tables is reverse indexed base 1.
348 /// Returns the starting symbol of an exception table.
349 MCSymbol *EHStreamer::emitExceptionTable() {
350 const MachineFunction *MF = Asm->MF;
351 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
352 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
353 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
355 // Sort the landing pads in order of their type ids. This is used to fold
356 // duplicate actions.
357 SmallVector<const LandingPadInfo *, 64> LandingPads;
358 LandingPads.reserve(PadInfos.size());
360 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
361 LandingPads.push_back(&PadInfos[i]);
363 // Order landing pads lexicographically by type id.
364 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
365 return L->TypeIds < R->TypeIds;
368 // Compute the actions table and gather the first action index for each
369 // landing pad site.
370 SmallVector<ActionEntry, 32> Actions;
371 SmallVector<unsigned, 64> FirstActions;
372 computeActionsTable(LandingPads, Actions, FirstActions);
374 // Compute the call-site table.
375 SmallVector<CallSiteEntry, 64> CallSites;
376 computeCallSiteTable(CallSites, LandingPads, FirstActions);
378 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
379 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
380 unsigned CallSiteEncoding =
381 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
382 Asm->getObjFileLowering().getCallSiteEncoding();
383 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
385 // Type infos.
386 MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
387 unsigned TTypeEncoding;
389 if (!HaveTTData) {
390 // If there is no TypeInfo, then we just explicitly say that we're omitting
391 // that bit.
392 TTypeEncoding = dwarf::DW_EH_PE_omit;
393 } else {
394 // Okay, we have actual filters or typeinfos to emit. As such, we need to
395 // pick a type encoding for them. We're about to emit a list of pointers to
396 // typeinfo objects at the end of the LSDA. However, unless we're in static
397 // mode, this reference will require a relocation by the dynamic linker.
399 // Because of this, we have a couple of options:
401 // 1) If we are in -static mode, we can always use an absolute reference
402 // from the LSDA, because the static linker will resolve it.
404 // 2) Otherwise, if the LSDA section is writable, we can output the direct
405 // reference to the typeinfo and allow the dynamic linker to relocate
406 // it. Since it is in a writable section, the dynamic linker won't
407 // have a problem.
409 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
410 // we need to use some form of indirection. For example, on Darwin,
411 // we can output a statically-relocatable reference to a dyld stub. The
412 // offset to the stub is constant, but the contents are in a section
413 // that is updated by the dynamic linker. This is easy enough, but we
414 // need to tell the personality function of the unwinder to indirect
415 // through the dyld stub.
417 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
418 // somewhere. This predicate should be moved to a shared location that is
419 // in target-independent code.
421 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
424 // Begin the exception table.
425 // Sometimes we want not to emit the data into separate section (e.g. ARM
426 // EHABI). In this case LSDASection will be NULL.
427 if (LSDASection)
428 Asm->OutStreamer->SwitchSection(LSDASection);
429 Asm->EmitAlignment(Align(4));
431 // Emit the LSDA.
432 MCSymbol *GCCETSym =
433 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
434 Twine(Asm->getFunctionNumber()));
435 Asm->OutStreamer->EmitLabel(GCCETSym);
436 Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
438 // Emit the LSDA header.
439 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
440 Asm->EmitEncodingByte(TTypeEncoding, "@TType");
442 MCSymbol *TTBaseLabel = nullptr;
443 if (HaveTTData) {
444 // N.B.: There is a dependency loop between the size of the TTBase uleb128
445 // here and the amount of padding before the aligned type table. The
446 // assembler must sometimes pad this uleb128 or insert extra padding before
447 // the type table. See PR35809 or GNU as bug 4029.
448 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
449 TTBaseLabel = Asm->createTempSymbol("ttbase");
450 Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
451 Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
454 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
456 // Emit the landing pad call site table.
457 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
458 MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
459 Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
460 Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
461 Asm->OutStreamer->EmitLabel(CstBeginLabel);
463 // SjLj / Wasm Exception handling
464 if (IsSJLJ || IsWasm) {
465 unsigned idx = 0;
466 for (SmallVectorImpl<CallSiteEntry>::const_iterator
467 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
468 const CallSiteEntry &S = *I;
470 // Index of the call site entry.
471 if (VerboseAsm) {
472 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
473 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
475 Asm->EmitULEB128(idx);
477 // Offset of the first associated action record, relative to the start of
478 // the action table. This value is biased by 1 (1 indicates the start of
479 // the action table), and 0 indicates that there are no actions.
480 if (VerboseAsm) {
481 if (S.Action == 0)
482 Asm->OutStreamer->AddComment(" Action: cleanup");
483 else
484 Asm->OutStreamer->AddComment(" Action: " +
485 Twine((S.Action - 1) / 2 + 1));
487 Asm->EmitULEB128(S.Action);
489 } else {
490 // Itanium LSDA exception handling
492 // The call-site table is a list of all call sites that may throw an
493 // exception (including C++ 'throw' statements) in the procedure
494 // fragment. It immediately follows the LSDA header. Each entry indicates,
495 // for a given call, the first corresponding action record and corresponding
496 // landing pad.
498 // The table begins with the number of bytes, stored as an LEB128
499 // compressed, unsigned integer. The records immediately follow the record
500 // count. They are sorted in increasing call-site address. Each record
501 // indicates:
503 // * The position of the call-site.
504 // * The position of the landing pad.
505 // * The first action record for that call site.
507 // A missing entry in the call-site table indicates that a call is not
508 // supposed to throw.
510 unsigned Entry = 0;
511 for (SmallVectorImpl<CallSiteEntry>::const_iterator
512 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
513 const CallSiteEntry &S = *I;
515 MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
517 MCSymbol *BeginLabel = S.BeginLabel;
518 if (!BeginLabel)
519 BeginLabel = EHFuncBeginSym;
520 MCSymbol *EndLabel = S.EndLabel;
521 if (!EndLabel)
522 EndLabel = Asm->getFunctionEnd();
524 // Offset of the call site relative to the start of the procedure.
525 if (VerboseAsm)
526 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
527 Asm->EmitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
528 if (VerboseAsm)
529 Asm->OutStreamer->AddComment(Twine(" Call between ") +
530 BeginLabel->getName() + " and " +
531 EndLabel->getName());
532 Asm->EmitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
534 // Offset of the landing pad relative to the start of the procedure.
535 if (!S.LPad) {
536 if (VerboseAsm)
537 Asm->OutStreamer->AddComment(" has no landing pad");
538 Asm->EmitCallSiteValue(0, CallSiteEncoding);
539 } else {
540 if (VerboseAsm)
541 Asm->OutStreamer->AddComment(Twine(" jumps to ") +
542 S.LPad->LandingPadLabel->getName());
543 Asm->EmitCallSiteOffset(S.LPad->LandingPadLabel, EHFuncBeginSym,
544 CallSiteEncoding);
547 // Offset of the first associated action record, relative to the start of
548 // the action table. This value is biased by 1 (1 indicates the start of
549 // the action table), and 0 indicates that there are no actions.
550 if (VerboseAsm) {
551 if (S.Action == 0)
552 Asm->OutStreamer->AddComment(" On action: cleanup");
553 else
554 Asm->OutStreamer->AddComment(" On action: " +
555 Twine((S.Action - 1) / 2 + 1));
557 Asm->EmitULEB128(S.Action);
560 Asm->OutStreamer->EmitLabel(CstEndLabel);
562 // Emit the Action Table.
563 int Entry = 0;
564 for (SmallVectorImpl<ActionEntry>::const_iterator
565 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
566 const ActionEntry &Action = *I;
568 if (VerboseAsm) {
569 // Emit comments that decode the action table.
570 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
573 // Type Filter
575 // Used by the runtime to match the type of the thrown exception to the
576 // type of the catch clauses or the types in the exception specification.
577 if (VerboseAsm) {
578 if (Action.ValueForTypeID > 0)
579 Asm->OutStreamer->AddComment(" Catch TypeInfo " +
580 Twine(Action.ValueForTypeID));
581 else if (Action.ValueForTypeID < 0)
582 Asm->OutStreamer->AddComment(" Filter TypeInfo " +
583 Twine(Action.ValueForTypeID));
584 else
585 Asm->OutStreamer->AddComment(" Cleanup");
587 Asm->EmitSLEB128(Action.ValueForTypeID);
589 // Action Record
591 // Self-relative signed displacement in bytes of the next action record,
592 // or 0 if there is no next action record.
593 if (VerboseAsm) {
594 if (Action.NextAction == 0) {
595 Asm->OutStreamer->AddComment(" No further actions");
596 } else {
597 unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
598 Asm->OutStreamer->AddComment(" Continue to action "+Twine(NextAction));
601 Asm->EmitSLEB128(Action.NextAction);
604 if (HaveTTData) {
605 Asm->EmitAlignment(Align(4));
606 emitTypeInfos(TTypeEncoding, TTBaseLabel);
609 Asm->EmitAlignment(Align(4));
610 return GCCETSym;
613 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
614 const MachineFunction *MF = Asm->MF;
615 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
616 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
618 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
620 int Entry = 0;
621 // Emit the Catch TypeInfos.
622 if (VerboseAsm && !TypeInfos.empty()) {
623 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
624 Asm->OutStreamer->AddBlankLine();
625 Entry = TypeInfos.size();
628 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
629 TypeInfos.rend())) {
630 if (VerboseAsm)
631 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
632 Asm->EmitTTypeReference(GV, TTypeEncoding);
635 Asm->OutStreamer->EmitLabel(TTBaseLabel);
637 // Emit the Exception Specifications.
638 if (VerboseAsm && !FilterIds.empty()) {
639 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
640 Asm->OutStreamer->AddBlankLine();
641 Entry = 0;
643 for (std::vector<unsigned>::const_iterator
644 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
645 unsigned TypeID = *I;
646 if (VerboseAsm) {
647 --Entry;
648 if (isFilterEHSelector(TypeID))
649 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
652 Asm->EmitULEB128(TypeID);