1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
36 using namespace llvm::PatternMatch
;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant
*BitCastConstantVector(Constant
*CV
, VectorType
*DstTy
) {
47 if (CV
->isAllOnesValue()) return Constant::getAllOnesValue(DstTy
);
48 if (CV
->isNullValue()) return Constant::getNullValue(DstTy
);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts
= DstTy
->getNumElements();
54 if (NumElts
!= CV
->getType()->getVectorNumElements())
57 Type
*DstEltTy
= DstTy
->getElementType();
59 SmallVector
<Constant
*, 16> Result
;
60 Type
*Ty
= IntegerType::get(CV
->getContext(), 32);
61 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
63 ConstantExpr::getExtractElement(CV
, ConstantInt::get(Ty
, i
));
64 C
= ConstantExpr::getBitCast(C
, DstEltTy
);
68 return ConstantVector::get(Result
);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
77 unsigned opc
, ///< opcode of the second cast constant expression
78 ConstantExpr
*Op
, ///< the first cast constant expression
79 Type
*DstTy
///< destination type of the first cast
81 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type
*SrcTy
= Op
->getOperand(0)->getType();
87 Type
*MidTy
= Op
->getType();
88 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
89 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
98 nullptr, FakeIntPtrTy
, nullptr);
101 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
102 Type
*SrcTy
= V
->getType();
104 return V
; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
109 if (PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
110 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()
111 && PTy
->getElementType()->isSized()) {
112 SmallVector
<Value
*, 8> IdxList
;
114 Constant::getNullValue(Type::getInt32Ty(DPTy
->getContext()));
115 IdxList
.push_back(Zero
);
116 Type
*ElTy
= PTy
->getElementType();
117 while (ElTy
!= DPTy
->getElementType()) {
118 if (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
119 if (STy
->getNumElements() == 0) break;
120 ElTy
= STy
->getElementType(0);
121 IdxList
.push_back(Zero
);
122 } else if (SequentialType
*STy
=
123 dyn_cast
<SequentialType
>(ElTy
)) {
124 ElTy
= STy
->getElementType();
125 IdxList
.push_back(Zero
);
131 if (ElTy
== DPTy
->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy
->getElementType(),
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
140 if (VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
141 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
142 "Not cast between same sized vectors!");
144 // First, check for null. Undef is already handled.
145 if (isa
<ConstantAggregateZero
>(V
))
146 return Constant::getNullValue(DestTy
);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V
, DestPTy
);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
156 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
159 // Finally, implement bitcast folding now. The code below doesn't handle
161 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
164 // Handle integral constant input.
165 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
166 if (DestTy
->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy
->getContext(),
174 APFloat(DestTy
->getFltSemantics(),
177 // Otherwise, can't fold this (vector?)
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP
->getType()->isPPC_FP128Ty())
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy
->isIntegerTy())
196 return ConstantInt::get(FP
->getContext(),
197 FP
->getValueAPF().bitcastToAPInt());
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant
*ExtractConstantBytes(Constant
*C
, unsigned ByteStart
,
214 assert(C
->getType()->isIntegerTy() &&
215 (cast
<IntegerType
>(C
->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize
= cast
<IntegerType
>(C
->getType())->getBitWidth()/8;
218 assert(ByteSize
&& "Must be accessing some piece");
219 assert(ByteStart
+ByteSize
<= CSize
&& "Extracting invalid piece from input");
220 assert(ByteSize
!= CSize
&& "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
224 APInt V
= CI
->getValue();
226 V
.lshrInPlace(ByteStart
*8);
227 V
= V
.trunc(ByteSize
*8);
228 return ConstantInt::get(CI
->getContext(), V
);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
234 if (!CE
) return nullptr;
236 switch (CE
->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or
: {
239 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
244 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
))
245 if (RHSC
->isMinusOne())
248 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
251 return ConstantExpr::getOr(LHS
, RHS
);
253 case Instruction::And
: {
254 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
259 if (RHS
->isNullValue())
262 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
265 return ConstantExpr::getAnd(LHS
, RHS
);
267 case Instruction::LShr
: {
268 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
271 APInt ShAmt
= Amt
->getValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt
& 7) != 0)
275 ShAmt
.lshrInPlace(3);
277 // If the extract is known to be all zeros, return zero.
278 if (ShAmt
.uge(CSize
- ByteStart
))
279 return Constant::getNullValue(
280 IntegerType::get(CE
->getContext(), ByteSize
* 8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ShAmt
.ule(CSize
- (ByteStart
+ ByteSize
)))
283 return ExtractConstantBytes(CE
->getOperand(0),
284 ByteStart
+ ShAmt
.getZExtValue(), ByteSize
);
286 // TODO: Handle the 'partially zero' case.
290 case Instruction::Shl
: {
291 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
294 APInt ShAmt
= Amt
->getValue();
295 // Cannot analyze non-byte shifts.
296 if ((ShAmt
& 7) != 0)
298 ShAmt
.lshrInPlace(3);
300 // If the extract is known to be all zeros, return zero.
301 if (ShAmt
.uge(ByteStart
+ ByteSize
))
302 return Constant::getNullValue(
303 IntegerType::get(CE
->getContext(), ByteSize
* 8));
304 // If the extract is known to be fully in the input, extract it.
305 if (ShAmt
.ule(ByteStart
))
306 return ExtractConstantBytes(CE
->getOperand(0),
307 ByteStart
- ShAmt
.getZExtValue(), ByteSize
);
309 // TODO: Handle the 'partially zero' case.
313 case Instruction::ZExt
: {
314 unsigned SrcBitSize
=
315 cast
<IntegerType
>(CE
->getOperand(0)->getType())->getBitWidth();
317 // If extracting something that is completely zero, return 0.
318 if (ByteStart
*8 >= SrcBitSize
)
319 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
322 // If exactly extracting the input, return it.
323 if (ByteStart
== 0 && ByteSize
*8 == SrcBitSize
)
324 return CE
->getOperand(0);
326 // If extracting something completely in the input, if the input is a
327 // multiple of 8 bits, recurse.
328 if ((SrcBitSize
&7) == 0 && (ByteStart
+ByteSize
)*8 <= SrcBitSize
)
329 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
, ByteSize
);
331 // Otherwise, if extracting a subset of the input, which is not multiple of
332 // 8 bits, do a shift and trunc to get the bits.
333 if ((ByteStart
+ByteSize
)*8 < SrcBitSize
) {
334 assert((SrcBitSize
&7) && "Shouldn't get byte sized case here");
335 Constant
*Res
= CE
->getOperand(0);
337 Res
= ConstantExpr::getLShr(Res
,
338 ConstantInt::get(Res
->getType(), ByteStart
*8));
339 return ConstantExpr::getTrunc(Res
, IntegerType::get(C
->getContext(),
343 // TODO: Handle the 'partially zero' case.
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant
*getFoldedSizeOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
354 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
355 Constant
*N
= ConstantInt::get(DestTy
, ATy
->getNumElements());
356 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
357 return ConstantExpr::getNUWMul(E
, N
);
360 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
361 if (!STy
->isPacked()) {
362 unsigned NumElems
= STy
->getNumElements();
363 // An empty struct has size zero.
365 return ConstantExpr::getNullValue(DestTy
);
366 // Check for a struct with all members having the same size.
367 Constant
*MemberSize
=
368 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
370 for (unsigned i
= 1; i
!= NumElems
; ++i
)
372 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
377 Constant
*N
= ConstantInt::get(DestTy
, NumElems
);
378 return ConstantExpr::getNUWMul(MemberSize
, N
);
382 // Pointer size doesn't depend on the pointee type, so canonicalize them
383 // to an arbitrary pointee.
384 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
385 if (!PTy
->getElementType()->isIntegerTy(1))
387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy
->getContext(), 1),
388 PTy
->getAddressSpace()),
391 // If there's no interesting folding happening, bail so that we don't create
392 // a constant that looks like it needs folding but really doesn't.
396 // Base case: Get a regular sizeof expression.
397 Constant
*C
= ConstantExpr::getSizeOf(Ty
);
398 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant
*getFoldedAlignOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
412 Constant
*C
= ConstantExpr::getAlignOf(ATy
->getElementType());
413 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
420 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
421 // Packed structs always have an alignment of 1.
423 return ConstantInt::get(DestTy
, 1);
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems
= STy
->getNumElements();
429 // An empty struct has minimal alignment.
431 return ConstantInt::get(DestTy
, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant
*MemberAlign
=
434 getFoldedAlignOf(STy
->getElementType(0), DestTy
, true);
436 for (unsigned i
= 1; i
!= NumElems
; ++i
)
437 if (MemberAlign
!= getFoldedAlignOf(STy
->getElementType(i
), DestTy
, true)) {
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
448 if (!PTy
->getElementType()->isIntegerTy(1))
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy
->getContext(),
452 PTy
->getAddressSpace()),
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
460 // Base case: Get a regular alignof expression.
461 Constant
*C
= ConstantExpr::getAlignOf(Ty
);
462 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant
*getFoldedOffsetOf(Type
*Ty
, Constant
*FieldNo
, Type
*DestTy
,
474 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
475 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
, false,
478 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
479 return ConstantExpr::getNUWMul(E
, N
);
482 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
483 if (!STy
->isPacked()) {
484 unsigned NumElems
= STy
->getNumElements();
485 // An empty struct has no members.
488 // Check for a struct with all members having the same size.
489 Constant
*MemberSize
=
490 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
492 for (unsigned i
= 1; i
!= NumElems
; ++i
)
494 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
499 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
,
504 return ConstantExpr::getNUWMul(MemberSize
, N
);
508 // If there's no interesting folding happening, bail so that we don't create
509 // a constant that looks like it needs folding but really doesn't.
513 // Base case: Get a regular offsetof expression.
514 Constant
*C
= ConstantExpr::getOffsetOf(Ty
, FieldNo
);
515 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
521 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
523 if (isa
<UndefValue
>(V
)) {
524 // zext(undef) = 0, because the top bits will be zero.
525 // sext(undef) = 0, because the top bits will all be the same.
526 // [us]itofp(undef) = 0, because the result value is bounded.
527 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
528 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
529 return Constant::getNullValue(DestTy
);
530 return UndefValue::get(DestTy
);
533 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() &&
534 opc
!= Instruction::AddrSpaceCast
)
535 return Constant::getNullValue(DestTy
);
537 // If the cast operand is a constant expression, there's a few things we can
538 // do to try to simplify it.
539 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
541 // Try hard to fold cast of cast because they are often eliminable.
542 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
543 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
544 } else if (CE
->getOpcode() == Instruction::GetElementPtr
&&
545 // Do not fold addrspacecast (gep 0, .., 0). It might make the
546 // addrspacecast uncanonicalized.
547 opc
!= Instruction::AddrSpaceCast
&&
548 // Do not fold bitcast (gep) with inrange index, as this loses
550 !cast
<GEPOperator
>(CE
)->getInRangeIndex().hasValue() &&
551 // Do not fold if the gep type is a vector, as bitcasting
552 // operand 0 of a vector gep will result in a bitcast between
554 !CE
->getType()->isVectorTy()) {
555 // If all of the indexes in the GEP are null values, there is no pointer
556 // adjustment going on. We might as well cast the source pointer.
557 bool isAllNull
= true;
558 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
559 if (!CE
->getOperand(i
)->isNullValue()) {
564 // This is casting one pointer type to another, always BitCast
565 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
569 // If the cast operand is a constant vector, perform the cast by
570 // operating on each element. In the cast of bitcasts, the element
571 // count may be mismatched; don't attempt to handle that here.
572 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
573 DestTy
->isVectorTy() &&
574 DestTy
->getVectorNumElements() == V
->getType()->getVectorNumElements()) {
575 SmallVector
<Constant
*, 16> res
;
576 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
577 Type
*DstEltTy
= DestVecTy
->getElementType();
578 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
579 for (unsigned i
= 0, e
= V
->getType()->getVectorNumElements(); i
!= e
; ++i
) {
581 ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
582 res
.push_back(ConstantExpr::getCast(opc
, C
, DstEltTy
));
584 return ConstantVector::get(res
);
587 // We actually have to do a cast now. Perform the cast according to the
591 llvm_unreachable("Failed to cast constant expression");
592 case Instruction::FPTrunc
:
593 case Instruction::FPExt
:
594 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
596 APFloat Val
= FPC
->getValueAPF();
597 Val
.convert(DestTy
->isHalfTy() ? APFloat::IEEEhalf() :
598 DestTy
->isFloatTy() ? APFloat::IEEEsingle() :
599 DestTy
->isDoubleTy() ? APFloat::IEEEdouble() :
600 DestTy
->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601 DestTy
->isFP128Ty() ? APFloat::IEEEquad() :
602 DestTy
->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
604 APFloat::rmNearestTiesToEven
, &ignored
);
605 return ConstantFP::get(V
->getContext(), Val
);
607 return nullptr; // Can't fold.
608 case Instruction::FPToUI
:
609 case Instruction::FPToSI
:
610 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
611 const APFloat
&V
= FPC
->getValueAPF();
613 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
614 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
615 if (APFloat::opInvalidOp
==
616 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
617 // Undefined behavior invoked - the destination type can't represent
618 // the input constant.
619 return UndefValue::get(DestTy
);
621 return ConstantInt::get(FPC
->getContext(), IntVal
);
623 return nullptr; // Can't fold.
624 case Instruction::IntToPtr
: //always treated as unsigned
625 if (V
->isNullValue()) // Is it an integral null value?
626 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
627 return nullptr; // Other pointer types cannot be casted
628 case Instruction::PtrToInt
: // always treated as unsigned
629 // Is it a null pointer value?
630 if (V
->isNullValue())
631 return ConstantInt::get(DestTy
, 0);
632 // If this is a sizeof-like expression, pull out multiplications by
633 // known factors to expose them to subsequent folding. If it's an
634 // alignof-like expression, factor out known factors.
635 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
636 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
637 CE
->getOperand(0)->isNullValue()) {
638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642 // happen in one "real" C-code test case, so it does not seem to be an
643 // important optimization to handle vectors here. For now, simply bail
645 if (DestTy
->isVectorTy())
647 GEPOperator
*GEPO
= cast
<GEPOperator
>(CE
);
648 Type
*Ty
= GEPO
->getSourceElementType();
649 if (CE
->getNumOperands() == 2) {
650 // Handle a sizeof-like expression.
651 Constant
*Idx
= CE
->getOperand(1);
652 bool isOne
= isa
<ConstantInt
>(Idx
) && cast
<ConstantInt
>(Idx
)->isOne();
653 if (Constant
*C
= getFoldedSizeOf(Ty
, DestTy
, !isOne
)) {
654 Idx
= ConstantExpr::getCast(CastInst::getCastOpcode(Idx
, true,
657 return ConstantExpr::getMul(C
, Idx
);
659 } else if (CE
->getNumOperands() == 3 &&
660 CE
->getOperand(1)->isNullValue()) {
661 // Handle an alignof-like expression.
662 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
663 if (!STy
->isPacked()) {
664 ConstantInt
*CI
= cast
<ConstantInt
>(CE
->getOperand(2));
666 STy
->getNumElements() == 2 &&
667 STy
->getElementType(0)->isIntegerTy(1)) {
668 return getFoldedAlignOf(STy
->getElementType(1), DestTy
, false);
671 // Handle an offsetof-like expression.
672 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
673 if (Constant
*C
= getFoldedOffsetOf(Ty
, CE
->getOperand(2),
679 // Other pointer types cannot be casted
681 case Instruction::UIToFP
:
682 case Instruction::SIToFP
:
683 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
684 const APInt
&api
= CI
->getValue();
685 APFloat
apf(DestTy
->getFltSemantics(),
686 APInt::getNullValue(DestTy
->getPrimitiveSizeInBits()));
687 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
688 APFloat::rmNearestTiesToEven
);
689 return ConstantFP::get(V
->getContext(), apf
);
692 case Instruction::ZExt
:
693 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
694 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
695 return ConstantInt::get(V
->getContext(),
696 CI
->getValue().zext(BitWidth
));
699 case Instruction::SExt
:
700 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
701 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
702 return ConstantInt::get(V
->getContext(),
703 CI
->getValue().sext(BitWidth
));
706 case Instruction::Trunc
: {
707 if (V
->getType()->isVectorTy())
710 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
711 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
712 return ConstantInt::get(V
->getContext(),
713 CI
->getValue().trunc(DestBitWidth
));
716 // The input must be a constantexpr. See if we can simplify this based on
717 // the bytes we are demanding. Only do this if the source and dest are an
718 // even multiple of a byte.
719 if ((DestBitWidth
& 7) == 0 &&
720 (cast
<IntegerType
>(V
->getType())->getBitWidth() & 7) == 0)
721 if (Constant
*Res
= ExtractConstantBytes(V
, 0, DestBitWidth
/ 8))
726 case Instruction::BitCast
:
727 return FoldBitCast(V
, DestTy
);
728 case Instruction::AddrSpaceCast
:
733 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
734 Constant
*V1
, Constant
*V2
) {
735 // Check for i1 and vector true/false conditions.
736 if (Cond
->isNullValue()) return V2
;
737 if (Cond
->isAllOnesValue()) return V1
;
739 // If the condition is a vector constant, fold the result elementwise.
740 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
741 SmallVector
<Constant
*, 16> Result
;
742 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
743 for (unsigned i
= 0, e
= V1
->getType()->getVectorNumElements(); i
!= e
;++i
){
745 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
746 ConstantInt::get(Ty
, i
));
747 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
748 ConstantInt::get(Ty
, i
));
749 auto *Cond
= cast
<Constant
>(CondV
->getOperand(i
));
750 if (V1Element
== V2Element
) {
752 } else if (isa
<UndefValue
>(Cond
)) {
753 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
755 if (!isa
<ConstantInt
>(Cond
)) break;
756 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
761 // If we were able to build the vector, return it.
762 if (Result
.size() == V1
->getType()->getVectorNumElements())
763 return ConstantVector::get(Result
);
766 if (isa
<UndefValue
>(Cond
)) {
767 if (isa
<UndefValue
>(V1
)) return V1
;
770 if (isa
<UndefValue
>(V1
)) return V2
;
771 if (isa
<UndefValue
>(V2
)) return V1
;
772 if (V1
== V2
) return V1
;
774 if (ConstantExpr
*TrueVal
= dyn_cast
<ConstantExpr
>(V1
)) {
775 if (TrueVal
->getOpcode() == Instruction::Select
)
776 if (TrueVal
->getOperand(0) == Cond
)
777 return ConstantExpr::getSelect(Cond
, TrueVal
->getOperand(1), V2
);
779 if (ConstantExpr
*FalseVal
= dyn_cast
<ConstantExpr
>(V2
)) {
780 if (FalseVal
->getOpcode() == Instruction::Select
)
781 if (FalseVal
->getOperand(0) == Cond
)
782 return ConstantExpr::getSelect(Cond
, V1
, FalseVal
->getOperand(2));
788 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
790 // extractelt undef, C -> undef
791 // extractelt C, undef -> undef
792 if (isa
<UndefValue
>(Val
) || isa
<UndefValue
>(Idx
))
793 return UndefValue::get(Val
->getType()->getVectorElementType());
795 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
796 // ee({w,x,y,z}, wrong_value) -> undef
797 if (CIdx
->uge(Val
->getType()->getVectorNumElements()))
798 return UndefValue::get(Val
->getType()->getVectorElementType());
799 return Val
->getAggregateElement(CIdx
->getZExtValue());
804 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
807 if (isa
<UndefValue
>(Idx
))
808 return UndefValue::get(Val
->getType());
810 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
811 if (!CIdx
) return nullptr;
813 unsigned NumElts
= Val
->getType()->getVectorNumElements();
814 if (CIdx
->uge(NumElts
))
815 return UndefValue::get(Val
->getType());
817 SmallVector
<Constant
*, 16> Result
;
818 Result
.reserve(NumElts
);
819 auto *Ty
= Type::getInt32Ty(Val
->getContext());
820 uint64_t IdxVal
= CIdx
->getZExtValue();
821 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
823 Result
.push_back(Elt
);
827 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
831 return ConstantVector::get(Result
);
834 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
,
837 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
838 Type
*EltTy
= V1
->getType()->getVectorElementType();
840 // Undefined shuffle mask -> undefined value.
841 if (isa
<UndefValue
>(Mask
))
842 return UndefValue::get(VectorType::get(EltTy
, MaskNumElts
));
844 // Don't break the bitcode reader hack.
845 if (isa
<ConstantExpr
>(Mask
)) return nullptr;
847 unsigned SrcNumElts
= V1
->getType()->getVectorNumElements();
849 // Loop over the shuffle mask, evaluating each element.
850 SmallVector
<Constant
*, 32> Result
;
851 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
852 int Elt
= ShuffleVectorInst::getMaskValue(Mask
, i
);
854 Result
.push_back(UndefValue::get(EltTy
));
858 if (unsigned(Elt
) >= SrcNumElts
*2)
859 InElt
= UndefValue::get(EltTy
);
860 else if (unsigned(Elt
) >= SrcNumElts
) {
861 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
863 ConstantExpr::getExtractElement(V2
,
864 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
866 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
867 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
869 Result
.push_back(InElt
);
872 return ConstantVector::get(Result
);
875 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
876 ArrayRef
<unsigned> Idxs
) {
877 // Base case: no indices, so return the entire value.
881 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
882 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
887 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
889 ArrayRef
<unsigned> Idxs
) {
890 // Base case: no indices, so replace the entire value.
895 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
896 NumElts
= ST
->getNumElements();
898 NumElts
= cast
<SequentialType
>(Agg
->getType())->getNumElements();
900 SmallVector
<Constant
*, 32> Result
;
901 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
902 Constant
*C
= Agg
->getAggregateElement(i
);
903 if (!C
) return nullptr;
906 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
911 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
912 return ConstantStruct::get(ST
, Result
);
913 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
->getType()))
914 return ConstantArray::get(AT
, Result
);
915 return ConstantVector::get(Result
);
918 Constant
*llvm::ConstantFoldUnaryInstruction(unsigned Opcode
, Constant
*C
) {
919 assert(Instruction::isUnaryOp(Opcode
) && "Non-unary instruction detected");
921 // Handle scalar UndefValue. Vectors are always evaluated per element.
922 bool HasScalarUndef
= !C
->getType()->isVectorTy() && isa
<UndefValue
>(C
);
924 if (HasScalarUndef
) {
925 switch (static_cast<Instruction::UnaryOps
>(Opcode
)) {
926 case Instruction::FNeg
:
927 return C
; // -undef -> undef
928 case Instruction::UnaryOpsEnd
:
929 llvm_unreachable("Invalid UnaryOp");
933 // Constant should not be UndefValue, unless these are vector constants.
934 assert(!HasScalarUndef
&& "Unexpected UndefValue");
935 // We only have FP UnaryOps right now.
936 assert(!isa
<ConstantInt
>(C
) && "Unexpected Integer UnaryOp");
938 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
939 const APFloat
&CV
= CFP
->getValueAPF();
943 case Instruction::FNeg
:
944 return ConstantFP::get(C
->getContext(), neg(CV
));
946 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C
->getType())) {
947 // Fold each element and create a vector constant from those constants.
948 SmallVector
<Constant
*, 16> Result
;
949 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
950 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
951 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
952 Constant
*Elt
= ConstantExpr::getExtractElement(C
, ExtractIdx
);
954 Result
.push_back(ConstantExpr::get(Opcode
, Elt
));
957 return ConstantVector::get(Result
);
960 // We don't know how to fold this.
964 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
, Constant
*C1
,
966 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
968 // Handle scalar UndefValue. Vectors are always evaluated per element.
969 bool HasScalarUndef
= !C1
->getType()->isVectorTy() &&
970 (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
));
971 if (HasScalarUndef
) {
972 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
973 case Instruction::Xor
:
974 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
975 // Handle undef ^ undef -> 0 special case. This is a common
977 return Constant::getNullValue(C1
->getType());
979 case Instruction::Add
:
980 case Instruction::Sub
:
981 return UndefValue::get(C1
->getType());
982 case Instruction::And
:
983 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
985 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
986 case Instruction::Mul
: {
987 // undef * undef -> undef
988 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
991 // X * undef -> undef if X is odd
992 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
994 return UndefValue::get(C1
->getType());
996 // X * undef -> 0 otherwise
997 return Constant::getNullValue(C1
->getType());
999 case Instruction::SDiv
:
1000 case Instruction::UDiv
:
1001 // X / undef -> undef
1002 if (isa
<UndefValue
>(C2
))
1004 // undef / 0 -> undef
1005 // undef / 1 -> undef
1006 if (match(C2
, m_Zero()) || match(C2
, m_One()))
1008 // undef / X -> 0 otherwise
1009 return Constant::getNullValue(C1
->getType());
1010 case Instruction::URem
:
1011 case Instruction::SRem
:
1012 // X % undef -> undef
1013 if (match(C2
, m_Undef()))
1015 // undef % 0 -> undef
1016 if (match(C2
, m_Zero()))
1018 // undef % X -> 0 otherwise
1019 return Constant::getNullValue(C1
->getType());
1020 case Instruction::Or
: // X | undef -> -1
1021 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
1023 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
1024 case Instruction::LShr
:
1025 // X >>l undef -> undef
1026 if (isa
<UndefValue
>(C2
))
1028 // undef >>l 0 -> undef
1029 if (match(C2
, m_Zero()))
1032 return Constant::getNullValue(C1
->getType());
1033 case Instruction::AShr
:
1034 // X >>a undef -> undef
1035 if (isa
<UndefValue
>(C2
))
1037 // undef >>a 0 -> undef
1038 if (match(C2
, m_Zero()))
1040 // TODO: undef >>a X -> undef if the shift is exact
1042 return Constant::getNullValue(C1
->getType());
1043 case Instruction::Shl
:
1044 // X << undef -> undef
1045 if (isa
<UndefValue
>(C2
))
1047 // undef << 0 -> undef
1048 if (match(C2
, m_Zero()))
1051 return Constant::getNullValue(C1
->getType());
1052 case Instruction::FAdd
:
1053 case Instruction::FSub
:
1054 case Instruction::FMul
:
1055 case Instruction::FDiv
:
1056 case Instruction::FRem
:
1057 // [any flop] undef, undef -> undef
1058 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
1060 // [any flop] C, undef -> NaN
1061 // [any flop] undef, C -> NaN
1062 // We could potentially specialize NaN/Inf constants vs. 'normal'
1063 // constants (possibly differently depending on opcode and operand). This
1064 // would allow returning undef sometimes. But it is always safe to fold to
1065 // NaN because we can choose the undef operand as NaN, and any FP opcode
1066 // with a NaN operand will propagate NaN.
1067 return ConstantFP::getNaN(C1
->getType());
1068 case Instruction::BinaryOpsEnd
:
1069 llvm_unreachable("Invalid BinaryOp");
1073 // Neither constant should be UndefValue, unless these are vector constants.
1074 assert(!HasScalarUndef
&& "Unexpected UndefValue");
1076 // Handle simplifications when the RHS is a constant int.
1077 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1079 case Instruction::Add
:
1080 if (CI2
->isZero()) return C1
; // X + 0 == X
1082 case Instruction::Sub
:
1083 if (CI2
->isZero()) return C1
; // X - 0 == X
1085 case Instruction::Mul
:
1086 if (CI2
->isZero()) return C2
; // X * 0 == 0
1088 return C1
; // X * 1 == X
1090 case Instruction::UDiv
:
1091 case Instruction::SDiv
:
1093 return C1
; // X / 1 == X
1095 return UndefValue::get(CI2
->getType()); // X / 0 == undef
1097 case Instruction::URem
:
1098 case Instruction::SRem
:
1100 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
1102 return UndefValue::get(CI2
->getType()); // X % 0 == undef
1104 case Instruction::And
:
1105 if (CI2
->isZero()) return C2
; // X & 0 == 0
1106 if (CI2
->isMinusOne())
1107 return C1
; // X & -1 == X
1109 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1110 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1111 if (CE1
->getOpcode() == Instruction::ZExt
) {
1112 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1114 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1115 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1116 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
1120 // If and'ing the address of a global with a constant, fold it.
1121 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
1122 isa
<GlobalValue
>(CE1
->getOperand(0))) {
1123 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
1127 if (Module
*TheModule
= GV
->getParent()) {
1128 GVAlign
= GV
->getPointerAlignment(TheModule
->getDataLayout());
1130 // If the function alignment is not specified then assume that it
1132 // This is dangerous; on x86, the alignment of the pointer
1133 // corresponds to the alignment of the function, but might be less
1134 // than 4 if it isn't explicitly specified.
1135 // However, a fix for this behaviour was reverted because it
1136 // increased code size (see https://reviews.llvm.org/D55115)
1137 // FIXME: This code should be deleted once existing targets have
1138 // appropriate defaults
1139 if (!GVAlign
&& isa
<Function
>(GV
))
1141 } else if (isa
<Function
>(GV
)) {
1142 // Without a datalayout we have to assume the worst case: that the
1143 // function pointer isn't aligned at all.
1144 GVAlign
= llvm::None
;
1146 GVAlign
= MaybeAlign(GV
->getAlignment());
1149 if (GVAlign
&& *GVAlign
> 1) {
1150 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1151 unsigned SrcWidth
= std::min(DstWidth
, Log2(*GVAlign
));
1152 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1154 // If checking bits we know are clear, return zero.
1155 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
1156 return Constant::getNullValue(CI2
->getType());
1161 case Instruction::Or
:
1162 if (CI2
->isZero()) return C1
; // X | 0 == X
1163 if (CI2
->isMinusOne())
1164 return C2
; // X | -1 == -1
1166 case Instruction::Xor
:
1167 if (CI2
->isZero()) return C1
; // X ^ 0 == X
1169 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1170 switch (CE1
->getOpcode()) {
1172 case Instruction::ICmp
:
1173 case Instruction::FCmp
:
1174 // cmp pred ^ true -> cmp !pred
1175 assert(CI2
->isOne());
1176 CmpInst::Predicate pred
= (CmpInst::Predicate
)CE1
->getPredicate();
1177 pred
= CmpInst::getInversePredicate(pred
);
1178 return ConstantExpr::getCompare(pred
, CE1
->getOperand(0),
1179 CE1
->getOperand(1));
1183 case Instruction::AShr
:
1184 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1185 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
1186 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
1187 return ConstantExpr::getLShr(C1
, C2
);
1190 } else if (isa
<ConstantInt
>(C1
)) {
1191 // If C1 is a ConstantInt and C2 is not, swap the operands.
1192 if (Instruction::isCommutative(Opcode
))
1193 return ConstantExpr::get(Opcode
, C2
, C1
);
1196 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
1197 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1198 const APInt
&C1V
= CI1
->getValue();
1199 const APInt
&C2V
= CI2
->getValue();
1203 case Instruction::Add
:
1204 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
1205 case Instruction::Sub
:
1206 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
1207 case Instruction::Mul
:
1208 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
1209 case Instruction::UDiv
:
1210 assert(!CI2
->isZero() && "Div by zero handled above");
1211 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
1212 case Instruction::SDiv
:
1213 assert(!CI2
->isZero() && "Div by zero handled above");
1214 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1215 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
1216 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
1217 case Instruction::URem
:
1218 assert(!CI2
->isZero() && "Div by zero handled above");
1219 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
1220 case Instruction::SRem
:
1221 assert(!CI2
->isZero() && "Div by zero handled above");
1222 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1223 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
1224 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
1225 case Instruction::And
:
1226 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
1227 case Instruction::Or
:
1228 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
1229 case Instruction::Xor
:
1230 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
1231 case Instruction::Shl
:
1232 if (C2V
.ult(C1V
.getBitWidth()))
1233 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
1234 return UndefValue::get(C1
->getType()); // too big shift is undef
1235 case Instruction::LShr
:
1236 if (C2V
.ult(C1V
.getBitWidth()))
1237 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
1238 return UndefValue::get(C1
->getType()); // too big shift is undef
1239 case Instruction::AShr
:
1240 if (C2V
.ult(C1V
.getBitWidth()))
1241 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
1242 return UndefValue::get(C1
->getType()); // too big shift is undef
1247 case Instruction::SDiv
:
1248 case Instruction::UDiv
:
1249 case Instruction::URem
:
1250 case Instruction::SRem
:
1251 case Instruction::LShr
:
1252 case Instruction::AShr
:
1253 case Instruction::Shl
:
1254 if (CI1
->isZero()) return C1
;
1259 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
1260 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
1261 const APFloat
&C1V
= CFP1
->getValueAPF();
1262 const APFloat
&C2V
= CFP2
->getValueAPF();
1263 APFloat C3V
= C1V
; // copy for modification
1267 case Instruction::FAdd
:
1268 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
1269 return ConstantFP::get(C1
->getContext(), C3V
);
1270 case Instruction::FSub
:
1271 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
1272 return ConstantFP::get(C1
->getContext(), C3V
);
1273 case Instruction::FMul
:
1274 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
1275 return ConstantFP::get(C1
->getContext(), C3V
);
1276 case Instruction::FDiv
:
1277 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
1278 return ConstantFP::get(C1
->getContext(), C3V
);
1279 case Instruction::FRem
:
1281 return ConstantFP::get(C1
->getContext(), C3V
);
1284 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1285 // Fold each element and create a vector constant from those constants.
1286 SmallVector
<Constant
*, 16> Result
;
1287 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
1288 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
1289 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
1290 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
1291 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
1293 // If any element of a divisor vector is zero, the whole op is undef.
1294 if (Instruction::isIntDivRem(Opcode
) && RHS
->isNullValue())
1295 return UndefValue::get(VTy
);
1297 Result
.push_back(ConstantExpr::get(Opcode
, LHS
, RHS
));
1300 return ConstantVector::get(Result
);
1303 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1304 // There are many possible foldings we could do here. We should probably
1305 // at least fold add of a pointer with an integer into the appropriate
1306 // getelementptr. This will improve alias analysis a bit.
1308 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1310 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
1311 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
1312 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
1313 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
1315 } else if (isa
<ConstantExpr
>(C2
)) {
1316 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1317 // other way if possible.
1318 if (Instruction::isCommutative(Opcode
))
1319 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
1322 // i1 can be simplified in many cases.
1323 if (C1
->getType()->isIntegerTy(1)) {
1325 case Instruction::Add
:
1326 case Instruction::Sub
:
1327 return ConstantExpr::getXor(C1
, C2
);
1328 case Instruction::Mul
:
1329 return ConstantExpr::getAnd(C1
, C2
);
1330 case Instruction::Shl
:
1331 case Instruction::LShr
:
1332 case Instruction::AShr
:
1333 // We can assume that C2 == 0. If it were one the result would be
1334 // undefined because the shift value is as large as the bitwidth.
1336 case Instruction::SDiv
:
1337 case Instruction::UDiv
:
1338 // We can assume that C2 == 1. If it were zero the result would be
1339 // undefined through division by zero.
1341 case Instruction::URem
:
1342 case Instruction::SRem
:
1343 // We can assume that C2 == 1. If it were zero the result would be
1344 // undefined through division by zero.
1345 return ConstantInt::getFalse(C1
->getContext());
1351 // We don't know how to fold this.
1355 /// This type is zero-sized if it's an array or structure of zero-sized types.
1356 /// The only leaf zero-sized type is an empty structure.
1357 static bool isMaybeZeroSizedType(Type
*Ty
) {
1358 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1359 if (STy
->isOpaque()) return true; // Can't say.
1361 // If all of elements have zero size, this does too.
1362 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1363 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1366 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1367 return isMaybeZeroSizedType(ATy
->getElementType());
1372 /// Compare the two constants as though they were getelementptr indices.
1373 /// This allows coercion of the types to be the same thing.
1375 /// If the two constants are the "same" (after coercion), return 0. If the
1376 /// first is less than the second, return -1, if the second is less than the
1377 /// first, return 1. If the constants are not integral, return -2.
1379 static int IdxCompare(Constant
*C1
, Constant
*C2
, Type
*ElTy
) {
1380 if (C1
== C2
) return 0;
1382 // Ok, we found a different index. If they are not ConstantInt, we can't do
1383 // anything with them.
1384 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1385 return -2; // don't know!
1387 // We cannot compare the indices if they don't fit in an int64_t.
1388 if (cast
<ConstantInt
>(C1
)->getValue().getActiveBits() > 64 ||
1389 cast
<ConstantInt
>(C2
)->getValue().getActiveBits() > 64)
1390 return -2; // don't know!
1392 // Ok, we have two differing integer indices. Sign extend them to be the same
1394 int64_t C1Val
= cast
<ConstantInt
>(C1
)->getSExtValue();
1395 int64_t C2Val
= cast
<ConstantInt
>(C2
)->getSExtValue();
1397 if (C1Val
== C2Val
) return 0; // They are equal
1399 // If the type being indexed over is really just a zero sized type, there is
1400 // no pointer difference being made here.
1401 if (isMaybeZeroSizedType(ElTy
))
1402 return -2; // dunno.
1404 // If they are really different, now that they are the same type, then we
1405 // found a difference!
1412 /// This function determines if there is anything we can decide about the two
1413 /// constants provided. This doesn't need to handle simple things like
1414 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1415 /// If we can determine that the two constants have a particular relation to
1416 /// each other, we should return the corresponding FCmpInst predicate,
1417 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1418 /// ConstantFoldCompareInstruction.
1420 /// To simplify this code we canonicalize the relation so that the first
1421 /// operand is always the most "complex" of the two. We consider ConstantFP
1422 /// to be the simplest, and ConstantExprs to be the most complex.
1423 static FCmpInst::Predicate
evaluateFCmpRelation(Constant
*V1
, Constant
*V2
) {
1424 assert(V1
->getType() == V2
->getType() &&
1425 "Cannot compare values of different types!");
1427 // We do not know if a constant expression will evaluate to a number or NaN.
1428 // Therefore, we can only say that the relation is unordered or equal.
1429 if (V1
== V2
) return FCmpInst::FCMP_UEQ
;
1431 if (!isa
<ConstantExpr
>(V1
)) {
1432 if (!isa
<ConstantExpr
>(V2
)) {
1433 // Simple case, use the standard constant folder.
1434 ConstantInt
*R
= nullptr;
1435 R
= dyn_cast
<ConstantInt
>(
1436 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, V1
, V2
));
1437 if (R
&& !R
->isZero())
1438 return FCmpInst::FCMP_OEQ
;
1439 R
= dyn_cast
<ConstantInt
>(
1440 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, V1
, V2
));
1441 if (R
&& !R
->isZero())
1442 return FCmpInst::FCMP_OLT
;
1443 R
= dyn_cast
<ConstantInt
>(
1444 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, V1
, V2
));
1445 if (R
&& !R
->isZero())
1446 return FCmpInst::FCMP_OGT
;
1448 // Nothing more we can do
1449 return FCmpInst::BAD_FCMP_PREDICATE
;
1452 // If the first operand is simple and second is ConstantExpr, swap operands.
1453 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
1454 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1455 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1457 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1458 // constantexpr or a simple constant.
1459 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1460 switch (CE1
->getOpcode()) {
1461 case Instruction::FPTrunc
:
1462 case Instruction::FPExt
:
1463 case Instruction::UIToFP
:
1464 case Instruction::SIToFP
:
1465 // We might be able to do something with these but we don't right now.
1471 // There are MANY other foldings that we could perform here. They will
1472 // probably be added on demand, as they seem needed.
1473 return FCmpInst::BAD_FCMP_PREDICATE
;
1476 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
1477 const GlobalValue
*GV2
) {
1478 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
1479 if (GV
->hasExternalWeakLinkage() || GV
->hasWeakAnyLinkage())
1481 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
1482 Type
*Ty
= GVar
->getValueType();
1483 // A global with opaque type might end up being zero sized.
1486 // A global with an empty type might lie at the address of any other
1488 if (Ty
->isEmptyTy())
1493 // Don't try to decide equality of aliases.
1494 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1495 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1496 return ICmpInst::ICMP_NE
;
1497 return ICmpInst::BAD_ICMP_PREDICATE
;
1500 /// This function determines if there is anything we can decide about the two
1501 /// constants provided. This doesn't need to handle simple things like integer
1502 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1503 /// If we can determine that the two constants have a particular relation to
1504 /// each other, we should return the corresponding ICmp predicate, otherwise
1505 /// return ICmpInst::BAD_ICMP_PREDICATE.
1507 /// To simplify this code we canonicalize the relation so that the first
1508 /// operand is always the most "complex" of the two. We consider simple
1509 /// constants (like ConstantInt) to be the simplest, followed by
1510 /// GlobalValues, followed by ConstantExpr's (the most complex).
1512 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
,
1514 assert(V1
->getType() == V2
->getType() &&
1515 "Cannot compare different types of values!");
1516 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1518 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
) &&
1519 !isa
<BlockAddress
>(V1
)) {
1520 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
) &&
1521 !isa
<BlockAddress
>(V2
)) {
1522 // We distilled this down to a simple case, use the standard constant
1524 ConstantInt
*R
= nullptr;
1525 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1526 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1527 if (R
&& !R
->isZero())
1529 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1530 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1531 if (R
&& !R
->isZero())
1533 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1534 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1535 if (R
&& !R
->isZero())
1538 // If we couldn't figure it out, bail.
1539 return ICmpInst::BAD_ICMP_PREDICATE
;
1542 // If the first operand is simple, swap operands.
1543 ICmpInst::Predicate SwappedRelation
=
1544 evaluateICmpRelation(V2
, V1
, isSigned
);
1545 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1546 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1548 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1549 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1550 ICmpInst::Predicate SwappedRelation
=
1551 evaluateICmpRelation(V2
, V1
, isSigned
);
1552 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1553 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1554 return ICmpInst::BAD_ICMP_PREDICATE
;
1557 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1558 // constant (which, since the types must match, means that it's a
1559 // ConstantPointerNull).
1560 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1561 return areGlobalsPotentiallyEqual(GV
, GV2
);
1562 } else if (isa
<BlockAddress
>(V2
)) {
1563 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1565 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1566 // GlobalVals can never be null unless they have external weak linkage.
1567 // We don't try to evaluate aliases here.
1568 // NOTE: We should not be doing this constant folding if null pointer
1569 // is considered valid for the function. But currently there is no way to
1570 // query it from the Constant type.
1571 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
) &&
1572 !NullPointerIsDefined(nullptr /* F */,
1573 GV
->getType()->getAddressSpace()))
1574 return ICmpInst::ICMP_NE
;
1576 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1577 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1578 ICmpInst::Predicate SwappedRelation
=
1579 evaluateICmpRelation(V2
, V1
, isSigned
);
1580 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1581 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1582 return ICmpInst::BAD_ICMP_PREDICATE
;
1585 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1586 // constant (which, since the types must match, means that it is a
1587 // ConstantPointerNull).
1588 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1589 // Block address in another function can't equal this one, but block
1590 // addresses in the current function might be the same if blocks are
1592 if (BA2
->getFunction() != BA
->getFunction())
1593 return ICmpInst::ICMP_NE
;
1595 // Block addresses aren't null, don't equal the address of globals.
1596 assert((isa
<ConstantPointerNull
>(V2
) || isa
<GlobalValue
>(V2
)) &&
1597 "Canonicalization guarantee!");
1598 return ICmpInst::ICMP_NE
;
1601 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1602 // constantexpr, a global, block address, or a simple constant.
1603 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1604 Constant
*CE1Op0
= CE1
->getOperand(0);
1606 switch (CE1
->getOpcode()) {
1607 case Instruction::Trunc
:
1608 case Instruction::FPTrunc
:
1609 case Instruction::FPExt
:
1610 case Instruction::FPToUI
:
1611 case Instruction::FPToSI
:
1612 break; // We can't evaluate floating point casts or truncations.
1614 case Instruction::UIToFP
:
1615 case Instruction::SIToFP
:
1616 case Instruction::BitCast
:
1617 case Instruction::ZExt
:
1618 case Instruction::SExt
:
1619 // We can't evaluate floating point casts or truncations.
1620 if (CE1Op0
->getType()->isFPOrFPVectorTy())
1623 // If the cast is not actually changing bits, and the second operand is a
1624 // null pointer, do the comparison with the pre-casted value.
1625 if (V2
->isNullValue() && CE1
->getType()->isIntOrPtrTy()) {
1626 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1627 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1628 return evaluateICmpRelation(CE1Op0
,
1629 Constant::getNullValue(CE1Op0
->getType()),
1634 case Instruction::GetElementPtr
: {
1635 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1636 // Ok, since this is a getelementptr, we know that the constant has a
1637 // pointer type. Check the various cases.
1638 if (isa
<ConstantPointerNull
>(V2
)) {
1639 // If we are comparing a GEP to a null pointer, check to see if the base
1640 // of the GEP equals the null pointer.
1641 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1642 if (GV
->hasExternalWeakLinkage())
1643 // Weak linkage GVals could be zero or not. We're comparing that
1644 // to null pointer so its greater-or-equal
1645 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1647 // If its not weak linkage, the GVal must have a non-zero address
1648 // so the result is greater-than
1649 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1650 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1651 // If we are indexing from a null pointer, check to see if we have any
1652 // non-zero indices.
1653 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1654 if (!CE1
->getOperand(i
)->isNullValue())
1655 // Offsetting from null, must not be equal.
1656 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1657 // Only zero indexes from null, must still be zero.
1658 return ICmpInst::ICMP_EQ
;
1660 // Otherwise, we can't really say if the first operand is null or not.
1661 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1662 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1663 if (GV2
->hasExternalWeakLinkage())
1664 // Weak linkage GVals could be zero or not. We're comparing it to
1665 // a null pointer, so its less-or-equal
1666 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1668 // If its not weak linkage, the GVal must have a non-zero address
1669 // so the result is less-than
1670 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1671 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1673 // If this is a getelementptr of the same global, then it must be
1674 // different. Because the types must match, the getelementptr could
1675 // only have at most one index, and because we fold getelementptr's
1676 // with a single zero index, it must be nonzero.
1677 assert(CE1
->getNumOperands() == 2 &&
1678 !CE1
->getOperand(1)->isNullValue() &&
1679 "Surprising getelementptr!");
1680 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1682 if (CE1GEP
->hasAllZeroIndices())
1683 return areGlobalsPotentiallyEqual(GV
, GV2
);
1684 return ICmpInst::BAD_ICMP_PREDICATE
;
1688 ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1689 Constant
*CE2Op0
= CE2
->getOperand(0);
1691 // There are MANY other foldings that we could perform here. They will
1692 // probably be added on demand, as they seem needed.
1693 switch (CE2
->getOpcode()) {
1695 case Instruction::GetElementPtr
:
1696 // By far the most common case to handle is when the base pointers are
1697 // obviously to the same global.
1698 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1699 // Don't know relative ordering, but check for inequality.
1700 if (CE1Op0
!= CE2Op0
) {
1701 GEPOperator
*CE2GEP
= cast
<GEPOperator
>(CE2
);
1702 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1703 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1704 cast
<GlobalValue
>(CE2Op0
));
1705 return ICmpInst::BAD_ICMP_PREDICATE
;
1707 // Ok, we know that both getelementptr instructions are based on the
1708 // same global. From this, we can precisely determine the relative
1709 // ordering of the resultant pointers.
1712 // The logic below assumes that the result of the comparison
1713 // can be determined by finding the first index that differs.
1714 // This doesn't work if there is over-indexing in any
1715 // subsequent indices, so check for that case first.
1716 if (!CE1
->isGEPWithNoNotionalOverIndexing() ||
1717 !CE2
->isGEPWithNoNotionalOverIndexing())
1718 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1720 // Compare all of the operands the GEP's have in common.
1721 gep_type_iterator GTI
= gep_type_begin(CE1
);
1722 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1724 switch (IdxCompare(CE1
->getOperand(i
),
1725 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1726 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1727 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1728 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1731 // Ok, we ran out of things they have in common. If any leftovers
1732 // are non-zero then we have a difference, otherwise we are equal.
1733 for (; i
< CE1
->getNumOperands(); ++i
)
1734 if (!CE1
->getOperand(i
)->isNullValue()) {
1735 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1736 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1738 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1741 for (; i
< CE2
->getNumOperands(); ++i
)
1742 if (!CE2
->getOperand(i
)->isNullValue()) {
1743 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1744 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1746 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1748 return ICmpInst::ICMP_EQ
;
1759 return ICmpInst::BAD_ICMP_PREDICATE
;
1762 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1763 Constant
*C1
, Constant
*C2
) {
1765 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1766 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1767 VT
->getNumElements());
1769 ResultTy
= Type::getInt1Ty(C1
->getContext());
1771 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1772 if (pred
== FCmpInst::FCMP_FALSE
)
1773 return Constant::getNullValue(ResultTy
);
1775 if (pred
== FCmpInst::FCMP_TRUE
)
1776 return Constant::getAllOnesValue(ResultTy
);
1778 // Handle some degenerate cases first
1779 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1780 CmpInst::Predicate Predicate
= CmpInst::Predicate(pred
);
1781 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1782 // For EQ and NE, we can always pick a value for the undef to make the
1783 // predicate pass or fail, so we can return undef.
1784 // Also, if both operands are undef, we can return undef for int comparison.
1785 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1786 return UndefValue::get(ResultTy
);
1788 // Otherwise, for integer compare, pick the same value as the non-undef
1789 // operand, and fold it to true or false.
1790 if (isIntegerPredicate
)
1791 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1793 // Choosing NaN for the undef will always make unordered comparison succeed
1794 // and ordered comparison fails.
1795 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1798 // icmp eq/ne(null,GV) -> false/true
1799 if (C1
->isNullValue()) {
1800 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1801 // Don't try to evaluate aliases. External weak GV can be null.
1802 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1803 !NullPointerIsDefined(nullptr /* F */,
1804 GV
->getType()->getAddressSpace())) {
1805 if (pred
== ICmpInst::ICMP_EQ
)
1806 return ConstantInt::getFalse(C1
->getContext());
1807 else if (pred
== ICmpInst::ICMP_NE
)
1808 return ConstantInt::getTrue(C1
->getContext());
1810 // icmp eq/ne(GV,null) -> false/true
1811 } else if (C2
->isNullValue()) {
1812 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1813 // Don't try to evaluate aliases. External weak GV can be null.
1814 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1815 !NullPointerIsDefined(nullptr /* F */,
1816 GV
->getType()->getAddressSpace())) {
1817 if (pred
== ICmpInst::ICMP_EQ
)
1818 return ConstantInt::getFalse(C1
->getContext());
1819 else if (pred
== ICmpInst::ICMP_NE
)
1820 return ConstantInt::getTrue(C1
->getContext());
1824 // If the comparison is a comparison between two i1's, simplify it.
1825 if (C1
->getType()->isIntegerTy(1)) {
1827 case ICmpInst::ICMP_EQ
:
1828 if (isa
<ConstantInt
>(C2
))
1829 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1830 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1831 case ICmpInst::ICMP_NE
:
1832 return ConstantExpr::getXor(C1
, C2
);
1838 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1839 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1840 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1842 default: llvm_unreachable("Invalid ICmp Predicate");
1843 case ICmpInst::ICMP_EQ
: return ConstantInt::get(ResultTy
, V1
== V2
);
1844 case ICmpInst::ICMP_NE
: return ConstantInt::get(ResultTy
, V1
!= V2
);
1845 case ICmpInst::ICMP_SLT
: return ConstantInt::get(ResultTy
, V1
.slt(V2
));
1846 case ICmpInst::ICMP_SGT
: return ConstantInt::get(ResultTy
, V1
.sgt(V2
));
1847 case ICmpInst::ICMP_SLE
: return ConstantInt::get(ResultTy
, V1
.sle(V2
));
1848 case ICmpInst::ICMP_SGE
: return ConstantInt::get(ResultTy
, V1
.sge(V2
));
1849 case ICmpInst::ICMP_ULT
: return ConstantInt::get(ResultTy
, V1
.ult(V2
));
1850 case ICmpInst::ICMP_UGT
: return ConstantInt::get(ResultTy
, V1
.ugt(V2
));
1851 case ICmpInst::ICMP_ULE
: return ConstantInt::get(ResultTy
, V1
.ule(V2
));
1852 case ICmpInst::ICMP_UGE
: return ConstantInt::get(ResultTy
, V1
.uge(V2
));
1854 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1855 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1856 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1857 APFloat::cmpResult R
= C1V
.compare(C2V
);
1859 default: llvm_unreachable("Invalid FCmp Predicate");
1860 case FCmpInst::FCMP_FALSE
: return Constant::getNullValue(ResultTy
);
1861 case FCmpInst::FCMP_TRUE
: return Constant::getAllOnesValue(ResultTy
);
1862 case FCmpInst::FCMP_UNO
:
1863 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
);
1864 case FCmpInst::FCMP_ORD
:
1865 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpUnordered
);
1866 case FCmpInst::FCMP_UEQ
:
1867 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1868 R
==APFloat::cmpEqual
);
1869 case FCmpInst::FCMP_OEQ
:
1870 return ConstantInt::get(ResultTy
, R
==APFloat::cmpEqual
);
1871 case FCmpInst::FCMP_UNE
:
1872 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpEqual
);
1873 case FCmpInst::FCMP_ONE
:
1874 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1875 R
==APFloat::cmpGreaterThan
);
1876 case FCmpInst::FCMP_ULT
:
1877 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1878 R
==APFloat::cmpLessThan
);
1879 case FCmpInst::FCMP_OLT
:
1880 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
);
1881 case FCmpInst::FCMP_UGT
:
1882 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1883 R
==APFloat::cmpGreaterThan
);
1884 case FCmpInst::FCMP_OGT
:
1885 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
);
1886 case FCmpInst::FCMP_ULE
:
1887 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpGreaterThan
);
1888 case FCmpInst::FCMP_OLE
:
1889 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1890 R
==APFloat::cmpEqual
);
1891 case FCmpInst::FCMP_UGE
:
1892 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpLessThan
);
1893 case FCmpInst::FCMP_OGE
:
1894 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
||
1895 R
==APFloat::cmpEqual
);
1897 } else if (C1
->getType()->isVectorTy()) {
1898 // If we can constant fold the comparison of each element, constant fold
1899 // the whole vector comparison.
1900 SmallVector
<Constant
*, 4> ResElts
;
1901 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1902 // Compare the elements, producing an i1 result or constant expr.
1903 for (unsigned i
= 0, e
= C1
->getType()->getVectorNumElements(); i
!= e
;++i
){
1905 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, i
));
1907 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, i
));
1909 ResElts
.push_back(ConstantExpr::getCompare(pred
, C1E
, C2E
));
1912 return ConstantVector::get(ResElts
);
1915 if (C1
->getType()->isFloatingPointTy() &&
1916 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1917 // infinite recursive loop
1918 (isa
<ConstantExpr
>(C1
) || isa
<ConstantExpr
>(C2
))) {
1919 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1920 switch (evaluateFCmpRelation(C1
, C2
)) {
1921 default: llvm_unreachable("Unknown relation!");
1922 case FCmpInst::FCMP_UNO
:
1923 case FCmpInst::FCMP_ORD
:
1924 case FCmpInst::FCMP_UNE
:
1925 case FCmpInst::FCMP_ULT
:
1926 case FCmpInst::FCMP_UGT
:
1927 case FCmpInst::FCMP_ULE
:
1928 case FCmpInst::FCMP_UGE
:
1929 case FCmpInst::FCMP_TRUE
:
1930 case FCmpInst::FCMP_FALSE
:
1931 case FCmpInst::BAD_FCMP_PREDICATE
:
1932 break; // Couldn't determine anything about these constants.
1933 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1934 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1935 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1936 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1938 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1939 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1940 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1941 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1943 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1944 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1945 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1946 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1948 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1949 // We can only partially decide this relation.
1950 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1952 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1955 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1956 // We can only partially decide this relation.
1957 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1959 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1962 case FCmpInst::FCMP_ONE
: // We know that C1 != C2
1963 // We can only partially decide this relation.
1964 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1966 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1969 case FCmpInst::FCMP_UEQ
: // We know that C1 == C2 || isUnordered(C1, C2).
1970 // We can only partially decide this relation.
1971 if (pred
== FCmpInst::FCMP_ONE
)
1973 else if (pred
== FCmpInst::FCMP_UEQ
)
1978 // If we evaluated the result, return it now.
1980 return ConstantInt::get(ResultTy
, Result
);
1983 // Evaluate the relation between the two constants, per the predicate.
1984 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1985 switch (evaluateICmpRelation(C1
, C2
,
1986 CmpInst::isSigned((CmpInst::Predicate
)pred
))) {
1987 default: llvm_unreachable("Unknown relational!");
1988 case ICmpInst::BAD_ICMP_PREDICATE
:
1989 break; // Couldn't determine anything about these constants.
1990 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1991 // If we know the constants are equal, we can decide the result of this
1992 // computation precisely.
1993 Result
= ICmpInst::isTrueWhenEqual((ICmpInst::Predicate
)pred
);
1995 case ICmpInst::ICMP_ULT
:
1997 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
1999 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
2003 case ICmpInst::ICMP_SLT
:
2005 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
2007 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
2011 case ICmpInst::ICMP_UGT
:
2013 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
2015 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
2019 case ICmpInst::ICMP_SGT
:
2021 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
2023 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
2027 case ICmpInst::ICMP_ULE
:
2028 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
2029 if (pred
== ICmpInst::ICMP_ULT
|| pred
== ICmpInst::ICMP_ULE
) Result
= 1;
2031 case ICmpInst::ICMP_SLE
:
2032 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
2033 if (pred
== ICmpInst::ICMP_SLT
|| pred
== ICmpInst::ICMP_SLE
) Result
= 1;
2035 case ICmpInst::ICMP_UGE
:
2036 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
2037 if (pred
== ICmpInst::ICMP_UGT
|| pred
== ICmpInst::ICMP_UGE
) Result
= 1;
2039 case ICmpInst::ICMP_SGE
:
2040 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
2041 if (pred
== ICmpInst::ICMP_SGT
|| pred
== ICmpInst::ICMP_SGE
) Result
= 1;
2043 case ICmpInst::ICMP_NE
:
2044 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
2045 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
2049 // If we evaluated the result, return it now.
2051 return ConstantInt::get(ResultTy
, Result
);
2053 // If the right hand side is a bitcast, try using its inverse to simplify
2054 // it by moving it to the left hand side. We can't do this if it would turn
2055 // a vector compare into a scalar compare or visa versa, or if it would turn
2056 // the operands into FP values.
2057 if (ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(C2
)) {
2058 Constant
*CE2Op0
= CE2
->getOperand(0);
2059 if (CE2
->getOpcode() == Instruction::BitCast
&&
2060 CE2
->getType()->isVectorTy() == CE2Op0
->getType()->isVectorTy() &&
2061 !CE2Op0
->getType()->isFPOrFPVectorTy()) {
2062 Constant
*Inverse
= ConstantExpr::getBitCast(C1
, CE2Op0
->getType());
2063 return ConstantExpr::getICmp(pred
, Inverse
, CE2Op0
);
2067 // If the left hand side is an extension, try eliminating it.
2068 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
2069 if ((CE1
->getOpcode() == Instruction::SExt
&&
2070 ICmpInst::isSigned((ICmpInst::Predicate
)pred
)) ||
2071 (CE1
->getOpcode() == Instruction::ZExt
&&
2072 !ICmpInst::isSigned((ICmpInst::Predicate
)pred
))){
2073 Constant
*CE1Op0
= CE1
->getOperand(0);
2074 Constant
*CE1Inverse
= ConstantExpr::getTrunc(CE1
, CE1Op0
->getType());
2075 if (CE1Inverse
== CE1Op0
) {
2076 // Check whether we can safely truncate the right hand side.
2077 Constant
*C2Inverse
= ConstantExpr::getTrunc(C2
, CE1Op0
->getType());
2078 if (ConstantExpr::getCast(CE1
->getOpcode(), C2Inverse
,
2079 C2
->getType()) == C2
)
2080 return ConstantExpr::getICmp(pred
, CE1Inverse
, C2Inverse
);
2085 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
2086 (C1
->isNullValue() && !C2
->isNullValue())) {
2087 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2088 // other way if possible.
2089 // Also, if C1 is null and C2 isn't, flip them around.
2090 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
2091 return ConstantExpr::getICmp(pred
, C2
, C1
);
2097 /// Test whether the given sequence of *normalized* indices is "inbounds".
2098 template<typename IndexTy
>
2099 static bool isInBoundsIndices(ArrayRef
<IndexTy
> Idxs
) {
2100 // No indices means nothing that could be out of bounds.
2101 if (Idxs
.empty()) return true;
2103 // If the first index is zero, it's in bounds.
2104 if (cast
<Constant
>(Idxs
[0])->isNullValue()) return true;
2106 // If the first index is one and all the rest are zero, it's in bounds,
2107 // by the one-past-the-end rule.
2108 if (auto *CI
= dyn_cast
<ConstantInt
>(Idxs
[0])) {
2112 auto *CV
= cast
<ConstantDataVector
>(Idxs
[0]);
2113 CI
= dyn_cast_or_null
<ConstantInt
>(CV
->getSplatValue());
2114 if (!CI
|| !CI
->isOne())
2118 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
; ++i
)
2119 if (!cast
<Constant
>(Idxs
[i
])->isNullValue())
2124 /// Test whether a given ConstantInt is in-range for a SequentialType.
2125 static bool isIndexInRangeOfArrayType(uint64_t NumElements
,
2126 const ConstantInt
*CI
) {
2127 // We cannot bounds check the index if it doesn't fit in an int64_t.
2128 if (CI
->getValue().getMinSignedBits() > 64)
2131 // A negative index or an index past the end of our sequential type is
2132 // considered out-of-range.
2133 int64_t IndexVal
= CI
->getSExtValue();
2134 if (IndexVal
< 0 || (NumElements
> 0 && (uint64_t)IndexVal
>= NumElements
))
2137 // Otherwise, it is in-range.
2141 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
2143 Optional
<unsigned> InRangeIndex
,
2144 ArrayRef
<Value
*> Idxs
) {
2145 if (Idxs
.empty()) return C
;
2147 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
2148 PointeeTy
, C
, makeArrayRef((Value
*const *)Idxs
.data(), Idxs
.size()));
2150 if (isa
<UndefValue
>(C
))
2151 return UndefValue::get(GEPTy
);
2153 Constant
*Idx0
= cast
<Constant
>(Idxs
[0]);
2154 if (Idxs
.size() == 1 && (Idx0
->isNullValue() || isa
<UndefValue
>(Idx0
)))
2155 return GEPTy
->isVectorTy() && !C
->getType()->isVectorTy()
2156 ? ConstantVector::getSplat(
2157 cast
<VectorType
>(GEPTy
)->getNumElements(), C
)
2160 if (C
->isNullValue()) {
2162 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2163 if (!isa
<UndefValue
>(Idxs
[i
]) &&
2164 !cast
<Constant
>(Idxs
[i
])->isNullValue()) {
2169 PointerType
*PtrTy
= cast
<PointerType
>(C
->getType()->getScalarType());
2170 Type
*Ty
= GetElementPtrInst::getIndexedType(PointeeTy
, Idxs
);
2172 assert(Ty
&& "Invalid indices for GEP!");
2173 Type
*OrigGEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2174 Type
*GEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2175 if (VectorType
*VT
= dyn_cast
<VectorType
>(C
->getType()))
2176 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2178 // The GEP returns a vector of pointers when one of more of
2179 // its arguments is a vector.
2180 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2181 if (auto *VT
= dyn_cast
<VectorType
>(Idxs
[i
]->getType())) {
2182 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2187 return Constant::getNullValue(GEPTy
);
2191 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2192 // Combine Indices - If the source pointer to this getelementptr instruction
2193 // is a getelementptr instruction, combine the indices of the two
2194 // getelementptr instructions into a single instruction.
2196 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2197 gep_type_iterator LastI
= gep_type_end(CE
);
2198 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
2202 // We cannot combine indices if doing so would take us outside of an
2203 // array or vector. Doing otherwise could trick us if we evaluated such a
2204 // GEP as part of a load.
2206 // e.g. Consider if the original GEP was:
2207 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2208 // i32 0, i32 0, i64 0)
2210 // If we then tried to offset it by '8' to get to the third element,
2211 // an i8, we should *not* get:
2212 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2213 // i32 0, i32 0, i64 8)
2215 // This GEP tries to index array element '8 which runs out-of-bounds.
2216 // Subsequent evaluation would get confused and produce erroneous results.
2218 // The following prohibits such a GEP from being formed by checking to see
2219 // if the index is in-range with respect to an array.
2220 // TODO: This code may be extended to handle vectors as well.
2221 bool PerformFold
= false;
2222 if (Idx0
->isNullValue())
2224 else if (LastI
.isSequential())
2225 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx0
))
2226 PerformFold
= (!LastI
.isBoundedSequential() ||
2227 isIndexInRangeOfArrayType(
2228 LastI
.getSequentialNumElements(), CI
)) &&
2229 !CE
->getOperand(CE
->getNumOperands() - 1)
2234 SmallVector
<Value
*, 16> NewIndices
;
2235 NewIndices
.reserve(Idxs
.size() + CE
->getNumOperands());
2236 NewIndices
.append(CE
->op_begin() + 1, CE
->op_end() - 1);
2238 // Add the last index of the source with the first index of the new GEP.
2239 // Make sure to handle the case when they are actually different types.
2240 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
2241 // Otherwise it must be an array.
2242 if (!Idx0
->isNullValue()) {
2243 Type
*IdxTy
= Combined
->getType();
2244 if (IdxTy
!= Idx0
->getType()) {
2245 unsigned CommonExtendedWidth
=
2246 std::max(IdxTy
->getIntegerBitWidth(),
2247 Idx0
->getType()->getIntegerBitWidth());
2248 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2251 Type::getIntNTy(IdxTy
->getContext(), CommonExtendedWidth
);
2252 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, CommonTy
);
2253 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
, CommonTy
);
2254 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
2257 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
2261 NewIndices
.push_back(Combined
);
2262 NewIndices
.append(Idxs
.begin() + 1, Idxs
.end());
2264 // The combined GEP normally inherits its index inrange attribute from
2265 // the inner GEP, but if the inner GEP's last index was adjusted by the
2266 // outer GEP, any inbounds attribute on that index is invalidated.
2267 Optional
<unsigned> IRIndex
= cast
<GEPOperator
>(CE
)->getInRangeIndex();
2268 if (IRIndex
&& *IRIndex
== CE
->getNumOperands() - 2 && !Idx0
->isNullValue())
2271 return ConstantExpr::getGetElementPtr(
2272 cast
<GEPOperator
>(CE
)->getSourceElementType(), CE
->getOperand(0),
2273 NewIndices
, InBounds
&& cast
<GEPOperator
>(CE
)->isInBounds(),
2278 // Attempt to fold casts to the same type away. For example, folding:
2280 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2284 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2286 // Don't fold if the cast is changing address spaces.
2287 if (CE
->isCast() && Idxs
.size() > 1 && Idx0
->isNullValue()) {
2288 PointerType
*SrcPtrTy
=
2289 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType());
2290 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(CE
->getType());
2291 if (SrcPtrTy
&& DstPtrTy
) {
2292 ArrayType
*SrcArrayTy
=
2293 dyn_cast
<ArrayType
>(SrcPtrTy
->getElementType());
2294 ArrayType
*DstArrayTy
=
2295 dyn_cast
<ArrayType
>(DstPtrTy
->getElementType());
2296 if (SrcArrayTy
&& DstArrayTy
2297 && SrcArrayTy
->getElementType() == DstArrayTy
->getElementType()
2298 && SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
2299 return ConstantExpr::getGetElementPtr(SrcArrayTy
,
2300 (Constant
*)CE
->getOperand(0),
2301 Idxs
, InBounds
, InRangeIndex
);
2306 // Check to see if any array indices are not within the corresponding
2307 // notional array or vector bounds. If so, try to determine if they can be
2308 // factored out into preceding dimensions.
2309 SmallVector
<Constant
*, 8> NewIdxs
;
2310 Type
*Ty
= PointeeTy
;
2311 Type
*Prev
= C
->getType();
2313 !isa
<ConstantInt
>(Idxs
[0]) && !isa
<ConstantDataVector
>(Idxs
[0]);
2314 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
;
2315 Prev
= Ty
, Ty
= cast
<CompositeType
>(Ty
)->getTypeAtIndex(Idxs
[i
]), ++i
) {
2316 if (!isa
<ConstantInt
>(Idxs
[i
]) && !isa
<ConstantDataVector
>(Idxs
[i
])) {
2317 // We don't know if it's in range or not.
2321 if (!isa
<ConstantInt
>(Idxs
[i
- 1]) && !isa
<ConstantDataVector
>(Idxs
[i
- 1]))
2322 // Skip if the type of the previous index is not supported.
2324 if (InRangeIndex
&& i
== *InRangeIndex
+ 1) {
2325 // If an index is marked inrange, we cannot apply this canonicalization to
2326 // the following index, as that will cause the inrange index to point to
2327 // the wrong element.
2330 if (isa
<StructType
>(Ty
)) {
2331 // The verify makes sure that GEPs into a struct are in range.
2334 auto *STy
= cast
<SequentialType
>(Ty
);
2335 if (isa
<VectorType
>(STy
)) {
2336 // There can be awkward padding in after a non-power of two vector.
2340 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idxs
[i
])) {
2341 if (isIndexInRangeOfArrayType(STy
->getNumElements(), CI
))
2342 // It's in range, skip to the next index.
2344 if (CI
->getSExtValue() < 0) {
2345 // It's out of range and negative, don't try to factor it.
2350 auto *CV
= cast
<ConstantDataVector
>(Idxs
[i
]);
2351 bool InRange
= true;
2352 for (unsigned I
= 0, E
= CV
->getNumElements(); I
!= E
; ++I
) {
2353 auto *CI
= cast
<ConstantInt
>(CV
->getElementAsConstant(I
));
2354 InRange
&= isIndexInRangeOfArrayType(STy
->getNumElements(), CI
);
2355 if (CI
->getSExtValue() < 0) {
2360 if (InRange
|| Unknown
)
2361 // It's in range, skip to the next index.
2362 // It's out of range and negative, don't try to factor it.
2365 if (isa
<StructType
>(Prev
)) {
2366 // It's out of range, but the prior dimension is a struct
2367 // so we can't do anything about it.
2371 // It's out of range, but we can factor it into the prior
2373 NewIdxs
.resize(Idxs
.size());
2374 // Determine the number of elements in our sequential type.
2375 uint64_t NumElements
= STy
->getArrayNumElements();
2377 // Expand the current index or the previous index to a vector from a scalar
2379 Constant
*CurrIdx
= cast
<Constant
>(Idxs
[i
]);
2381 NewIdxs
[i
- 1] ? NewIdxs
[i
- 1] : cast
<Constant
>(Idxs
[i
- 1]);
2382 bool IsCurrIdxVector
= CurrIdx
->getType()->isVectorTy();
2383 bool IsPrevIdxVector
= PrevIdx
->getType()->isVectorTy();
2384 bool UseVector
= IsCurrIdxVector
|| IsPrevIdxVector
;
2386 if (!IsCurrIdxVector
&& IsPrevIdxVector
)
2387 CurrIdx
= ConstantDataVector::getSplat(
2388 PrevIdx
->getType()->getVectorNumElements(), CurrIdx
);
2390 if (!IsPrevIdxVector
&& IsCurrIdxVector
)
2391 PrevIdx
= ConstantDataVector::getSplat(
2392 CurrIdx
->getType()->getVectorNumElements(), PrevIdx
);
2395 ConstantInt::get(CurrIdx
->getType()->getScalarType(), NumElements
);
2397 Factor
= ConstantDataVector::getSplat(
2398 IsPrevIdxVector
? PrevIdx
->getType()->getVectorNumElements()
2399 : CurrIdx
->getType()->getVectorNumElements(),
2402 NewIdxs
[i
] = ConstantExpr::getSRem(CurrIdx
, Factor
);
2404 Constant
*Div
= ConstantExpr::getSDiv(CurrIdx
, Factor
);
2406 unsigned CommonExtendedWidth
=
2407 std::max(PrevIdx
->getType()->getScalarSizeInBits(),
2408 Div
->getType()->getScalarSizeInBits());
2409 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2411 // Before adding, extend both operands to i64 to avoid
2412 // overflow trouble.
2413 Type
*ExtendedTy
= Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
);
2415 ExtendedTy
= VectorType::get(
2416 ExtendedTy
, IsPrevIdxVector
2417 ? PrevIdx
->getType()->getVectorNumElements()
2418 : CurrIdx
->getType()->getVectorNumElements());
2420 if (!PrevIdx
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2421 PrevIdx
= ConstantExpr::getSExt(PrevIdx
, ExtendedTy
);
2423 if (!Div
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2424 Div
= ConstantExpr::getSExt(Div
, ExtendedTy
);
2426 NewIdxs
[i
- 1] = ConstantExpr::getAdd(PrevIdx
, Div
);
2429 // If we did any factoring, start over with the adjusted indices.
2430 if (!NewIdxs
.empty()) {
2431 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2432 if (!NewIdxs
[i
]) NewIdxs
[i
] = cast
<Constant
>(Idxs
[i
]);
2433 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, NewIdxs
, InBounds
,
2437 // If all indices are known integers and normalized, we can do a simple
2438 // check for the "inbounds" property.
2439 if (!Unknown
&& !InBounds
)
2440 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
2441 if (!GV
->hasExternalWeakLinkage() && isInBoundsIndices(Idxs
))
2442 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, Idxs
,
2443 /*InBounds=*/true, InRangeIndex
);